JP5420224B2 - Rubber composition for anti-vibration rubber, anti-vibration rubber and method for producing the same - Google Patents

Rubber composition for anti-vibration rubber, anti-vibration rubber and method for producing the same Download PDF

Info

Publication number
JP5420224B2
JP5420224B2 JP2008270035A JP2008270035A JP5420224B2 JP 5420224 B2 JP5420224 B2 JP 5420224B2 JP 2008270035 A JP2008270035 A JP 2008270035A JP 2008270035 A JP2008270035 A JP 2008270035A JP 5420224 B2 JP5420224 B2 JP 5420224B2
Authority
JP
Japan
Prior art keywords
rubber
vibration
vulcanized
weight
rubber composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008270035A
Other languages
Japanese (ja)
Other versions
JP2010095682A (en
Inventor
武史 枝
則夫 箕内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2008270035A priority Critical patent/JP5420224B2/en
Publication of JP2010095682A publication Critical patent/JP2010095682A/en
Application granted granted Critical
Publication of JP5420224B2 publication Critical patent/JP5420224B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Vibration Prevention Devices (AREA)
  • Springs (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、防振ゴム用ゴム組成物に関し、特に自動車用エンジンマウント等の防振部材として好適に用いることができる防振ゴム用ゴム組成物およびこれを用いた防振ゴム、さらには防振ゴムの製造方法に関するものである。   The present invention relates to a rubber composition for vibration-proof rubber, and in particular, a rubber composition for vibration-proof rubber that can be suitably used as a vibration-proof member for automobile engine mounts, vibration-proof rubber using the same, and vibration-proof rubber The present invention relates to a method for producing rubber.

一般に、自動車にはエンジンや車体の振動を吸収し、乗り心地の向上や騒音を防止するための防振ゴムが用いられている。特に、自動車のエンジンルームや排気系等に使用されるエンジンマウント等の防振ゴムでは、近年のエンジンの高出力化等に伴い、高い耐熱性を要求されるようになってきている。   In general, an anti-vibration rubber is used for an automobile to absorb vibrations of an engine and a vehicle body to improve riding comfort and prevent noise. In particular, anti-vibration rubbers such as engine mounts used in engine rooms and exhaust systems of automobiles are required to have high heat resistance with the recent increase in engine output.

従来、防振ゴムのゴム成分としては、天然ゴム、または天然ゴムとジエン系合成ゴムとのブレンドが一般に用いられており、これらのゴム成分を含むゴム組成物の加硫ゴムの耐熱性を向上する技術としては、ゴム組成物中の硫黄量を減らし、加硫促進剤を多く配合して加硫する技術(EV方式(EV;Efficient Vulcanization))が知られている。   Conventionally, natural rubber or blends of natural rubber and diene-based synthetic rubber are generally used as the rubber component of the vibration-proof rubber, and the heat resistance of the vulcanized rubber of the rubber composition containing these rubber components is improved. As a technique for reducing the amount of sulfur in the rubber composition, a technique for vulcanizing by adding a large amount of a vulcanization accelerator (EV (Efficient Vulcanization)) is known.

しかし、上記のようにゴム組成物中の硫黄量や加硫促進剤の配合量を最適化し、例えばモノスルフィド結合による架橋形態を多くすることにより、加硫ゴムの耐熱性の向上を図る場合、耐熱性はある程度改善するが、ゴム組成物の硫黄分子数が不足し、架橋結合が充分形成されないためゴム硬度が低下し、防振ゴムの支持性能を示す静的バネ定数(Ks)が低下し、同時に振動、騒音の防振性能を示す動的バネ定数(Kd)が上昇するため、動特性としての指標である動倍率(動的バネ定数/静的バネ定数)の値が大きくなり、防振性能が低下するという問題がある。また、ゴム組成物の強度や剛性が得られず耐疲労性が低下し、防振ゴムの耐久性が悪化するという問題がある。   However, when the amount of sulfur in the rubber composition and the blending amount of the vulcanization accelerator are optimized as described above, for example, by increasing the crosslinking form by monosulfide bonds, the heat resistance of the vulcanized rubber is improved. Although the heat resistance is improved to some extent, the rubber composition has insufficient number of sulfur molecules, and sufficient crosslinks are not formed, resulting in a decrease in rubber hardness and a decrease in static spring constant (Ks) indicating the vibration-proof rubber support performance. At the same time, since the dynamic spring constant (Kd) indicating the vibration and noise damping performance increases, the value of the dynamic magnification (dynamic spring constant / static spring constant), which is an index as a dynamic characteristic, increases. There is a problem that the vibration performance decreases. Further, there is a problem that the strength and rigidity of the rubber composition cannot be obtained, the fatigue resistance is lowered, and the durability of the anti-vibration rubber is deteriorated.

一方、ゴム組成物から防振ゴムを製造する際、その生産性を向上するためには、短時間で加硫を行えばよく、その手法として、高温(170〜190℃)で加硫を行う方法が知られている。しかしながら、高温で加硫を行うと、ポリマー分子が切断され、かつゴムポリマー間を結合しているポリスルフィド結合が切断されやすくなる。その結果、ゴムは軟化し、破断強度も下がり、破断伸びが大きくなって加硫不足の状態、いわゆる加硫戻りとなる傾向がある。この加硫戻り(トルクの低下)の影響で、僅かな加硫時間の変動により、ゴムの引っ張り特性(破断強度,破断伸び)およびゴム硬度等の低下、あるいは静的バネ定数(Ks)が大きく低下する等の難点がある。しかし、このような難点があっても、加硫ゴムの生産性向上に対する要請は大きく、それにより製品の低コスト化の実現が強く望まれている。   On the other hand, when producing anti-vibration rubber from the rubber composition, vulcanization may be performed in a short time in order to improve the productivity, and as a technique, vulcanization is performed at a high temperature (170 to 190 ° C.). The method is known. However, when vulcanization is performed at a high temperature, the polymer molecules are cleaved, and the polysulfide bonds that are bonded between the rubber polymers are easily cleaved. As a result, the rubber is softened, the breaking strength is lowered, the elongation at break is increased, and there is a tendency to be in a state of insufficient vulcanization, so-called reversion. Due to the effect of this vulcanization return (torque reduction), due to slight fluctuations in vulcanization time, the rubber's tensile properties (breaking strength, breaking elongation), rubber hardness, etc. decrease, or the static spring constant (Ks) increases. There are difficulties such as lowering. However, even with such difficulties, there is a great demand for improving the productivity of vulcanized rubber, and it is strongly desired to reduce the cost of products.

上記のとおり、防振ゴムとしての引っ張り特性(破断強度,破断伸び)およびゴム硬度等の低下や静的バネ定数(Ks)の低下が充分に抑制され、優れた耐ヘタリ性および耐久性を有し、かつ耐熱性に優れた防振ゴムを効率よく生産することは困難である。   As described above, the tensile properties (breaking strength, breaking elongation), rubber hardness, and static spring constant (Ks) of the anti-vibration rubber are sufficiently suppressed and have excellent anti-sag and durability properties. However, it is difficult to efficiently produce anti-vibration rubber having excellent heat resistance.

下記特許文献1では、ゴムの加硫剤として硫黄およびビスマレイミドを配合した防振ゴム用ゴム組成物を加硫することにより、静的バネ定数(Ks)の低下が抑制され、かつ耐熱性に優れた防振ゴムが得られる点が記載されている。しかし、かかる防振ゴムは耐久性が充分でなく、防振ゴムに要求される特性の全てが、バランスよく向上されたものではない。   In the following Patent Document 1, by vulcanizing a rubber composition for anti-vibration rubber containing sulfur and bismaleimide as a rubber vulcanizing agent, a decrease in static spring constant (Ks) is suppressed, and heat resistance is improved. It describes that an excellent vibration-proof rubber can be obtained. However, such anti-vibration rubber does not have sufficient durability, and not all of the properties required for anti-vibration rubber are improved in a balanced manner.

また、下記特許文献2では、ジエン系ゴムを主成分とするゴム成分100重量部に対して、硫黄を0.2重量部以上0.5重量部未満と、架橋剤として下記(2)式で示される化合物の少なくとも1種を0.1〜2.0重量部、およびイミダゾール系化合物を0.5〜4.0重量部とを含有する防振ゴム用ゴム組成物を加硫することにより、静的バネ定数(Ks)の低下が抑制され、かつ耐久性および耐熱性に優れた防振ゴムが得られる点が記載されている。   Moreover, in the following patent document 2, with respect to 100 parts by weight of a rubber component mainly composed of a diene rubber, sulfur is 0.2 parts by weight or more and less than 0.5 parts by weight, and the following (2) is used as a crosslinking agent. By vulcanizing a rubber composition for anti-vibration rubber containing 0.1 to 2.0 parts by weight of at least one of the compounds shown and 0.5 to 4.0 parts by weight of an imidazole compound, It is described that a vibration-proof rubber that suppresses a decrease in the static spring constant (Ks) and is excellent in durability and heat resistance can be obtained.


(式中、R=−S−(C=S)−N(CH)、または (Where R = —S— (C═S) —N (CH 2 C 6 H 5 ), or

X=6) X = 6)

しかし、上記防振ゴムは、経年劣化抑制の効果の点で、さらなる改良の余地がある。   However, the anti-vibration rubber has room for further improvement in terms of the effect of suppressing aging deterioration.

さらに、下記特許文献3では、ジエン系ゴムおよび硫黄系加硫剤を必須成分とし、かつ1,3−ビス(シトラコンイミドメチル)ベンゼン、1,6−ヘキサメチレンジチオ硫酸ナトリウム、およびジアルキルジチオフォスホネート亜鉛塩を含有する防振ゴム用ゴム組成物を加硫することにより、防振ゴムの引っ張り特性(破断強度,破断伸び)およびゴム硬度等の低下や静的バネ定数(Ks)の低下を充分に抑制でき、さらに優れた耐ヘタリ性を備えた防振ゴムを得ることができる点が記載されている。しかし、かかる防振ゴムは耐熱性が充分でなく、防振ゴムに要求される特性の全てが、バランスよく向上されたものではない。
特開平03−258840号公報 特開2004−307621号公報 特開2007−146035号公報
Further, in Patent Document 3 below, a diene rubber and a sulfur vulcanizing agent are essential components, and 1,3-bis (citraconimidomethyl) benzene, 1,6-hexamethylenedithiosulfate sodium, and dialkyldithiophospho By vulcanizing rubber composition for anti-vibration rubber containing zincate salt, the tensile properties (breaking strength, breaking elongation) and rubber hardness of anti-vibration rubber and static spring constant (Ks) are reduced. It is described that it is possible to obtain a vibration-proof rubber that can be sufficiently suppressed and has excellent anti-sagging properties. However, such anti-vibration rubber does not have sufficient heat resistance, and not all the characteristics required for anti-vibration rubber are improved in a balanced manner.
Japanese Patent Laid-Open No. 03-258840 JP 2004-307621 A JP 2007-146035 A

本発明は上記実情に鑑みてなされたものであり、その目的は、高温(170〜190℃)で加硫した場合でも、加硫戻りによる引っ張り特性(破断強度,破断伸び)およびゴム硬度等の低下や静的バネ定数(Ks)の低下が充分に抑制され、かつ耐熱性、耐ヘタリ性、耐久性、および経年劣化抑制の効果がバランスよく向上した防振ゴム用ゴム組成物、ならびに該防振ゴム用ゴム組成物を使用して得られる防振ゴムおよびその製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to provide tensile properties (breaking strength, breaking elongation), rubber hardness, etc. due to reversion even when vulcanized at a high temperature (170 to 190 ° C.). Rubber composition for anti-vibration rubber, in which the reduction of the lowering of the static spring constant (Ks) and the reduction of the static spring constant (Ks) are sufficiently suppressed, and the effects of suppressing heat resistance, sag resistance, durability, and aging deterioration are improved in a balanced manner, and An object of the present invention is to provide a vibration-proof rubber obtained by using a rubber composition for vibration rubber and a method for producing the same.

本発明者らは、上記課題を解決すべく鋭意検討した結果、以下に示す防振ゴム用ゴム組成物により上記目的を達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that the above object can be achieved by the rubber composition for vibration-proof rubber shown below, and have completed the present invention.

すなわち、本発明に係る防振ゴム用ゴム組成物は、ジエン系ゴムを主成分とするゴム成分および硫黄系加硫剤を含有する防振ゴム用ゴム組成物において、
(A)ビスマレイミド化合物、
(B)下記式(1)で表される化合物:
That is, the rubber composition for vibration-proof rubber according to the present invention is a rubber composition for vibration-proof rubber containing a rubber component mainly composed of a diene rubber and a sulfur-based vulcanizing agent.
(A) a bismaleimide compound,
(B) Compound represented by the following formula (1):


(式中、xは2〜12の整数であって、Rは分子構造中に芳香族炭化水素基もしくは脂肪酸炭化水素を有するチオカルバモイル基、またはベンゾチアゾール基)、および
(C)ヒドラジド化合物、
からなる群より選択される、少なくとも2つの化合物を含有することを特徴とする。
(Wherein x is an integer of 2 to 12, and R is a thiocarbamoyl group or benzothiazole group having an aromatic hydrocarbon group or fatty acid hydrocarbon in the molecular structure), and (C) a hydrazide compound,
It contains at least two compounds selected from the group consisting of:

ジエン系ゴムを主成分とするゴム成分および硫黄系加硫剤を含有する防振ゴム用ゴム組成物にて、ビスマレイミド化合物のみを含有する場合、得られる防振ゴムの耐熱性、耐ヘタリ性、および経年劣化抑制の効果は向上するものの、防振ゴムの耐久性が悪化する傾向がある。また、上記(B)の化合物のみを含有する場合、得られる防振ゴムの動的バネ定数(Kd)の上昇が抑制され、かつ防振ゴムの耐熱性、耐久性、および耐ヘタリ性は向上するものの、防振ゴムの経年劣化が大きくなる傾向がある。一方、ヒドラジド化合物のみを含有する場合、得られる防振ゴムの動的バネ定数(Kd)の上昇が抑制され、かつ防振ゴムの耐久性は向上するものの、防振ゴムの耐熱性および耐ヘタリ性が悪化する傾向があり、かつ防振ゴムの経年劣化が大きくなる傾向がある。   Rubber composition for anti-vibration rubber containing a rubber component mainly composed of a diene rubber and a sulfur-based vulcanizing agent, and containing only a bismaleimide compound, the heat and anti-slip properties of the anti-vibration rubber obtained Although the effect of suppressing aging deterioration is improved, the durability of the anti-vibration rubber tends to deteriorate. Further, when only the compound (B) is contained, an increase in the dynamic spring constant (Kd) of the vibration-proof rubber obtained is suppressed, and the heat resistance, durability, and sag resistance of the vibration-proof rubber are improved. However, the anti-vibration rubber tends to deteriorate over time. On the other hand, when only the hydrazide compound is contained, an increase in the dynamic spring constant (Kd) of the obtained vibration-proof rubber is suppressed and the durability of the vibration-proof rubber is improved. There is a tendency for the property to deteriorate, and there is a tendency for the anti-vibration rubber to deteriorate over time.

しかし、本発明に係る防振ゴム用ゴム組成物では、上記(A)〜(C)の化合物からなる群より選択される、少なくとも2つの化合物を含有することにより、その加硫ゴムからなる防振ゴムにおいて、破断強度,破断伸び,ゴム硬度等の低下を抑制し、動倍率等の防振性能を改良し、かつ耐熱性、耐ヘタリ性、耐久性、および経年劣化抑制の効果をバランスよく向上することができる。   However, the rubber composition for an anti-vibration rubber according to the present invention contains at least two compounds selected from the group consisting of the compounds (A) to (C), so that the anti-vibration rubber comprising the vulcanized rubber is contained. In vibration rubber, it suppresses the decrease in breaking strength, breaking elongation, rubber hardness, etc., improves vibration damping performance such as dynamic magnification, etc., and has a good balance of heat resistance, sag resistance, durability, and the effects of suppressing aging deterioration Can be improved.

本発明に係る防振ゴム用ゴム組成物にて、ビスマレイミド化合物を含有する場合、その含有量はゴム成分を100重量部とした場合、0.2〜4重量部であることが好ましく、0.5〜2重量部であることがより好ましい。ビスマレイミド化合物の含有量が0.2重量部未満であると、得られる防振ゴムの耐熱性、耐ヘタリ性、または耐経年劣化抑制の効果が充分に向上しない場合がある。一方、4重量部を超えると、防振ゴム用ゴム組成物を加硫する際、金型を汚染する場合があり、加えて防振ゴム用ゴム組成物の加工性が悪化する場合がある。さらに、ビスマレイミド化合物の含有量が4重量部を超えると、防振ゴム全体のコストが高くなるため好ましくない。   In the rubber composition for vibration-proof rubber according to the present invention, when the bismaleimide compound is contained, the content is preferably 0.2 to 4 parts by weight when the rubber component is 100 parts by weight. More preferably, it is 5 to 2 parts by weight. If the content of the bismaleimide compound is less than 0.2 parts by weight, the effect of suppressing the heat resistance, sag resistance, or aging resistance of the obtained vibration-proof rubber may not be sufficiently improved. On the other hand, if it exceeds 4 parts by weight, the mold may be contaminated when the rubber composition for vibration-proof rubber is vulcanized, and in addition, the processability of the rubber composition for vibration-proof rubber may be deteriorated. Furthermore, when the content of the bismaleimide compound exceeds 4 parts by weight, the cost of the entire vibration-proof rubber increases, which is not preferable.

また、本発明に係る防振ゴム用ゴム組成物にて、(B)の化合物を含有する場合、その含有量はゴム成分を100重量部とした場合、0.2〜4重量部であることが好ましく、0.5〜2重量部であることがより好ましい。(B)の化合物の含有量が0.2重量部未満であると、得られる防振ゴムの動的バネ定数(Kd)の上昇を抑制する効果、または防振ゴムの耐熱性、耐久性、もしくは耐ヘタリ性が充分に向上しない場合がある。一方、4重量部を超えると、防振ゴムの耐熱性または耐ヘタリ性が悪化する場合がある。加えて、(B)の化合物の含有量が4重量部を超えると、防振ゴム全体のコストが高くなるため好ましくない。   Moreover, in the rubber composition for vibration-proof rubber according to the present invention, when the compound (B) is contained, the content is 0.2 to 4 parts by weight when the rubber component is 100 parts by weight. Is preferable, and 0.5 to 2 parts by weight is more preferable. When the content of the compound (B) is less than 0.2 parts by weight, the effect of suppressing an increase in the dynamic spring constant (Kd) of the vibration-proof rubber obtained, or the heat resistance and durability of the vibration-proof rubber, Alternatively, the settling resistance may not be sufficiently improved. On the other hand, if the amount exceeds 4 parts by weight, the heat resistance or sag resistance of the vibration-proof rubber may deteriorate. In addition, when the content of the compound (B) exceeds 4 parts by weight, the cost of the entire vibration-proof rubber is increased, which is not preferable.

さらに、本発明に係る防振ゴム用ゴム組成物にて、ヒドラジド化合物を含有する場合、その含有量はゴム成分を100重量部とした場合、0.2〜4重量部であることが好ましく、0.5〜2重量部であることがより好ましい。ヒドラジド化合物の含有量が0.2重量部未満であると、得られる防振ゴムの動的バネ定数(Kd)の上昇を抑制する効果、または防振ゴムの耐久性が充分に向上しない場合があり、4重量部を超えると、防振ゴムの耐熱性が悪化する場合がある。加えて、ヒドラジド化合物の含有量が4重量部を超えると、防振ゴム全体のコストが高くなるため好ましくない。   Furthermore, in the rubber composition for vibration-proof rubber according to the present invention, when the hydrazide compound is contained, the content is preferably 0.2 to 4 parts by weight when the rubber component is 100 parts by weight, More preferably, it is 0.5 to 2 parts by weight. When the content of the hydrazide compound is less than 0.2 parts by weight, the effect of suppressing an increase in the dynamic spring constant (Kd) of the obtained vibration-insulating rubber or the durability of the vibration-insulating rubber may not be sufficiently improved. Yes, if it exceeds 4 parts by weight, the heat resistance of the anti-vibration rubber may deteriorate. In addition, when the content of the hydrazide compound exceeds 4 parts by weight, the cost of the entire vibration-proof rubber increases, which is not preferable.

本発明に係る防振ゴムは、前記記載の防振ゴム用ゴム組成物を使用し、加硫、成形して得られることを特徴とする。かかる防振ゴムは、破断強度,破断伸び,ゴム硬度等の低下が抑制され、動倍率等の防振性能が改良され、かつ耐熱性、耐ヘタリ性、耐久性、および経年劣化抑制の効果がバランスよく向上される。このため、特にエンジンマウント、トーショナルダンパー、ボディマウント、キャップマウント、メンバーマウント、ストラットマウント、マフラーマウント等の自動車用防振ゴムとして好適に用いることができる。   The anti-vibration rubber according to the present invention is obtained by vulcanizing and molding the rubber composition for anti-vibration rubber described above. Such anti-vibration rubber has the effect of suppressing the decrease in breaking strength, elongation at break, rubber hardness, etc., improving the anti-vibration performance such as dynamic magnification, and having the effects of heat resistance, sag resistance, durability, and aging deterioration suppression. The balance is improved. For this reason, it can be suitably used as an anti-vibration rubber for automobiles such as engine mounts, torsional dampers, body mounts, cap mounts, member mounts, strut mounts, and muffler mounts.

本発明に係る防振ゴムの製造方法は、前記記載の防振ゴム用ゴム組成物を170〜190℃で加硫することを特徴とする。かかる製造方法によれば、前記記載の防振ゴム用ゴム組成物を170〜190℃の高温で加硫するため、短時間で加硫を行うことができ、生産性が向上するとともに低コスト化が実現できる。   The method for producing vibration-proof rubber according to the present invention is characterized in that the rubber composition for vibration-proof rubber described above is vulcanized at 170 to 190 ° C. According to such a production method, since the rubber composition for vibration-proof rubber described above is vulcanized at a high temperature of 170 to 190 ° C., the vulcanization can be performed in a short time, thereby improving productivity and reducing cost. Can be realized.

本発明に係る防振ゴム用ゴム組成物においては、ゴム成分として天然ゴム単独、または天然ゴムとジエン系合成ゴムとのブレンドが使用される。天然ゴムとジエン系合成ゴムとをブレンドする場合、ジエン系合成ゴムとしては、ポリイソプレンゴム(IR)、ポリブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、ブチルゴム(IIR)、およびアクリルニトリルブタジエンゴム(NBR)等が挙げられる。かかるジエン系合成ゴムの重合方法やミクロ構造は限定されず、これらのうちの1種または2種以上を天然ゴムにブレンドして使用することができる。   In the rubber composition for vibration-proof rubber according to the present invention, natural rubber alone or a blend of natural rubber and diene synthetic rubber is used as the rubber component. When natural rubber and diene synthetic rubber are blended, the diene synthetic rubber includes polyisoprene rubber (IR), polybutadiene rubber (BR), styrene butadiene rubber (SBR), butyl rubber (IIR), and acrylonitrile butadiene rubber. (NBR) and the like. The polymerization method and microstructure of the diene-based synthetic rubber are not limited, and one or more of these can be used by blending with natural rubber.

天然ゴムとジエン系合成ゴムとをブレンドする場合、そのブレンド比は特に限定されるものではないが、天然ゴムが有する耐疲労性能を維持するため、天然ゴムをゴム成分中、50重量%以上含有することが好ましく、90重量%以上含有することがより好ましい。なお、天然ゴムおよびジエン系合成ゴムに加えて、ゴム成分として使用可能なゴムとしては、例えば、エチレンプロピレンゴム(EPM)等のオレフィン系ゴム、臭素化ブチルゴム(Br−IIR)等のハロゲン化ブチルゴム、その他ポリウレタンゴム、アクリルゴム、フッ素ゴム、シリコンゴム、およびクロロスルホン化ポリエチレン等を含めた合成ゴム類等が挙げられる。ただし、ジエン系ゴム以外のゴムは、ゴム成分中40重量%未満であることが好ましく、20重量%未満であることがより好ましい。   When natural rubber and diene synthetic rubber are blended, the blend ratio is not particularly limited, but natural rubber is contained in the rubber component in an amount of 50% by weight or more in order to maintain the fatigue resistance of natural rubber. It is preferable to contain 90% by weight or more. In addition to natural rubber and diene synthetic rubber, examples of rubber that can be used as a rubber component include olefin rubber such as ethylene propylene rubber (EPM) and halogenated butyl rubber such as brominated butyl rubber (Br-IIR). And other synthetic rubbers including polyurethane rubber, acrylic rubber, fluorine rubber, silicon rubber, chlorosulfonated polyethylene, and the like. However, the rubber other than the diene rubber is preferably less than 40% by weight in the rubber component, and more preferably less than 20% by weight.

硫黄は通常のゴム用硫黄であればよく、例えば粉末硫黄、沈降硫黄、不溶性硫黄、高分散性硫黄等を用いることができる。本発明に係る防振ゴム用ゴム組成物における硫黄の含有量は、ゴム成分100重量部に対して0.1〜3重量部であることが好ましい。硫黄の含有量が0.1重量部未満であると、加硫ゴムの架橋密度が不足してゴム強度等が低下し、3重量部を超えると、特に耐熱性および耐久性の両方が悪化する。加硫ゴムのゴム強度を良好に確保し、耐熱性と耐久性をより向上するためには、硫黄の含有量がゴム成分100重量部に対して0.1〜2.0重量部であることがより好ましく、0.1〜1.2重量部であることがさらに好ましい。   Sulfur should just be normal sulfur for rubber | gum, For example, powder sulfur, precipitated sulfur, insoluble sulfur, highly dispersible sulfur etc. can be used. The sulfur content in the rubber composition for vibration-proof rubber according to the present invention is preferably 0.1 to 3 parts by weight with respect to 100 parts by weight of the rubber component. If the sulfur content is less than 0.1 parts by weight, the crosslinking density of the vulcanized rubber will be insufficient and the rubber strength will be reduced. If it exceeds 3 parts by weight, both heat resistance and durability will be deteriorated. . In order to ensure good rubber strength of the vulcanized rubber and to further improve the heat resistance and durability, the sulfur content is 0.1 to 2.0 parts by weight with respect to 100 parts by weight of the rubber component. Is more preferably 0.1 to 1.2 parts by weight.

本発明に係る防振ゴム用ゴム組成物は、ジエン系ゴムを主成分とするゴム成分および硫黄系加硫剤を含有する防振ゴム用ゴム組成物において、
(A)ビスマレイミド化合物、
(B)下記式(1)で表される化合物:
The rubber composition for vibration-proof rubber according to the present invention is a rubber composition for vibration-proof rubber containing a rubber component mainly composed of a diene rubber and a sulfur-based vulcanizing agent.
(A) a bismaleimide compound,
(B) Compound represented by the following formula (1):


(式中、xは2〜12の整数であって、Rは分子構造中に芳香族炭化水素基もしくは脂肪酸炭化水素を有するチオカルバモイル基、またはベンゾチアゾール基)、および
(C)ヒドラジド化合物、
からなる群より選択される、少なくとも2つの化合物を含有する。
(Wherein x is an integer of 2 to 12, and R is a thiocarbamoyl group or benzothiazole group having an aromatic hydrocarbon group or fatty acid hydrocarbon in the molecular structure), and (C) a hydrazide compound,
Containing at least two compounds selected from the group consisting of:

上記(A)ビスマレイミド化合物は、具体的には下記式(3)で表される。   The (A) bismaleimide compound is specifically represented by the following formula (3).

(式中、Xは分子構造中に芳香環を有する炭化水素基もしくは芳香族炭化水素基、または脂肪族炭化水素基。R〜Rは水素原子、アルキル基、−NHまたは−NOであり、互いに同一であっても異なっていてもよい。) (Wherein X is a hydrocarbon group or aromatic hydrocarbon group having an aromatic ring in the molecular structure, or an aliphatic hydrocarbon group. R 1 to R 4 are a hydrogen atom, an alkyl group, —NH 2 or —NO 2. And may be the same as or different from each other.)

上記(A)ビスマレイミド化合物としては、下記式(4)で表されるN,N’−フェニレンビスマレイミド:   As the (A) bismaleimide compound, N, N′-phenylenebismaleimide represented by the following formula (4):

、下記式(5)で表される4,4’−ジフェニルメタンビスマレイミド: 4,4'-diphenylmethane bismaleimide represented by the following formula (5):

、ビス(3−エチル−5−メチル−4−マレイミドフェニル)メタン、2,2’−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパン等が好ましく、特にN,N’−フェニレンビスマレイミドまたは4,4’−ジフェニルメタンビスマレイミドが好ましい。 Bis (3-ethyl-5-methyl-4-maleimidophenyl) methane, 2,2′-bis (4- (4-maleimidophenoxy) phenyl) propane and the like are preferable, and in particular, N, N′-phenylenebismaleimide or 4,4′-diphenylmethane bismaleimide is preferred.

上記(B)の化合物は、下記式(1)で表される:   The compound of the above (B) is represented by the following formula (1):


(式中、xは2〜12の整数であって、Rは分子構造中に芳香族炭化水素基もしくは脂肪酸炭化水素を有するチオカルバモイル基、またはベンゾチアゾール基)。なお、上記(B)の化合物としては、下記式(6)で表される1,6−ビス(N,N’−ジベンジルチオカルバモイルジチオ)−ヘキサン: (Wherein x is an integer of 2 to 12, and R is a thiocarbamoyl group having an aromatic hydrocarbon group or a fatty acid hydrocarbon or a benzothiazole group in the molecular structure). In addition, as the compound of the above (B), 1,6-bis (N, N′-dibenzylthiocarbamoyldithio) -hexane represented by the following formula (6):

、または下記式(7)で表される1,6−ビス(ベンゾチアジルスルフィド)−ヘキサン: Or 1,6-bis (benzothiazyl sulfide) -hexane represented by the following formula (7):

、が好ましい。 Are preferred.

上記(C)ヒドラジド化合物は、具体的には下記式(8)、(9)または(10)で表される。   The (C) hydrazide compound is specifically represented by the following formula (8), (9) or (10).


(式中、Aは単結合、芳香族由来の2価の基、置換基を有してもよいヒダントイン環由来の2価の基、または炭素数1〜18の飽和もしくは不飽和直鎖状炭化水素由来の2価の基であり、Bは置換基Xを有する芳香族由来の1価の基であり、Xはヒドロキシル基またはアミノ基であり、Yはピリジル基またはヒドラジド基であり、R〜Rは、各々独立に、水素、炭素数1〜18のアルキル基、シクロアルキル基、または1価の芳香族環基である)。なお、上記(C)ヒドラジド化合物としては、下記式(11)で表されるイソフタル酸ジヒドラジド: (In the formula, A is a single bond, a divalent group derived from an aromatic group, a divalent group derived from a hydantoin ring which may have a substituent, or a saturated or unsaturated linear carbon atom having 1 to 18 carbon atoms. A divalent group derived from hydrogen, B is a monovalent group derived from an aromatic group having a substituent X, X is a hydroxyl group or an amino group, Y is a pyridyl group or a hydrazide group, R 1 to R 4 are each independently, hydrogen, alkyl group having 1 to 18 carbon atoms, a cycloalkyl group or a monovalent aromatic ring group). In addition, as said (C) hydrazide compound, the isophthalic acid dihydrazide represented by following formula (11):

、または下記式(12)で表されるアジピン酸ジヒドラジド: Or adipic acid dihydrazide represented by the following formula (12):

が好ましい。 Is preferred.

本発明の防振ゴム用ゴム組成物は、上記ゴム成分、(A)〜(C)の化合物、硫黄系加硫剤と共に、加硫促進剤、カーボンブラック、シリカ、シランカップリング剤、酸化亜鉛、ステアリン酸、加硫促進助剤、加硫遅延剤、有機過酸化物、老化防止剤、ワックスやオイル等の軟化剤、加工助剤等の通常ゴム工業で使用される配合剤を、本発明の効果を損なわない範囲において適宜配合し用いることができる。   The rubber composition for vibration-proof rubber of the present invention comprises the rubber component, the compounds (A) to (C), and a sulfur vulcanizing agent, a vulcanization accelerator, carbon black, silica, a silane coupling agent, and zinc oxide. Compounding agents usually used in the rubber industry, such as stearic acid, vulcanization accelerator, vulcanization retarder, organic peroxide, anti-aging agent, softener such as wax and oil, processing aid, etc. In the range which does not impair the effect, it can mix | blend and use suitably.

カーボンブラックとしては、例えばSAF、ISAF、HAF、FEF、GPF等が用いられる。カーボンブラックは、加硫後のゴムの硬度、補強性、低発熱性等のゴム特性を調整し得る範囲で使用することができる。カーボンブラックの配合量はゴム成分100重量部に対して、20〜120重量部の範囲であり、好ましくは30〜100重量部であり、より好ましくは30〜60重量部である。この配合量が20重量部未満では、カーボンブラックの補強効果が充分に得られず、120重量部を超えると、発熱性、ゴム混合性および加工時の作業性等が悪化する。   As carbon black, for example, SAF, ISAF, HAF, FEF, GPF and the like are used. Carbon black can be used within a range in which rubber properties such as hardness, reinforcement and low heat build-up of the rubber after vulcanization can be adjusted. The compounding amount of carbon black is in the range of 20 to 120 parts by weight, preferably 30 to 100 parts by weight, and more preferably 30 to 60 parts by weight with respect to 100 parts by weight of the rubber component. If the blending amount is less than 20 parts by weight, the reinforcing effect of carbon black cannot be sufficiently obtained. If the blending amount exceeds 120 parts by weight, exothermic property, rubber mixing property, workability during processing, and the like deteriorate.

加硫促進剤としては、ゴム加硫用として通常用いられる、スルフェンアミド系加硫促進剤、チウラム系加硫促進剤、チアゾール系加硫促進剤、チオウレア系加硫促進剤、グアニジン系加硫促進剤、ジチオカルバミン酸塩系加硫促進剤等の加硫促進剤を単独、または適宜混合して使用しても良い。   As the vulcanization accelerator, sulfenamide vulcanization accelerator, thiuram vulcanization accelerator, thiazole vulcanization accelerator, thiourea vulcanization accelerator, guanidine vulcanization, which are usually used for rubber vulcanization. Vulcanization accelerators such as accelerators and dithiocarbamate vulcanization accelerators may be used alone or in admixture.

老化防止剤としては、ゴム用として通常用いられる、芳香族アミン系老化防止剤、アミン−ケトン系老化防止剤、モノフェノール系老化防止剤、ビスフェノール系老化防止剤、ポリフェノール系老化防止剤、ジチオカルバミン酸塩系老化防止剤、チオウレア系老化防止剤等の老化防止剤を単独、または適宜混合して使用しても良い。   As an anti-aging agent, an aromatic amine-based anti-aging agent, an amine-ketone-based anti-aging agent, a monophenol-based anti-aging agent, a bisphenol-based anti-aging agent, a polyphenol-based anti-aging agent, dithiocarbamic acid, which are usually used for rubber Anti-aging agents such as a salt-based anti-aging agent and a thiourea-based anti-aging agent may be used alone or in admixture as appropriate.

本発明の防振ゴム用ゴム組成物は、(A)〜(C)の化合物、硫黄系加硫剤、加硫促進剤、必要に応じて、カーボンブラック、酸化亜鉛、ステアリン酸、加硫促進剤、老化防止剤、ワックス等を、バンバリーミキサー、ニーダー、ロール等の通常のゴム工業において使用される混練機を用いて混練りすることにより得られる。   The rubber composition for vibration-proof rubber of the present invention comprises the compounds (A) to (C), a sulfur vulcanizing agent, a vulcanization accelerator, and, if necessary, carbon black, zinc oxide, stearic acid, vulcanization acceleration. It can be obtained by kneading agents, anti-aging agents, waxes and the like using a kneader used in a normal rubber industry such as a Banbury mixer, a kneader, and a roll.

また、上記各成分の配合方法は特に限定されず、硫黄系加硫剤、および加硫促進剤等の加硫系成分以外の配合成分を予め混練してマスターバッチとし、残りの成分を添加してさらに混練する方法、各成分を任意の順序で添加し混練する方法、全成分を同時に添加して混練する方法等のいずれでもよい。   In addition, the blending method of each of the above components is not particularly limited, and a blending component other than the vulcanization component such as a sulfur vulcanizing agent and a vulcanization accelerator is previously kneaded to form a master batch, and the remaining components are added Any of a method of further kneading, a method of adding and kneading the components in an arbitrary order, a method of adding all the components simultaneously and kneading may be used.

上記各成分を混練し、成形加工した後、加硫を行うことで、加硫戻りによる引っ張り特性(破断強度,破断伸び)およびゴム硬度等の低下や静的バネ定数(Ks)の低下が充分に抑制され、かつ耐熱性、耐ヘタリ性、耐久性、および経年劣化抑制の効果がバランスよく向上した防振ゴムを得ることができる。かかる防振ゴムは、エンジンマウント、トーショナルダンパー、ボディマウント、キャップマウント、メンバーマウント、ストラットマウント、マフラーマウント等の自動車用防振ゴムを始めとして、鉄道車両用防振ゴム、産業機械用防振ゴム、建築用免震ゴム、免震ゴム支承等の防振、免震ゴムに好適に用いることができ、特にエンジンマウント等の耐熱性を必要とする自動車用防振ゴムの構成部材として有用である。   By kneading, molding, and vulcanizing the above components, sufficient reduction in tensile properties (breaking strength, breaking elongation), rubber hardness, and static spring constant (Ks) due to reversion It is possible to obtain an anti-vibration rubber which is suppressed in a well-balanced manner and has an excellent effect of suppressing heat resistance, settling resistance, durability, and aging deterioration. Such anti-vibration rubber includes anti-vibration rubber for automobiles such as engine mounts, torsional dampers, body mounts, cap mounts, member mounts, strut mounts, muffler mounts, anti-vibration rubbers for railway vehicles, and anti-vibration rubbers for industrial machinery. It can be suitably used for vibration isolation of rubber, seismic isolation rubber for construction, seismic isolation rubber support, etc., and is particularly useful as a component of automotive anti-vibration rubber that requires heat resistance such as engine mounts. is there.

以下に、この発明の実施例を記載してより具体的に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

(ゴム組成物の調製)
ゴム成分100重量部に対して、表1の配合処方に従い、実施例1〜および比較例1〜4のゴム組成物を配合し、通常のバンバリーミキサーを用いて混練し、ゴム組成物を調整した。表1に記載の各配合剤を以下に示す。
(Preparation of rubber composition)
The rubber compositions of Examples 1 to 3 and Comparative Examples 1 to 4 are blended with 100 parts by weight of the rubber component according to the formulation of Table 1, and kneaded using a normal Banbury mixer to prepare the rubber composition did. Each compounding agent described in Table 1 is shown below.

a)ゴム成分
(1)天然ゴム RSS#3
(2)ポリブタジエンゴム (「BR01」、JSR社製)
b)硫黄 5%オイル処理硫黄
c)加硫促進剤
(1)スルフェンアミド系加硫促進剤 N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド (「ノクセラー NS−P(NS)」、大内新興化学工業社製)
(2)チウラム系加硫促進剤 テトラメチルチウラムモノスルフィド (「ノクセラー TS(TS−P)、大内新興化学工業社製)
d)酸化亜鉛 3号亜鉛華
e)ステアリン酸 工業用ステアリン酸
f)老化防止剤
(1)芳香族アミン系老化防止剤 N−(1,3−ジメチルブチル)−N’−フェニル−p−フェニレンジアミン (「アンテージ6C」、川口化学工業社製)
(2)アミン−ケトン系老化防止剤 2,2,4−トリメチル−1,2−ジヒドロキノリン重合体 ノクラック 224(224−S) (「ノクラック 224(224−S)」、大内新興化学工業社製)
g)カーボンブラック FEF (「シーストSO」、東海カーボン社製)
h)プロセスオイル (「プロセスX−140」、ジャパンエナジー社製)
i)(A)ビスマレイミド化合物
(1)4,4’−ジフェニルメタンビスマレイミド (「BMI−HS」、ケイ・アイ化成社製)
(2)N,N’−フェニレンビスマレイミド (「バルノックPM−P」、大内新興化学工業社製)
j)(B)下記式(1)で表される化合物:
a) Rubber component (1) Natural rubber RSS # 3
(2) Polybutadiene rubber ("BR01", manufactured by JSR)
b) Sulfur 5% oil treated sulfur c) Vulcanization accelerator (1) Sulfenamide vulcanization accelerator N-tert-butyl-2-benzothiazolylsulfenamide ("Noxeller NS-P (NS)", Ouchi Shinsei Chemical Co., Ltd.)
(2) Thiuram-based vulcanization accelerator Tetramethylthiuram monosulfide (“Noxeller TS (TS-P), manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.)
d) Zinc oxide No. 3 zinc white e) Stearic acid Industrial stearic acid f) Anti-aging agent (1) Aromatic amine-based anti-aging agent N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylene Diamine ("ANTAGE 6C", manufactured by Kawaguchi Chemical Co., Ltd.)
(2) Amine-ketone-based anti-aging agent 2,2,4-trimethyl-1,2-dihydroquinoline polymer Nocrack 224 (224-S) ("Nocrack 224 (224-S)", Ouchi Shinsei Chemical Co., Ltd. Made)
g) Carbon Black FEF ("Seast SO", manufactured by Tokai Carbon Co., Ltd.)
h) Process oil ("Process X-140", manufactured by Japan Energy)
i) (A) Bismaleimide compound (1) 4,4′-diphenylmethane bismaleimide (“BMI-HS”, manufactured by KAI Kasei Co., Ltd.)
(2) N, N′-phenylene bismaleimide (“Barnock PM-P”, manufactured by Ouchi Shinsei Chemical Co., Ltd.)
j) (B) Compound represented by the following formula (1):


(式中、xは2〜12の整数であって、Rは分子構造中に芳香族炭化水素基もしくは脂肪酸炭化水素を有するチオカルバモイル基、またはベンゾチアゾール基)。
(1)1,6−ビス(N,N’−ジベンジルチオカルバモイルジチオ)−ヘキサン (LANXESS社製)
(2)1,6−ビス(ベンゾチアジルスルフィド)−ヘキサン (LANXESS社製)
k)(C)ヒドラジド化合物
(1)イソフタル酸ジヒドラジド (「IDH」、大塚化学社製)
(2)アジピン酸ジヒドラジド (「ADH」、大塚化学社製)
(Wherein x is an integer of 2 to 12, and R is a thiocarbamoyl group having an aromatic hydrocarbon group or a fatty acid hydrocarbon or a benzothiazole group in the molecular structure).
(1) 1,6-bis (N, N′-dibenzylthiocarbamoyldithio) -hexane (manufactured by LANXESS)
(2) 1,6-bis (benzothiazyl sulfide) -hexane (manufactured by LANXESS)
k) (C) Hydrazide compound (1) Isophthalic acid dihydrazide ("IDH", manufactured by Otsuka Chemical Co., Ltd.)
(2) Adipic acid dihydrazide (“ADH”, manufactured by Otsuka Chemical Co., Ltd.)

各ゴム組成物については、それぞれの加硫ゴムを作製して特性評価を行った。   About each rubber composition, each vulcanized rubber was produced and the characteristic evaluation was performed.

(評価)
評価は、各ゴム組成物を所定の金型を使用して、下記条件下にて加熱、加硫して得られたゴムについて行った。
(Evaluation)
The evaluation was performed on rubbers obtained by heating and vulcanizing each rubber composition using a predetermined mold under the following conditions.

<引っ張り特性およびゴム硬度>
各ゴム組成物を、180℃で5分間加硫しつつプレス成形して、加硫ゴムシートを作成した。同様に、各ゴム組成物を、180℃で10分間加硫しつつプレス成形して、加硫ゴムシートを作成した。これらのサンプルをJIS5号ダンベルで打ち抜き、厚み2mmのゴムサンプルを作製した。各ゴムサンプルをJIS−K 6251に準拠して、破断強度(TB)、破断伸び(EB)およびゴム硬度(Hs:JIS−A)を測定した。破断強度(TB)、破断伸び(EB)およびゴム硬度(Hs:JIS−A)について、180℃で5分間加硫したゴムサンプルに対する、10分間加硫したゴムサンプルの測定値の変化率(ゴム硬度に関しては変化量)を算出した。測定値の変化率(ゴム硬度に関しては変化量)が低いほど、加硫戻りが抑制されていることを意味する。評価結果を表1に示す。
<Tensile properties and rubber hardness>
Each rubber composition was press-molded while being vulcanized at 180 ° C. for 5 minutes to prepare a vulcanized rubber sheet. Similarly, each rubber composition was press-molded while being vulcanized at 180 ° C. for 10 minutes to prepare a vulcanized rubber sheet. These samples were punched with a JIS No. 5 dumbbell to produce rubber samples having a thickness of 2 mm. Each rubber sample was measured for breaking strength (TB), breaking elongation (EB), and rubber hardness (Hs: JIS-A) according to JIS-K 6251. Regarding the breaking strength (TB), elongation at break (EB) and rubber hardness (Hs: JIS-A), the rate of change of the measured value of the rubber sample vulcanized for 10 minutes with respect to the rubber sample vulcanized at 180 ° C. for 5 minutes (rubber The change amount was calculated for the hardness. The lower the rate of change of the measured value (the amount of change with respect to rubber hardness), the lower the vulcanization return. The evaluation results are shown in Table 1.

<振動特性>
(静的バネ定数(Ks))
各ゴム組成物を、180℃で10分間、あるいは180℃で15分間、加硫しつつプレス成形して、円柱形状(直径50mm、高さ25mm)の加硫ゴムサンプルを作製した後、かかる加硫ゴムサンプルの上下面に対し、円柱状金具(直径60mm、厚み6mm)の一対を、接着剤を使用して接着することによりテストピースを作製した。作製したテストピースを円柱軸方向に2回、7mm圧縮させた後、歪が復元する際の荷重たわみ曲線から、1.5mmおよび3.5mmのたわみ荷重を測定し、これらの値から静的バネ定数(Ks)を算出した。静的バネ定数(Ks)について、180℃で10分間加硫したゴムサンプルに対する、15分間加硫したゴムサンプルの測定値の変化率を算出した。静的バネ定数(Ks)の変化率が低いほど、加硫戻りが抑制されていることを意味する。
(動的バネ定数(Kd))
静的バネ定数(Ks)を測定する際に使用したテストピースを円柱軸方向に2.5mm圧縮し、この2.5mm圧縮した位置を中心として、下方から100Hzの周波数で振幅0.05mmの定変位調和圧縮振動を与え、上方のロードセルにて動的加重を検出し、JIS−K 6394に準拠して動的バネ定数(Kd)を算出した。動的バネ定数(Kd)について、180℃で10分間加硫したゴムサンプルに対する、15分間加硫したゴムサンプルの測定値の変化率を算出した。動的バネ定数(Kd)の変化率が低いほど、加硫戻りが抑制されていることを意味する。
(動倍率:Kd/Ks)
動倍率は、以下の式より算出した。
(動倍率)=(動的バネ定数(Kd))/(静的バネ定数(Ks))
動倍率について、180℃で10分間加硫したゴムサンプルに対する、15分間加硫したゴムサンプルの測定値の変化率を求めた。測定値の変化率が低いほど、加硫戻りが抑制されていることを意味する。評価結果を表1に示す。
<Vibration characteristics>
(Static spring constant (Ks))
Each rubber composition was press-molded while being vulcanized at 180 ° C. for 10 minutes or at 180 ° C. for 15 minutes to produce a vulcanized rubber sample having a cylindrical shape (diameter 50 mm, height 25 mm), and then subjected to such addition. A test piece was prepared by bonding a pair of cylindrical metal fittings (diameter 60 mm, thickness 6 mm) to the upper and lower surfaces of the vulcanized rubber sample using an adhesive. After the prepared test piece is compressed 7 mm twice in the axial direction of the cylinder, the deflection load of 1.5 mm and 3.5 mm is measured from the deflection curve when the strain is restored, and the static spring is determined from these values. A constant (Ks) was calculated. For the static spring constant (Ks), the change rate of the measured value of the rubber sample vulcanized for 15 minutes relative to the rubber sample vulcanized at 180 ° C. for 10 minutes was calculated. The lower the rate of change of the static spring constant (Ks), the lower the vulcanization return.
(Dynamic spring constant (Kd))
The test piece used for measuring the static spring constant (Ks) was compressed 2.5 mm in the direction of the cylinder axis, and a constant of 0.05 mm in amplitude at a frequency of 100 Hz from the bottom centered on this 2.5 mm compressed position. Displacement harmonic compression vibration was applied, the dynamic load was detected in the upper load cell, and the dynamic spring constant (Kd) was calculated according to JIS-K 6394. For the dynamic spring constant (Kd), the change rate of the measured value of the rubber sample vulcanized for 15 minutes relative to the rubber sample vulcanized at 180 ° C. for 10 minutes was calculated. The lower the rate of change of the dynamic spring constant (Kd), the lower the vulcanization return.
(Dynamic magnification: Kd / Ks)
The dynamic magnification was calculated from the following formula.
(Dynamic magnification) = (Dynamic spring constant (Kd)) / (Static spring constant (Ks))
About dynamic magnification, the change rate of the measured value of the rubber sample vulcanized for 15 minutes to the rubber sample vulcanized at 180 ° C. for 10 minutes was determined. It means that the lower the rate of change of the measured value, the more the reversion is suppressed. The evaluation results are shown in Table 1.

<バネ定数変化の抑制効果(経年劣化の抑制の効果)>
上記静的バネ定数(Ks)および動的バネ定数(Kd)算出時と同様に、各ゴム組成物を用い、加硫しつつプレス成形して、円柱形状(直径50mm、高さ25mm)の加硫ゴムサンプルを作製した後、かかる加硫ゴムサンプルの上下面に対し、円柱状金具(直径60mm、厚み6mm)の一対を、接着剤を使用して接着することによりテストピースを作製した。このテストピースを、ギアオーブンにて100℃×500時間熱老化させた。熱老化後のテストピースをギアオーブンから取り出し、室温にて少なくとも8時間放置した後、静的バネ定数(Ks)および動的バネ定数(Kd)を上記と同様の条件にて測定した。これらの測定結果に基づき、熱老化前後での静的バネ定数(Ks)および動的バネ定数(Kd)の変化率を算出した。測定値の変化率が低いほど、経年劣化の抑制の効果に優れていることを意味する。評価結果を表1に示す。
<Suppression effect of spring constant change (effect of suppressing aging degradation)>
Similarly to the calculation of the static spring constant (Ks) and the dynamic spring constant (Kd), each rubber composition was press-molded while vulcanized to add a cylindrical shape (diameter 50 mm, height 25 mm). After producing a vulcanized rubber sample, a test piece was produced by adhering a pair of cylindrical metal fittings (diameter 60 mm, thickness 6 mm) to the upper and lower surfaces of the vulcanized rubber sample using an adhesive. This test piece was heat-aged in a gear oven at 100 ° C. for 500 hours. The test piece after heat aging was taken out from the gear oven and allowed to stand at room temperature for at least 8 hours, and then the static spring constant (Ks) and dynamic spring constant (Kd) were measured under the same conditions as described above. Based on these measurement results, the rate of change of the static spring constant (Ks) and the dynamic spring constant (Kd) before and after thermal aging was calculated. It means that the lower the change rate of the measured value, the better the effect of suppressing aging degradation. The evaluation results are shown in Table 1.

<耐ヘタリ性(圧縮永久歪)>
各ゴム組成物を、180℃で5分間、あるいは180℃で10分間、加硫しつつプレス成形して、円柱形状(直径29mm、高さ12.5mm)の加硫ゴムサンプルを作製した。かかる加硫ゴムサンプルを使用し、JIS−K 6262に準拠して、所定の条件下(100℃、試験時間240時間、圧縮率25%)にて圧縮永久歪を測定した。かかる圧縮永久歪が小さいほど、耐ヘタリ性が優れていることを意味する。評価結果を表1に示す。
<Heat resistance (compression set)>
Each rubber composition was press-molded while being vulcanized at 180 ° C. for 5 minutes or 180 ° C. for 10 minutes to prepare a vulcanized rubber sample having a cylindrical shape (diameter 29 mm, height 12.5 mm). Using this vulcanized rubber sample, compression set was measured under predetermined conditions (100 ° C., test time 240 hours, compression rate 25%) according to JIS-K 6262. It means that the smaller the compression set, the better the settling resistance. The evaluation results are shown in Table 1.

<耐熱性>
各ゴム組成物を、180℃で5分間、あるいは180℃で10分間、加硫しつつプレス成形した後、JIS5号ダンベルで打ち抜き、厚み2mmのゴムサンプルを作製した。かかるゴムサンプルを使用し、JIS−K 6257に準拠して熱老化試験を行った。熱老化試験では、ギアオーブン(東洋精機社製)を使用し、100℃で1000時間、ゴムサンプルを熱老化させた。熱老化前後のゴムサンプルの破断伸び(EB)をそれぞれ測定し、その変化率を算出した。測定値の変化率が低いほど、耐熱性に優れていることを意味する。評価結果を表1に示す。
<Heat resistance>
Each rubber composition was press-molded while being vulcanized at 180 ° C. for 5 minutes or at 180 ° C. for 10 minutes, and then punched with a JIS No. 5 dumbbell to prepare a rubber sample having a thickness of 2 mm. Using this rubber sample, a heat aging test was conducted in accordance with JIS-K 6257. In the heat aging test, a gear oven (manufactured by Toyo Seiki Co., Ltd.) was used, and the rubber sample was heat aged at 100 ° C. for 1000 hours. The elongation at break (EB) of each rubber sample before and after heat aging was measured, and the rate of change was calculated. The lower the change rate of the measured value, the better the heat resistance. The evaluation results are shown in Table 1.

<耐久性>
各ゴム組成物を、所定の角型形状(縦30mm、横50mm、高さ40mm)となるように射出成形し、180℃で10分間、あるいは180℃で15分間、加硫を行うことで加硫ゴムサンプルを作製した。かかる加硫ゴムサンプルを使用して、定加重上下加振試験を行った。180℃で10分間加硫したゴムサンプルに対する、15分間加硫したゴムサンプルの測定値(定加重上下加振試験)の保持率を算出した。測定値の保持率が100%に近づくほど、耐久性に優れていることを意味する。評価結果を表1に示す。
<Durability>
Each rubber composition is injection-molded so as to have a predetermined square shape (length 30 mm, width 50 mm, height 40 mm) and vulcanized at 180 ° C. for 10 minutes or 180 ° C. for 15 minutes. A vulcanized rubber sample was prepared. Using this vulcanized rubber sample, a constant load vertical vibration test was conducted. The retention of the measured value (constant load vertical vibration test) of the rubber sample vulcanized for 15 minutes relative to the rubber sample vulcanized at 180 ° C. for 10 minutes was calculated. The closer the measured value retention rate is to 100%, the better the durability. The evaluation results are shown in Table 1.

表1の結果から、実施例1〜のゴム組成物の加硫ゴムは、高温(170〜190℃)で加硫した場合でも、加硫戻りによる引っ張り特性(破断強度,破断伸び)およびゴム硬度等の低下や静的バネ定数(Ks)の低下が充分に抑制され、かつ耐熱性、耐ヘタリ性、耐久性、および経年劣化抑制の効果の点でバランスよく向上していることがわかる。一方、比較例1〜4のゴム組成物の加硫ゴムは、耐熱性、耐久性や耐ヘタリ性等のいずれかにおいて、実施例1〜のゴム組成物の加硫ゴムに比べて劣ることがわかる。 From the results shown in Table 1, the vulcanized rubbers of the rubber compositions of Examples 1 to 3 have tensile properties (breaking strength, breaking elongation) due to reversion and rubber even when vulcanized at a high temperature (170 to 190 ° C.). It can be seen that a decrease in hardness or the like and a decrease in the static spring constant (Ks) are sufficiently suppressed, and the balance is improved in terms of the effects of heat resistance, sag resistance, durability, and aging deterioration suppression. On the other hand, the vulcanized rubbers of the rubber compositions of Comparative Examples 1 to 4 are inferior to the vulcanized rubbers of the rubber compositions of Examples 1 to 3 in any of heat resistance, durability, and resistance to sag. I understand.

Claims (3)

ジエン系ゴムを主成分とするゴム成分および硫黄系加硫剤を含有する防振ゴム用ゴム組成物において、
(A)ビスマレイミド化合物、および
(B)下記式(1)で表される化合物:


(式中、xは2〜12の整数であって、Rは分子構造中に芳香族炭化水素基もしくは脂肪酸炭化水素を有するチオカルバモイル基、またはベンゾチアゾール基)を含有する(ただし、ヒドラジド化合物を除く)ことを特徴とする防振ゴム用ゴム組成物。
In a rubber composition for a vibration-proof rubber containing a rubber component mainly composed of a diene rubber and a sulfur vulcanizing agent,
(A) a bismaleimide compound, and (B) a compound represented by the following formula (1):


(Wherein x is an integer of 2 to 12, and R is a thiocarbamoyl group or benzothiazole group having an aromatic hydrocarbon group or fatty acid hydrocarbon in the molecular structure ) (provided that the hydrazide compound is A rubber composition for anti-vibration rubber.
請求項1に記載の防振ゴム用ゴム組成物を使用し、加硫、成形して得られる防振ゴム。   An anti-vibration rubber obtained by vulcanization and molding using the rubber composition for anti-vibration rubber according to claim 1. 請求項1に記載の防振ゴム用ゴム組成物を170〜190℃で加硫することを特徴とする防振ゴムの製造方法。   A rubber composition for vibration-proof rubber according to claim 1 is vulcanized at 170 to 190 ° C.
JP2008270035A 2008-10-20 2008-10-20 Rubber composition for anti-vibration rubber, anti-vibration rubber and method for producing the same Active JP5420224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008270035A JP5420224B2 (en) 2008-10-20 2008-10-20 Rubber composition for anti-vibration rubber, anti-vibration rubber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008270035A JP5420224B2 (en) 2008-10-20 2008-10-20 Rubber composition for anti-vibration rubber, anti-vibration rubber and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010095682A JP2010095682A (en) 2010-04-30
JP5420224B2 true JP5420224B2 (en) 2014-02-19

Family

ID=42257585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008270035A Active JP5420224B2 (en) 2008-10-20 2008-10-20 Rubber composition for anti-vibration rubber, anti-vibration rubber and method for producing the same

Country Status (1)

Country Link
JP (1) JP5420224B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010254872A (en) * 2009-04-28 2010-11-11 Bridgestone Corp Rubber composition for vibration insulating rubber
EP2716699B1 (en) * 2011-06-01 2016-01-13 Bridgestone Corporation Anti-vibration rubber composition and anti-vibration rubber
JP5851852B2 (en) * 2012-01-13 2016-02-03 株式会社ブリヂストン Laminated body of vulcanized rubber and resin and method for producing the laminated body
RU2579103C1 (en) * 2012-01-30 2016-03-27 Бриджстоун Корпорейшн Vibration-absorbing rubber mixture, cross-linked vibration-absorbing rubber mixture and vibration-absorbing rubber
JP5949493B2 (en) * 2012-11-22 2016-07-06 株式会社ブリヂストン Anti-vibration rubber composition and anti-vibration rubber
JP2017110093A (en) * 2015-12-16 2017-06-22 東洋ゴム工業株式会社 Rubber composition for vibration-proof rubber
JP7409936B2 (en) * 2020-03-30 2024-01-09 住友理工株式会社 Anti-vibration rubber composition and anti-vibration rubber member
CN111662482B (en) * 2020-07-21 2022-07-26 华奇(中国)化工有限公司 Vulcanizing agent composition, composition for preparing rubber compound, rubber compound and preparation method thereof, and tire
JP2024005739A (en) * 2022-06-30 2024-01-17 住友理工株式会社 Anti-vibration rubber composition and anti-vibration rubber member

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02284935A (en) * 1989-04-27 1990-11-22 Toyoda Gosei Co Ltd Rubber composition
JP2001172431A (en) * 1999-12-15 2001-06-26 Bridgestone Corp Rubber composition and pneumatic tire
JP2001049047A (en) * 1999-08-10 2001-02-20 Bridgestone Corp Rubber composition and pneumatic tire
JP2004307621A (en) * 2003-04-04 2004-11-04 Toyo Tire & Rubber Co Ltd Rubber composition for rubber vibration insulator
JP2004352820A (en) * 2003-05-28 2004-12-16 Bridgestone Corp Rubber vibration insulator composition and rubber vibration insulator
JP4606807B2 (en) * 2004-08-09 2011-01-05 住友ゴム工業株式会社 Rubber composition for tire tread

Also Published As

Publication number Publication date
JP2010095682A (en) 2010-04-30

Similar Documents

Publication Publication Date Title
JP5420224B2 (en) Rubber composition for anti-vibration rubber, anti-vibration rubber and method for producing the same
JP5133503B2 (en) Anti-vibration rubber composition and anti-vibration rubber member
JP2015021097A (en) Rubber composition for vibration-proof rubber, and vibration-proof rubber
JP2011111532A (en) Rubber composition for vibration-proof rubber and vibration-proof rubber
JP2010111742A (en) Rubber composition for vibration-proof rubber and vibration-proof rubber
JP5210801B2 (en) Rubber composition for anti-vibration rubber and anti-vibration rubber
JP7543051B2 (en) Rubber composition and vibration-proof rubber obtained by vulcanization molding of the rubber composition
JP5247206B2 (en) Rubber composition for anti-vibration rubber and anti-vibration rubber
JP6579704B2 (en) Rubber composition and anti-vibration rubber
JP5101117B2 (en) Anti-vibration rubber composition
JP2008007546A (en) Vibration-insulating rubber composition and vibration-insulating rubber
JP2014105236A (en) Rubber composition for vibration proof rubber and vibration proof rubber
WO2011105284A1 (en) Vibration-isolating rubber composition and rubber vibration isolator using same
JP2007314697A (en) Vibration-proof rubber composition and rubber vibration isolator
JP2013151584A (en) Rubber composition for rubber vibration isolator
JP5968191B2 (en) Anti-vibration rubber composition
JP6421074B2 (en) Rubber composition and anti-vibration rubber
JP2019048959A (en) Rubber composition for vibration-damping rubber and vibration-damping rubber product
JP5248174B2 (en) Rubber composition for anti-vibration rubber and anti-vibration rubber
JP2011162585A (en) Rubber composition for vibration-damping rubber, and vibration-damping rubber
JP2010209285A (en) Rubber composition for vibration-damping rubber and vibration-damping rubber
JP2017214531A (en) Rubber composition, rubber composition for vibration-proof rubber products, and vibration-proof rubber product
JP2011111504A (en) Rubber composition for vibration-proof rubber and vibration-proof rubber
JP2020090665A (en) Rubber composition for vibration-proof rubber and vibration-proof rubber
JP2001181458A (en) Epdm-based rubber composition and epdm-based vulcanized rubber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131120

R150 Certificate of patent or registration of utility model

Ref document number: 5420224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250