JP5461942B2 - Control apparatus and control method - Google Patents

Control apparatus and control method Download PDF

Info

Publication number
JP5461942B2
JP5461942B2 JP2009226756A JP2009226756A JP5461942B2 JP 5461942 B2 JP5461942 B2 JP 5461942B2 JP 2009226756 A JP2009226756 A JP 2009226756A JP 2009226756 A JP2009226756 A JP 2009226756A JP 5461942 B2 JP5461942 B2 JP 5461942B2
Authority
JP
Japan
Prior art keywords
outside air
room temperature
control mode
individual
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009226756A
Other languages
Japanese (ja)
Other versions
JP2011075194A (en
Inventor
雅人 田中
龍太 太宰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2009226756A priority Critical patent/JP5461942B2/en
Publication of JP2011075194A publication Critical patent/JP2011075194A/en
Application granted granted Critical
Publication of JP5461942B2 publication Critical patent/JP5461942B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、個別空調機と外気冷房機とが併用される空調システムにおける制御装置および制御方法に関するものである。   The present invention relates to a control device and a control method in an air conditioning system in which an individual air conditioner and an outside air cooler are used in combination.

空調制御では、例えば図4に示すように、部屋毎に個別の空調機(例えばビル用マルチ空調機など)を設置し、居住者がリモコンなどの操作手段を用いて、居住者の判断で個別空調機を操作する空調システムが実用化されている(例えば特許文献1参照)。図4の例では、部屋100−1,100−2の各々に熱交換式の個別空調機101−1,101−2が設けられている。図4において、102−1,102−2は部屋100−1,100−2から個別空調機101−1,101−2に空気(還気)を戻す還気ダクト、103−1,103−2は個別空調機101−1,101−2によって冷却または加熱された空気(給気)を部屋100−1,100−2へ供給する給気ダクト、104−1,104−2は給気の吹出口である。   In the air conditioning control, for example, as shown in FIG. 4, individual air conditioners (for example, multi air conditioners for buildings) are installed for each room, and the resident uses the operation means such as a remote control to individually An air conditioning system for operating an air conditioner has been put into practical use (for example, see Patent Document 1). In the example of FIG. 4, heat exchange-type individual air conditioners 101-1 and 101-2 are provided in the rooms 100-1 and 100-2, respectively. 4, reference numerals 102-1 and 102-2 denote return air ducts 103-1 and 103-2 for returning air (return air) from the rooms 100-1 and 100-2 to the individual air conditioners 101-1 and 101-2. Is an air supply duct that supplies air (air supply) cooled or heated by the individual air conditioners 101-1 and 101-2 to the rooms 100-1 and 100-2, and 104-1 and 104-2 are air supply blowers. It is an exit.

一方で、セントラル空調システムでは、外気温度が低い冬期においては、外気を利用した冷房(外気冷房)が行なえるように構成されており、制御パラメータの調整についても効率化が図られている(特許文献2参照)。
オフィスビルなどでは、居住者やコンピュータ類が実質的に室内の発熱物となるので、冬期でも昼間は冷房を行なう必要がある。冷たい外気を取入れて冷房を行なう外気冷房により、空調機などによって空気を冷却するためのエネルギーを節約できるので、外気冷房を利用することは省エネルギーという観点では極めて有効である。
On the other hand, the central air-conditioning system is configured to perform cooling using the outside air (outside air cooling) in the winter when the outside air temperature is low, and the control parameter adjustment is also efficient (patent) Reference 2).
In office buildings and the like, occupants and computers substantially become indoor heating products, so it is necessary to cool them during the daytime even in winter. The use of the outside air cooling is extremely effective from the viewpoint of energy saving because the outside air cooling that takes in the cold outside air and cools it can save the energy for cooling the air by an air conditioner or the like.

したがって、図5に示すように個別空調機と外気冷房機とを併用して、それぞれの良さを活用しようという構成が考えられる。図5において、105は外気を室内に導入する外気冷房機、106は外気の取り入れ口、107−1,107−2は外気冷房機105から送り出される外気を部屋100−1,100−2へ供給する外気ダクト、108−1,108−2は外気の供給量を調節する外気ダンパ、109−1,109−2は外気の吹出口、110−1,110−2は部屋100−1,100−2の室温を計測する室温センサ、111は外気温度を計測する外気温度センサである。   Therefore, as shown in FIG. 5, a configuration in which the individual air conditioner and the outside air cooler are used in combination and the respective merits are utilized is conceivable. In FIG. 5, reference numeral 105 denotes an outside air cooler for introducing outside air into the room, 106 denotes an outside air intake port, and 107-1 and 107-2 supply outside air sent from the outside air cooler 105 to the rooms 100-1 and 100-2. The outdoor air ducts 108-1, 108-2 are the external air dampers for adjusting the supply amount of the external air, 109-1, 109-2 are the outdoor air outlets, 110-1, 110-2 are the rooms 100-1, 100-. 2 is a room temperature sensor that measures the room temperature, and 111 is an outside air temperature sensor that measures the outside air temperature.

図5のように個別空調機と外気冷房機とを併用しようとすると、両者を従来通りに併設することになるので、個別空調機の制御と外気冷房機の制御とが競合して、トータルの室温制御の効率が低下してしまうことにもなり得る。
そこで、特許文献3に開示された手法を適用して、個別空調機の制御と外気冷房機の制御の競合を回避することが考えられる。以下、特許文献3に開示された手法を適用した場合の図5の空調システムの動作を説明する。
As shown in FIG. 5, when an individual air conditioner and an outside air cooler are used together, both of them are installed as usual, so that the control of the individual air conditioner and the control of the outside air cooler compete, The efficiency of the room temperature control may be reduced.
Therefore, it is conceivable to apply the method disclosed in Patent Document 3 to avoid competition between the control of the individual air conditioner and the control of the outside air cooler. Hereinafter, the operation of the air conditioning system of FIG. 5 when the method disclosed in Patent Document 3 is applied will be described.

外気冷房のみ(完全外気冷房)によって室温を設定温度に制御できる状況であれば、省エネルギー効果を優先し、外気冷房のみにするのが好ましい。このような場合は、セントラル空調システムの完全外気冷房と同じ状態(外気ダンパ108−1,108−2の操作による室温フィードバック制御の状態)にするべきであり、すなわち個別空調機101−1,101−2は停止することになる。   If the room temperature can be controlled to the set temperature only by the outside air cooling (complete outside air cooling), it is preferable to give priority to the energy saving effect and to make only the outside air cooling. In such a case, it should be in the same state as the complete outside air cooling of the central air conditioning system (the state of room temperature feedback control by the operation of the outside air dampers 108-1 and 108-2), that is, the individual air conditioners 101-1 and 101. -2 will stop.

外気冷房が有効であっても、外気冷房のみでは室温を設定温度に下降させることができない場合は、個別空調機101−1,101−2を併用する必要性が生じる。このような場合は、外気ダンパ108−1,108−2を最大開度に固定して、可能な限り外気による冷房効果を利用するのが省エネルギーになるので、室温の制御は個別空調機101−1,101−2のみが行なう状態(個別空調機101−1,101−2の熱交換部による室温フィードバック制御の状態)にするべきである。   Even if the outside air cooling is effective, if the room temperature cannot be lowered to the set temperature only by the outside air cooling, it becomes necessary to use the individual air conditioners 101-1 and 101-2 together. In such a case, it is energy saving to fix the outside air dampers 108-1 and 108-2 to the maximum opening and use the cooling effect by outside air as much as possible. 1, 101-2 only (the state of room temperature feedback control by the heat exchange unit of the individual air conditioners 101-1 and 101-2) should be performed.

例えば室温の設定値が25.0℃で外気温度が28.0℃の場合のように外気冷房が有効ではなくても、室内の換気の都合で外気を取り入れる場合は、換気の目的は例えば室内の二酸化炭素濃度などの低減にある。そして、二酸化炭素濃度が厳密な制御ターゲット(フィードバック制御の制御量)になるということはほとんどない。したがって、外気ダンパ108−1,108−2を換気の都合で決まる開度に固定して、室温の制御は個別空調機101−1,101−2のみが行なう状態にするべきである。   For example, when outside air cooling is not effective as in the case where the set value of the room temperature is 25.0 ° C. and the outside air temperature is 28.0 ° C., the purpose of ventilation is The reduction of carbon dioxide concentration. The carbon dioxide concentration is hardly a strict control target (control amount for feedback control). Therefore, the outside air dampers 108-1 and 108-2 should be fixed at the opening determined by the convenience of ventilation, and the room temperature should be controlled only by the individual air conditioners 101-1 and 101-2.

以上の動作を整理すると、特許文献3に開示された手法によれば、完全外気冷房時は、個別空調機101−1,101−2の制御動作を停止し、外気ダンパ108−1,108−2を制御アクチュエータとする室温フィードバック制御(外気冷房の制御モード)を実施し、それ以外は、外気ダンパ108−1,108−2の開度を固定し、個別空調機101−1,101−2の熱交換部を制御アクチュエータとする室温フィードバック制御(個別空調の制御モード)を実施するように、フィードバック制御演算を切り換えればよいことになる。すなわち、制御演算自体は、外気冷房の制御モードと個別空調の制御モードのどちらか一方のみが動作するようにして重複を避ける。   When the above operations are arranged, according to the method disclosed in Patent Document 3, the control operation of the individual air conditioners 101-1 and 101-2 is stopped and the outside air dampers 108-1 and 108- are stopped during complete outside air cooling. Room temperature feedback control (control mode of outside air cooling) is performed with 2 as the control actuator, and the opening degree of the outside air dampers 108-1 and 108-2 is fixed otherwise, and the individual air conditioners 101-1 and 101-2 are used. Therefore, it is only necessary to switch the feedback control calculation so that room temperature feedback control (individual air-conditioning control mode) is performed with the heat exchanger as a control actuator. That is, the control calculation itself avoids duplication by operating only one of the outside air cooling control mode and the individual air conditioning control mode.

制御すべき室温は、個別空調でも外気冷房でも同一箇所の計測値であるべきなので、室温センサを共有できる。室温制御が実行されているときに、外気冷房と個別空調の制御モードの切り換えが発生するケースとしては、外気冷房が有効で外気ダンパ108−1,108−2の操作により室温を温度設定値に維持できる状態から、外気ダンパ108−1,108−2の最大開度でも室温を温度設定値に維持できない状態に推移するとき、あるいはその逆のときである。すなわち、省エネルギー効果という観点から、外気ダンパ108−1,108−2の操作による制御を優先する。   Since the room temperature to be controlled should be the measured value at the same location in both the individual air conditioning and the outside air cooling, the room temperature sensor can be shared. As a case in which switching between the control mode of the outside air cooling and the individual air conditioning occurs when the room temperature control is being executed, the outside air cooling is effective, and the room temperature is set to the temperature set value by operating the outside air dampers 108-1 and 108-2. This is when the room temperature changes from the state where it can be maintained to the state where the room temperature cannot be maintained at the temperature set value even at the maximum opening degree of the outside air dampers 108-1 and 108-2, or vice versa. That is, priority is given to control by the operation of the outside air dampers 108-1 and 108-2 from the viewpoint of energy saving effect.

ゆえに切換判断は、以下のようになる。外気ダンパ108−1,108−2が最大開度で個別空調機101−1,101−2の熱交換部の出力が最低の状態になったときに、室温が温度設定値よりも高くなる場合に、個別空調の制御モードが選択され、室温が温度設定値よりも低くなる場合に、外気冷房の制御モードが選択される。以上の動作が、特許文献3に開示された手法を適用した場合の図5の空調システムの動作となる。   Therefore, the switching judgment is as follows. When the outside air dampers 108-1 and 108-2 are at the maximum opening and the output of the heat exchange unit of the individual air conditioners 101-1 and 101-2 is in the lowest state, the room temperature becomes higher than the temperature set value. In addition, when the control mode of the individual air conditioning is selected and the room temperature becomes lower than the temperature set value, the control mode of the outside air cooling is selected. The above operation is the operation of the air conditioning system of FIG. 5 when the method disclosed in Patent Document 3 is applied.

特開2003−148790号公報JP 2003-148790 A 特許第3334073号公報Japanese Patent No. 3334073 特開2005−172283号公報JP 2005-172283 A

特許文献3に開示された手法を適用した場合、室温が温度設定値付近にあって、かつ制御モードの切り換えが行なわれやすいポイント(外気ダンパが最大開度、個別空調機の熱交換部が最低出力)になると、条件次第で制御モードの切り換えが頻繁に発生しやすくなるという問題点があった。この制御モードの頻繁な切り換えは、居住者の体感温度の頻繁な変化にも繋がり、不快感を招くことになる。空調の目的から言えば、制御の効率低下と言える。また、個別空調機のファンの頻繁な発停にも繋がり、機器寿命の低下を招くことになる。   When the method disclosed in Patent Document 3 is applied, the room temperature is in the vicinity of the temperature set value and the control mode is easily switched (the outside air damper has the maximum opening, and the heat exchange section of the individual air conditioner has the minimum Output), there is a problem that switching of the control mode is likely to occur frequently depending on conditions. This frequent switching of the control mode also leads to frequent changes in the occupant's sensible temperature, leading to discomfort. For the purpose of air conditioning, it can be said that the efficiency of control is reduced. Moreover, it will also lead to frequent start / stop of the fans of the individual air conditioners, leading to a reduction in equipment life.

本発明は、上記課題を解決するためになされたもので、個別空調機と外気冷房機とが併用される空調システムにおいて、個別空調機による制御と外気冷房による制御の頻繁な切り換えによる効率低下を低減することができる制御装置および制御方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and in an air conditioning system in which an individual air conditioner and an outside air cooler are used in combination, efficiency reduction due to frequent switching between control by the individual air conditioner and control by the outside air cooling. It is an object to provide a control device and a control method that can be reduced.

本発明は、個別空調機と外気冷房機とが併用される空調システムの制御装置であって、外気冷房機の効果を増減させることにより室温を制御する外気冷房の制御モードと、個別空調機の効果を増減させることにより室温を制御する個別空調の制御モードとを切り換える制御モード選択切換判定手段と、前記外気冷房の制御モード時に外気ダンパの開度を操作して前記外気冷房機の効果を増減させ、前記個別空調の制御モード時に前記外気ダンパの開度を固定する外気ダンパ制御演算手段と、前記外気冷房の制御モード時に前記個別空調機の動作を停止させ、前記個別空調の制御モード時に前記個別空調機の熱交換部の出力を操作して前記個別空調機の効果を増減させる熱交換部制御演算手段と、前記制御モードを切り換える際のタイムラグLを算出して前記制御モード選択切換判定手段に設定する可変タイムラグ算出手段とを備え、前記制御モード選択切換判定手段は、前記外気ダンパが最大開度で前記個別空調機の熱交換部の出力が最低の状態になったときに、室温が室温設定値よりも高くなる場合に、前記個別空調の制御モードを選択し、前記外気ダンパが最大開度で前記個別空調機の熱交換部の出力が最低の状態になったときに、室温が室温設定値以下になる場合に、前記外気冷房の制御モードを選択し、前記制御モードを切り換える際に前記タイムラグLを設け、前記可変タイムラグ算出手段は、外気温度と室温の差に基づき前記外気冷房機と前記個別空調機の冷房能力の差を推定し、この冷房能力の差が大きいときほど前記タイムラグLを長くすることを特徴とするものである。 The present invention is a control device for an air conditioning system in which an individual air conditioner and an outside air cooler are used in combination, and an outside air cooling control mode for controlling room temperature by increasing or decreasing the effect of the outside air cooler, and an individual air conditioner Control mode selection switching judgment means for switching between individual air conditioning control modes for controlling the room temperature by increasing or decreasing the effect, and operating the outside air damper in the outside air cooling control mode to increase or decrease the effect of the outside air cooler And an outside air damper control calculation means for fixing the opening degree of the outside air damper during the control mode of the individual air conditioning, and the operation of the individual air conditioner is stopped during the control mode of the outside air cooling. and effects heat exchange unit control operation unit to increase or decrease the of the individual air conditioner by operating the output of the heat exchange portion of the individual air conditioners, a time lag when switching the control mode L Calculated and a variable time lag calculation means for setting the control mode selection switching determination unit, wherein the control mode selection switching determining means, the output of the heat exchange section of the individual air conditioner wherein the outdoor air damper is in the maximum opening degree is minimum When the room temperature becomes higher than the room temperature set value when the state becomes, the control mode of the individual air conditioning is selected, the outside air damper is at the maximum opening degree, and the output of the heat exchange unit of the individual air conditioner is the lowest. when it is a state, when the room temperature falls below room temperature set value, selects the control mode of the outdoor air cooling, the time lag L provided in switching the control mode, the variable time lag calculation means, the outside air those based on the difference in temperature and room temperature to estimate the difference in the cooling capacity of the individual air conditioner and the outside air-conditioner, wherein the longer the time lag L smaller the difference in the cooling capacity is large A.

また、本発明の制御装置の1構成例において、前記可変タイムラグ算出手段は、前記外気ダンパの最大開度付近における高開度操作時の室温下降率K(X)を、室温と外気温度との差X毎に前記外気冷房機の冷房能力として予め記憶すると共に、前記個別空調機の熱交換部の最低出力付近における低出力操作時の室温下降率Hを、前記個別空調機の冷房能力として予め記憶し、前記タイムラグLをL=β|H−K(X)|(β>0)により算出することを特徴とするものである。 Moreover , in one configuration example of the control device of the present invention, the variable time lag calculating means calculates a room temperature decrease rate K (X) at the time of a high opening degree operation near the maximum opening degree of the outside air damper between the room temperature and the outside air temperature. Each difference X is stored in advance as the cooling capacity of the outside air cooler, and the room temperature decrease rate H at the time of low output operation in the vicinity of the minimum output of the heat exchanger of the individual air conditioner is previously stored as the cooling capacity of the individual air conditioner. The time lag L is stored, and the time lag L is calculated by L = β | H−K (X) | (β> 0).

また、本発明の制御装置は、外気冷房機の効果を増減させることにより室温を制御する外気冷房の制御モードと、個別空調機の効果を増減させることにより室温を制御する個別空調の制御モードとを切り換える制御モード選択切換判定手段と、前記外気冷房の制御モード時に外気ダンパの開度を操作して前記外気冷房機の効果を増減させ、前記個別空調の制御モード時に前記外気ダンパの開度を固定する外気ダンパ制御演算手段と、前記外気冷房の制御モード時に前記個別空調機の動作を停止させ、前記個別空調の制御モード時に前記個別空調機の熱交換部の出力を操作して前記個別空調機の効果を増減させる熱交換部制御演算手段と、前記制御モードの切り換えのしきい値のヒステリシスγ(γ>0)を算出して前記制御モード選択切換判定手段に設定する可変ヒステリシス算出手段とを備え、前記制御モード選択切換判定手段は、前記外気ダンパが最大開度で前記個別空調機の熱交換部の出力が最低の状態になったときに、室温が(室温設定値+γ)よりも高くなる場合に、前記個別空調の制御モードを選択し、前記外気ダンパが最大開度で前記個別空調機の熱交換部の出力が最低の状態になったときに、室温が(室温設定値−γ)以下になる場合に、前記外気冷房の制御モードを選択し、前記可変ヒステリシス算出手段は、外気温度と室温の差に基づき前記外気冷房機と前記個別空調機の冷房能力の差を推定し、この冷房能力の差が大きいときほど前記ヒステリシスγを大きくすることを特徴とするものである。 Further, the control device of the present invention includes an outside air cooling control mode for controlling the room temperature by increasing / decreasing the effect of the outside air cooler, and an individual air conditioning control mode for controlling the room temperature by increasing / decreasing the effect of the individual air conditioner. Control mode selection switching determining means for switching between, and operating the opening degree of the outside air damper in the outside air cooling control mode to increase or decrease the effect of the outside air cooler, and the opening degree of the outside air damper in the individual air conditioning control mode The outside air damper control calculation means to be fixed, and the operation of the individual air conditioner is stopped in the outside air cooling control mode, and the output of the heat exchange unit of the individual air conditioner is operated in the individual air conditioning control mode to operate the individual air conditioning Heat exchanger control calculation means for increasing or decreasing the effect of the machine, and control mode selection switching determination by calculating the control mode switching threshold hysteresis γ (γ> 0) And a variable hysteresis calculating means for setting the device, the control mode selection switching determining means, when the output of the heat exchange section of the individual air conditioners becomes minimum state before Kigaiki damper maximum opening degree, When the room temperature is higher than (room temperature set value + γ), the control mode of the individual air conditioning is selected, the outside air damper is at the maximum opening, and the output of the heat exchange unit of the individual air conditioner is in the lowest state When the room temperature is equal to or less than (room temperature set value−γ), the control mode of the outside air cooling is selected, and the variable hysteresis calculating means is connected to the outside air cooler based on the difference between the outside air temperature and the room temperature. A difference in cooling capacity of the air conditioner is estimated, and the hysteresis γ is increased as the difference in cooling capacity increases .

また、本発明の制御装置の1構成例において、前記可変ヒステリシス算出手段は、前記外気ダンパの最大開度付近における高開度操作時の室温下降率K(X)を、室温と外気温度との差X毎に前記外気冷房機の冷房能力として予め記憶すると共に、前記個別空調機の熱交換部の最低出力付近における低出力操作時の室温下降率Hを、前記個別空調機の冷房能力として予め記憶し、前記ヒステリシスγをγ=ζ|H−K(X)|(ζ>0)により算出することを特徴とするものである。 Further , in one configuration example of the control device of the present invention, the variable hysteresis calculating means calculates a room temperature decrease rate K (X) at the time of a high opening degree operation near the maximum opening degree of the outside air damper between a room temperature and an outside air temperature. Each difference X is stored in advance as the cooling capacity of the outside air cooler, and the room temperature decrease rate H at the time of low output operation in the vicinity of the minimum output of the heat exchanger of the individual air conditioner is previously stored as the cooling capacity of the individual air conditioner. And storing the hysteresis γ by γ = ζ | H−K (X) | (ζ> 0).

また、本発明の制御方法は、外気冷房機の効果を増減させることにより室温を制御する外気冷房の制御モードと、個別空調機の効果を増減させることにより室温を制御する個別空調の制御モードとを切り換える制御モード選択切換判定手順と、前記外気冷房の制御モード時に外気ダンパの開度を操作して前記外気冷房機の効果を増減させ、前記個別空調の制御モード時に前記外気ダンパの開度を固定する外気ダンパ制御演算手順と、前記外気冷房の制御モード時に前記個別空調機の動作を停止させ、前記個別空調の制御モード時に前記個別空調機の熱交換部の出力を操作して前記個別空調機の効果を増減させる熱交換部制御演算手順と、前記制御モードを切り換える際のタイムラグLを算出する可変タイムラグ算出手順とを含み、前記制御モード選択切換判定手順は、前記外気ダンパが最大開度で前記個別空調機の熱交換部の出力が最低の状態になったときに、室温が室温設定値よりも高くなる場合に、前記個別空調の制御モードを選択し、前記外気ダンパが最大開度で前記個別空調機の熱交換部の出力が最低の状態になったときに、室温が室温設定値以下になる場合に、前記外気冷房の制御モードを選択し、前記制御モードを切り換える際に前記タイムラグLを設け、前記可変タイムラグ算出手順は、外気温度と室温の差に基づき前記外気冷房機と前記個別空調機の冷房能力の差を推定し、この冷房能力の差が大きいときほど前記タイムラグLを長くすることを特徴とするものである。 The control method of the present invention includes an outside air cooling control mode for controlling the room temperature by increasing or decreasing the effect of the outside air cooler, and an individual air conditioning control mode for controlling the room temperature by increasing or decreasing the effect of the individual air conditioner. Control mode selection switching determination procedure for switching between, and operating the outside air damper in the outside air cooling control mode to increase or decrease the effect of the outside air cooler, the opening degree of the outside air damper in the individual air conditioning control mode The outside air damper control calculation procedure to be fixed, the operation of the individual air conditioner is stopped during the control mode of the outside air cooling, and the output of the heat exchange unit of the individual air conditioner is operated during the control mode of the individual air conditioning to operate the individual air conditioning It includes a heat exchange unit control algorithm to increase or decrease the effect of the machine, and a variable time lag calculation procedure for calculating a time lag L when switching the control mode, the control mode When the room temperature becomes higher than the room temperature set value when the outside air damper is at the maximum opening and the output of the heat exchange unit of the individual air conditioner is at the lowest state, Control mode, and when the outside air damper is at the maximum opening and the output of the heat exchange unit of the individual air conditioner is at a minimum state, when the room temperature falls below the room temperature set value, the outside air cooling select control mode, the provided the time lag L when switching the control mode, the variable time lag calculating procedure estimates the difference in the cooling capacity of the individual air conditioner and the outside air-conditioner based on the difference of the outside air temperature and room temperature However, the time lag L is lengthened as the difference in cooling capacity increases .

また、本発明の制御方法は、外気冷房機の効果を増減させることにより室温を制御する外気冷房の制御モードと、個別空調機の効果を増減させることにより室温を制御する個別空調の制御モードとを切り換える制御モード選択切換判定手順と、前記外気冷房の制御モード時に外気ダンパの開度を操作して前記外気冷房機の効果を増減させ、前記個別空調の制御モード時に前記外気ダンパの開度を固定する外気ダンパ制御演算手順と、前記外気冷房の制御モード時に前記個別空調機の動作を停止させ、前記個別空調の制御モード時に前記個別空調機の熱交換部の出力を操作して前記個別空調機の効果を増減させる熱交換部制御演算手順と、前記制御モードの切り換えのしきい値のヒステリシスγ(γ>0)を算出する可変ヒステリシス算出手順とを含み、前記制御モード選択切換判定手順は、前記外気ダンパが最大開度で前記個別空調機の熱交換部の出力が最低の状態になったときに、室温が(室温設定値+γ)よりも高くなる場合に、前記個別空調の制御モードを選択し、前記外気ダンパが最大開度で前記個別空調機の熱交換部の出力が最低の状態になったときに、室温が(室温設定値−γ)以下になる場合に、前記外気冷房の制御モードを選択し、前記可変ヒステリシス算出手順は、外気温度と室温の差に基づき前記外気冷房機と前記個別空調機の冷房能力の差を推定し、この冷房能力の差が大きいときほど前記ヒステリシスγを大きくすることを特徴とするものである。 The control method of the present invention includes an outside air cooling control mode for controlling the room temperature by increasing or decreasing the effect of the outside air cooler, and an individual air conditioning control mode for controlling the room temperature by increasing or decreasing the effect of the individual air conditioner. Control mode selection switching determination procedure for switching between, and operating the outside air damper in the outside air cooling control mode to increase or decrease the effect of the outside air cooler, the opening degree of the outside air damper in the individual air conditioning control mode The outside air damper control calculation procedure to be fixed, the operation of the individual air conditioner is stopped during the control mode of the outside air cooling, and the output of the heat exchange unit of the individual air conditioner is operated during the control mode of the individual air conditioning to operate the individual air conditioning A heat exchanger control calculation procedure for increasing or decreasing the effect of the machine, and a variable hysteresis calculation procedure for calculating a hysteresis γ (γ> 0) of the threshold value for switching the control mode; Wherein the said control mode selection switching determination procedure, when the output of the heat exchange section of the individual air conditioner before Kigaiki damper at the maximum opening degree becomes lowest state, room temperature is higher than (room temperature set value + gamma) When the control mode of the individual air conditioning is selected and the outside air damper is at the maximum opening and the output of the heat exchange unit of the individual air conditioner is in the lowest state, −γ), the control mode of the outside air cooling is selected, and the variable hysteresis calculation procedure estimates the difference in the cooling capacity between the outside air cooler and the individual air conditioner based on the difference between the outside air temperature and the room temperature. However, the hysteresis γ is increased as the difference in cooling capacity increases .

本発明によれば、外気ダンパが最大開度で個別空調機の熱交換部の出力が最低の状態になったときに、室温が室温設定値よりも高くなる場合に、個別空調の制御モードを選択し、外気ダンパが最大開度で個別空調機の熱交換部の出力が最低の状態になったときに、室温が室温設定値以下になる場合に、外気冷房の制御モードを選択し、このように制御モードを切り換える際にタイムラグLを設けることにより、制御モードの切り換えの頻度を低減することができ、制御モードの頻繁な切り換えによる制御の効率低下を低減することができる。また、本発明では、居住者の体感温度の頻繁な変化を防ぐことができ、居住者の不快感を低減することができる。さらに、本発明では、個別空調機のファンの発停の頻度を低減することができ、頻繁な発停による機器寿命の低下を回避することができる。   According to the present invention, when the outside air damper is at the maximum opening and the output of the heat exchange unit of the individual air conditioner is in the lowest state, the control mode of the individual air conditioning is set when the room temperature becomes higher than the room temperature set value. When the outdoor air damper is at the maximum opening and the output of the heat exchanger of the individual air conditioner is at its lowest state, if the room temperature falls below the room temperature set value, select the control mode for the outdoor air cooling, and this Thus, by providing the time lag L when switching the control mode, it is possible to reduce the frequency of switching the control mode, and it is possible to reduce a decrease in control efficiency due to frequent switching of the control mode. Moreover, in this invention, the frequent change of a resident's sensible temperature can be prevented, and a resident's discomfort can be reduced. Furthermore, in the present invention, the frequency of the fans of the individual air conditioners can be reduced, and the deterioration of the equipment life due to frequent start / stop can be avoided.

また、本発明では、外気温度と室温の差に基づき外気冷房機と個別空調機の冷房能力の差を推定し、この冷房能力の差が大きいときほどタイムラグLを長くすることにより、制御モードの切り換えの頻度の低減をより効果的に実現することができる。   Further, in the present invention, the difference in the cooling capacity between the outside air cooler and the individual air conditioner is estimated based on the difference between the outside air temperature and the room temperature, and the time lag L is increased as the difference in the cooling capacity increases, thereby Reduction in switching frequency can be realized more effectively.

また、本発明では、制御モードの切り換えのしきい値のヒステリシスをγ(γ>0)としたとき、外気ダンパが最大開度で個別空調機の熱交換部の出力が最低の状態になったときに、室温が(室温設定値+γ)よりも高くなる場合に、個別空調の制御モードを選択し、外気ダンパが最大開度で個別空調機の熱交換部の出力が最低の状態になったときに、室温が(室温設定値−γ)以下になる場合に、外気冷房の制御モードを選択することにより、制御モードの切り換えの頻度を低減することができ、制御モードの頻繁な切り換えによる制御の効率低下を低減することができる。また、本発明では、居住者の体感温度の頻繁な変化を防ぐことができ、居住者の不快感を低減することができる。さらに、本発明では、個別空調機のファンの発停の頻度を低減することができ、頻繁な発停による機器寿命の低下を回避することができる。   In the present invention, when the hysteresis of the threshold value for switching the control mode is γ (γ> 0), the outside air damper is at the maximum opening and the output of the heat exchange unit of the individual air conditioner is in the lowest state. When the room temperature is higher than (room temperature set value + γ), the individual air conditioning control mode is selected, the outside air damper is at the maximum opening, and the output of the heat exchanger of the individual air conditioner is in the lowest state Sometimes, when the room temperature becomes (room temperature set value-γ) or less, the frequency of switching the control mode can be reduced by selecting the control mode of the outside air cooling, and the control by frequent switching of the control mode The reduction in efficiency can be reduced. Moreover, in this invention, the frequent change of a resident's sensible temperature can be prevented, and a resident's discomfort can be reduced. Furthermore, in the present invention, the frequency of the fans of the individual air conditioners can be reduced, and the deterioration of the equipment life due to frequent start / stop can be avoided.

また、本発明では、外気温度と室温の差に基づき外気冷房機と個別空調機の冷房能力の差を推定し、この冷房能力の差が大きいときほどヒステリシスγを大きくすることにより、制御モードの切り換えの頻度の低減をより効果的に実現することができる。   Further, in the present invention, the difference in the cooling capacity between the outside air cooler and the individual air conditioner is estimated based on the difference between the outside air temperature and the room temperature, and the hysteresis γ is increased as the difference in the cooling capacity is larger. Reduction in switching frequency can be realized more effectively.

本発明の第1の実施の形態に係る空調システムの構成を示すブロック図である。It is a block diagram which shows the structure of the air conditioning system which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る空調システムの連携コントローラの構成を示すブロック図である。It is a block diagram which shows the structure of the cooperation controller of the air conditioning system which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る空調システムの連携コントローラの構成を示すブロック図である。It is a block diagram which shows the structure of the cooperation controller of the air conditioning system which concerns on the 2nd Embodiment of this invention. 個別空調機のみによる従来の空調システムの構成を示す図である。It is a figure which shows the structure of the conventional air conditioning system by only an individual air conditioner. 個別空調機と外気冷房機を併用する空調システムの構成を示す図である。It is a figure which shows the structure of the air conditioning system which uses an individual air conditioner and an external air cooler together.

[発明の原理1]
個別空調機と外気冷房機では、冷房能力に大きな差が生じる可能性がある。以下では、理解を容易にするため、単純な数値例にて説明する。
個別空調機では、熱交換部の冷却能力は比較的安定している。空調システムの設計時には十分な冷房能力を確保しようとするので、例えば25℃付近で熱交換部の出力を10%上昇させると、特定の時間内に1℃の室温下降の効果が安定的に得られるというような設計になる。
[Principle of Invention 1]
There may be a large difference in cooling capacity between the individual air conditioner and the outside air cooler. Hereinafter, in order to facilitate understanding, a simple numerical example will be described.
In the individual air conditioner, the cooling capacity of the heat exchange section is relatively stable. At the time of designing the air conditioning system, it is intended to ensure sufficient cooling capacity. For example, if the output of the heat exchanger is increased by 10% at around 25 ° C, the effect of lowering the room temperature by 1 ° C within a specific time can be stably obtained. Designed to be

一方、外気冷房機では、その冷房能力は外気温度に依存することになる。例えば室温が25℃で外気が5℃であれば、室温に比べ外気が十分に冷たいので(温度差20℃)、外気ダンパの開度を10%上昇させると、3℃の室温下降の効果が得られるものとする。同じ条件で外気が23℃であれば、室温に比べ外気が冷たいので理屈上は外気冷房が可能な状態であるが、室温と外気の温度差は2℃なので、単純な計算では温度差20℃のときの10%にあたる0.3℃の室温下降の効果しか得られなくなる。   On the other hand, in the outside air cooler, the cooling capacity depends on the outside air temperature. For example, if the room temperature is 25 ° C. and the outside air is 5 ° C., the outside air is sufficiently cooler than the room temperature (temperature difference 20 ° C.), so increasing the opening degree of the outside air damper by 10% has the effect of lowering the room temperature by 3 ° C. Shall be obtained. If the outside air is 23 ° C under the same conditions, the outside air is cooler than the room temperature, so it is theoretically possible to cool the outside air, but the temperature difference between the room temperature and the outside air is 2 ° C. Only the effect of lowering the room temperature by 0.3 ° C., which is 10% of the above, is obtained.

つまり、以上の数値例では、外気冷房機は個別空調機の3倍の冷房能力になることもあれば、1/3の冷房能力になることもある。すなわち、個別空調機と外気冷房機では、同じ冷房用設備として稼働するのであっても、冷房能力差が安定しない。   That is, in the above numerical examples, the outside air cooler may have a cooling capacity three times that of the individual air conditioner or may be 1/3 of the cooling capacity. That is, even if the individual air conditioner and the outside air cooler operate as the same cooling equipment, the cooling capacity difference is not stable.

このように個別空調機と外気冷房機の冷房能力差が安定しない場合に、室温が温度設定値付近にあって、かつ制御モードの切り換えが行なわれやすいポイント(外気ダンパが最大開度、個別空調機の熱交換部が最低出力)になると、室温変化率が制御モードの切り換えに伴い大きく変動する。そして、室温変化率の変動が室温の不安定な変化に繋がるので、室温の上下動を招き、その上下動がまた制御モードの切り換えに繋がる。したがって、制御モードの切り換えが頻繁に発生しやすくなる。制御モードの頻繁な切り換えは、居住者の体感温度の頻繁な変化にも繋がり、不快感を招くことになる。空調の目的から言えば、制御の効率低下と言える。また、個別空調機のファンの頻繁な発停にも繋がり、機器寿命の低下を招くことになる。   In this way, when the difference in cooling capacity between the individual air conditioner and the outside air cooler is not stable, the room temperature is close to the temperature setting value and the control mode can be easily switched (the outside air damper has the maximum opening, individual air conditioning When the heat exchange section of the machine reaches the minimum output), the room temperature change rate greatly fluctuates with the switching of the control mode. Since the change in the room temperature change rate leads to an unstable change in the room temperature, the room temperature is moved up and down, and the up and down movement is also connected to the switching of the control mode. Therefore, switching of the control mode is likely to occur frequently. Frequent switching of the control mode also leads to frequent changes in the occupant's sensible temperature, leading to discomfort. For the purpose of air conditioning, it can be said that the efficiency of control is reduced. Moreover, it will also lead to frequent start / stop of the fans of the individual air conditioners, leading to a reduction in equipment life.

発明者は、このように制御の効率低下が発生し得ることに着眼し、外気冷房と個別空調の制御モードの切り換えにおいて、切り換えの頻度を低減する目的で、タイムラグを設けることが有効であることに想到した。特に、外気冷房機と個別空調機の冷房能力の差を想定して、タイムラグの時間を可変にするのが、より好ましい。   The inventor pays attention to the fact that the efficiency of control can be reduced in this way, and it is effective to provide a time lag in order to reduce the frequency of switching in switching between the control mode of the outside air cooling and the individual air conditioning. I came up with it. In particular, it is more preferable to make the time lag time variable in consideration of the difference in cooling capacity between the outside air cooler and the individual air conditioner.

[発明の原理2]
発明者は、発明の原理1とは別な解決方法として、外気冷房と個別空調の制御モードの切り換えにおいて、切り換えのしきい値にヒステリシスを設けることが有効であることに想到した。特に、外気冷房機と個別空調機の冷房能力の差を想定して、ヒステリシスの幅を可変にするのが、より好ましい。
[Principle of Invention 2]
The inventor has conceived that, as a solution different from the principle 1 of the invention, it is effective to provide a hysteresis for the switching threshold in switching between the control modes of the outside air cooling and the individual air conditioning. In particular, it is more preferable to make the hysteresis width variable in consideration of the difference in cooling capacity between the outside air cooler and the individual air conditioner.

[第1の実施の形態]
以下、本発明の実施の形態について図面を参照して詳細に説明する。図1は本発明の第1の実施の形態に係る空調システムの構成を示すブロック図である。本実施の形態は、上記発明の原理1に対応するものである。後述する連携コントローラ1−1,1−2を除く空調システムの各構成の配置は図5に示したとおりであるので、図5の符号を用いて本実施の形態の空調システムについて説明する。
[First Embodiment]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing a configuration of an air conditioning system according to the first embodiment of the present invention. This embodiment corresponds to Principle 1 of the invention described above. Since the arrangement of each component of the air conditioning system except for the cooperation controllers 1-1 and 1-2, which will be described later, is as shown in FIG. 5, the air conditioning system of the present embodiment will be described using the reference numerals in FIG.

個別空調機101−1,101−2は、それぞれ部屋100−1,100−2からの還気を冷却または加熱する熱交換部112−1,112−2と、熱交換部112−1,112−2によって冷却または加熱された給気を送り出すためのファン113−1,113−2とを有する。
外気冷房機105は、外気を送り出すためのファン114を有する。
The individual air conditioners 101-1 and 101-2 have heat exchange units 112-1 and 112-2 and heat exchange units 112-1 and 112 that cool or heat the return air from the rooms 100-1 and 100-2, respectively. -2 and fans 113-1 and 113-2 for sending out the cooled or heated supply air.
The outside air cooler 105 has a fan 114 for sending outside air.

空調システムの制御装置である連携コントローラ1−1は、例えば個別空調機101−1の熱交換部112−1の出力や外気ダンパ108−1の開度などを制御することにより、部屋100−1の室温が居住者によって設定された室温設定値になるように制御する。同様に、連携コントローラ1−2は、個別空調機101−2の熱交換部112−2の出力や外気ダンパ108−2の開度などを制御することにより、部屋100−2の室温が室内設定値になるように制御する。個別空調機101−1,101−2の熱交換部112−1,112−2の出力は、熱交換部112−1,112−2に供給される冷水の量によって決まる。したがって、連携コントローラ1−1,1−2は、この冷水の量を制御することにより、熱交換部112−1,112−2の出力を制御する。   The cooperation controller 1-1 which is a control device of the air conditioning system controls the output of the heat exchange unit 112-1 of the individual air conditioner 101-1, the opening degree of the outside air damper 108-1, and the like, for example, thereby controlling the room 100-1. The room temperature is controlled to be the room temperature set value set by the resident. Similarly, the cooperation controller 1-2 controls the output of the heat exchange unit 112-2 of the individual air conditioner 101-2, the opening degree of the outside air damper 108-2, and the like so that the room temperature of the room 100-2 is set indoors. Control to be a value. The outputs of the heat exchange units 112-1 and 112-2 of the individual air conditioners 101-1 and 101-2 are determined by the amount of cold water supplied to the heat exchange units 112-1 and 112-2. Therefore, the cooperation controllers 1-1 and 1-2 control the outputs of the heat exchange units 112-1 and 112-2 by controlling the amount of the cold water.

図2は連携コントローラ1−1,1−2の構成を示すブロック図である。連携コントローラ1−1,1−2の各々は、それぞれ外気温度センサ111によって計測された外気温度計測値を取得する外気温度計測値取得部10と、室温センサ110−1,110−2によって計測された部屋100−1,100−2の室温計測値を取得すると共に、部屋100−1,100−2の居住者によって設定された室温設定値を取得する室温計測値・設定値取得部11と、個別空調の制御モード時に熱交換部112−1,112−2の出力を操作して個別空調機101−1,101−2の効果を増減させる熱交換部制御演算部12と、外気冷房の制御モード時に外気ダンパ108−1,108−2の開度を操作して外気冷房機105の効果を増減させる外気ダンパ制御演算部13と、外気冷房機105と個別空調機101−1,101−2の冷房能力の差に基づいて、制御モードを切り換える際のタイムラグを算出する可変タイムラグ算出部14と、外気冷房の制御モードと個別空調の制御モードとを切り換える制御モード選択切換判定部15とを有する。   FIG. 2 is a block diagram showing the configuration of the cooperation controllers 1-1 and 1-2. Each of the cooperation controllers 1-1 and 1-2 is measured by the outside air temperature measurement value acquisition unit 10 that acquires the outside air temperature measurement value measured by the outside air temperature sensor 111 and the room temperature sensors 110-1 and 110-2. A room temperature measurement value / setting value acquisition unit 11 for acquiring room temperature measurement values of the rooms 100-1 and 100-2 and acquiring a room temperature setting value set by a resident of the rooms 100-1 and 100-2; A heat exchange control unit 12 that increases or decreases the effects of the individual air conditioners 101-1 and 101-2 by operating the outputs of the heat exchange units 112-1 and 112-2 in the individual air-conditioning control mode, and control of the outside air cooling An outside air damper control calculation unit 13 that increases or decreases the effect of the outside air cooler 105 by operating the opening degree of the outside air dampers 108-1 and 108-2 in the mode, the outside air cooler 105, and the individual air conditioner 101-1. Based on the difference in cooling capacity of 101-2, a variable time lag calculation unit 14 that calculates a time lag when switching the control mode, and a control mode selection switching determination unit 15 that switches between the control mode of the outside air cooling and the control mode of the individual air conditioning. And have.

以下、本実施の形態の連携コントローラ1−1,1−2の動作について説明する。ここでは、連携コントローラ1−1の動作について説明するが、連携コントローラ1−2の動作も対象となる部屋が変わる点を除けば同じである。また、ここでは冷房についてのみ説明し、外気による暖房は行なわれないものとする。   Hereinafter, the operation of the cooperation controllers 1-1 and 1-2 according to the present embodiment will be described. Here, the operation of the cooperation controller 1-1 will be described, but the operation of the cooperation controller 1-2 is the same except that the target room changes. Here, only cooling will be described, and it is assumed that heating by outside air is not performed.

連携コントローラ1−1の外気温度計測値取得部10は、外気温度センサ111によって計測された外気温度計測値を取得する。
連携コントローラ1−1の室温計測値・設定値取得部11は、室温センサ110−1によって計測された室温計測値を取得すると共に、居住者によって設定された室温設定値を取得する。
The outside temperature measured value acquisition unit 10 of the cooperation controller 1-1 acquires the outside temperature measured value measured by the outside temperature sensor 111.
The room temperature measurement value / setting value acquisition unit 11 of the cooperation controller 1-1 acquires the room temperature measurement value measured by the room temperature sensor 110-1 and also acquires the room temperature setting value set by the resident.

連携コントローラ1−1の制御モード選択切換判定部15は、外気温度計測値が(室温設定値−α)以上の場合(αは余裕分で例えば2℃)、外気冷房は有効でないと判断して、個別空調の制御モードを選択し、室温の制御を個別空調機101−1のみが行なう状態とする。個別空調の制御モードの場合、熱交換部制御演算部12は、室温計測値・設定値取得部11から入力された室温計測値と室温設定値とが一致するように例えばPID制御演算を行って操作量指示値を算出し、操作量指示値を個別空調機101−1の熱交換部112−1に出力する。こうして、熱交換部112−1に供給される冷水の量が操作量指示値に応じて制御されることにより、熱交換部112−1の出力が制御され、室温制御が実行される。すなわち、この場合は熱交換部112−1が制御アクチュエータになる。このとき、外気ダンパ制御演算部13は、外気ダンパ108−1を換気に必要な開度に固定する。   When the outside air temperature measurement value is equal to or greater than (room temperature set value−α) (α is a margin, for example, 2 ° C.), the control mode selection switching determination unit 15 of the cooperation controller 1-1 determines that the outside air cooling is not effective. Then, the control mode of the individual air conditioning is selected, and the room temperature is controlled only by the individual air conditioner 101-1. In the control mode of the individual air conditioning, the heat exchange unit control calculation unit 12 performs, for example, PID control calculation so that the room temperature measurement value input from the room temperature measurement value / set value acquisition unit 11 matches the room temperature set value. An operation amount instruction value is calculated, and the operation amount instruction value is output to the heat exchanging unit 112-1 of the individual air conditioner 101-1. Thus, the amount of cold water supplied to the heat exchange unit 112-1 is controlled according to the operation amount instruction value, whereby the output of the heat exchange unit 112-1 is controlled and room temperature control is executed. That is, in this case, the heat exchange unit 112-1 becomes a control actuator. At this time, the outside air damper control calculation unit 13 fixes the outside air damper 108-1 at an opening required for ventilation.

また、制御モード選択切換判定部15は、外気温度計測値が(室温設定値−α)未満であって、外気ダンパ108−1を最大開度に固定したときに室温が室温設定値より高くなると判断した場合、外気冷房は有効であるが個別空調機101−1を併用する必要があると判断して、個別空調の制御モードを選択し、室温の制御を個別空調機101−1のみが行なう状態とする。熱交換部制御演算部12の動作は、上記のとおりである。外気ダンパ制御演算部13は、外気ダンパ108−1を最大開度に固定する。   Further, when the outside air temperature measurement value is less than (room temperature set value−α) and the outside air damper 108-1 is fixed at the maximum opening, the control mode selection switching determination unit 15 determines that the room temperature becomes higher than the room temperature set value. If it is determined, it is determined that the outside air cooling is effective, but it is necessary to use the individual air conditioner 101-1, and the control mode of the individual air conditioner is selected to control the room temperature only by the individual air conditioner 101-1. State. The operation of the heat exchange unit control calculation unit 12 is as described above. The outside air damper control calculation unit 13 fixes the outside air damper 108-1 at the maximum opening.

また、制御モード選択切換判定部15は、外気温度計測値が(室温設定値−α)未満であって、外気ダンパ108−1を最大開度に固定したときに室温が室温設定値以下になると判断した場合、外気冷房は有効であると判断して、外気冷房の制御モードを選択し、室温の制御を外気冷房機105のみが行なう状態とする。外気冷房の制御モードの場合、外気ダンパ制御演算部13は、室温計測値・設定値取得部11から入力された室温計測値と室温設定値とが一致するように例えばPID制御演算を行って操作量指示値を算出し、操作量指示値を外気ダンパ108−1に出力する。こうして、外気ダンパ108−1の開度が操作量指示値に応じて制御されることにより、外気の供給量が制御され、室温制御が実行される。すなわち、この場合は外気ダンパ108−1が制御アクチュエータになる。このとき、熱交換部制御演算部12は、熱交換部112−1の出力を最低にし、個別空調機101−1を停止させる。   Further, when the outside air temperature measurement value is less than (room temperature set value−α) and the outside air damper 108-1 is fixed at the maximum opening, the control mode selection switching determination unit 15 determines that the room temperature becomes equal to or less than the room temperature set value. If it is determined, it is determined that the outside air cooling is effective, the outside air cooling control mode is selected, and the room temperature is controlled only by the outside air cooler 105. In the control mode of the outside air cooling, the outside air damper control calculation unit 13 performs, for example, a PID control calculation so that the room temperature measurement value input from the room temperature measurement value / set value acquisition unit 11 matches the room temperature set value. The amount instruction value is calculated, and the operation amount instruction value is output to the outside air damper 108-1. Thus, by controlling the opening degree of the outside air damper 108-1 according to the operation amount instruction value, the outside air supply amount is controlled, and the room temperature control is executed. That is, in this case, the outside air damper 108-1 becomes a control actuator. At this time, the heat exchange unit control calculation unit 12 minimizes the output of the heat exchange unit 112-1, and stops the individual air conditioner 101-1.

このように、外気ダンパ108−1が最大開度で個別空調機101−1の熱交換部112−1の出力が最低の状態になったときが制御モードの選択(切換)の判断ポイントになる。そして、この判断ポイントにおいて、制御モード選択切換判定部15は、外気ダンパ108−1を最大開度に固定しても室温が室温設定値よりも高くなると判断した場合に、個別空調の制御モードを選択し、室温が室温設定値以下になると判断した場合に、外気冷房の制御モードを選択する。   As described above, when the outside air damper 108-1 is at the maximum opening and the output of the heat exchanging unit 112-1 of the individual air conditioner 101-1 is in the lowest state, the determination point for selection (switching) of the control mode is made. . At this determination point, if the control mode selection switching determination unit 15 determines that the room temperature becomes higher than the room temperature setting value even if the outside air damper 108-1 is fixed at the maximum opening, the control mode of the individual air conditioning is set. When it is selected and it is determined that the room temperature is equal to or lower than the room temperature set value, the control mode of the outside air cooling is selected.

具体的には、外気冷房のみ(完全外気冷房)の状態では、個別空調機101−1の熱交換部112−1の出力は最低になっている(完全停止で出力ゼロの状態)。この場合、室温は、上記のとおり外気ダンパ108−1の開度を操作するフィードバック制御系によって制御される。室内の発熱などが増大し、外気の取り入れ量を増やさなければならなくなると、外気ダンパ制御演算部13は、外気ダンパ108−1の開度を大きくする。外気ダンパ108−1が最大開度になると、外気冷房のみでのぎりぎりの冷房能力に到達していることになる。このとき、外気ダンパ108−1が最大開度で個別空調機101−1の熱交換部112−1の出力が最低の状態になり、すなわち制御モードの切り換えの判断ポイントになる。   Specifically, in the state of only the outside air cooling (complete outside air cooling), the output of the heat exchanging unit 112-1 of the individual air conditioner 101-1 is the lowest (a state where the output is completely stopped and the output is zero). In this case, the room temperature is controlled by the feedback control system that operates the opening degree of the outside air damper 108-1 as described above. When heat generation in the room increases and the intake amount of the outside air has to be increased, the outside air damper control calculation unit 13 increases the opening degree of the outside air damper 108-1. When the outside air damper 108-1 reaches the maximum opening degree, it has reached the limit of cooling capacity only by outside air cooling. At this time, the outside air damper 108-1 is at the maximum opening and the output of the heat exchanging unit 112-1 of the individual air conditioner 101-1 is in the lowest state, that is, the control mode switching determination point.

制御モード選択切換判定部15は、外気ダンパ108−1が最大開度になることで、室温が室温設定値と一致する状態が維持できていれば、外気冷房の制御モードを継続する。外気ダンパ108−1が最大開度になっても、室温が室温設定値よりも高い場合は冷房能力が不足している状態なので、制御モード選択切換判定部15は、個別空調の制御モードを選択し、個別空調機101−1を活用することになる。個別空調の制御モードへの切り換えにより、室温は、上記のとおり熱交換部112−1の出力を操作するフィードバック制御系によって制御される。   The control mode selection switching determination unit 15 continues the control mode of the outside air cooling if the outside air damper 108-1 reaches the maximum opening and the state where the room temperature matches the room temperature set value can be maintained. Even if the outside air damper 108-1 reaches the maximum opening degree, if the room temperature is higher than the room temperature set value, the cooling capacity is insufficient, so the control mode selection switching determination unit 15 selects the control mode for individual air conditioning. Therefore, the individual air conditioner 101-1 is used. By switching to the control mode of the individual air conditioning, the room temperature is controlled by the feedback control system that operates the output of the heat exchange unit 112-1 as described above.

個別空調機101−1による室温の制御が始まると、個別空調機101−1の熱交換部112−1の出力が上昇し最低ではなくなる。ここでの出力の上昇とは、熱交換部112−1に供給される冷水の量が増えて個別空調機101−1の冷房能力が上昇することを意味する。一方、外気ダンパ108−1は最大開度の状態になっている。しかし、室内の発熱などが減少し、外気だけで十分に冷房能力が確保できる状態になると、外気ダンパ108−1が最大開度で個別空調機101−1の熱交換部112−1の出力が最低の状態になり、すなわち制御モードの切り換えの判断ポイントになる。   When the control of the room temperature by the individual air conditioner 101-1 starts, the output of the heat exchange unit 112-1 of the individual air conditioner 101-1 increases and is not the lowest. The increase in output here means that the amount of cold water supplied to the heat exchanging unit 112-1 increases and the cooling capacity of the individual air conditioner 101-1 increases. On the other hand, the outside air damper 108-1 is in the maximum opening degree. However, when the heat generation in the room is reduced and the cooling capacity can be sufficiently secured only with the outside air, the outside air damper 108-1 has the maximum opening and the output of the heat exchange unit 112-1 of the individual air conditioner 101-1. It becomes the lowest state, that is, a judgment point for switching the control mode.

制御モード選択切換判定部15は、個別空調機101−1の熱交換部112−1の出力が最低になったときに、室温が室温設定値より高くなるようであれば、個別空調の制御モードを継続する。個別空調機101−1の熱交換部112−1の出力が最低になっても、室温が室温設定値と一致する状態が維持できるならば、外気による冷房のみでよいので、制御モード選択切換判定部15は、外気冷房の制御モードを選択する。外気冷房の制御モードへの切り換えにより、室温は、外気ダンパ108−1の開度を操作するフィードバック制御系によって制御される。   If the output of the heat exchange unit 112-1 of the individual air conditioner 101-1 becomes the lowest when the room temperature becomes higher than the room temperature set value, the control mode selection switching determination unit 15 controls the control mode of the individual air conditioning. Continue. Even if the output of the heat exchanging unit 112-1 of the individual air conditioner 101-1 becomes the lowest, if the state where the room temperature matches the room temperature setting value can be maintained, only the cooling by the outside air is required. The unit 15 selects the control mode for the outside air cooling. By switching to the control mode of the outside air cooling, the room temperature is controlled by a feedback control system that operates the opening degree of the outside air damper 108-1.

以上の動作は、冷房から冷房への切り換えになるので、冷暖房制御の切り換えとは異なり、その切り換えにより室温が上下動することは考え難い。しかし、前述したように外気冷房は外気温度に依存して冷房能力が極端に変化するので、冷房から冷房への切り換えであっても状況によっては、室温を室温設定値と一致させることが難しくなることもある。例えば、外気ダンパ108−1の開度を高開度付近で精密に操作できない場合、ダンパ開度の操作自体が室温のふらつきの要素になる。このダンパ開度の非精密な操作が制御モード切り換えの判断ポイント付近で発生する可能性を考えれば、個別空調機101−1の頻繁な発停を伴うことになるので、一般的に言われる「メカニカルな構成要素の短寿命化」にも繋がりやすい。   Since the above operation is switching from cooling to cooling, unlike the switching of cooling / heating control, it is unlikely that the room temperature moves up and down due to the switching. However, as described above, since the cooling capacity of the outside air cooling changes extremely depending on the outside air temperature, it is difficult to match the room temperature to the room temperature setting value depending on the situation even when switching from cooling to cooling. Sometimes. For example, when the opening degree of the outside air damper 108-1 cannot be precisely operated near a high opening degree, the operation of the damper opening degree itself becomes an element of the fluctuation of the room temperature. Considering the possibility that this inaccurate operation of the damper opening occurs in the vicinity of the judgment point for switching the control mode, it is often said that the individual air conditioner 101-1 is frequently started and stopped. It is easy to lead to "shortening of mechanical component life".

そこで、本実施の形態では、制御モードの切り換えにタイムラグL[min.]を設けるようにする。タイムラグLを設けるのは、室温を高精度に安定させることが目的ではなく、単純に個別空調機101−1の発停の頻度を低減することが目的である。さらに、本実施の形態では、冷房から冷房への切り換えにおいて外気冷房機105と個別空調機101−1の冷房能力の差が大きい場合に、タイムラグLを長くとる可変方式を採用している。具体的には、外気温度と室温の差に基づき外気冷房機105と個別空調機101−1の冷房能力の差を推定し、冷房能力の差が大きいときほどタイムラグLが長くなるようにする。   Therefore, in the present embodiment, the time lag L [min. ] Is provided. The purpose of providing the time lag L is not to stabilize the room temperature with high accuracy, but simply to reduce the frequency of starting and stopping of the individual air conditioner 101-1. Furthermore, in the present embodiment, a variable method is adopted that takes a long time lag L when the difference in cooling capacity between the outside air cooler 105 and the individual air conditioner 101-1 is large in switching from cooling to cooling. Specifically, the difference in the cooling capacity between the outside air cooler 105 and the individual air conditioner 101-1 is estimated based on the difference between the outside air temperature and the room temperature, and the time lag L becomes longer as the difference in the cooling capacity is larger.

タイムラグLを算出するために、個別空調機101−1の冷房能力を予め把握しておく。例えば、熱交換部112−1の出力を0〜100%で正規化したとして、制御モードの切り換えの判断ポイント付近となる低出力操作時の室温下降率の概算値H[℃/min.]を求めておく。具体的には、例えば熱交換部112−1の出力を0%から10%に変更したときの室温下降率の概算値Hを求める。このように個別空調機101−1の冷房能力を把握するとき、外気ダンパ108−1については最大開度で固定しておく。そして、室温下降率Hを個別空調機101−1の冷房能力として可変タイムラグ算出部14に予め設定する。   In order to calculate the time lag L, the cooling capacity of the individual air conditioner 101-1 is grasped in advance. For example, assuming that the output of the heat exchanging unit 112-1 is normalized by 0 to 100%, an approximate value H [° C./min. ]. Specifically, for example, an approximate value H of the room temperature decrease rate when the output of the heat exchange unit 112-1 is changed from 0% to 10% is obtained. Thus, when grasping | ascertaining the air_conditioning | cooling capability of the separate air conditioner 101-1, about the external air damper 108-1, it fixes with the maximum opening degree. And the room temperature fall rate H is preset in the variable time lag calculation part 14 as the cooling capacity of the individual air conditioner 101-1.

また、外気冷房機105についても冷房能力を予め把握しておく。例えば、外気ダンパ108−1の開度を0〜100%で正規化したとして、制御モードの切り換えの判断ポイント付近となる高開度操作時の室温下降率の概算値K[℃/min.]を求めておく。具体的には、例えば外気ダンパ108−1の開度を90%から100%に変更したときの室温下降率の概算値Kを求める。このような室温下降率Kの把握を、室温D[℃]と外気温度A[℃]との差X=D−A[℃]が様々な値の場合についてそれぞれ行い、室温外気温度差X毎の室温下降率K(X)[℃/min.]を求める。このように外気冷房機105の冷房能力を把握するとき、個別空調機101−1については動作を停止させておく。そして、室温下降率K(X)を外気冷房機105の冷房能力として可変タイムラグ算出部14に予め設定する。   In addition, the cooling capacity of the outside air cooler 105 is also grasped in advance. For example, assuming that the opening degree of the outside air damper 108-1 is normalized by 0 to 100%, an approximate value K [° C./min. ]. Specifically, for example, an approximate value K of the room temperature decrease rate when the opening degree of the outside air damper 108-1 is changed from 90% to 100% is obtained. The room temperature decrease rate K is ascertained for each case where the difference X = D−A [° C.] between the room temperature D [° C.] and the outside air temperature A [° C.] has various values. Temperature drop rate K (X) [° C./min. ]. Thus, when grasping | ascertaining the cooling capability of the external air cooler 105, operation | movement is stopped about the individual air conditioner 101-1. Then, the room temperature decrease rate K (X) is preset in the variable time lag calculation unit 14 as the cooling capacity of the outside air cooler 105.

可変タイムラグ算出部14は、現在の室温D[℃]と現在の外気温度A[℃]とから室温外気温度差Xを求め、室温下降率Hと室温外気温度差Xに応じた室温下降率K(X)とを用いて、タイムラグL[min.]を次式のように算出する。
L=β|H−K(X)| ・・・(1)
式(1)において、β(β>0)は予め定められた比例係数である。可変タイムラグ算出部14は、算出したタイムラグLを制御モード選択切換判定部15に設定する。
The variable time lag calculation unit 14 obtains the room temperature outside air temperature difference X from the current room temperature D [° C.] and the current outside air temperature A [° C.], and the room temperature falling rate K according to the room temperature falling rate H and the room temperature outside air temperature difference X. (X) and time lag L [min. ] Is calculated as follows:
L = β | H−K (X) | (1)
In formula (1), β (β> 0) is a predetermined proportionality coefficient. The variable time lag calculation unit 14 sets the calculated time lag L in the control mode selection switching determination unit 15.

タイムラグLは、単純に個別空調機101−1の発停の頻度を低減することが目的のものなので、比例係数βの決め方に特別な規定は必要ない。時間的に余裕をもって制御モードの切り換えが行なわれるようになればよい。
可変タイムラグ算出部14は、例えば室温Dと外気温度Aのうち少なくとも一方が変化したときタイムラグLを算出するか、あるいは一定時間毎にタイムラグLを算出することで、タイムラグLが適宜更新されるようにする。
Since the purpose of the time lag L is simply to reduce the frequency of on / off of the individual air conditioner 101-1, no special provision is required for how to determine the proportionality coefficient β. It is sufficient that the control mode is switched with sufficient time.
For example, the variable time lag calculation unit 14 calculates the time lag L when at least one of the room temperature D and the outside air temperature A changes, or calculates the time lag L at regular intervals, so that the time lag L is appropriately updated. To.

制御モード選択切換判定部15は、上記のように制御モードを切り換える際に、可変タイムラグ算出部14で算出されたタイムラグLを設けるようにする。すなわち、制御モードを切り換える判断をしたときに、タイムラグLの時間分だけ待ってから、選択した制御モードへの切り換えを行うことになる。   The control mode selection switching determination unit 15 provides the time lag L calculated by the variable time lag calculation unit 14 when switching the control mode as described above. That is, when it is determined to switch the control mode, the control mode is switched to the selected control mode after waiting for the time lag L.

以上のように、本実施の形態では、制御モードの切り換えにタイムラグを設けたことにより、制御モードの切り換えの頻度を低減することができ、制御モードの頻繁な切り換えによる制御の効率低下を低減することができる。また、本実施の形態では、居住者の体感温度の頻繁な変化を防ぐことができ、居住者の不快感を低減することができる。さらに、本実施の形態では、個別空調機のファンの発停の頻度を低減することができ、頻繁な発停による機器寿命の低下を回避することができる。また、本実施の形態では、外気冷房機と個別空調機の冷房能力の差が大きいときほどタイムラグを長くすることにより、制御モードの切り換えの頻度の低減をより効果的に実現することができる。   As described above, in the present embodiment, by providing a time lag for switching the control mode, the frequency of switching the control mode can be reduced, and a decrease in control efficiency due to frequent switching of the control mode is reduced. be able to. Moreover, in this Embodiment, the frequent change of a resident's sensible temperature can be prevented and a resident's discomfort can be reduced. Furthermore, in this Embodiment, the frequency of the start / stop of the fan of an individual air conditioner can be reduced, and the fall of the apparatus lifetime by frequent start / stop can be avoided. Further, in the present embodiment, the frequency of control mode switching can be reduced more effectively by increasing the time lag as the difference in cooling capacity between the outside air cooler and the individual air conditioner increases.

[第2の実施の形態]
次に、本発明の第2の実施の形態について説明する。本実施の形態は、上記発明の原理2に対応するものである。本実施の形態においても、空調システムの構成は第1の実施の形態と同様であるので、図1の符号を用いて説明する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. This embodiment corresponds to Principle 2 of the invention described above. Also in the present embodiment, the configuration of the air conditioning system is the same as that of the first embodiment, and therefore will be described using the reference numerals in FIG.

図3は本実施の形態の連携コントローラ1−1,1−2の構成を示すブロック図である。連携コントローラ1−1,1−2の各々は、それぞれ外気温度計測値取得部10と、室温計測値・設定値取得部11と、熱交換部制御演算部12と、外気ダンパ制御演算部13と、制御モード選択切換判定部15aと、外気冷房機105と個別空調機101−1,101−2の冷房能力の差に基づいて、制御モードの切り換えのしきい値のヒステリシスを算出する可変ヒステリシス算出部16とを有する。   FIG. 3 is a block diagram illustrating the configuration of the cooperation controllers 1-1 and 1-2 according to the present embodiment. Each of the cooperation controllers 1-1 and 1-2 includes an outside air temperature measurement value acquisition unit 10, a room temperature measurement value / setting value acquisition unit 11, a heat exchange unit control calculation unit 12, and an outside air damper control calculation unit 13, respectively. The control mode selection switching determination unit 15a and the variable hysteresis calculation for calculating the hysteresis of the threshold value for switching the control mode based on the difference in cooling capacity between the outside air cooler 105 and the individual air conditioners 101-1 and 101-2. Part 16.

本実施の形態においては、第1の実施の形態と同じ理由により、制御モードの切り換えのしきい値にヒステリシスγ[℃](γ>0)を設けるようにする。すなわち、制御モード選択切換判定部15aは、外気冷房の制御モード中に外気ダンパ108−1が最大開度になっても、室温が(室温設定値+γ)よりも高くなると判断した場合には、個別空調の制御モードに切り換える。また、制御モード選択切換判定部15aは、個別空調の制御モード中に個別空調機101−1の熱交換部112−1の出力が最低になったときに、室温が(室温設定値−γ)以下になると判断した場合には、外気冷房の制御モードに切り換える。   In the present embodiment, for the same reason as in the first embodiment, a hysteresis γ [° C.] (γ> 0) is provided for the threshold value for switching the control mode. That is, when the control mode selection switching determination unit 15a determines that the room temperature is higher than (room temperature set value + γ) even when the outside air damper 108-1 reaches the maximum opening degree during the outside air cooling control mode, Switch to individual air conditioning control mode. Further, the control mode selection switching determination unit 15a sets the room temperature (room temperature set value−γ) when the output of the heat exchange unit 112-1 of the individual air conditioner 101-1 becomes the lowest during the control mode of the individual air conditioning. When it is determined that the following will occur, the control mode is switched to the outside air cooling control mode.

さらに、本実施の形態では、外気温度と室温の差に基づき外気冷房機105と個別空調機101−1の冷房能力の差を推定し、冷房能力の差が大きいときほどヒステリシスγが大きくなるようにする。   Further, in the present embodiment, the difference in the cooling capacity between the outside air cooler 105 and the individual air conditioner 101-1 is estimated based on the difference between the outside air temperature and the room temperature, and the hysteresis γ increases as the difference in the cooling capacity increases. To.

第1の実施の形態の可変タイムラグ算出部14と同様に、可変ヒステリシス算出部16には、室温下降率Hが個別空調機101−1の冷房能力として予め設定され、室温下降率K(X)が外気冷房機105の冷房能力として予め設定されている。   Similar to the variable time lag calculation unit 14 of the first embodiment, the variable hysteresis calculation unit 16 is preset with the room temperature decrease rate H as the cooling capacity of the individual air conditioner 101-1, and the room temperature decrease rate K (X). Is preset as the cooling capacity of the outside air cooler 105.

可変ヒステリシス算出部16は、現在の室温D[℃]と現在の外気温度A[℃]とから室温外気温度差X=D−A[℃]を求め、室温下降率Hと室温外気温度差Xに応じた室温下降率K(X)とを用いて、ヒステリシスγ[℃]を次式のように算出する。
γ=ζ|H−K(X)| ・・・(2)
式(2)において、ζ(ζ>0)は予め定められた比例係数である。可変ヒステリシス算出部16は、算出したヒステリシスγを制御モード選択切換判定部15aに設定する。
The variable hysteresis calculation unit 16 obtains a room temperature outside air temperature difference X = DA [° C.] from the current room temperature D [° C.] and the current outside air temperature A [° C.], and the room temperature decrease rate H and the room temperature outside air temperature difference X Hysteresis γ [° C.] is calculated using the room temperature decrease rate K (X) according to the following equation.
γ = ζ | H−K (X) | (2)
In equation (2), ζ (ζ> 0) is a predetermined proportionality coefficient. The variable hysteresis calculation unit 16 sets the calculated hysteresis γ in the control mode selection switching determination unit 15a.

ヒステリシスγは、単純に個別空調機101−1の発停の頻度を低減することが目的のものなので、比例係数ζの決め方に特別な規定は必要ない。時間的に余裕をもって制御モードの切り換えが行なわれるようになればよい。
可変ヒステリシス算出部16は、例えば室温Dと外気温度Aのうち少なくとも一方が変化したときヒステリシスγを算出するか、あるいは一定時間毎にヒステリシスγを算出することで、ヒステリシスγが適宜更新されるようにする。
Hysteresis γ is simply for the purpose of reducing the frequency of on / off of the individual air conditioner 101-1, so no special provision is required for how to determine the proportionality coefficient ζ. It is sufficient that the control mode is switched with sufficient time.
The variable hysteresis calculation unit 16 calculates the hysteresis γ when, for example, at least one of the room temperature D and the outside air temperature A changes, or calculates the hysteresis γ at regular intervals so that the hysteresis γ is appropriately updated. To.

空調システムの他の構成は、第1の実施の形態で説明したとおりである。こうして、本実施の形態では、第1の実施の形態と同様の効果を得ることができる。   Other configurations of the air conditioning system are as described in the first embodiment. Thus, in this embodiment, the same effect as that of the first embodiment can be obtained.

なお、第1、第2の実施の形態の連携コントローラ1−1,1−2は、それぞれCPU、記憶装置およびインタフェースを備えたコンピュータと、これらのハードウェア資源を制御するプログラムによって実現することができる。CPUは、記憶装置に格納されたプログラムに従って第1、第2の実施の形態で説明した処理を実行する。   The cooperation controllers 1-1 and 1-2 according to the first and second embodiments can be realized by a computer having a CPU, a storage device, and an interface, and a program for controlling these hardware resources. it can. The CPU executes the processing described in the first and second embodiments in accordance with a program stored in the storage device.

本発明は、個別空調機と外気冷房機とが併用される空調システムに適用することができる。   The present invention can be applied to an air conditioning system in which an individual air conditioner and an outside air cooler are used in combination.

1−1,1−2…連携コントローラ、10…外気温度計測値取得部、11…室温計測値・設定値取得部、12…熱交換部制御演算部、13…外気ダンパ制御演算部、14…可変タイムラグ算出部、15…制御モード選択切換判定部、16…可変ヒステリシス算出部、101−1,101−2…個別空調機、102−1,102−2…還気ダクト、103−1,103−2…給気ダクト、104−1,104−2…給気の吹出口、105…外気冷房機、106…外気の取り入れ口、107−1,107−2…外気ダクト、108−1,108−2…外気ダンパ、109−1,109−2…外気の吹出口、110−1,110−2…室温センサ、111…外気温度センサ、112−1,112−2…熱交換部、113−1,113−2,114…ファン。   1-1, 1-2 ... cooperation controller, 10 ... outside air temperature measurement value acquisition unit, 11 ... room temperature measurement value / set value acquisition unit, 12 ... heat exchange unit control calculation unit, 13 ... outside air damper control calculation unit, 14 ... Variable time lag calculation unit, 15... Control mode selection switching determination unit, 16... Variable hysteresis calculation unit, 101-1, 101-2, individual air conditioner, 102-1, 102-2, return air duct, 103-1 and 103. -2 ... Air supply duct, 104-1, 104-2 ... Air supply outlet, 105 ... Outside air cooler, 106 ... Outside air inlet, 107-1,107-2 ... Outside air duct, 108-1,108 -2 ... Outside air damper, 109-1, 109-2 ... Outside air outlet, 110-1,110-2 ... Room temperature sensor, 111 ... Outside air temperature sensor, 112-1,112-2 ... Heat exchange section, 113- 1, 113-2, 114 ... § down.

Claims (8)

個別空調機と外気冷房機とが併用される空調システムの制御装置であって、
外気冷房機の効果を増減させることにより室温を制御する外気冷房の制御モードと、個別空調機の効果を増減させることにより室温を制御する個別空調の制御モードとを切り換える制御モード選択切換判定手段と、
前記外気冷房の制御モード時に外気ダンパの開度を操作して前記外気冷房機の効果を増減させ、前記個別空調の制御モード時に前記外気ダンパの開度を固定する外気ダンパ制御演算手段と、
前記外気冷房の制御モード時に前記個別空調機の動作を停止させ、前記個別空調の制御モード時に前記個別空調機の熱交換部の出力を操作して前記個別空調機の効果を増減させる熱交換部制御演算手段と
前記制御モードを切り換える際のタイムラグLを算出して前記制御モード選択切換判定手段に設定する可変タイムラグ算出手段とを備え、
前記制御モード選択切換判定手段は、前記外気ダンパが最大開度で前記個別空調機の熱交換部の出力が最低の状態になったときに、室温が室温設定値よりも高くなる場合に、前記個別空調の制御モードを選択し、前記外気ダンパが最大開度で前記個別空調機の熱交換部の出力が最低の状態になったときに、室温が室温設定値以下になる場合に、前記外気冷房の制御モードを選択し、前記制御モードを切り換える際に前記タイムラグLを設け
前記可変タイムラグ算出手段は、外気温度と室温の差に基づき前記外気冷房機と前記個別空調機の冷房能力の差を推定し、この冷房能力の差が大きいときほど前記タイムラグLを長くすることを特徴とする制御装置。
A control device for an air conditioning system in which an individual air conditioner and an outside air cooler are used in combination.
Control mode selection switching determination means for switching between an outside air cooling control mode for controlling the room temperature by increasing / decreasing the effect of the outside air cooler and an individual air conditioning control mode for controlling the room temperature by increasing / decreasing the effect of the individual air conditioner; ,
Operating the outside air damper during the outside air cooling control mode to increase or decrease the effect of the outside air cooler, and the outside air damper control calculating means for fixing the outside air damper opening during the individual air conditioning control mode;
A heat exchanging unit that stops the operation of the individual air conditioner during the control mode of the outside air cooling, and operates the output of the heat exchanging unit of the individual air conditioner during the control mode of the individual air conditioning to increase or decrease the effect of the individual air conditioner Control arithmetic means ;
Variable time lag calculating means for calculating a time lag L when switching the control mode and setting the time lag L in the control mode selection switching determining means ,
When the room temperature becomes higher than the room temperature setting value when the outside air damper is at the maximum opening and the output of the heat exchange unit of the individual air conditioner is in the lowest state, the control mode selection switching determination unit, When the control mode of the individual air conditioning is selected, and the room temperature falls below the room temperature set value when the outside air damper is at the maximum opening and the output of the heat exchange unit of the individual air conditioner is in the lowest state, the outside air select cooling control mode, the time lag L provided in switching the control mode,
The variable time lag calculating means estimates the difference in cooling capacity between the outside air cooler and the individual air conditioner based on the difference between the outside air temperature and the room temperature, and increases the time lag L as the difference in the cooling capacity increases. Control device characterized.
請求項記載の制御装置において、
前記可変タイムラグ算出手段は、前記外気ダンパの最大開度付近における高開度操作時の室温下降率K(X)を、室温と外気温度との差X毎に前記外気冷房機の冷房能力として予め記憶すると共に、前記個別空調機の熱交換部の最低出力付近における低出力操作時の室温下降率Hを、前記個別空調機の冷房能力として予め記憶し、前記タイムラグLをL=β|H−K(X)|(β>0)により算出することを特徴とする制御装置。
The control device according to claim 1 ,
The variable time lag calculating means preliminarily calculates a room temperature decrease rate K (X) during a high opening operation near the maximum opening of the outside air damper as a cooling capacity of the outside air cooler for each difference X between the room temperature and the outside air temperature. And storing the room temperature decrease rate H at the time of low power operation near the lowest output of the heat exchanger of the individual air conditioner in advance as the cooling capacity of the individual air conditioner, and the time lag L as L = β | H− A control device characterized by calculating by K (X) | (β> 0).
個別空調機と外気冷房機とが併用される空調システムの制御装置であって、
外気冷房機の効果を増減させることにより室温を制御する外気冷房の制御モードと、個別空調機の効果を増減させることにより室温を制御する個別空調の制御モードとを切り換える制御モード選択切換判定手段と、
前記外気冷房の制御モード時に外気ダンパの開度を操作して前記外気冷房機の効果を増減させ、前記個別空調の制御モード時に前記外気ダンパの開度を固定する外気ダンパ制御演算手段と、
前記外気冷房の制御モード時に前記個別空調機の動作を停止させ、前記個別空調の制御モード時に前記個別空調機の熱交換部の出力を操作して前記個別空調機の効果を増減させる熱交換部制御演算手段と
前記制御モードの切り換えのしきい値のヒステリシスγ(γ>0)を算出して前記制御モード選択切換判定手段に設定する可変ヒステリシス算出手段とを備え、
前記制御モード選択切換判定手段は、前記外気ダンパが最大開度で前記個別空調機の熱交換部の出力が最低の状態になったときに、室温が(室温設定値+γ)よりも高くなる場合に、前記個別空調の制御モードを選択し、前記外気ダンパが最大開度で前記個別空調機の熱交換部の出力が最低の状態になったときに、室温が(室温設定値−γ)以下になる場合に、前記外気冷房の制御モードを選択し、
前記可変ヒステリシス算出手段は、外気温度と室温の差に基づき前記外気冷房機と前記個別空調機の冷房能力の差を推定し、この冷房能力の差が大きいときほど前記ヒステリシスγを大きくすることを特徴とする制御装置。
A control device for an air conditioning system in which an individual air conditioner and an outside air cooler are used in combination.
Control mode selection switching determination means for switching between an outside air cooling control mode for controlling the room temperature by increasing / decreasing the effect of the outside air cooler and an individual air conditioning control mode for controlling the room temperature by increasing / decreasing the effect of the individual air conditioner; ,
Operating the outside air damper during the outside air cooling control mode to increase or decrease the effect of the outside air cooler, and the outside air damper control calculating means for fixing the outside air damper opening during the individual air conditioning control mode;
A heat exchanging unit that stops the operation of the individual air conditioner during the control mode of the outside air cooling, and operates the output of the heat exchanging unit of the individual air conditioner during the control mode of the individual air conditioning to increase or decrease the effect of the individual air conditioner Control arithmetic means ;
Variable hysteresis calculating means for calculating the control mode switching threshold hysteresis γ (γ> 0) and setting it in the control mode selection switching determining means ;
The control mode selecting switch determining unit, when the output of the heat exchange section of the individual air conditioner before Kigaiki damper at the maximum opening degree becomes lowest state, is higher than room temperature (room temperature set value + gamma) If the control mode of the individual air conditioning is selected, and the outside air damper is at the maximum opening and the output of the heat exchange unit of the individual air conditioner is in the lowest state, the room temperature is (room temperature set value−γ) In the following cases, select the outside air cooling control mode ,
The variable hysteresis calculating means estimates a difference in cooling capacity between the outside air cooler and the individual air conditioner based on a difference between the outside air temperature and room temperature, and increases the hysteresis γ as the difference in the cooling capacity increases. Control device characterized.
請求項記載の制御装置において、
前記可変ヒステリシス算出手段は、前記外気ダンパの最大開度付近における高開度操作時の室温下降率K(X)を、室温と外気温度との差X毎に前記外気冷房機の冷房能力として予め記憶すると共に、前記個別空調機の熱交換部の最低出力付近における低出力操作時の室温下降率Hを、前記個別空調機の冷房能力として予め記憶し、前記ヒステリシスγをγ=ζ|H−K(X)|(ζ>0)により算出することを特徴とする制御装置。
The control device according to claim 3 ,
The variable hysteresis calculating means preliminarily calculates a room temperature decrease rate K (X) at the time of a high opening degree operation near the maximum opening degree of the outside air damper as a cooling capacity of the outside air cooler for each difference X between the room temperature and the outside air temperature. And storing in advance the room temperature decrease rate H at the time of low power operation near the lowest output of the heat exchanger of the individual air conditioner as the cooling capacity of the individual air conditioner, and the hysteresis γ is expressed as γ = ζ | H− A control device that calculates by K (X) | (ζ> 0).
個別空調機と外気冷房機とが併用される空調システムの制御方法であって、
外気冷房機の効果を増減させることにより室温を制御する外気冷房の制御モードと、個別空調機の効果を増減させることにより室温を制御する個別空調の制御モードとを切り換える制御モード選択切換判定手順と、
前記外気冷房の制御モード時に外気ダンパの開度を操作して前記外気冷房機の効果を増減させ、前記個別空調の制御モード時に前記外気ダンパの開度を固定する外気ダンパ制御演算手順と、
前記外気冷房の制御モード時に前記個別空調機の動作を停止させ、前記個別空調の制御モード時に前記個別空調機の熱交換部の出力を操作して前記個別空調機の効果を増減させる熱交換部制御演算手順と
前記制御モードを切り換える際のタイムラグLを算出する可変タイムラグ算出手順とを含み、
前記制御モード選択切換判定手順は、前記外気ダンパが最大開度で前記個別空調機の熱交換部の出力が最低の状態になったときに、室温が室温設定値よりも高くなる場合に、前記個別空調の制御モードを選択し、前記外気ダンパが最大開度で前記個別空調機の熱交換部の出力が最低の状態になったときに、室温が室温設定値以下になる場合に、前記外気冷房の制御モードを選択し、前記制御モードを切り換える際に前記タイムラグLを設け
前記可変タイムラグ算出手順は、外気温度と室温の差に基づき前記外気冷房機と前記個別空調機の冷房能力の差を推定し、この冷房能力の差が大きいときほど前記タイムラグLを長くすることを特徴とする制御方法。
An air conditioning system control method in which an individual air conditioner and an outside air cooler are used together,
Control mode selection switching judgment procedure for switching between an outside air cooling control mode for controlling the room temperature by increasing or decreasing the effect of the outside air cooler and an individual air conditioning control mode for controlling the room temperature by increasing or decreasing the effect of the individual air conditioner ,
An outside air damper control calculation procedure for increasing or decreasing the effect of the outside air cooler by operating the opening degree of the outside air damper during the outside air cooling control mode, and fixing the outside air damper opening degree during the individual air conditioning control mode;
A heat exchanging unit that stops the operation of the individual air conditioner during the control mode of the outside air cooling, and operates the output of the heat exchanging unit of the individual air conditioner during the control mode of the individual air conditioning to increase or decrease the effect of the individual air conditioner Control calculation procedure ;
A variable time lag calculation procedure for calculating a time lag L when switching the control mode,
In the control mode selection switching determination procedure, when the outside air damper is at the maximum opening and the output of the heat exchange unit of the individual air conditioner is in the lowest state, the room temperature becomes higher than the room temperature set value, When the control mode of the individual air conditioning is selected, and the room temperature falls below the room temperature set value when the outside air damper is at the maximum opening and the output of the heat exchange unit of the individual air conditioner is in the lowest state, the outside air select cooling control mode, the time lag L provided in switching the control mode,
The variable time lag calculation procedure estimates the difference in cooling capacity between the outside air cooler and the individual air conditioner based on the difference between the outside air temperature and room temperature, and increases the time lag L as the difference in the cooling capacity increases. Characteristic control method.
請求項記載の制御方法において、
前記可変タイムラグ算出手順は、前記外気ダンパの最大開度付近における高開度操作時の室温下降率K(X)を、室温と外気温度との差X毎に前記外気冷房機の冷房能力として予め記憶すると共に、前記個別空調機の熱交換部の最低出力付近における低出力操作時の室温下降率Hを、前記個別空調機の冷房能力として予め記憶し、前記タイムラグLをL=β|H−K(X)|(β>0)により算出することを特徴とする制御方法。
The control method according to claim 5 , wherein
In the variable time lag calculation procedure, the room temperature decrease rate K (X) at the time of a high opening degree operation near the maximum opening degree of the outside air damper is preliminarily set as the cooling capacity of the outside air cooler for each difference X between the room temperature and the outside air temperature. And storing the room temperature decrease rate H at the time of low power operation near the lowest output of the heat exchanger of the individual air conditioner in advance as the cooling capacity of the individual air conditioner, and the time lag L as L = β | H− A control method characterized by calculating by K (X) | (β> 0).
個別空調機と外気冷房機とが併用される空調システムの制御方法であって、
外気冷房機の効果を増減させることにより室温を制御する外気冷房の制御モードと、個別空調機の効果を増減させることにより室温を制御する個別空調の制御モードとを切り換える制御モード選択切換判定手順と、
前記外気冷房の制御モード時に外気ダンパの開度を操作して前記外気冷房機の効果を増減させ、前記個別空調の制御モード時に前記外気ダンパの開度を固定する外気ダンパ制御演算手順と、
前記外気冷房の制御モード時に前記個別空調機の動作を停止させ、前記個別空調の制御モード時に前記個別空調機の熱交換部の出力を操作して前記個別空調機の効果を増減させる熱交換部制御演算手順と
前記制御モードの切り換えのしきい値のヒステリシスγ(γ>0)を算出する可変ヒステリシス算出手順とを含み、
前記制御モード選択切換判定手順は、前記外気ダンパが最大開度で前記個別空調機の熱交換部の出力が最低の状態になったときに、室温が(室温設定値+γ)よりも高くなる場合に、前記個別空調の制御モードを選択し、前記外気ダンパが最大開度で前記個別空調機の熱交換部の出力が最低の状態になったときに、室温が(室温設定値−γ)以下になる場合に、前記外気冷房の制御モードを選択し、
前記可変ヒステリシス算出手順は、外気温度と室温の差に基づき前記外気冷房機と前記個別空調機の冷房能力の差を推定し、この冷房能力の差が大きいときほど前記ヒステリシスγを大きくすることを特徴とする制御方法。
An air conditioning system control method in which an individual air conditioner and an outside air cooler are used together,
Control mode selection switching judgment procedure for switching between an outside air cooling control mode for controlling the room temperature by increasing or decreasing the effect of the outside air cooler and an individual air conditioning control mode for controlling the room temperature by increasing or decreasing the effect of the individual air conditioner ,
An outside air damper control calculation procedure for increasing or decreasing the effect of the outside air cooler by operating the opening degree of the outside air damper during the outside air cooling control mode, and fixing the outside air damper opening degree during the individual air conditioning control mode;
A heat exchanging unit that stops the operation of the individual air conditioner during the control mode of the outside air cooling, and operates the output of the heat exchanging unit of the individual air conditioner during the control mode of the individual air conditioning to increase or decrease the effect of the individual air conditioner Control calculation procedure ;
A variable hysteresis calculating procedure for calculating a hysteresis γ (γ> 0) of the threshold value for switching the control mode,
The control mode selection switching determination procedure, when the output of the heat exchange section of the individual air conditioner before Kigaiki damper at the maximum opening degree becomes lowest state, is higher than room temperature (room temperature set value + gamma) If the control mode of the individual air conditioning is selected, and the outside air damper is at the maximum opening and the output of the heat exchange unit of the individual air conditioner is in the lowest state, the room temperature is (room temperature set value−γ) In the following cases, select the outside air cooling control mode ,
The variable hysteresis calculation procedure estimates the difference in cooling capacity between the outside air cooler and the individual air conditioner based on the difference between the outside air temperature and room temperature, and increases the hysteresis γ as the difference in the cooling capacity increases. Characteristic control method.
請求項記載の制御方法において、
前記可変ヒステリシス算出手順は、前記外気ダンパの最大開度付近における高開度操作時の室温下降率K(X)を、室温と外気温度との差X毎に前記外気冷房機の冷房能力として予め記憶すると共に、前記個別空調機の熱交換部の最低出力付近における低出力操作時の室温下降率Hを、前記個別空調機の冷房能力として予め記憶し、前記ヒステリシスγをγ=ζ|H−K(X)|(ζ>0)により算出することを特徴とする制御方法。
The control method according to claim 7 ,
In the variable hysteresis calculation procedure, the room temperature decrease rate K (X) at the time of a high opening degree operation near the maximum opening degree of the outside air damper is previously set as the cooling capacity of the outside air cooler for each difference X between the room temperature and the outside air temperature. And storing in advance the room temperature decrease rate H at the time of low power operation near the lowest output of the heat exchanger of the individual air conditioner as the cooling capacity of the individual air conditioner, and the hysteresis γ is expressed as γ = ζ | H− A control method characterized by calculating by K (X) | (ζ> 0).
JP2009226756A 2009-09-30 2009-09-30 Control apparatus and control method Expired - Fee Related JP5461942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009226756A JP5461942B2 (en) 2009-09-30 2009-09-30 Control apparatus and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009226756A JP5461942B2 (en) 2009-09-30 2009-09-30 Control apparatus and control method

Publications (2)

Publication Number Publication Date
JP2011075194A JP2011075194A (en) 2011-04-14
JP5461942B2 true JP5461942B2 (en) 2014-04-02

Family

ID=44019367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009226756A Expired - Fee Related JP5461942B2 (en) 2009-09-30 2009-09-30 Control apparatus and control method

Country Status (1)

Country Link
JP (1) JP5461942B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5730689B2 (en) * 2011-07-01 2015-06-10 株式会社Nttファシリティーズ Air conditioning operation control system
CN104040268B (en) * 2012-02-22 2016-12-07 富士电机株式会社 Integral air conditioner system and its control device
JP6265587B2 (en) * 2012-04-12 2018-01-24 トヨタホーム株式会社 Air conditioning system for apartment houses
EP2916083B1 (en) 2012-11-02 2017-12-27 Fujitsu Limited Modular data center and control method therefor
JP2014115056A (en) * 2012-12-12 2014-06-26 Mitsubishi Electric Building Techno Service Co Ltd Air-conditioning control system
JP6363454B2 (en) * 2014-09-29 2018-07-25 株式会社Nttファシリティーズ Air conditioner
CN114110970B (en) * 2020-08-31 2023-04-14 小米科技(武汉)有限公司 Indoor temperature control method and system for air conditioner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0854901A (en) * 1994-08-09 1996-02-27 Yoshio Ito Load discrimination control method and device
JP2000121131A (en) * 1998-10-16 2000-04-28 Mitsubishi Electric Corp Air conditioner and controller therefor
JP2005172283A (en) * 2003-12-09 2005-06-30 Daikin Ind Ltd Air conditioning system

Also Published As

Publication number Publication date
JP2011075194A (en) 2011-04-14

Similar Documents

Publication Publication Date Title
JP5461942B2 (en) Control apparatus and control method
JP5312674B2 (en) Air conditioning system and control method of air conditioning system
US10047992B2 (en) Air-conditioning system using control of number of compressors based on predetermined frequency ranges
JP5375945B2 (en) Air conditioning system that adjusts temperature and humidity
US8805589B2 (en) Air conditioning operating device and air conditioning operating method
US11609020B2 (en) Air conditioning system
JP2007218499A (en) Air conditioner
JP6855152B1 (en) Air conditioner and management device
JP5371575B2 (en) Air conditioning operation device and air conditioning operation method
JP5584024B2 (en) Air conditioner group control device and air conditioning system
JP6239423B2 (en) Variable air volume air conditioning system
JP2018173206A (en) Vav unit control device and control method for vav unit
JP6627913B2 (en) Air conditioner
JP5371583B2 (en) air conditioner
EP1953473B1 (en) Demand control system and method for multi-type air conditioner
JP5005578B2 (en) Air conditioning control system, air conditioning control program, and air conditioning control method
JP5673524B2 (en) Air conditioning system that adjusts temperature and humidity
JP6188939B2 (en) Air conditioning system
US20150362231A1 (en) Gas heat pump air conditioning system
JP5062555B2 (en) Energy saving air conditioning control system
JP7199529B2 (en) Control device, air environment adjustment system, air environment adjustment method, program, and recording medium
WO2019159241A1 (en) Air-conditioning system, air-conditioning control device, air-conditioning control method and program
JP5940608B2 (en) Heat medium circulation system
JP6856061B2 (en) Air conditioning system
JP2006029683A (en) Control method for air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140116

R150 Certificate of patent or registration of utility model

Ref document number: 5461942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees