JP5410138B2 - Displacement sensor system and displacement sensor - Google Patents

Displacement sensor system and displacement sensor Download PDF

Info

Publication number
JP5410138B2
JP5410138B2 JP2009088074A JP2009088074A JP5410138B2 JP 5410138 B2 JP5410138 B2 JP 5410138B2 JP 2009088074 A JP2009088074 A JP 2009088074A JP 2009088074 A JP2009088074 A JP 2009088074A JP 5410138 B2 JP5410138 B2 JP 5410138B2
Authority
JP
Japan
Prior art keywords
light
unit
displacement sensor
receiving
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009088074A
Other languages
Japanese (ja)
Other versions
JP2010237176A (en
Inventor
陽司 中原
寿教 今井
Original Assignee
パナソニック デバイスSunx株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック デバイスSunx株式会社 filed Critical パナソニック デバイスSunx株式会社
Priority to JP2009088074A priority Critical patent/JP5410138B2/en
Publication of JP2010237176A publication Critical patent/JP2010237176A/en
Application granted granted Critical
Publication of JP5410138B2 publication Critical patent/JP5410138B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、対象物の表面形状等を測定するための変位センサに関する。   The present invention relates to a displacement sensor for measuring the surface shape and the like of an object.

従来より、対象物の表面形状等を測定するための変位センサが知られている(特許文献1参照)。この変位センサは、投光部及び二次元CCDを有し、投光部から出射した線状の光を対象物の表面に照射させ、その反射光を二次元CCDの撮像面にて受光する。反射光が撮像面上に形成する受光像は、対象物の表面形状に応じた形状となるため、撮像面上の受光位置に基づき対象物の表面形状等を測定することができる。   Conventionally, a displacement sensor for measuring the surface shape and the like of an object is known (see Patent Document 1). This displacement sensor has a light projecting unit and a two-dimensional CCD, irradiates the surface of the object with linear light emitted from the light projecting unit, and receives the reflected light on the imaging surface of the two-dimensional CCD. Since the received light image formed on the imaging surface by the reflected light has a shape corresponding to the surface shape of the object, the surface shape of the object can be measured based on the light receiving position on the imaging surface.

特開2007−139489号公報JP 2007-139489 A

ところが、表面形状等を測定したい対象物は、反射率が表面全体で均一なものに限られず、反射率が互いに異なる複数の領域が存在し、反射率が不均一なものもある。このような反射率が不均一な対象物の表面形状等を、上記従来の変位センサにより測定しようとすると、反射率の高い領域からの反射光を受光する画素では受光量が飽和してしまう一方で、反射率の低い領域からの反射光を受光する画素では受光量が小さく耐ノイズ性が低くなるため、表面形状等を精度よく測定することができないという問題があった。   However, the object whose surface shape or the like is to be measured is not limited to the one having a uniform reflectance over the entire surface, and there may be a plurality of regions having different reflectances and non-uniform reflectance. When trying to measure the surface shape or the like of such an object with non-uniform reflectivity using the above-described conventional displacement sensor, the amount of light received is saturated in the pixel that receives the reflected light from the region with high reflectivity. Thus, a pixel that receives reflected light from a region having a low reflectance has a problem that the surface shape or the like cannot be measured accurately because the amount of received light is small and noise resistance is low.

本発明は上記のような事情に基づいて完成されたものであって、その目的は、反射率が不均一な対象物でも表面形状等を測定することが可能な変位センサシステム及び変位センサを提供するところにある。   The present invention has been completed based on the above circumstances, and an object of the present invention is to provide a displacement sensor system and a displacement sensor capable of measuring a surface shape or the like even with an object having non-uniform reflectance. There is a place to do.

上記の目的を達成するための手段として、第1発明に係る変位センサシステムは、対象物に線状の光を照射する投光部と、前記投光部から照射され前記対象物で反射した線状の反射光を受光可能な撮像面を有する二次元撮像素子と、前記撮像面上の各画素での受光量に応じた受光信号を、前記線状の反射光の受光像に交差する走査線ごとに取り出す受光処理部と、前記撮像面上の複数の領域を走査線単位で指定する領域指定部と、前記領域指定部で指定された領域ごとに対応して個別の投受光感度を設定可能な感度設定部と、前記各領域内の走査線の受光信号を、当該領域に対応する投受光感度下で前記受光処理部に取り出させ、その取り出された受光信号に応じた検出処理を実行する受光制御部と、を備える。   As means for achieving the above object, a displacement sensor system according to a first invention includes a light projecting unit that irradiates an object with linear light, and a line that is irradiated from the light projecting unit and reflected by the object. And a scanning line that intersects the received light image of the linear reflected light with a two-dimensional imaging device having an imaging surface capable of receiving the reflected light in the shape and a received light signal corresponding to the amount of light received by each pixel on the imaging surface A light receiving processing unit to be taken out every time, a region designating unit for designating a plurality of regions on the imaging surface in units of scanning lines, and individual light projecting / receiving sensitivity can be set corresponding to each region designated by the region designating unit A sensitivity setting unit and a light receiving signal of the scanning line in each region are extracted by the light receiving processing unit under the light projecting / receiving sensitivity corresponding to the region, and a detection process corresponding to the extracted light receiving signal is executed. A light reception control unit.

この発明の変位センサによれば、撮像面上の異なる領域ごとに対応して個別の投受光感度を設定可能であり、各領域内の走査線の受光信号を、当該領域に対応する投受光感度下で取り出すことができる。従って、反射率が不均一な対象物でも、各部分に対応する撮像面上の領域ごとに当該部分の反射率に応じた投受光感度を設定することで表面形状等を測定することが可能である。   According to the displacement sensor of the present invention, individual light projecting / receiving sensitivity can be set corresponding to different regions on the imaging surface, and the light receiving signal of the scanning line in each region is used as the light projecting / receiving sensitivity corresponding to the region. Can be taken out below. Therefore, even for an object with non-uniform reflectance, it is possible to measure the surface shape and the like by setting the light projecting / receiving sensitivity corresponding to the reflectance of each part on the imaging surface corresponding to each part. is there.

第2の発明は、第1の発明の変位センサシステムであって、表示部と、前記受光処理部により取り出された受光信号に基づき前記各走査線における受光位置及び受光量の少なくとも一方に関する情報を前記表示部に表示させる表示制御部と、操作部と、を備え、前記領域指定部は、前記操作部でのユーザによる操作に基づき前記領域を指定する構成である。   A second invention is a displacement sensor system according to the first invention, wherein information on at least one of a light receiving position and a light receiving amount in each scanning line is obtained based on a display unit and a light receiving signal taken out by the light receiving processing unit. A display control unit to be displayed on the display unit and an operation unit are provided, and the region designating unit is configured to designate the region based on an operation by a user at the operation unit.

この発明によれば、表示部には、各走査線における受光位置及び受光量に関する情報が表示されるから、ユーザはその表示部の表示を見ながら領域指定を行うことができる。   According to this aspect of the invention, the display unit displays information related to the light receiving position and the amount of light received in each scanning line, so that the user can specify a region while viewing the display on the display unit.

第3の発明は、第2の発明の変位センサシステムであって、前記表示制御部は、前記各領域に対応する投受光感度下で取り出された受光信号に基づく受光位置を、前記表示部に同時に図形表示させる。   3rd invention is a displacement sensor system of 2nd invention, Comprising: The said display control part makes the said display part the light-receiving position based on the light reception signal taken out under the light projection / reception sensitivity corresponding to each said area | region to the said display part. Display graphics at the same time.

この発明によれば、各領域に対応する投受光感度下で取り出された受光信号に基づく受光位置が、表示部に同時に図形表示されるから、ユーザはその表示から領域指定の適否を判断することが可能である。   According to the present invention, since the light receiving position based on the light receiving signal extracted under the light projecting / receiving sensitivity corresponding to each area is simultaneously displayed on the display unit, the user can determine whether the area designation is appropriate from the display. Is possible.

第4の発明の変位センサは、対象物に線状の光を照射する投光部と、前記投光部から照射され前記対象物で反射した線状の反射光を受光可能な撮像面を有する二次元撮像素子と、前記撮像面上の各画素での受光量に応じた受光信号を、前記線状の反射光の受光像に交差する走査線ごとに取り出す受光処理部と、前記撮像面上の異なる領域ごとに対応して個別の投受光感度を設定可能な感度設定部と、前記各領域内の走査線の受光信号を、当該領域に対応する投受光感度下で前記受光処理部に取り出させ、その取り出された受光信号に基づく検出処理を実行する受光制御部と、を備える。   A displacement sensor according to a fourth aspect of the present invention includes a light projecting unit that irradiates an object with linear light, and an imaging surface that can receive linear reflected light that is irradiated from the light projecting unit and reflected by the object. A two-dimensional imaging device, a light receiving processing unit that extracts a light receiving signal corresponding to the amount of light received by each pixel on the imaging surface for each scanning line that intersects the light receiving image of the linear reflected light, and on the imaging surface A sensitivity setting unit capable of setting individual light projecting / receiving sensitivity corresponding to each different area, and a light receiving signal of the scanning line in each region is extracted to the light receiving processing unit under the light projecting / receiving sensitivity corresponding to the region. And a light reception control unit that executes a detection process based on the extracted light reception signal.

第5の発明は、第4の発明の変位センサであって、前記領域ごとに対応する投受光感度で取り出された受光信号に基づく受光位置及び受光量の少なくとも一方に関する情報を外部出力する出力部を備える。
この発明によれば、領域ごとに対応する投受光感度で取り出された受光信号に基づく受光位置及び受光量の少なくとも一方に関する情報を、例えば上位機器等に伝送することができる。
5th invention is the displacement sensor of 4th invention, Comprising: The output part which externally outputs the information regarding at least one of the light reception position based on the light reception signal taken out with the light projection / reception sensitivity corresponding to every said area | region, and light reception amount Is provided.
According to the present invention, information on at least one of the light receiving position and the amount of received light based on the light receiving signal extracted with the light projecting / receiving sensitivity corresponding to each region can be transmitted to, for example, a host device.

本発明によれば、反射率が不均一な対象物でも表面形状等を測定することが可能である。   According to the present invention, it is possible to measure a surface shape or the like even with an object having a non-uniform reflectance.

本発明の一実施形態に係る変位センサの一部を示す概要構成図1 is a schematic configuration diagram showing a part of a displacement sensor according to an embodiment of the present invention. 変位センサの一部を示す斜視図Perspective view showing a part of the displacement sensor 受光像と走査線との関係を示す模式図Schematic diagram showing the relationship between the received light image and the scanning line 変位センサシステムの電気的構成を示すブロック図Block diagram showing electrical configuration of displacement sensor system 領域指定処理を示すフローチャートFlow chart showing area designation processing 領域別投受光処理を示すフローチャートFlow chart showing area-specific light emitting / receiving processing

本発明の一実施形態を図1〜図6を参照しつつ説明する。
本実施形態の変位センサシステム1は、変位センサ10(表面形状検出器)とコントローラ30とが通信可能に接続された構成である。
An embodiment of the present invention will be described with reference to FIGS.
The displacement sensor system 1 of the present embodiment has a configuration in which a displacement sensor 10 (surface shape detector) and a controller 30 are connected to be communicable.

(変位センサの概要構成)
図1,2は変位センサ10の一部を示す概要構成図及び斜視図である。
図1に示すように、変位センサ10は、レーザ光源11(投光部の一例)及び二次元CCD15(二次元撮像素子の一例)を備え、レーザ光源11から出射された光を挿通板12のスリット12Aを通過させて線状にし、それを対象物Wの表面に照射させる。そして、その反射光を二次元CCD15の撮像面15A上にて受光するものである。
(Outline configuration of displacement sensor)
1 and 2 are a schematic configuration diagram and a perspective view showing a part of the displacement sensor 10.
As shown in FIG. 1, the displacement sensor 10 includes a laser light source 11 (an example of a light projecting unit) and a two-dimensional CCD 15 (an example of a two-dimensional image sensor), and transmits light emitted from the laser light source 11 to an insertion plate 12. The slit 12A is passed through to form a line, and the surface of the object W is irradiated with the slit 12A. The reflected light is received on the imaging surface 15A of the two-dimensional CCD 15.

反射光が撮像面15A上に形成する受光像は、対象物Wの表面(被照射面)が平坦であれば、上記スリット12Aの開口形状と同じ形状(例えば直線状)をなす。一方、対象物Wの表面が凸凹状をなす場合には、凸凹に倣った形状をなす(図2参照)。従って、撮像面15A上に形成される受光像(受講位置)に基づいて対象物Wの表面形状等を測定することができる。   The received light image formed on the imaging surface 15A by the reflected light has the same shape (for example, linear shape) as the opening shape of the slit 12A if the surface of the object W (irradiated surface) is flat. On the other hand, when the surface of the object W is uneven, the object W has a shape following the unevenness (see FIG. 2). Therefore, the surface shape and the like of the object W can be measured based on the received light image (learning position) formed on the imaging surface 15A.

図2に示すように、対象物Wは、反射率が互いに異なる複数の部分を有し、反射率が不均一なものである。具体的には、対象物Wは、低反射率の材料(例えば黒色樹脂)からなり上面に開口部W1Aが形成された本体部W1と、高反射率の材料(例えばアルミなどの金属)からなり当該開口部W1Aを塞ぐための蓋部W2とを有する。   As shown in FIG. 2, the object W has a plurality of portions having different reflectances, and the reflectance is nonuniform. Specifically, the object W is made of a main body W1 having an opening W1A formed on the upper surface and made of a low reflectance material (for example, black resin), and a high reflectance material (for example, a metal such as aluminum). And a lid W2 for closing the opening W1A.

(受光像と走査線との関係)
図3は受光像と走査線Lとの関係を示す模式図であり、後述する表示部31の表示内容を示す図でもある。
撮像面15Aは行列状に配された複数の画素(受光素子)より構成されるが、これら各画素の受光信号を受光像の厚み方向(受光像に交差する方向の一例)に沿った走査線L毎に読み出す。そして、読み出された走査線L上の各画素について、例えば、受光量(受光信号レベル)の比較を行って、受光量がピークとなる画素を特定し、その位置(以下、受光位置という)を検出する。
(Relationship between received light image and scanning line)
FIG. 3 is a schematic diagram showing the relationship between the received light image and the scanning line L, and is also a diagram showing the display content of the display unit 31 described later.
The imaging surface 15A is composed of a plurality of pixels (light receiving elements) arranged in a matrix, and the scanning line along the thickness direction of the received light image (an example of the direction intersecting the received light image) Read every L. Then, for each pixel on the read scanning line L, for example, a light reception amount (light reception signal level) is compared to identify a pixel having a peak light reception amount, and its position (hereinafter referred to as a light reception position). Is detected.

このように、走査線L上における受光位置を検出する処理を、各走査線Lについてそれぞれ行うことで、光が照射された部位の表面形状や高低差等を測定することができる。また、対象物Wと変位センサ10とを相対的に移動させつつ同様の表面形状測定を各部位について行うことで、対象物W全体の表面形状についても測定することができる。   In this way, by performing the process of detecting the light receiving position on the scanning line L for each scanning line L, the surface shape, height difference, and the like of the portion irradiated with light can be measured. Moreover, the surface shape of the whole object W can also be measured by performing the same surface shape measurement for each part while relatively moving the object W and the displacement sensor 10.

(変位センサシステムの電気的構成)
図4は、変位センサシステム1の電気的構成を示すブロック図である。
(Electric configuration of displacement sensor system)
FIG. 4 is a block diagram showing an electrical configuration of the displacement sensor system 1.

1.変位センサ
変位センサ10には、変位センサ10の全体を制御する第1制御部20(受光制御部、感度設定部、領域指定部の一例)、レーザ光源11、レーザ駆動回路13、二次元CCD15、CCD駆動回路17(受光処理部の一例)、データ処理部21(出力部の一例)、メモリ25を備える。
1. Displacement sensor The displacement sensor 10 includes a first control unit 20 (an example of a light receiving control unit, a sensitivity setting unit, and an area designating unit) that controls the entire displacement sensor 10, a laser light source 11, a laser driving circuit 13, a two-dimensional CCD 15, A CCD drive circuit 17 (an example of a light receiving processing unit), a data processing unit 21 (an example of an output unit), and a memory 25 are provided.

レーザ駆動回路13は第1制御部20からの動作信号Saに基づいてドライブして、レーザ光源11に駆動電流を供給させる。また、動作信号SaはPWM信号であり、第1制御部20はそのデューティ比を変えることで駆動電流の電流量を増減調整し、レーザ光源11からの投光量を変更することができる。   The laser drive circuit 13 is driven based on the operation signal Sa from the first control unit 20 to supply a drive current to the laser light source 11. Further, the operation signal Sa is a PWM signal, and the first control unit 20 can adjust the amount of drive current to increase or decrease by changing the duty ratio to change the amount of light emitted from the laser light source 11.

二次元CCD15は、受光素子を行列状に配した撮像面15Aを有し、撮像面15Aに入光する光をその光量に応じたレベルの電気信号(受光信号)に変換する。CCD駆動回路17は撮像面15Aの各受光素子から出力される受光信号を、走査線L毎に順次読み取るものである。なお、走査線Lは撮像面15Aの上下方向に延びる設定とされており、線状の受光像と直交する。   The two-dimensional CCD 15 has an image pickup surface 15A in which light receiving elements are arranged in a matrix, and converts light incident on the image pickup surface 15A into an electric signal (light reception signal) having a level corresponding to the amount of light. The CCD drive circuit 17 sequentially reads the light reception signals output from the respective light receiving elements on the imaging surface 15A for each scanning line L. The scanning line L is set to extend in the vertical direction of the imaging surface 15A, and is orthogonal to the linear light reception image.

第1制御部20は、レーザ駆動回路13を介してレーザ光源11に投光動作をさせつつCCD駆動回路17に二次元CCD15から受光信号を読み取らせる(投受光動作)。そして、当該受光信号に基づき走査線Lごとの受光位置データを、データ処理部21を介して外部出力する。   The first control unit 20 causes the CCD drive circuit 17 to read a light reception signal from the two-dimensional CCD 15 while causing the laser light source 11 to perform a light projection operation via the laser drive circuit 13 (light projection / reception operation). Then, light reception position data for each scanning line L is externally output via the data processing unit 21 based on the light reception signal.

2.コントローラ
コントローラ30は、表示部31、第2制御部33(表示制御部の一例)、データ処理部35、操作部37を備える。データ処理部35は、有線または無線により変位センサ10のデータ処理部21との間でデータの双方向通信が可能である。第2制御部33は、表示部31の表示制御等を行うものであり、例えば変位センサ10から受信した受光位置データに基づき、図3に示すように撮像面15A上における各走査線L、及び、各走査線Lの受光位置に基づく形状を表示部31に表示させる。操作部37は、ユーザが各種の入力操作を行うものである。
2. Controller The controller 30 includes a display unit 31, a second control unit 33 (an example of a display control unit), a data processing unit 35, and an operation unit 37. The data processing unit 35 can perform bidirectional data communication with the data processing unit 21 of the displacement sensor 10 by wire or wireless. The second control unit 33 performs display control of the display unit 31 and the like. For example, based on the light receiving position data received from the displacement sensor 10, each scanning line L on the imaging surface 15A as shown in FIG. A shape based on the light receiving position of each scanning line L is displayed on the display unit 31. The operation unit 37 is used by the user to perform various input operations.

(領域指定処理)
図5は領域指定処理を示すフローチャートである。ユーザが操作部37にて領域指定モードの実行を指示すると、第2制御部33がその実行を変位センサ10の第1制御部20に指示し、これにより第1制御部20が領域指定処理を実行する。このとき第1制御部20は領域指定部として機能する。
(Area specification processing)
FIG. 5 is a flowchart showing the area specifying process. When the user instructs the execution of the area designation mode using the operation unit 37, the second control unit 33 instructs the first control unit 20 of the displacement sensor 10 to perform the execution, whereby the first control unit 20 performs the area designation process. Run. At this time, the first control unit 20 functions as an area designating unit.

第1制御部20は、投受光動作を実行し(S1)、全走査線Lの受光位置データを取得する(S3)。なお、このときの投受光動作では、例えば全走査線Lについて投受光感度(本実施形態ではレーザ光源の投光量)が一律、所定の初期値に設定されている。そして、取得した受光位置データをコントローラ30に送信する。これにより第2制御部33は、上記受光位置データに基づき受光像の形状を表示部31に表示させる(S5)。   The first control unit 20 performs a light projecting / receiving operation (S1), and acquires light receiving position data of all the scanning lines L (S3). In the light projecting / receiving operation at this time, for example, the light projecting / receiving sensitivity (in this embodiment, the light projecting amount of the laser light source) is uniformly set to a predetermined initial value for all the scanning lines L. Then, the acquired light receiving position data is transmitted to the controller 30. Thereby, the second control unit 33 displays the shape of the received light image on the display unit 31 based on the light receiving position data (S5).

ここで、上述したように対象物Wは反射率が不均一である。このため、撮像面15A上において、低反射率の本体部W1に対応する領域では受光量が少なくノイズに埋もれてしまい、高反射率の蓋部W2に対応する領域では受光量が多く飽和レベルに達してしまうおそれがある。そして、その結果、各走査線L上のおける受光位置を正確に検出できず、表示部31には対象物Wの実際の形状に対して不正確な受光像の形状が表示されることがある。   Here, as described above, the reflectance of the object W is not uniform. For this reason, on the imaging surface 15A, the amount of received light is small and buried in noise in the region corresponding to the low reflectance main body W1, and the amount of received light is large and saturated in the region corresponding to the high reflectance lid W2. There is a risk of reaching. As a result, the light receiving position on each scanning line L cannot be detected accurately, and the display unit 31 may display the shape of the received light image that is inaccurate with respect to the actual shape of the object W. .

但し、不正確な受光像の形状とは言っても、ユーザは、その受光像の形状から、反射率の異なる各領域を概ね視認することができる。そこで、ユーザは、表示部31を見ながら、操作部37での操作により、各領域をそれぞれ走査線L単位で指定する。図3の例では、例えば走査線L1〜L5の領域(第1領域E1)、走査線L6〜L16の領域(第2領域E2)、L17〜L21の領域(第3領域E3)の3つ領域を指定する。   However, even though the shape of the received light image is inaccurate, the user can generally visually recognize each region having a different reflectance from the shape of the received light image. Therefore, the user designates each region in units of scanning lines L by operating the operation unit 37 while looking at the display unit 31. In the example of FIG. 3, for example, three regions, a region of the scanning lines L1 to L5 (first region E1), a region of the scanning lines L6 to L16 (second region E2), and a region of L17 to L21 (third region E3). Is specified.

そして、ユーザにより領域が指定されると(S7:YES)、第2制御部33は、その領域指定情報(走査線Lの指定番号)を変位センサ10に送信する。そして、第1制御部20は、受信した領域指定情報をメモリ25に格納し、本領域指定処理を終了する。   When an area is designated by the user (S7: YES), the second control unit 33 transmits the area designation information (designation number of the scanning line L) to the displacement sensor 10. Then, the first control unit 20 stores the received area designation information in the memory 25 and ends this area designation process.

(測定処理)
図6は、領域別投受光処理を示すフローチャートである。
ユーザが操作部37にて測定モードの実行を指示すると、第2制御部33は領域別投受光処理の実行コマンドを変位センサ10に送信する。そして、第1制御部20は、実行コマンドの受信に基づき領域別投受光処理を実行する。このとき第1制御部20は感度設定部、受光制御部として機能する。
(Measurement process)
FIG. 6 is a flowchart showing the area-specific light emitting / receiving process.
When the user instructs execution of the measurement mode using the operation unit 37, the second control unit 33 transmits an execution command for the region-specific light projecting / receiving process to the displacement sensor 10. Then, the first control unit 20 executes the area-specific light receiving / receiving process based on the reception of the execution command. At this time, the first control unit 20 functions as a sensitivity setting unit and a light reception control unit.

第1制御部20は、領域指定番号Kを「1」に初期化し、各領域Eにおける代表走査線L(例えば各領域Eの中央の位置する走査線 第1領域E1であれば走査線L3)について投受光動作を実行する(S13)。即ち、現在設定されている投光量レベルでレーザ光源11に投光動作をさせ、二次元CCD15から上記代表走査線L3のみの受光信号を読み出す。   The first control unit 20 initializes the area designation number K to “1” and represents the representative scanning line L in each area E (for example, the scanning line located at the center of each area E, the scanning line L3 if the first area E1). A light emitting / receiving operation is executed for (S13). That is, the laser light source 11 is caused to perform a light projecting operation at the currently set light projecting light level, and the light reception signal of only the representative scanning line L3 is read from the two-dimensional CCD 15.

次に第1制御部20は、読み出した受光信号に基づき、代表走査線における受光量(ピーク値)が適切か否かを判断する(S15)。具体的には、受光量が所定の基準範囲(飽和レベルよりも低く、且つ、ノイズよりも高い範囲)内か否かを判断する。受光量が適切であれば(S15:YES)、S19にそのまま進む。   Next, the first control unit 20 determines whether or not the received light amount (peak value) in the representative scanning line is appropriate based on the read received light signal (S15). Specifically, it is determined whether the amount of received light is within a predetermined reference range (a range lower than the saturation level and higher than the noise). If the amount of received light is appropriate (S15: YES), the process proceeds directly to S19.

一方、受光量が不適切である場合には(S15:NO)、受光量が基準範囲内になるよう投受光感度(第1制御部20が受ける受光信号レベル)を変更し(S17)、その後、S19に進む。本実施形態では、第1制御部20は、レーザ駆動回路13に与える動作信号Saのデューティ比を変更しレーザ光源11の投光量を変更することにより、投受光感度を変更する。具体的には、受光量が基準範囲よりも低ければ投光量を多くし、受光量が基準範囲よりも高ければ投光量を少なくする。なお、投受光感度を変更する方法としては、例えばCCD駆動回路17における受光信号の増幅度を変更してもよい。   On the other hand, when the received light amount is inappropriate (S15: NO), the light projecting / receiving sensitivity (the received light signal level received by the first control unit 20) is changed so that the received light amount falls within the reference range (S17), and thereafter , Go to S19. In the present embodiment, the first control unit 20 changes the light projecting / receiving sensitivity by changing the duty ratio of the operation signal Sa given to the laser driving circuit 13 and changing the light projection amount of the laser light source 11. Specifically, the amount of emitted light is increased if the amount of received light is lower than the reference range, and the amount of emitted light is decreased if the amount of received light is higher than the reference range. As a method of changing the light projecting / receiving sensitivity, for example, the amplification degree of the received light signal in the CCD drive circuit 17 may be changed.

受光量が適切になると(S15:YES)、受光信号に基づく受光位置データを、各領域E(または代表走査線L)に対応付けてコントローラ30に送信する。そして、第1制御部20は、未処理の領域が残っている場合には(S21:NO)、領域指定番号Kに「1」を加えてS13に戻り、第2領域以降についても同様の処理を繰り返す。   When the amount of received light becomes appropriate (S15: YES), the received light position data based on the received light signal is transmitted to the controller 30 in association with each region E (or representative scanning line L). When the unprocessed region remains (S21: NO), the first control unit 20 adds “1” to the region designation number K and returns to S13, and the same processing is performed for the second region and thereafter. repeat.

全領域Eについて処理が終了していれば(S21:YES)、本領域別投受光処理を終了する。これにより、変位センサ10は、各領域Eごとに適切な投受光感度下で取得した受光位置データをコントローラ30に送信することができる。そして、コントローラ30の第2制御部33は、受信した各領域Eごとの受光位置データに基づき、各領域E間の高低差を所定の閾値と比較することにより、本体部W1に対して蓋部W2が適切に嵌められているか否かを判定し、その判定結果に応じた判定信号を図示しない上位機器に出力する。このとき第2制御部33は受光制御部として機能する。なお、他の検出処理としては、例えば変位センサ10に設けられた図示しない表示灯を点灯動作させたり、コントローラ30の表示部31に判定結果を表示させたりしてもよい。また、変位センサ10と対象物Wの各部位との距離(変位)を検出(測定)してもよい。   If the process has been completed for all areas E (S21: YES), this area-specific light projection / reception process is terminated. Thereby, the displacement sensor 10 can transmit the light receiving position data acquired under appropriate light projecting / receiving sensitivity for each region E to the controller 30. Then, the second control unit 33 of the controller 30 compares the height difference between the regions E with a predetermined threshold based on the received light receiving position data for each region E, thereby covering the main body W1 with the lid portion. It is determined whether or not W2 is properly fitted, and a determination signal corresponding to the determination result is output to a host device (not shown). At this time, the second control unit 33 functions as a light reception control unit. As another detection process, for example, a display lamp (not shown) provided in the displacement sensor 10 may be turned on, or a determination result may be displayed on the display unit 31 of the controller 30. Further, the distance (displacement) between the displacement sensor 10 and each part of the object W may be detected (measured).

(本実施形態の効果)
この実施形態の変位センサシステム1によれば、撮像面15A上の異なる領域Eごとに対応して個別の投受光感度を設定可能であり、各領域E内の走査線Lの受光信号を、当該領域Eに対応する投受光感度下で取り出すことができる。従って、反射率が不均一な対象物Wでも、各部分に対応する撮像面15A上の領域Eごとに当該部分の反射率に応じた投受光感度を設定することで対象物Wの蓋部W2が正常に嵌っているかを判定することが可能である。
(Effect of this embodiment)
According to the displacement sensor system 1 of this embodiment, individual light projecting / receiving sensitivity can be set corresponding to each different area E on the imaging surface 15A, and the light reception signal of the scanning line L in each area E is It can be taken out under the light projecting / receiving sensitivity corresponding to the region E. Therefore, even if the object W has non-uniform reflectance, the lid W2 of the object W is set by setting the light projecting / receiving sensitivity corresponding to the reflectance of the part for each region E on the imaging surface 15A corresponding to each part. It is possible to determine whether the is fitted normally.

しかも、各領域Eの代表走査線Lのみの受光信号に基づき上記判定が可能であるから、撮像面上の全走査線の受光信号を利用する構成に比べて高速で処理することができる。   In addition, since the above determination can be made based on the light reception signals of only the representative scanning lines L of each region E, the processing can be performed at a higher speed than the configuration using the light reception signals of all the scanning lines on the imaging surface.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような種々の態様も本発明の技術的範囲に含まれる。特に、各実施形態の構成要素のうち、最上位の発明の構成要素以外の構成要素は、付加的な要素なので適宜省略可能である。
(1)上記実施形態では、変位センサ10及びコントローラ30を備えた変位センサシステムについて説明したが、本発明はこれに限られない。例えば表示部31及び操作部37の少なくとも一方を変位センサ10側に設けた構成や、コントローラ30の第2制御部33が領域指定処理を実行する構成であってもよい。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and the drawings, and for example, the following various aspects are also included in the technical scope of the present invention. In particular, among the constituent elements of each embodiment, constituent elements other than the constituent elements of the top-level invention can be omitted as appropriate because they are additional elements.
(1) Although the displacement sensor system including the displacement sensor 10 and the controller 30 has been described in the above embodiment, the present invention is not limited to this. For example, a configuration in which at least one of the display unit 31 and the operation unit 37 is provided on the displacement sensor 10 side, or a configuration in which the second control unit 33 of the controller 30 executes an area designation process may be used.

(2)上記実施形態では、受光量がピークとなる画素の位置を、走査線L上の受光位置として検出したが、本発明はこれに限られない。例えば走査線Lの画素のうち受光レベルが所定値以上の画素を抽出し、その抽出された画素群の中心位置や重心位置(各画素の位置にそれぞれの受光量に応じた重み付けをして求めた平均位置)を、受光位置としてもよい。   (2) In the above-described embodiment, the position of the pixel at which the light reception amount reaches the peak is detected as the light reception position on the scanning line L, but the present invention is not limited to this. For example, a pixel having a light reception level of a predetermined value or more is extracted from the pixels on the scanning line L, and the center position and the gravity center position of the extracted pixel group (the position of each pixel is weighted according to the amount of received light). (Average position) may be the light receiving position.

(3)上記実施形態では、各走査線L及び各走査線Lの受光位置に基づく形状を表示部31に表示(図形表示)したが、本発明はこれに限られない。例えば各走査線Lの特定情報、受光位置の位置情報を文字、記号等で数値表示してもよい。   (3) In the above embodiment, each scanning line L and the shape based on the light receiving position of each scanning line L are displayed on the display unit 31 (graphic display), but the present invention is not limited to this. For example, the specific information of each scanning line L and the position information of the light receiving position may be numerically displayed with characters, symbols, and the like.

(4)また、領域別投受光処理を行った後に、各領域Eについて各走査線L及び各走査線Lの受光位置に基づく形状を表示部31に表示させ、領域指定を変更できるようにしてもよい。このような構成であれば、より正確に領域指定を行うことができる。このとき、全ての領域Eについて、受光位置に基づく形状を同時に表示部31に表示するのが好ましい。   (4) In addition, after performing the region-specific light projecting / receiving process, the shape based on each scanning line L and the light receiving position of each scanning line L for each region E is displayed on the display unit 31 so that the region designation can be changed. Also good. With such a configuration, the area can be specified more accurately. At this time, for all the regions E, it is preferable to simultaneously display the shapes based on the light receiving positions on the display unit 31.

(5)上記実施形態では、測定処理において各領域Eの代表走査線Lのみの受光信号に基づき対象物Wの高低差を測定したが、本発明はこれに限られない。例えば各領域Eの全走査線Lの受光信号に基づき対象物Wの表面形状を測定してもよい。   (5) In the above embodiment, the height difference of the object W is measured based on the light reception signal of only the representative scanning line L of each region E in the measurement process, but the present invention is not limited to this. For example, the surface shape of the object W may be measured based on the light reception signals of all the scanning lines L in each region E.

(6)上記実施形態では、測定処理において各領域Eごとに受光信号に基づき投受光感度を調整したが、本発明はこれに限られない。例えば各領域Eごとに予め定めた値を投受光感度として設定してもよい。但し、上記実施形態の構成であれば、周囲環境変化に応じて適切な値に投受光感度を設定することができる。   (6) In the above embodiment, the light projecting / receiving sensitivity is adjusted based on the light reception signal for each region E in the measurement process, but the present invention is not limited to this. For example, a predetermined value for each region E may be set as the light projecting / receiving sensitivity. However, with the configuration of the above embodiment, the light projecting / receiving sensitivity can be set to an appropriate value in accordance with changes in the surrounding environment.

1...変位センサシステム
10...変位センサ
11...レーザ光源(投光部)
15...二次元CCD(二次元撮像素子)
15A...撮像面
17...CCD駆動回路(受光処理部)
20...第1制御部(受光制御部、感度設定部、領域指定部)
21...データ処理部(出力部)
L...走査線
W...対象物
DESCRIPTION OF SYMBOLS 1 ... Displacement sensor system 10 ... Displacement sensor 11 ... Laser light source (light projection part)
15. Two-dimensional CCD (two-dimensional image sensor)
15A ... imaging surface 17 ... CCD drive circuit (light receiving processing part)
20 ... 1st control part (light reception control part, sensitivity setting part, area designation part)
21. Data processing unit (output unit)
L ... Scanning line W ... Object

Claims (5)

対象物に線状の光を照射する投光部と、
前記投光部から照射され前記対象物で反射した線状の反射光を受光可能な撮像面を有する二次元撮像素子と、
前記撮像面上の各画素での受光量に応じた受光信号を、前記線状の反射光の受光像に交差する走査線ごとに取り出す受光処理部と、
前記撮像面上の複数の領域を走査線単位で指定する領域指定部と、
前記領域指定部で指定された領域ごとに対応して個別の投受光感度を設定可能な感度設定部と、
前記領域指定部で指定された領域ごとに対応する投受光感度下で当該領域内の前記走査線の受光信号のみを前記受光処理部に取り出させ、その取り出された受光信号に応じた検出処理を実行する受光制御部と、を備える変位センサシステム。
A light projecting unit that irradiates the object with linear light;
A two-dimensional imaging device having an imaging surface capable of receiving linear reflected light irradiated from the light projecting unit and reflected by the object;
A light reception processing unit that extracts a light reception signal corresponding to the amount of light received by each pixel on the imaging surface for each scanning line intersecting a light reception image of the linear reflected light;
An area designating unit for designating a plurality of areas on the imaging surface in units of scanning lines;
A sensitivity setting unit capable of setting individual light receiving / receiving sensitivity corresponding to each region specified by the region specifying unit;
Under the light projecting / receiving sensitivity corresponding to each area designated by the area designating section, only the light receiving signal of the scanning line in the area is taken out by the light receiving processing section, and detection processing corresponding to the taken out light receiving signal is performed. A displacement sensor system comprising: a light reception control unit to be executed.
請求項1に記載の変位センサシステムであって、
表示部と、
前記受光処理部により取り出された受光信号に基づき前記各走査線における受光位置及び受光量の少なくとも一方に関する情報を前記表示部に表示させる表示制御部と、
操作部と、を備え、
前記領域指定部は、前記操作部でのユーザによる操作に基づき前記領域を指定する構成である、変位センサシステム。
The displacement sensor system according to claim 1,
A display unit;
A display control unit for displaying information on at least one of a light receiving position and a light receiving amount in each scanning line on the display unit based on a light receiving signal extracted by the light receiving processing unit;
An operation unit,
The said area designation | designated part is a displacement sensor system which is the structure which designates the said area | region based on operation by the user in the said operation part.
請求項2に記載の変位センサシステムであって、
前記表示制御部は、前記各領域に対応する投受光感度下で取り出された受光信号に基づく受光位置を、前記表示部に同時に図形表示させる、変位センサシステム。
The displacement sensor system according to claim 2,
The display control unit is a displacement sensor system that simultaneously displays a light receiving position based on a light receiving signal taken out under a light projecting / receiving sensitivity corresponding to each region on the display unit.
対象物に線状の光を照射する投光部と、
前記投光部から照射され前記対象物で反射した線状の反射光を受光可能な撮像面を有する二次元撮像素子と、
前記撮像面上の各画素での受光量に応じた受光信号を、前記線状の反射光の受光像に交差する走査線ごとに取り出す受光処理部と、
前記撮像面上の異なる領域ごとに対応して個別の投受光感度を設定可能な感度設定部と、
当該領域に対応する投受光感度下で当該領域内の前記走査線の受光信号のみを前記受光処理部に取り出させ、その取り出された受光信号に基づく検出処理を実行する受光制御部と、を備える変位センサ。
A light projecting unit that irradiates the object with linear light;
A two-dimensional imaging device having an imaging surface capable of receiving linear reflected light irradiated from the light projecting unit and reflected by the object;
A light reception processing unit that extracts a light reception signal corresponding to the amount of light received by each pixel on the imaging surface for each scanning line intersecting a light reception image of the linear reflected light;
A sensitivity setting unit capable of setting individual light receiving / receiving sensitivity corresponding to different areas on the imaging surface;
A light reception control unit that causes the light reception processing unit to extract only the light reception signal of the scanning line in the region under the light projection / reception sensitivity corresponding to the region, and executes a detection process based on the extracted light reception signal. Displacement sensor.
請求項4に記載の変位センサであって、
前記領域ごとに対応する投受光感度で取り出された受光信号に基づく受光位置及び受光量の少なくとも一方に関する情報を外部出力する出力部を備える、変位センサ。
The displacement sensor according to claim 4,
A displacement sensor comprising: an output unit that outputs information on at least one of a light receiving position and a light receiving amount based on a light receiving signal extracted with a light projecting / receiving sensitivity corresponding to each region.
JP2009088074A 2009-03-31 2009-03-31 Displacement sensor system and displacement sensor Expired - Fee Related JP5410138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009088074A JP5410138B2 (en) 2009-03-31 2009-03-31 Displacement sensor system and displacement sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009088074A JP5410138B2 (en) 2009-03-31 2009-03-31 Displacement sensor system and displacement sensor

Publications (2)

Publication Number Publication Date
JP2010237176A JP2010237176A (en) 2010-10-21
JP5410138B2 true JP5410138B2 (en) 2014-02-05

Family

ID=43091607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009088074A Expired - Fee Related JP5410138B2 (en) 2009-03-31 2009-03-31 Displacement sensor system and displacement sensor

Country Status (1)

Country Link
JP (1) JP5410138B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012215399A (en) * 2011-03-31 2012-11-08 Panasonic Industrial Devices Sunx Co Ltd Displacement sensor system and displacement sensor
JP6331308B2 (en) * 2013-09-26 2018-05-30 株式会社ニコン Shape measuring apparatus, structure manufacturing system, and shape measuring computer program

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09287926A (en) * 1996-04-24 1997-11-04 Hitachi Constr Mach Co Ltd Apparatus for measuring sectional shape
JPH11125508A (en) * 1997-10-21 1999-05-11 Toyota Central Res & Dev Lab Inc Measuring method for cross-sectional shape
JP2005308578A (en) * 2004-04-22 2005-11-04 Sunx Ltd Surface shape detecting device
JP2008045928A (en) * 2006-08-11 2008-02-28 Omron Corp Optical measuring device and control method of optical measuring device

Also Published As

Publication number Publication date
JP2010237176A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
KR100909325B1 (en) Displacement sensor
US10560634B2 (en) Image inspection apparatus and image inspection method
JP7251942B2 (en) SENSOR CALIBRATION SYSTEM, DISPLAY CONTROLLER, PROGRAM, AND SENSOR CALIBRATION METHOD
CN106210698B (en) The control method of depth camera
US20180348144A1 (en) Image Inspection Apparatus And Image Inspection Method
KR20140070120A (en) display device color- calibration apparatus and method thereof
US20100239124A1 (en) Image processing apparatus and method
CN108476295B (en) Method of generating an image from a plurality of images, thermal imaging camera and medium
CN101620816A (en) Method and system for evaluating stereoscopic image display panel
JP2005121486A (en) Three-dimensional measuring device
EP2784746A1 (en) Setting up an area sensing imaging system to capture single line images
JP5410138B2 (en) Displacement sensor system and displacement sensor
KR101523046B1 (en) Distance measurement apparatus of an image processing-based
US20220099836A1 (en) Method for measuring depth using a time-of-flight depth sensor
JP2012215399A (en) Displacement sensor system and displacement sensor
CN102401901B (en) Distance measurement system and distance measurement method
US20180246213A1 (en) Distance measurement device, distance measurement method, and distance measurement program
CN105929819B (en) Method for controlling electronic equipment and electronic equipment
EP2743803A1 (en) Automatic calibration of stylus location using mapping between color and location
JP4548595B2 (en) Sensor device
JP2011158306A (en) Two-dimensional displacement sensor
JP6182024B2 (en) Unevenness measuring method and unevenness measuring apparatus
JP4773802B2 (en) Displacement sensor
JP7080059B2 (en) Broadcast monitor unevenness detection device and unevenness correction system using the device
US20210035311A1 (en) Operation detection device and operation detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131106

R150 Certificate of patent or registration of utility model

Ref document number: 5410138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees