JP5427680B2 - Manufacturing method of organic thin film solar cell - Google Patents

Manufacturing method of organic thin film solar cell Download PDF

Info

Publication number
JP5427680B2
JP5427680B2 JP2010093405A JP2010093405A JP5427680B2 JP 5427680 B2 JP5427680 B2 JP 5427680B2 JP 2010093405 A JP2010093405 A JP 2010093405A JP 2010093405 A JP2010093405 A JP 2010093405A JP 5427680 B2 JP5427680 B2 JP 5427680B2
Authority
JP
Japan
Prior art keywords
organic thin
solar cell
film solar
photoelectric conversion
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010093405A
Other languages
Japanese (ja)
Other versions
JP2011222903A (en
Inventor
安彦 三谷
裕希子 小沼
理 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinyosha Co Ltd
Original Assignee
Kinyosha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinyosha Co Ltd filed Critical Kinyosha Co Ltd
Priority to JP2010093405A priority Critical patent/JP5427680B2/en
Publication of JP2011222903A publication Critical patent/JP2011222903A/en
Application granted granted Critical
Publication of JP5427680B2 publication Critical patent/JP5427680B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Description

本発明は有機薄膜太陽電池の製造方法に関する。   The present invention relates to a method for producing an organic thin film solar cell.

有機薄膜太陽電池は透明導電膜からなる陽極と金属膜からなる陰極との間に、有機薄膜の光電変換層を設けた構造を有する。有機薄膜太陽電池はフレキシブルにできるため、現在実用に供されているシリコン系太陽電池と比較して多様な用途が期待されている。また、有機薄膜太陽電池は光電変換層を常圧で湿式法により高効率で形成できるため、大幅なコストダウンが期待できる。   An organic thin film solar cell has a structure in which an organic thin film photoelectric conversion layer is provided between an anode made of a transparent conductive film and a cathode made of a metal film. Since organic thin-film solar cells can be made flexible, they are expected to be used in a variety of applications compared to silicon solar cells that are currently in practical use. Moreover, since an organic thin film solar cell can form a photoelectric converting layer with high efficiency by a wet method at normal pressure, it can expect a significant cost reduction.

有機薄膜太陽電池の光電変換層としては、高い光電変換効率が得られるという観点から、バルクへテロジャンクション構造を持ったものが注目されている。この光電変換層は、p型半導体に相当する導電性高分子とn型半導体に相当するフラーレン誘導体とを含む。   As a photoelectric conversion layer of an organic thin film solar cell, a layer having a bulk heterojunction structure has attracted attention from the viewpoint of obtaining high photoelectric conversion efficiency. This photoelectric conversion layer includes a conductive polymer corresponding to a p-type semiconductor and a fullerene derivative corresponding to an n-type semiconductor.

有機薄膜太陽電池において、光電変換層と金属電極との間に電子輸送層(ホールブロック層)を設けることによって光電変換効率が向上することが知られている。電子輸送層(ホールブロック層)にはたとえばTiOxが用いられている。 In an organic thin film solar cell, it is known that photoelectric conversion efficiency is improved by providing an electron transport layer (hole block layer) between a photoelectric conversion layer and a metal electrode. For example, TiO x is used for the electron transport layer (hole block layer).

従来、TiOxからなる電子輸送層を形成するには、たとえば光電変換層上にTiアルコキシドのエタノール溶液をスピンコーティングして乾燥する方法が用いられている(特許文献1参照)。 Conventionally, in order to form an electron transport layer made of TiO x , for example, a method of spin-coating an ethanol solution of Ti alkoxide on a photoelectric conversion layer and drying is used (see Patent Document 1).

特開2007−273939号公報JP 2007-273939 A

しかし、従来の方法で製造された有機薄膜太陽電池は、耐久性に劣ることがわかっている。   However, it has been found that organic thin-film solar cells manufactured by conventional methods are inferior in durability.

本発明は、TiOxからなる電子輸送層を含み、耐久性に優れた有機薄膜太陽電池を製造できる方法を提供することを目的とする。 An object of the present invention is to provide a method capable of producing an organic thin-film solar cell having an electron transport layer made of TiO x and having excellent durability.

本発明によれば、互いに離間して形成された陽極および陰極と、前記陽極と前記陰極との間に設けられた有機薄膜の光電変換層と、前記光電変換層と前記陰極との間に設けられたTiOxからなる電子輸送層とを有する有機薄膜太陽電池を製造するにあたり、前記TiOxからなる電子輸送層を燃焼化学気相成長法により形成することを特徴とする有機薄膜太陽電池の製造方法が提供される。 According to the present invention, an anode and a cathode formed apart from each other, a photoelectric conversion layer of an organic thin film provided between the anode and the cathode, and provided between the photoelectric conversion layer and the cathode In manufacturing an organic thin film solar cell having an electron transport layer made of TiO x produced, the electron transport layer made of TiO x is formed by a combustion chemical vapor deposition method. A method is provided.

本発明によれば、燃焼化学気相成長(CCVD)法を用いることにより、大気下において短時間の間に過度な温度上昇を招くことなくTiOx電子輸送層を簡便に形成できるので、耐久性に優れた有機薄膜太陽電池を提供できる。 According to the present invention, by using a combustion chemical vapor deposition (CCVD) method, a TiO x electron transport layer can be easily formed without causing an excessive temperature rise in the air in a short time. It is possible to provide an organic thin-film solar cell excellent in

有機薄膜太陽電池の断面図。Sectional drawing of an organic thin-film solar cell. CCVD法によるTiOx電子輸送層の形成方法を示す説明図。Explanatory view showing a method of forming TiO x electron transport layer by CCVD process.

以下、図面を参照しながら本発明の実施形態を説明する。
図1に本発明に係る有機薄膜太陽電池の一例の断面図を示す。図1に示す有機薄膜太陽電池10は、透明基板11上に、陽極12、ホール輸送層13、光電変換層14、電子輸送層(ホールブロック層)15、および陰極16が順次形成された構造を有する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a cross-sectional view of an example of an organic thin film solar cell according to the present invention. The organic thin film solar cell 10 shown in FIG. 1 has a structure in which an anode 12, a hole transport layer 13, a photoelectric conversion layer 14, an electron transport layer (hole block layer) 15, and a cathode 16 are sequentially formed on a transparent substrate 11. Have.

透明基板11の材料としては、ガラス、樹脂フィルムなどが挙げられる。樹脂フィルムを用いた場合、フレキシブルな有機薄膜太陽電池を製造することができる。ただし、樹脂フィルムは耐熱性が低いため、成膜処理および加熱処理の温度が高温にならないようにする。   Examples of the material of the transparent substrate 11 include glass and a resin film. When a resin film is used, a flexible organic thin film solar cell can be manufactured. However, since the resin film has low heat resistance, the film formation process and the heat treatment should not be performed at a high temperature.

陽極12としては、たとえばインジウム錫酸化物(ITO)、フッ素ドープ酸化スズ(FTO)のような透明電極が用いられる。   As the anode 12, for example, a transparent electrode such as indium tin oxide (ITO) or fluorine-doped tin oxide (FTO) is used.

ホール輸送層13の材料としては、ポリ(3,4−エチレンジオキシチオフェン):ポリ(スチレンスルホン酸)(PEDOT:PSS)などが挙げられる。ホール輸送層13を形成するには、たとえばPEDOT:PSSの水溶液を陽極12上にスピンコーターにより塗布して乾燥する。   Examples of the material for the hole transport layer 13 include poly (3,4-ethylenedioxythiophene): poly (styrenesulfonic acid) (PEDOT: PSS). In order to form the hole transport layer 13, for example, an aqueous solution of PEDOT: PSS is applied onto the anode 12 by a spin coater and dried.

光電変換層14はp型半導体に相当する導電性高分子とn型半導体に相当するフラーレン誘導体とを含む。p型半導体に相当する導電性高分子としては、ポリ−3−ヘキシルチオフェン(P3HT)、ポリ[2−メトキシ−5−(2−エチルヘキシロキシ)−1,4−フェニレンビニレン](MEH−PPV)、ポリ[2−メトキシ−5−(3’,7’−ジメチルオクチロキシ)−1,4−フェニレンビニレン](MDMO−PPV)などが挙げられる。n型半導体に相当するフラーレン誘導体としては、[6,6]−ジフェニルC62 ビス(酪酸メチルエステル)の異性体混合物(ビス[60]PCBM)、フェニルC61 酪酸メチルエステル([60]PCBM)、フェニルC71 酪酸メチルエステル([70]PCBM)、チエニルC61 酪酸メチルエステル([60]ThCBM)などが挙げられる。なお、これらの導電性高分子およびフラーレン誘導体は全てシグマアルドリッチ社から入手できる。光電変換層14を形成するには、導電性高分子およびフラーレン誘導体を、有機溶媒に溶解した溶液をスピンコーターにより塗布して乾燥する。有機溶媒としては、ジクロロベンゼン、クロロベンゼン、クロロホルム、トルエンなどが挙げられる。たとえば、[60]PCBMとP3HTとの混合物を含むバルクヘテロジャンクション構造の光電変換層14が形成される。 The photoelectric conversion layer 14 includes a conductive polymer corresponding to a p-type semiconductor and a fullerene derivative corresponding to an n-type semiconductor. Examples of the conductive polymer corresponding to the p-type semiconductor include poly-3-hexylthiophene (P3HT), poly [2-methoxy-5- (2-ethylhexyloxy) -1,4-phenylene vinylene] (MEH-PPV). ), Poly [2-methoxy-5- (3 ′, 7′-dimethyloctyloxy) -1,4-phenylenevinylene] (MDMO-PPV), and the like. Fullerene derivatives corresponding to n-type semiconductors include [6,6] -diphenyl C 62 bis (butyric acid methyl ester) isomer mixture (bis [60] PCBM), phenyl C 61 butyric acid methyl ester ([60] PCBM). Phenyl C 71 butyric acid methyl ester ([70] PCBM), thienyl C 61 butyric acid methyl ester ([60] ThCBM), and the like. These conductive polymers and fullerene derivatives are all available from Sigma-Aldrich. In order to form the photoelectric conversion layer 14, a solution in which a conductive polymer and a fullerene derivative are dissolved in an organic solvent is applied by a spin coater and dried. Examples of the organic solvent include dichlorobenzene, chlorobenzene, chloroform, toluene and the like. For example, the photoelectric conversion layer 14 having a bulk heterojunction structure including a mixture of [60] PCBM and P3HT is formed.

本発明方法においては、電子輸送層(ホールブロック層)15として用いられるTiOx層を燃焼化学気相成長(CCVD)法により成膜する。燃焼化学気相成長(CCVD)法は、燃焼炎により原料を燃焼させ、被処理基板上に原料の燃焼生成物を堆積させる方法である。本発明方法においては、燃焼炎によりチタン源を燃焼させ、被処理基板上に燃焼生成物であるTiOxを堆積させる。 In the method of the present invention, a TiO x layer used as the electron transport layer (hole block layer) 15 is formed by a combustion chemical vapor deposition (CCVD) method. The combustion chemical vapor deposition (CCVD) method is a method in which a raw material is burned by a combustion flame and a combustion product of the raw material is deposited on a substrate to be processed. In the method of the present invention, a titanium source is burned by a combustion flame, and TiO x that is a combustion product is deposited on a substrate to be processed.

以下、CCVD法によるTiOx層の形成方法をより詳細に説明する。 Hereinafter, the method for forming the TiO x layer by the CCVD method will be described in more detail.

チタン源としてはチタン原子を含む有機材料を用いるとよい。特に、化学構造が単純で常温付近で液状の物質を用いることが好ましい。このようなチタン源としては、チタンアルコキシド、たとえばテトラエキトシチタン、テトライソプロポキシチタンなどが挙げられる。   As the titanium source, an organic material containing a titanium atom is preferably used. In particular, it is preferable to use a substance that has a simple chemical structure and is in the vicinity of room temperature. Examples of such a titanium source include titanium alkoxides such as tetraethoxy titanium and tetraisopropoxy titanium.

必要に応じて希釈溶媒でチタン源を希釈した溶液を用いる。希釈溶媒は、チタン源を良好に溶解することができ、燃焼しやすいものが好ましく、さらに水分を含んでいないものが好ましい。希釈溶媒としては、アルコール、または炭化水素たとえばヘキサンなどが挙げられる。希釈溶媒によるチタン源の希釈倍率は好ましくは2〜20倍、より好ましくは5〜15倍、さらに好ましくは5〜10倍である。   A solution obtained by diluting the titanium source with a diluting solvent is used if necessary. The dilution solvent is preferably one that can dissolve the titanium source satisfactorily and easily burns, and further preferably does not contain moisture. Diluent solvents include alcohols or hydrocarbons such as hexane. The dilution ratio of the titanium source with the diluting solvent is preferably 2 to 20 times, more preferably 5 to 15 times, and further preferably 5 to 10 times.

燃焼炎は、プロパンガスなどの燃焼ガスを燃焼させることによって生成させる。本発明においては、燃焼炎中に直接チタン源の溶液を供給してTiOxを生成させ、TiOxを含む燃焼炎を被処理基板に接触させることによって、被処理基板上にTiOx層を堆積させる方法を用いることが好ましい。この際、燃焼炎のうち内炎(還元炎)を被処理基板に1秒以下、より好ましくは0.1秒以下の短時間だけ接触させる。このような方法により、被処理基板の温度上昇を100℃以下、より好ましくは80℃以下に抑えることができる。所望の厚さのTiOx層を形成するには、上記の操作を複数回繰り返してもよい。 The combustion flame is generated by burning a combustion gas such as propane gas. In the present invention, a TiO x layer is deposited on a substrate to be processed by supplying a solution of a titanium source directly into the combustion flame to generate TiO x and bringing the combustion flame containing TiO x into contact with the substrate to be processed. It is preferable to use the method of making it. At this time, the inner flame (reducing flame) of the combustion flame is brought into contact with the substrate to be processed for a short time of 1 second or shorter, more preferably 0.1 second or shorter. By such a method, the temperature rise of the substrate to be processed can be suppressed to 100 ° C. or lower, more preferably 80 ° C. or lower. In order to form a TiO x layer having a desired thickness, the above operation may be repeated a plurality of times.

図2(a)および(b)を参照して、CCVD法によるTiOx層の成膜方法を説明する。 With reference to FIGS. 2A and 2B, a method of forming a TiO x layer by the CCVD method will be described.

図2(a)に示すように、透明基板上に光電変換層まで形成した被処理基板21を、コンベア22上に載せる。バーナー23に燃焼ガスおよび空気を供給し、燃焼ガスを燃焼させて燃焼炎24を生じさせる。燃焼炎24中にノズル25からチタン源の溶液を直接噴霧し、燃焼生成物であるTiOxを生成させる。 As shown in FIG. 2A, the substrate 21 to be processed formed up to the photoelectric conversion layer on the transparent substrate is placed on the conveyor 22. Combustion gas and air are supplied to the burner 23, and the combustion gas is burned to generate a combustion flame 24. A solution of a titanium source is directly sprayed from the nozzle 25 into the combustion flame 24 to generate TiO x as a combustion product.

図2(b)に示すように、コンベア22により被処理基板21を燃焼炎24の方向に移動させ、燃焼炎のうち内炎(還元炎)を被処理基板21に1秒以下、より好ましくは0.1秒以下の短時間だけ接触させることにより、被処理基板21上にTiOx層を堆積させる。必要に応じて、上記の操作を複数回繰り返し、TiOx層を所望の厚さに形成する。 As shown in FIG. 2B, the substrate to be processed 21 is moved in the direction of the combustion flame 24 by the conveyor 22, and the inner flame (reduction flame) of the combustion flame is applied to the substrate to be processed 21 for 1 second or less, more preferably A TiO x layer is deposited on the substrate to be processed 21 by contact for a short time of 0.1 second or less. If necessary, the above operation is repeated a plurality of times to form a TiO x layer with a desired thickness.

このように、CCVD法によりTiOx電子輸送層を形成すれば、従来の湿式法に比較してTiOx電子輸送層の水分含有率を低くすることができるので、有機薄膜太陽電池の耐久性を向上させることができる。 Thus, if the TiO x electron transport layer is formed by the CCVD method, the moisture content of the TiO x electron transport layer can be lowered as compared with the conventional wet method, so that the durability of the organic thin film solar cell is improved. Can be improved.

陰極16としては、たとえばアルミニウム(Al)、インジウム(In)のように、仕事関数の大きな金属材料が用いられる。これらの金属材料はたとえば真空蒸着のような方法によって成膜される。   As the cathode 16, for example, a metal material having a large work function such as aluminum (Al) or indium (In) is used. These metal materials are formed by a method such as vacuum deposition.

また、透明基板11上に陽極12、ホール輸送層13、および光電変換層14を形成し、対向基板に陰極およびTiOx電子輸送層を形成して、両方の基板をラミネート(貼り合わせ)してもよい。 Further, the anode 12, the hole transport layer 13, and the photoelectric conversion layer 14 are formed on the transparent substrate 11, the cathode and the TiO x electron transport layer are formed on the counter substrate, and both the substrates are laminated (bonded). Also good.

実施例1、実施例2、および比較例2においては、図1に示すような構造を有する有機薄膜太陽電池を製造した。また、比較例1においては、TiOx電子輸送層がない以外は図1に示すような構造を有する有機薄膜太陽電池を製造した。 In Example 1, Example 2, and Comparative Example 2, organic thin-film solar cells having a structure as shown in FIG. 1 were manufactured. In Comparative Example 1, an organic thin-film solar cell having a structure as shown in FIG. 1 was produced except that there was no TiO x electron transport layer.

各々の有機薄膜太陽電池について、初期発電効率を測定した。   The initial power generation efficiency was measured for each organic thin film solar cell.

また、有機薄膜太陽電池を温度25℃、湿度50%の環境に1週間暴露させる環境試験後に、発電効率を測定した。   In addition, the power generation efficiency was measured after an environmental test in which the organic thin-film solar cell was exposed to an environment at a temperature of 25 ° C. and a humidity of 50% for one week.

実施例1
本実施例の有機薄膜太陽電池を以下のようにして製造した。
Example 1
The organic thin film solar cell of this example was manufactured as follows.

ITO付きガラス基板を用意した。ITOからなる陽極12の表面をプラズマ処理により洗浄した。   A glass substrate with ITO was prepared. The surface of the anode 12 made of ITO was cleaned by plasma treatment.

重量比1:1のPEDOT:PSSの水溶液を調製した。ITO付きガラス基板上にPEDOT:PSSの水溶液をスピンコーターにより塗布し、120℃で10分間の熱処理を行い、厚さ10〜30nmのホール輸送層13を形成した。   An aqueous solution of PEDOT: PSS at a weight ratio of 1: 1 was prepared. An aqueous solution of PEDOT: PSS was applied onto a glass substrate with ITO using a spin coater, and heat treatment was performed at 120 ° C. for 10 minutes to form a hole transport layer 13 having a thickness of 10 to 30 nm.

ホール輸送層13上に、[60]PCBM:P3HT(重量比1:1)のジクロロベンゼン溶液をスピンコーターにより塗布し、厚さ約100nmのバルクヘテロジャンクション構造の光電変換層14を形成した。   On the hole transport layer 13, a dichlorobenzene solution of [60] PCBM: P3HT (weight ratio 1: 1) was applied by a spin coater to form a photoelectric conversion layer 14 having a bulk heterojunction structure having a thickness of about 100 nm.

バーナー23に燃焼ガスおよび空気を供給し、燃焼ガスを燃焼させて燃焼炎24を生じさせ、燃焼炎24中にノズル25からテトラエトキシチタンのエタノール溶液を直接噴霧し、燃焼生成物であるTiOxを生成させ、燃焼炎を光電変換層14に接触させる操作を繰り返すことによって、厚さ10〜30nmの電子輸送層15を形成した。 Combustion gas and air are supplied to the burner 23 to burn the combustion gas to form a combustion flame 24. An ethanol solution of tetraethoxytitanium is directly sprayed from the nozzle 25 into the combustion flame 24, and TiO x which is a combustion product. And the electron transport layer 15 having a thickness of 10 to 30 nm was formed by repeating the operation of bringing the combustion flame into contact with the photoelectric conversion layer 14.

電子輸送層15上にAlを真空蒸着することによって厚さ10〜50nmの陰極16を形成した。   A cathode 16 having a thickness of 10 to 50 nm was formed by vacuum depositing Al on the electron transport layer 15.

その後、130℃、15分間の加熱処理を行って光電変換層14を活性化させた。以上のように有機薄膜太陽電池を製造した。   Thereafter, a heat treatment at 130 ° C. for 15 minutes was performed to activate the photoelectric conversion layer 14. The organic thin film solar cell was manufactured as described above.

実施例1の有機薄膜太陽電池は、初期の光電変換効率が2.62%、環境試験後の光電変換効率が1.74%(光電変換効率の維持率66.4%)であった。   The organic thin-film solar cell of Example 1 had an initial photoelectric conversion efficiency of 2.62% and a photoelectric conversion efficiency after an environmental test of 1.74% (a photoelectric conversion efficiency maintenance ratio of 66.4%).

実施例2
ITO付きガラス基板の代わりに、ITO付きポリエチレンナフタレート(PEN)フィルムを用いた以外は実施例1と同様にして有機薄膜太陽電池を製造した。
Example 2
An organic thin film solar cell was produced in the same manner as in Example 1 except that a polyethylene naphthalate (PEN) film with ITO was used instead of the glass substrate with ITO.

実施例2の有機薄膜太陽電池は、初期の光電変換効率が1.94%、環境試験後の光電変換効率が1.01%(光電変換効率の維持率52.1%)であった。   The organic thin-film solar cell of Example 2 had an initial photoelectric conversion efficiency of 1.94% and a photoelectric conversion efficiency after an environmental test of 1.01% (a photoelectric conversion efficiency maintenance rate of 52.1%).

このように、ガラス基板よりも耐熱性の低いPENフィルムを用いた場合でも、良好な性能を有する有機薄膜太陽電池が得られた。   Thus, even when a PEN film having lower heat resistance than the glass substrate was used, an organic thin film solar cell having good performance was obtained.

比較例1
TiOx電子輸送層を形成しなかった以外は実施例1と同様にして有機薄膜太陽電池を製造した。
Comparative Example 1
An organic thin film solar cell was manufactured in the same manner as in Example 1 except that the TiO x electron transport layer was not formed.

比較例1の有機薄膜太陽電池は、初期の光電変換効率が2.05%、環境試験後の光電変換効率が1.04%(光電変換効率の維持率50.7%)であった。   The organic thin-film solar cell of Comparative Example 1 had an initial photoelectric conversion efficiency of 2.05% and a photoelectric conversion efficiency after an environmental test of 1.04% (a maintenance ratio of photoelectric conversion efficiency of 50.7%).

比較例2
CCVD法によりTiOx電子輸送層を形成する代わりに、特開2007−273939号公報に記載された方法に従ってTiOx電子輸送層を形成した以外は実施例1と同様にして有機薄膜太陽電池を製造した。
Comparative Example 2
Instead of forming the TiO x electron transport layer by the CCVD method, an organic thin film solar cell is produced in the same manner as in Example 1 except that the TiO x electron transport layer is formed according to the method described in JP-A-2007-273939. did.

具体的なTiO電子輸送層の形成方法は以下の通りである。光電変換層14上に(Ti(OC374)のエタノール溶液をスピンコーターにより塗布し、大気中にて、加熱することなく乾燥して厚さ約50nmのTiO2層を形成した。 A specific method for forming the TiO x electron transport layer is as follows. An ethanol solution of (Ti (OC 3 H 7 ) 4 ) was applied on the photoelectric conversion layer 14 by a spin coater and dried in the air without heating to form a TiO 2 layer having a thickness of about 50 nm.

比較例2の有機薄膜太陽電池は、初期の光電変換効率が2.57%、環境試験後の光電変換効率が1.26%(光電変換効率の維持率49.0%)であった。   The organic thin-film solar cell of Comparative Example 2 had an initial photoelectric conversion efficiency of 2.57% and a photoelectric conversion efficiency after an environmental test of 1.26% (a photoelectric conversion efficiency maintenance rate of 49.0%).

以上のように、実施例1および2は、比較例1および2に比べて、環境試験後の光電変換効率の維持率が高く、劣化しにくいことがわかる。   As described above, it can be seen that Examples 1 and 2 have a higher photoelectric conversion efficiency maintenance rate after the environmental test than Comparative Examples 1 and 2, and are less likely to deteriorate.

10…有機薄膜太陽電池、11…透明基板、12…陽極、13…ホール輸送層、14…光電変換層、15…電子輸送層(ホールブロック層)、16…陰極、21…被処理基板、22…コンベア、23…バーナー、24…燃焼炎、25…ノズル。   DESCRIPTION OF SYMBOLS 10 ... Organic thin-film solar cell, 11 ... Transparent substrate, 12 ... Anode, 13 ... Hole transport layer, 14 ... Photoelectric conversion layer, 15 ... Electron transport layer (hole block layer), 16 ... Cathode, 21 ... Substrate to be processed, 22 ... conveyor, 23 ... burner, 24 ... combustion flame, 25 ... nozzle.

Claims (1)

互いに離間して形成された陽極および陰極と、前記陽極と前記陰極との間に設けられた有機薄膜の光電変換層と、前記光電変換層と前記陰極との間に設けられたTiOxからなる電子輸送層とを有する有機薄膜太陽電池を製造するにあたり、前記TiOxからなる電子輸送層を燃焼化学気相成長法により形成することを特徴とする有機薄膜太陽電池の製造方法。 An anode and a cathode formed apart from each other, a photoelectric conversion layer of an organic thin film provided between the anode and the cathode, and TiO x provided between the photoelectric conversion layer and the cathode In manufacturing an organic thin film solar cell having an electron transport layer, an electron transport layer made of TiO x is formed by a combustion chemical vapor deposition method.
JP2010093405A 2010-04-14 2010-04-14 Manufacturing method of organic thin film solar cell Active JP5427680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010093405A JP5427680B2 (en) 2010-04-14 2010-04-14 Manufacturing method of organic thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010093405A JP5427680B2 (en) 2010-04-14 2010-04-14 Manufacturing method of organic thin film solar cell

Publications (2)

Publication Number Publication Date
JP2011222903A JP2011222903A (en) 2011-11-04
JP5427680B2 true JP5427680B2 (en) 2014-02-26

Family

ID=45039455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010093405A Active JP5427680B2 (en) 2010-04-14 2010-04-14 Manufacturing method of organic thin film solar cell

Country Status (1)

Country Link
JP (1) JP5427680B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014029904A (en) * 2012-07-31 2014-02-13 Fuji Electric Co Ltd Organic thin-film solar cell and method of manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US232659A (en) * 1880-09-28 Le geand teeey
DE69432175T2 (en) * 1993-03-24 2004-03-04 Georgia Tech Research Corp. METHOD AND DEVICE FOR COMBUSTION CVD OF FILMS AND COATINGS
CA2289239C (en) * 1998-11-23 2010-07-20 Micro Coating Technologies Formation of thin film capacitors
US6368899B1 (en) * 2000-03-08 2002-04-09 Maxwell Electronic Components Group, Inc. Electronic device packaging
JP5298308B2 (en) * 2005-09-06 2013-09-25 国立大学法人京都大学 Organic thin film photoelectric conversion device and method for producing the same

Also Published As

Publication number Publication date
JP2011222903A (en) 2011-11-04

Similar Documents

Publication Publication Date Title
Dennler et al. A new encapsulation solution for flexible organic solar cells
Min et al. Interface Design to Improve the Performance and Stability of Solution‐Processed Small‐Molecule Conventional Solar Cells
bin Mohd Yusoff et al. Au-doped single layer graphene nanoribbons for a record-high efficiency ITO-free tandem polymer solar cell
JP5682571B2 (en) Organic photoelectric conversion element
Aslan et al. Sol–gel derived In2S3 buffer layers for inverted organic photovoltaic cells
KR20130037569A (en) Inverted organic solar cell and method for fabricating the same
JPWO2011019044A1 (en) HOLE BLOCK LAYER AND ITS MANUFACTURING METHOD, PHOTOELECTRIC CONVERSION ELEMENT HAVING THE HOLE BLOCK LAYER, AND ITS MANUFACTURING METHOD
Elnaggar et al. Molecular Engineering of the Fullerene‐Based Electron Transport Layer Materials for Improving Ambient Stability of Perovskite Solar Cells
JP5515598B2 (en) Method for producing organic photoelectric conversion element and organic photoelectric conversion element
JP2010283313A (en) Indium tin oxide ito solid electrode, manufacturing method thereof, manufacturing apparatus, and manufacturing method of solar battery
JP5444743B2 (en) Organic photoelectric conversion element
JP5681932B2 (en) All-spray see-through organic solar array with seal
JP5287137B2 (en) Manufacturing method of organic photoelectric conversion element
JP2013089685A (en) Organic photoelectric conversion element and solar cell using the same
Xie et al. Plasmon-enhanced perovskite solar cells using ultra-thin LiF spacer isolating AgAl and Au composite nanoparticles from metal electrode
JP5585066B2 (en) Organic thin film solar cell and method for manufacturing the same
JP5593900B2 (en) Organic photoelectric conversion element
KR101189664B1 (en) Organic solar cell using high conductive buffer layer and low work function metal buffer layer, and fabrictaing method thereof
Nam Ambient air processing causes light soaking effects in inverted organic solar cells employing conjugated polyelectrolyte electron transfer layer
KR101149782B1 (en) Inverted organic photovoltaic cells and manufacturing method thereof
KR101108540B1 (en) Method for the fabrication of organic electric device by patternable brush printing process
JP5427680B2 (en) Manufacturing method of organic thin film solar cell
Qing et al. MoO3/Ag/Al/ZnO intermediate layer for inverted tandem polymer solar cells
JP5381619B2 (en) Organic photoelectric conversion element, solar cell using the same, and optical sensor array
Yang et al. High lying energy of charge-transfer states and small energetic offsets enabled by fluorinated quinoxaline-based alternating polymer and alkyl-thienyl side-chain modified non-fullerene acceptor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130117

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5427680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250