JP5394903B2 - Phosphor, production method thereof, and light source - Google Patents
Phosphor, production method thereof, and light source Download PDFInfo
- Publication number
- JP5394903B2 JP5394903B2 JP2009272267A JP2009272267A JP5394903B2 JP 5394903 B2 JP5394903 B2 JP 5394903B2 JP 2009272267 A JP2009272267 A JP 2009272267A JP 2009272267 A JP2009272267 A JP 2009272267A JP 5394903 B2 JP5394903 B2 JP 5394903B2
- Authority
- JP
- Japan
- Prior art keywords
- phosphor
- light
- raw material
- fluorine
- emission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 title claims description 148
- 238000004519 manufacturing process Methods 0.000 title claims description 25
- 239000002994 raw material Substances 0.000 claims description 59
- 239000000203 mixture Substances 0.000 claims description 44
- 229910052731 fluorine Inorganic materials 0.000 claims description 39
- 239000011737 fluorine Substances 0.000 claims description 39
- 239000002245 particle Substances 0.000 claims description 37
- 239000000843 powder Substances 0.000 claims description 34
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 26
- 229910004261 CaF 2 Inorganic materials 0.000 claims description 14
- 229910052757 nitrogen Inorganic materials 0.000 claims description 13
- 150000002222 fluorine compounds Chemical class 0.000 claims description 12
- 239000000126 substance Substances 0.000 claims description 7
- 229910016569 AlF 3 Inorganic materials 0.000 claims description 4
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims 1
- 229910052796 boron Inorganic materials 0.000 description 40
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 38
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 38
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 29
- 229910052582 BN Inorganic materials 0.000 description 28
- 230000005284 excitation Effects 0.000 description 28
- 239000011575 calcium Substances 0.000 description 22
- 239000001301 oxygen Substances 0.000 description 22
- 229910052760 oxygen Inorganic materials 0.000 description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 21
- 150000004767 nitrides Chemical class 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 17
- 238000010304 firing Methods 0.000 description 16
- 239000007791 liquid phase Substances 0.000 description 13
- 238000002156 mixing Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 12
- 238000003746 solid phase reaction Methods 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 10
- 239000012190 activator Substances 0.000 description 9
- 239000000654 additive Substances 0.000 description 9
- 102100032047 Alsin Human genes 0.000 description 8
- 101710187109 Alsin Proteins 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 230000000996 additive effect Effects 0.000 description 7
- 150000001639 boron compounds Chemical class 0.000 description 7
- 238000005245 sintering Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 238000005286 illumination Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000009877 rendering Methods 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 5
- 238000000295 emission spectrum Methods 0.000 description 5
- 229910052733 gallium Inorganic materials 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 229910052788 barium Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- -1 for example Chemical compound 0.000 description 4
- 238000005303 weighing Methods 0.000 description 4
- 229910052727 yttrium Inorganic materials 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 229910052787 antimony Inorganic materials 0.000 description 3
- 229910052785 arsenic Inorganic materials 0.000 description 3
- 229910052797 bismuth Inorganic materials 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- 229910052712 strontium Inorganic materials 0.000 description 3
- 229910052716 thallium Inorganic materials 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910052772 Samarium Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000007580 dry-mixing Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910016657 EuF Inorganic materials 0.000 description 1
- 229910016655 EuF 3 Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910005793 GeO 2 Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- 229910003668 SrAl Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Landscapes
- Luminescent Compositions (AREA)
- Led Device Packages (AREA)
Description
本発明はブラウン管(CRT)、フィールドエミッションディスプレイ(FED)、プラズマディスプレイ(PDP)などのディスプレイや、蛍光灯、蛍光表示管などの照明装置や、液晶バックライト用の発光装置等に使用される蛍光体及びその製造方法、並びに上記蛍光体を用いた光源に関する。 The present invention is a fluorescent lamp used for a display such as a cathode ray tube (CRT), a field emission display (FED), a plasma display (PDP), a lighting device such as a fluorescent lamp or a fluorescent display tube, a light emitting device for a liquid crystal backlight, etc. The present invention relates to a body, a manufacturing method thereof, and a light source using the phosphor.
現在、次世代照明として白色LED照明に注目が集まっている。これまで、照明装置として用いられてきた放電式蛍光灯、白熱電球などは、水銀などの有害物質が含まれている、寿命が短い、発熱が激しいといった諸問題を抱えていた。しかし、近年になって上記問題を解決することができる、白色LED照明に必要とされる青色や近紫外・紫外に発光する高輝度LEDが次々と開発され、白色LED照明を次世代の照明として利用できないかといった研究、開発が盛んに行われている。 Currently, white LED lighting is attracting attention as the next generation lighting. Until now, discharge-type fluorescent lamps and incandescent lamps used as lighting devices have various problems such as containing harmful substances such as mercury, short life, and intense heat generation. However, in recent years, high-intensity LEDs that emit blue, near-ultraviolet, and ultraviolet light, which are necessary for white LED lighting, have been developed one after another, and white LED lighting can be used as the next-generation lighting. Research and development of whether it can be used or not is actively conducted.
白色LED照明の方式としては2つ提案されており、一つは高輝度赤色LED、高輝度青色LED、高輝度緑色LEDの3原色LEDを使用するマルチチップ型方式と、他の一つは近年になって開発された高輝度紫外LED、高輝度青色LED等と、そのLEDから発生する紫外〜青色の光で励起される蛍光体とを組合わせたワンチップ型方式である。 Two types of white LED lighting have been proposed, one is a multi-chip type that uses three primary color LEDs: a high-intensity red LED, a high-intensity blue LED, and a high-intensity green LED. This is a one-chip type system that combines a high-intensity ultraviolet LED, a high-intensity blue LED, etc., developed in the past, and a phosphor excited by ultraviolet to blue light generated from the LED.
この2つの方式を比較すると、マルチチップ型に比べワンチップ型は1つのLEDと蛍光体との組合わせであるため小型化が可能であること、混色するための導光路が単純であること、また各LEDの駆動電圧、光出力の違い、温度特性などを考慮する必要がなく低コストであること、更には、ブロードな発光スペクトルを持つ蛍光体を使用することにより、白色光の発光スペクトルを太陽光スペクトルに近づけることができ、演色性に優れているために照明用光源として好ましいといった特徴を有しており、次世代照明としてはマルチチップ型方式に比べワンチップ型方式に注目が集まっている。 Comparing these two methods, the one-chip type is a combination of one LED and a phosphor compared to the multi-chip type, so it can be downsized, and the light guide for mixing colors is simple. In addition, it is not necessary to consider the driving voltage of each LED, the difference in light output, temperature characteristics, etc., and it is low cost. Furthermore, by using a phosphor with a broad emission spectrum, the emission spectrum of white light can be reduced. It has a feature that it can be close to the sunlight spectrum and is preferable as a light source for illumination because of its excellent color rendering properties. As a next-generation illumination, attention has been focused on the one-chip type method compared to the multi-chip type method. Yes.
この高輝度LEDと蛍光体とを組合わせたワンチップ型白色LED照明については、一般的に2つの方式が考えられている。一つは高輝度青色LEDと、当該LEDから発生する青色の光により励起されて黄色発光する蛍光体とを組合わせ、上記LEDの青色発光と上記蛍光体の黄色発光の補色関係を利用して白色を得るものと、他の一つは、近紫外・紫外発光するLEDと、当該LEDから発生する近紫外、紫外の光により励起されて赤色(R)発光する蛍光体、緑色(G)発光する蛍光体、青色(B)発光する蛍光体とを組合わせ、当該R・G・B及び他の蛍光体から得られる光の混色を利用して白色を得るものである。 In general, two types of one-chip type white LED lighting in which the high-intensity LED and the phosphor are combined are considered. One is a combination of a high-intensity blue LED and a phosphor that emits yellow light when excited by the blue light generated from the LED, and uses the complementary color relationship between the blue light emission of the LED and the yellow light emission of the phosphor. The one that obtains white color and the other is LED that emits near ultraviolet and ultraviolet light, phosphor that emits red (R) light when excited by near ultraviolet and ultraviolet light generated from the LED, green (G) light emission In combination with a phosphor that emits blue (B) light, and a white color is obtained using a color mixture of light obtained from the R, G, B and other phosphors.
前者の場合、即ち高輝度青色LEDと、当該LEDから発生する青色の光により励起されて黄色発光する蛍光体とを組み合わせた白色LED照明としては、高輝度青色LEDと黄色蛍光体 (Y, Gd)3(Al, Ga)5O12:Ce(YAG:Ce)とを組み合わせたものがある。この白色LED照明は光の青色と黄色が補色関係であることを利用しており、使用する蛍光体が近紫外・紫外LEDを使用する方式に比べ種類が少なくてすむといった特徴を持っている。更に、使用している黄色蛍光体YAG:Ceは青色LEDの波長460 nm付近に励起ピークを持っているため高効率で発光させることができ、高輝度の白色LED照明を得ることが可能である。 In the former case, that is, white LED lighting combining a high-intensity blue LED and a phosphor that emits yellow light when excited by the blue light generated from the LED, a high-intensity blue LED and a yellow phosphor (Y, Gd ) 3 (Al, Ga) 5 O 12 : Ce (YAG: Ce). This white LED illumination utilizes the fact that the blue and yellow light colors are complementary, and has the feature that fewer phosphors are used than the method using near-ultraviolet / ultraviolet LEDs. In addition, the yellow phosphor YAG: Ce used has an excitation peak near the wavelength of 460 nm of the blue LED, so it can emit light with high efficiency, and high-intensity white LED illumination can be obtained. .
後者の場合では、近紫外・紫外発光するLEDと、当該LEDから発生する近紫外、紫外の光により励起され赤色(R)発光する蛍光体、緑色(G)発光する蛍光体、青色(B)発光する蛍光体とを組合わせ、当該R・G・B及び他の蛍光体から得られる光の混色を利用して白色を得るものであるが、このR・G・B他の光により白色発光を得る方法は、R・G・Bの組み合わせや混合比などにより、白色光以外にも任意の発光色を得ることが可能であることや、補色関係ではなくR・G・Bを使用した混色関係により白色発光を得ているために演色性に優れているといった特徴を持っている。そして、当該用途に使用される蛍光体としては、赤色蛍光体であれば、例えば、Y2O2S:Eu、La2O2S:Eu、3.5MgO・0.5MgF2・GeO2:Mn、(La, Mn、Sm)2O2S・Ga2O3:Euがあり、緑色蛍光体であれば、例えば、ZnS:Cu,Al、SrAl2O4:Eu、BAM:Eu,Mn、Ba2SiO4:Euがあり、青色蛍光体であれば、例えば、BAM:Eu、Sr5(PO4)3Cl:Eu、ZnS:Ag、(Sr,Ca,Ba,Mg)10(PO4)6Cl:Euがある。 In the latter case, an LED that emits near ultraviolet / ultraviolet light, a phosphor that emits red (R) light when excited by near ultraviolet and ultraviolet light generated from the LED, a phosphor that emits green (G), and blue (B) Combined with a phosphor that emits light, white color is obtained by using the color mixture of light obtained from the R, G, B and other phosphors. In addition to white light, it is possible to obtain any emission color depending on the combination of R, G, and B, and the color mixture that uses R, G, and B instead of complementary colors. Due to the relationship, white light emission is obtained, so that the color rendering property is excellent. And as a phosphor used for the application, if it is a red phosphor, for example, Y 2 O 2 S: Eu, La 2 O 2 S: Eu, 3.5MgO · 0.5MgF 2 · GeO 2 : Mn, (La, Mn, Sm) 2 O 2 S · Ga 2 O 3: Eu may, if the green phosphor, for example, ZnS: Cu, Al, SrAl 2 O 4: Eu, BAM: Eu, Mn, Ba If there is 2 SiO 4 : Eu and a blue phosphor, for example, BAM: Eu, Sr 5 (PO 4 ) 3 Cl: Eu, ZnS: Ag, (Sr, Ca, Ba, Mg) 10 (PO 4 ) There is 6 Cl: Eu.
しかし、高輝度青色LEDと黄色蛍光体 (YAG:Ce)の組み合わせによる前者の白色LED照明については、可視光領域の長波長側の発光が不足してしまうため、若干青みを帯びた白色の発光となってしまい、600 nm 〜 650 nm付近における赤色の発光スペクトルが不足して、電球のようなやや赤みを帯びた白色発光を得ることができず、演色性が悪いといった問題がある。更に、励起範囲について黄色蛍光体YAG:Ceをみると、460 nm付近で最も高効率の励起帯を持つものの、広い範囲にわたり効率の良い励起帯を有しているわけではないために、青色LEDの製造時における発光素子のばらつきによる発光波長のばらつきによって、当該青色LEDの発光波長が、YAG:Ce系黄色蛍光体の最適励起範囲から外れてしまうことで、青色と黄色の波長バランスが崩れるという事態に至ることがある。当該事態に至ると、青色光と黄色光とを合成させて得られる白色光の色調が変化してしまうといった問題がある。 However, the former white LED lighting, which is a combination of a high-intensity blue LED and a yellow phosphor (YAG: Ce), has insufficient light emission on the long wavelength side in the visible light region. Thus, there is a problem that the red light emission spectrum in the vicinity of 600 nm to 650 nm is insufficient, white light emission slightly reddish like a light bulb cannot be obtained, and color rendering is poor. Furthermore, looking at the yellow phosphor YAG: Ce in terms of excitation range, it has the most efficient excitation band around 460 nm, but it does not have an efficient excitation band over a wide range. Due to variations in emission wavelength due to variations in light emitting elements during the manufacture of the LED, the emission wavelength of the blue LED deviates from the optimum excitation range of the YAG: Ce yellow phosphor. It may lead to a situation. When this happens, there is a problem that the color tone of white light obtained by combining blue light and yellow light changes.
また、近紫外・紫外LEDとR・G・B他の蛍光体との組み合わせによる後者の白色LED照明では、3色の蛍光体のうち赤色蛍光体が他の蛍光体に比べて励起範囲の近紫外・紫外領域において発光効率が悪いために、赤色蛍光体のみ混合割合を多くせざるを得ず、輝度を向上させる緑色蛍光体などが不足し高輝度の白色が得られない。更に、赤色蛍光体の発光スペクトルはシャープであるため演色性が悪いといった問題がある。 Also, in the latter white LED illumination, which is a combination of near-ultraviolet / ultraviolet LEDs and R, G, B and other phosphors, the red phosphor of the three color phosphors is closer to the excitation range than the other phosphors. Since the luminous efficiency is poor in the ultraviolet / ultraviolet region, the mixing ratio of only the red phosphor must be increased, and the green phosphor for improving the luminance is insufficient, so that a high luminance white color cannot be obtained. Furthermore, since the emission spectrum of the red phosphor is sharp, there is a problem that the color rendering is poor.
これらの問題を解決する方法としては、黄色から赤色(580 nm 〜 680 nm)の範囲にブロードなピークを持ち、励起光である近紫外・紫外から可視光(250 nm 〜 550 nm)という長波長側に良好な励起帯を持つ蛍光体が必要となる。最近では、長波長側に良好な励起帯を持ち、黄色から赤色にブロードな発光ピークが得られるオキシ窒化物ガラス蛍光体(例えば、特許文献1参照)や、サイアロンを母体とする蛍光体(例えば、特許文献2、3参照)、シリコンナイトライド系などの窒素を含有した蛍光体(例えば、特許文献4、5参照)が報告されている。そして、当該窒素を含有した蛍光体は、酸化物系蛍光体などと比較して共有結合の割合が多くなるため、波長 400 nm以上の光においても良好な励起帯を持つといった特徴があり、白色LED照明用蛍光体として注目を集めている。
To solve these problems, there is a broad peak in the range from yellow to red (580 nm to 680 nm), and a long wavelength from near UV / UV to visible light (250 nm to 550 nm), which is the excitation light. A phosphor with a good excitation band on the side is required. Recently, an oxynitride glass phosphor having a good excitation band on the long wavelength side and a broad emission peak from yellow to red (for example, see Patent Document 1), and a phosphor based on sialon (for example,
また、本発明者らにおいても、近紫外・紫外から可視光(250 nm 〜 550 nm)の波長域の光に良好な励起帯を持ち、黄色から赤色(580 nm 〜 680 nm)の範囲にブロードなピークを持つ窒素を含有する蛍光体を報告している(特願2004-55536号)。 In addition, the present inventors have a good excitation band for light in the wavelength range from near ultraviolet / ultraviolet to visible light (250 nm to 550 nm) and broaden the range from yellow to red (580 nm to 680 nm). A nitrogen-containing phosphor having a unique peak has been reported (Japanese Patent Application No. 2004-55536).
しかしながら本発明者が報告した蛍光体は、黄色から赤色(580 nm 〜 680 nm)の範囲にブロードなピークを持ち、励起光である近紫外・紫外から可視光(250 nm 〜 550 nm)という長波長側に良好な励起帯を持つという点では改善したものの、発光強度が満足すべき水準にないものが生ずるといった問題がある。そのため、近紫外・紫外LEDや青色LED等と組み合わせて白色LED照明を作製した場合にも、未だ赤色蛍光体のみ混合割合を多くせざるを得ず、輝度を向上させる緑色蛍光体などが不足し高輝度の白色が得られない場合がある。 However, the phosphors reported by the present inventor have a broad peak in the range from yellow to red (580 nm to 680 nm), and the long range of excitation light from near ultraviolet / ultraviolet to visible light (250 nm to 550 nm). Although it is improved in that it has a good excitation band on the wavelength side, there is a problem that the emission intensity is not at a satisfactory level. Therefore, even when white LED lighting is manufactured in combination with near-ultraviolet / ultraviolet LEDs, blue LEDs, etc., the mixing ratio of only red phosphors still has to be increased, and there are not enough green phosphors to improve the brightness. In some cases, a high brightness white color cannot be obtained.
そこで、本発明者らは、当該蛍光体において十分な発光強度が得られない原因を追求しながら、様々な蛍光体の試料を調製したところ、使用する原料の融点が高く固相反応が進行し難いために、反応が不均一になっているのではないかという考えに至った。 Accordingly, the present inventors prepared various phosphor samples while pursuing the reason why sufficient emission intensity could not be obtained with the phosphor. As a result, the raw material used had a high melting point and the solid-phase reaction proceeded. Because of the difficulty, they came up with the idea that the reaction might be uneven.
本発明は、上述の課題を考慮してなされたものであり、黄色から赤色(580 nm〜 680 nm)の範囲にブロードなピークを持ち、励起光である近紫外・紫外から可視光(250 nm 〜 550 nm)という長波長側に良好な励起帯を持つとともに、発光強度が向上した蛍光体を提供することにある。
本発明の他の目的は、黄色から赤色(580 nm 〜 680 nm)の範囲にブロードなピークを持ち、励起光である近紫外・紫外から可視光(250 nm 〜 550 nm)という長波長側に良好な励起帯を持つとともに、発光強度を向上させることができる蛍光体の製造方法を提供することにある。
本発明の更に他の目的は、黄色から赤色(580 nm 〜 680 nm)の範囲にブロードなピークを持ち、励起光である近紫外・紫外から可視光(250 nm 〜 550 nm)という長波長側に良好な励起帯を持つとともに、発光強度が向上した蛍光体を用いた光源を提供することにある。
The present invention has been made in consideration of the above-mentioned problems, and has a broad peak in the range from yellow to red (580 nm to 680 nm), and from near ultraviolet / ultraviolet to visible light (250 nm) that is excitation light. The object is to provide a phosphor having a good excitation band on the long wavelength side (˜550 nm) and an improved emission intensity.
Another object of the present invention is to have a broad peak in the range from yellow to red (580 nm to 680 nm), from the near ultraviolet / ultraviolet light that is the excitation light to the long wavelength side of visible light (250 nm to 550 nm). An object of the present invention is to provide a method for producing a phosphor that has a good excitation band and can improve the emission intensity.
Still another object of the present invention is to have a broad peak in the range from yellow to red (580 nm to 680 nm), and from the near ultraviolet / ultraviolet to the visible light (250 nm to 550 nm), which is the excitation light, on the long wavelength side. It is another object of the present invention to provide a light source using a phosphor having a good excitation band and an improved emission intensity.
本発明者らは、固相反応の進行を促進し均一な反応を実現するため、更に研究をおこない、当該蛍光体中へ、フッ素を含有させることに想到した。
即ち、上述の課題を解決するための第1の構成は、 組成式M m A a B b N n :Z(但し、M元素はII価の価数をとるCaであり、A元素はIII価をとるAlであり、B元素はIV価をとるSiであり、Oは酸素であり、Nは窒素であり、Z元素はEuであり、m = a = b = 1、n=2/3m+a+4/3bである。)で表記され、更にフッ素を0.1重量%以上、3.0 重量%以下含有することを特徴とする蛍光体である。
The present inventors have further studied to promote the progress of the solid-phase reaction and realize a uniform reaction, and have come up with the idea that fluorine is contained in the phosphor.
That is, the first configuration for solving the above-described problem is a composition formula M m A a B b N n : Z (where M element is Ca having a valence of II, and A element is a valence of III Al, B element is Si having IV value, O is oxygen, N is nitrogen, Z element is Eu, m = a = b = 1, n = 2 / 3m + a + 4 / 3b )), and further containing 0.1 wt% or more and 3.0 wt% or less of fluorine.
第2の構成は、上記蛍光体が粉末状であることを特徴とする第1の構成に記載の蛍光体である。
A second configuration is the phosphor according to the first configuration, wherein the phosphor is in a powder form .
第3の構成は、第2の構成に記載の蛍光体であって、上記蛍光体の平均粒度が20μm以下、0.1μm以上であることを特徴とする蛍光体である。
A third configuration is the phosphor according to the second configuration, wherein the phosphor has an average particle size of 20 μm or less and 0.1 μm or more.
第4の構成は、第1乃至第3の構成のいずれかに記載の蛍光体の製造方法であって、組成式MmAaBbOoNn:Zと表記される蛍光体の原料に、フッ素化合物を添加することを特徴とする蛍光体の製造方法である。
A fourth configuration is a method for manufacturing the phosphor according to any one of the first to third configurations , and is a phosphor raw material represented by a composition formula M m A a B b O o N n : Z to a method for producing a phosphor comprising adding a full Tsu-containing compound.
第5の構成は、第4の構成に記載の蛍光体の製造方法であって、
上記蛍光体の原料であるAlN及びSi3N4の平均粒径を0.1μmから10.0μmとすることを特徴とする蛍光体の製造方法である。
The fifth configuration is a method of manufacturing the phosphor according to the fourth configuration ,
The phosphor manufacturing method is characterized in that the average particle diameter of AlN and Si 3 N 4 which are raw materials of the phosphor is 0.1 μm to 10.0 μm.
第6の構成は、第4又は第5の構成に記載の蛍光体の製造方法であって、上記フッ素化合物がCaF2及び/または AlF3であることを特徴とする蛍光体の製造方法である。
A sixth configuration is a method for manufacturing a phosphor according to the fourth or fifth configuration, wherein the fluorine compound is CaF 2 and / or AlF 3. .
第7の構成は、第1乃至第3の構成のいずれかに記載の蛍光体と、発光部とを有することを特徴とする光源である。
A seventh configuration is a light source including the phosphor according to any one of the first to third configurations and a light emitting unit.
第8の構成は、第7の構成に記載の光源であって、上記発光部が発する光の波長が250 nm 〜 550 nmであることを特徴とする光源である。
An eighth configuration is the light source according to the seventh configuration , wherein the light emitted from the light emitting unit has a wavelength of 250 nm to 550 nm.
第9の構成は、第7又は第8の構成に記載の光源であって、上記発光部としてLED(発光ダイオード)を用いることを特徴とする光源である。
A ninth configuration is a light source according to the seventh or eighth configuration , wherein an LED (light emitting diode) is used as the light emitting unit.
第1乃至第6の構成に係る蛍光体によれば、組成式MmAaBbOoNn:Z(但し、M元素はII価の価数をとる1種以上の元素であり、A元素はIII価の価数をとるAl、Ga、In、Tl、Y、Sc、P、As、Sb、Biのうちの1種以上の元素であり、B元素はIV価の価数をとる1種以上の元素であり、Oは酸素であり、Nは窒素であり、Z元素は希土類元素または遷移金属元素から選択される少なくとも1つ以上の元素であり、更にm > 0、a > 0、b > 0、n = 2/3m + a + 4/3b - 2/3o、o ≧ 0である。)で表記され、特にm、a、bの値がm = a = b = 1、oの値がo = 0であり、M元素はCa、A元素はAl、B元素はSi、Z元素はEuであることを特徴とする蛍光体では、発光のピーク波長が580 nm 〜 680 nmの範囲にあるという優れた発光特性を有し、更には、紫外〜可視光(波長250 nm 〜 550 nm)の広範囲な波長域に、平坦で効率の高い励起帯を持つという励起帯特性を有している。 According to the phosphors according to the first to sixth configurations, the composition formula M m A a B b O o N n : Z (where M element is one or more elements having a valence of II, A element is one or more elements of Al, Ga, In, Tl, Y, Sc, P, As, Sb, and Bi that have a valence of III, and B element has a valence of IV One or more elements, O is oxygen, N is nitrogen, Z element is at least one element selected from rare earth elements or transition metal elements, and m> 0, a> 0 , B> 0, n = 2 / 3m + a + 4 / 3b-2 / 3o, o ≥ 0.) In particular, the values of m, a, and b are m = a = b = 1, o In the phosphor characterized in that the value of o is 0, the M element is Ca, the A element is Al, the B element is Si, and the Z element is Eu, the emission peak wavelength is 580 nm to 680 nm. In addition, it has excellent emission characteristics in the range, and furthermore, it is flat and efficient in a wide wavelength range from ultraviolet to visible light (wavelength 250 nm to 550 nm). It has the excitation band characteristics that have with the excitation band.
また、上記蛍光体が、ホウ素及び/またはフッ素を含有することから、焼成中に生じる液相の生成温度が低下して、固相反応がより均一に進行するので、当該蛍光体の発光強度を向上させることができる。 In addition, since the phosphor contains boron and / or fluorine, the liquid phase generation temperature generated during firing is lowered, and the solid-phase reaction proceeds more uniformly. Can be improved.
更に、ホウ素含有量が0.001重量%以上、3.0 重量%以下である蛍光体、フッ素含有量が0.1重量%以上、 3.0 重量%以下である蛍光体であれば、焼成中に生じる液相の生成温度が低下して固相反応がより均一に進行する他、激しい焼結を抑えることもできるため、当該蛍光体の発光効率をより一層向上させることができる。 Furthermore, if the phosphor has a boron content of 0.001% to 3.0% by weight and the phosphor has a fluorine content of 0.1% to 3.0% by weight, the liquid phase formation temperature generated during firing The solid phase reaction proceeds more uniformly and the intense sintering can be suppressed, so that the luminous efficiency of the phosphor can be further improved.
第7及び第8の構成に係る蛍光体が粉末状であることから、蛍光体の塗布または充填を容易に実施できる。更に、蛍光体の粉末の平均粒度が20μm以下、0.1μm以上であることから、発光効率を向上させることができる。 Since the phosphors according to the seventh and eighth configurations are in powder form, the phosphor can be easily applied or filled. Furthermore, since the average particle size of the phosphor powder is 20 μm or less and 0.1 μm or more, the luminous efficiency can be improved.
第9乃至第11の構成に係る蛍光体の製造方法によれば、蛍光体の原料以外に添加剤としてホウ素化合物、例えばBN、H3BO3を添加することにより、固相反応の過程で生じる液相の生成温度を低下させることができ、発光効率が向上した蛍光体を製造することができる。 According to the method for manufacturing a phosphor according to the ninth to eleventh configurations, a boron compound such as BN or H 3 BO 3 is added as an additive in addition to the phosphor raw material, which occurs in the course of a solid-phase reaction. The production temperature of the liquid phase can be lowered, and a phosphor with improved luminous efficiency can be produced.
また、蛍光体の原料以外に添加剤としてフッ素化合物、例えばCaF2、AlF3を添加することによっても、固相反応の過程で生じる液相の生成温度を低下させることができ、発光効率が向上した蛍光体を製造することができる。 In addition to phosphor materials, fluorine compounds such as CaF 2 and AlF 3 can be added as additives to lower the liquid phase formation temperature generated during the solid-phase reaction, improving luminous efficiency. The phosphor can be manufactured.
第12の構成に係る蛍光体の製造方法によれば、平均粒径が0.1μmから10.0μmのAlN、Si3N4を使用することで、塗布や充填、更には発光強度の向上に適した粒径の蛍光体を製造することができる。 According to the phosphor manufacturing method according to the twelfth configuration, AlN and Si 3 N 4 having an average particle diameter of 0.1 μm to 10.0 μm are used, which is suitable for coating and filling, and further for improving the emission intensity. A phosphor having a particle size can be produced.
第13乃至第15の構成に係る光源は、蛍光体が、発光部(第15の構成ではLED)が発光する所定の広い波長域(250 nm 〜 550 nm)の光に励起帯を有して発光するため、これらの蛍光体と発光部との組み合わせにより、可視光または白色光を発光する発光効率の高い光源を得ることができる。 In the light sources according to the thirteenth to fifteenth configurations, the phosphor has an excitation band in light of a predetermined wide wavelength range (250 nm to 550 nm) emitted from the light emitting unit (LED in the fifteenth configuration). Since light is emitted, a combination of these phosphors and a light-emitting portion can provide a light source with high luminous efficiency that emits visible light or white light.
以下、本発明を実施するための最良の形態を説明する。
本実施の形態は、黄色から赤色(580 nm 〜 680 nm)の範囲にブロードなピークを持ち、励起光である近紫外・紫外から可視光(250 nm 〜 550 nm)という長波長側に平坦で効率の高い励起帯を持つ蛍光体であり、更に、当該蛍光体中にホウ素及び/またはフッ素を含有することにより、優れた発光強度を得ることができる蛍光体及びその製造方法である。
Hereinafter, the best mode for carrying out the present invention will be described.
This embodiment has a broad peak in the range from yellow to red (580 nm to 680 nm), and is flat on the long wavelength side from the near ultraviolet / ultraviolet to visible light (250 nm to 550 nm). A phosphor having a highly efficient excitation band, and further a phosphor capable of obtaining excellent emission intensity by containing boron and / or fluorine in the phosphor and a method for producing the same.
ホウ素含有量が0.001重量%以上、3.0 重量%以下である蛍光体では、優れた発光特性を得ることができる。このホウ素含有量は、より好ましくは0.05重量%から2.0重量%であり、更に好ましくは0.15重量%から0.35重量%である。詳細な理由は不明であるが、窒化物は一般的に融点の高いものが多く、固相反応させた際に液相が生じ難く、反応がスムーズに進行しない場合が多い。しかし、ホウ素を含有したものでは、液相の生成温度が低下し、液相が生じやすくなるために、反応が促進され、更には固相反応がより均一に進行するために発光特性の優れた蛍光体を得ることができると考えられる。 With a phosphor having a boron content of 0.001 wt% or more and 3.0 wt% or less, excellent light emission characteristics can be obtained. The boron content is more preferably 0.05% to 2.0% by weight, still more preferably 0.15% to 0.35% by weight. Although the detailed reason is unknown, many nitrides generally have a high melting point, and it is difficult for a liquid phase to occur when a solid-phase reaction is performed, and the reaction does not often proceed smoothly. However, in the case of containing boron, the liquid phase formation temperature is lowered and the liquid phase is easily generated, so that the reaction is promoted, and furthermore, the solid phase reaction proceeds more uniformly, so that the emission characteristics are excellent. It is considered that a phosphor can be obtained.
ホウ素含有量が3.0 重量%以下であれば、焼結が激しくならず、解砕工程で発光特性が低下しないので所望の効果が得られる。更に、ホウ素が3.0 重量%以下の含有であれば、優れた発光強度を示す母体構造を維持できるために好ましいと考えられる。また、ホウ素含有量が0.001重量%以上であれば、液相の生成が十分になされ所望の効果が得られるものと考えられる。 If the boron content is 3.0% by weight or less, sintering does not become vigorous, and the light emission characteristics do not deteriorate in the crushing step, so that a desired effect can be obtained. Furthermore, if boron is contained in an amount of 3.0% by weight or less, it can be considered preferable because a base structure exhibiting excellent emission intensity can be maintained. Further, if the boron content is 0.001% by weight or more, it is considered that the liquid phase is sufficiently generated and a desired effect is obtained.
また、フッ素含有量が0.1重量%以上、 3.0 重量%以下である蛍光体においても優れた発光強度を得ることができる。このフッ素含有量は、より好ましくは0.10重量%から2.0重量%である。詳細な理由は不明であるが、この原因としても、窒化物は一般的に融点の高いものが多く、固相反応させた際に液相が生じ難く、反応がスムーズに進行しない場合が多いが、フッ素を含有したものでは、ホウ素の場合と同様に液相の生成温度が低下し、液相が生じやすくなるために、反応が促進され、更には固相反応がより均一に進行するために発光特性の優れた蛍光体を得ることができると考えられる。 Also, excellent emission intensity can be obtained even in a phosphor having a fluorine content of 0.1 wt% or more and 3.0 wt% or less. The fluorine content is more preferably 0.10 wt% to 2.0 wt%. Although the detailed reason is unknown, even for this reason, nitrides generally have a high melting point, and a liquid phase is difficult to occur when a solid-phase reaction occurs, and the reaction often does not proceed smoothly. In the case of containing fluorine, the liquid phase formation temperature is lowered as in the case of boron, the liquid phase is likely to be generated, the reaction is promoted, and the solid phase reaction proceeds more uniformly. It is considered that a phosphor having excellent emission characteristics can be obtained.
フッ素含有量が3.0 重量%以下であれば、焼結が激しくならず、解砕工程で発光特性が低下しないので所望の効果が得られる。更に、フッ素が3.0 重量%以下の含有であれば、発光に寄与しない不純物相が生成せず、発光特性の低下を招くこともないので好ましいと考えられる。また、フッ素含有量が0.1重量%以上であれば、液相の生成が十分になされ、所望の効果が得られるものと考えられる。 If the fluorine content is 3.0% by weight or less, sintering does not become vigorous, and the light emission characteristics do not deteriorate in the crushing step, so that a desired effect can be obtained. Further, if the content of fluorine is 3.0% by weight or less, it is considered preferable because an impurity phase that does not contribute to light emission is not generated and the light emission characteristics are not deteriorated. Further, if the fluorine content is 0.1% by weight or more, it is considered that the liquid phase is sufficiently generated and the desired effect can be obtained.
本実施の形態の蛍光体では、上記含有量のホウ素、フッ素を単独で含む場合だけでなく、ホウ素含有量が 0.001重量%以上、3.0 重量%以下であり、且つ、フッ素含有量が0.1重量%以上、 3.0 重量%以下である場合でも良い。 In the phosphor of the present embodiment, not only the case where boron and fluorine having the above contents are contained alone, but also the boron content is 0.001 wt% or more and 3.0 wt% or less, and the fluorine content is 0.1 wt%. As described above, it may be 3.0% by weight or less.
また、本実施の形態に係る蛍光体は、組成式MmAaBbOoNn:Zと表記される蛍光体である。ここで、M元素はII価の価数をとる1種以上の元素であり、A元素はIII価の価数をとるAl、Ga、In、Tl、Y、Sc、P、As、Sb、Biのうちの1種以上の元素であり、B元素はIV価の価数をとる1種以上の元素であり、Oは酸素であり、Nは窒素であり、Z元素は希土類元素または遷移金属元素から選択される少なくとも1つ以上の元素である。 Further, the phosphor according to the present embodiment is a phosphor represented by the composition formula M m A a B b O o N n : Z. Here, the M element is one or more elements having a valence of II, and the A element is Al, Ga, In, Tl, Y, Sc, P, As, Sb, Bi having a valence of III. Is one or more elements, B element is one or more elements having a valence of IV, O is oxygen, N is nitrogen, and Z element is a rare earth element or a transition metal element Is at least one element selected from
更に、組成式MmAaBbOoNn:Zの蛍光体が化学的に安定な組成をとると、当該蛍光体中に、発光に寄与しない不純物相が生じにくくなるため、発光特性の低下を抑制でき好ましい構成である。そこで、当該蛍光体に化学的に安定な組成をとらせるため、当該蛍光体は、上述した組成式MmAaBbOoNn:Zにおいて、m > 0、a > 0、b > 0、n = 2/3m + a + 4/3b - 2/3o、o ≧ 0を満たす組成であることが好ましい。 Furthermore, when the phosphor of the composition formula M m A a B b O o N n : Z has a chemically stable composition, an impurity phase that does not contribute to light emission is less likely to occur in the phosphor, and thus the emission characteristics This is a preferable configuration that can suppress a decrease in the thickness. Therefore, in order to make the phosphor have a chemically stable composition, the phosphor has the following composition formula M m A a B b O o N n : Z, m> 0, a> 0, b> Preferably, the composition satisfies 0, n = 2 / 3m + a + 4 / 3b-2 / 3o, and o ≧ 0.
更に、上述した組成式MmAaBbOoNn:Zの組成を有する蛍光体において、M元素が+II価、A元素が+III価、B元素が+IV価の元素であり、酸素が−II価の元素、窒素が−III価の元素であることからm 、 a 、b 、o、nが、n = 2/3m + a + 4/3b - 2/3oを成立するような組成であると、各元素の価数を足し合わせるとゼロとなり、当該蛍光体の組成は更に安定な化合物となり好ましい。特に、o = 0をとりm : a : b : n = 1 : 1 : 1 : 3となる場合には、特に発光特性、励起帯特性に優れた蛍光体となる。 Further, in the phosphor having the composition of the above-described composition formula M m A a B b O o N n : Z, the M element is an element of + II valence, the A element is + III valence, the B element is an element of + IV valence, Since the element of -II valence and nitrogen is the element of -III valence, m, a, b, o, n have a composition such that n = 2 / 3m + a + 4 / 3b-2 / 3o If it exists, it will become zero, if the valence of each element is added together, and the composition of the said fluorescent substance becomes a more stable compound, and is preferable. In particular, when o = 0 and m: a: b: n = 1: 1: 1: 3, the phosphor is particularly excellent in emission characteristics and excitation band characteristics.
尤も、いずれの場合でも、当該蛍光体の組成を示す上記組成式からの若干の組成のずれは許容される。例えば、o = 0、m : a : b : n = 1 : 1 : 1 : 3として作製した蛍光体は、基本的に酸素を含有しないが、上述した蛍光体が酸素を含んでいる場合がある。この酸素は、当初から原料に含まれている酸素や表面に付着していた酸素、焼成仕込み時や焼成時に原料の表面が酸化したことで混合した酸素、及び焼成後に蛍光体表面に吸着した酸素であると考えられる。この結果、当該蛍光体の質量に対し、3重量%以下の酸素が含まれてしまうことがある。 However, in any case, a slight compositional deviation from the composition formula showing the composition of the phosphor is allowed. For example, a phosphor produced with o = 0, m: a: b: n = 1: 1: 1: 1: 3 basically does not contain oxygen, but the above-mentioned phosphor may contain oxygen. . This oxygen is the oxygen contained in the raw material from the beginning, the oxygen adhering to the surface, the oxygen mixed by oxidizing the surface of the raw material at the time of firing preparation or firing, and the oxygen adsorbed on the phosphor surface after firing It is thought that. As a result, 3% by weight or less of oxygen may be contained with respect to the mass of the phosphor.
前記M元素は、Be、Mg、Ca、Sr、Ba、Zn、Cd、Hgから選択される少なくとも1つ以上の元素であることが好ましく、更には、Mg、Ca、Sr、Ba、Znから選択される少なくとも1つ以上の元素であることが好ましく、Caであることが最も好ましい。 The M element is preferably at least one element selected from Be, Mg, Ca, Sr, Ba, Zn, Cd, Hg, and further selected from Mg, Ca, Sr, Ba, Zn Preferably, the element is at least one element, and most preferably Ca.
前記A元素は、前述のAl、Ga、In、Tl、Y、Sc、P、As、Sb、BiなどIII価の価数をとる元素から選択される少なくとも1つ以上の元素であることが好ましく、更にはAl、Gaから選択される少なくとも1つ以上の元素であることが好ましく、Alであることが最も好ましい。Alは、窒化物であるAlNが一般的な熱伝材料や構造材料として用いられており、入手容易且つ安価であり加えて環境負荷も小さく好ましい。 The element A is preferably at least one element selected from elements having a valence of III such as Al, Ga, In, Tl, Y, Sc, P, As, Sb, and Bi described above. Furthermore, it is preferably at least one element selected from Al and Ga, and most preferably Al. As Al, nitride AlN is used as a general heat transfer material or structural material, and it is easy to obtain and inexpensive, and in addition, the environmental load is also small and preferable.
前記B元素は、C、Si、Ge、Sn、Ti、Hf、Mo、W、Cr、Pb、ZrなどIV価の価数をとる元素から選択される少なくとも1つ以上の元素であることが好ましく、更には、Si及び/またはGeであることが好ましく、Siであることが最も好ましい。Siは、窒化物であるSi3N4が一般的な熱伝材料や構造材料として用いられており、入手容易且つ安価であり加えて環境負荷も小さく好ましい。 The element B is preferably at least one element selected from elements having an IV valence such as C, Si, Ge, Sn, Ti, Hf, Mo, W, Cr, Pb, and Zr. Further, Si and / or Ge are preferable, and Si is most preferable. As Si, nitride Si 3 N 4 is used as a general heat transfer material or structural material, and it is easy to obtain and inexpensive, and in addition, the environmental load is small and preferable.
前記Z元素は、希土類元素または遷移金属元素から選択される少なくとも1つ以上の元素であることが好ましいが、例えば当該蛍光体を用いた照明装置や発光装置に良好な演色性を発揮させるためには、当該蛍光体の発光が半値幅の広いスペクトルであることが好ましい。そして、当該観点から、Z元素はEu、Mn、Sm、Ceから選択される少なくとも1つ以上の元素であることが好ましい。中でも、Z元素にEuを用いると、当該蛍光体は橙色から赤色にかけて強い発光を示すため発光効率及び演色性が高く、照明装置や発光装置に使用される蛍光体の付活剤としてより好ましい。 The Z element is preferably at least one element selected from rare earth elements or transition metal elements. For example, in order to exhibit good color rendering properties in a lighting device or a light emitting device using the phosphor. The emission of the phosphor is preferably a spectrum with a wide half width. From this viewpoint, it is preferable that the Z element is at least one element selected from Eu, Mn, Sm, and Ce. Among these, when Eu is used as the Z element, the phosphor exhibits strong light emission from orange to red, and thus has high luminous efficiency and color rendering properties, and is more preferable as an activator for the phosphor used in lighting devices and light emitting devices.
尚、当該蛍光体の組成のM元素の一部を置換したZ元素の種類によって、異なった波長の発光を有する蛍光体を得ることができる。 In addition, the fluorescent substance which has light emission of a different wavelength can be obtained with the kind of Z element which substituted a part of M element of the said fluorescent substance composition.
また、当該蛍光体をMmAaBbOoNn:Zzと表記した際、Z元素の添加量は、M元素と付活剤Z元素とのモル比z/(m+z)が0.0001以上、0.5以下の範囲にあることが好ましい。M元素と付活剤Z元素とのモル比z/(m+z)が当該範囲にあると、付活剤の含有量の過剰に起因する濃度消光による発光効率の低下を回避でき、他方、付活剤の含有量の過少に起因する発光寄与原子の不足による発光効率の低下も回避できる。加えて、上記z/(m+z)の値が、0.005以上、0.1以下の範囲内であるとより好ましい。但し、z/(m+z)の値の範囲の最適値は、付活剤元素Zの種類及びM元素の種類により若干変動する。更に、付活剤元素Zの添加量制御によっても、当該蛍光体の発光波長のピーク波長をシフトさせて設定することができ、輝度の調整の際に有益である。 Further, when the phosphor is expressed as M m A a B b O o N n : Z z , the addition amount of the Z element is the molar ratio z / (m + z) between the M element and the activator Z element. Is preferably in the range of 0.0001 or more and 0.5 or less. When the molar ratio z / (m + z) between the M element and the activator Z element is in the range, it is possible to avoid a decrease in light emission efficiency due to concentration quenching due to excessive activator content, It is also possible to avoid a decrease in light emission efficiency due to a lack of light emission contributing atoms due to an insufficient activator content. In addition, the value of z / (m + z) is more preferably in the range of 0.005 or more and 0.1 or less. However, the optimum value in the range of z / (m + z) varies slightly depending on the type of activator element Z and the type of M element. Furthermore, by controlling the addition amount of the activator element Z, the peak wavelength of the emission wavelength of the phosphor can be set by shifting, which is useful when adjusting the luminance.
一方、上述した組成式MmAaBbOoNn:Zの組成を有する蛍光体において、酸素のモル比oを制御することにより当該蛍光体の結晶構造を変化させ、当該蛍光体の発光波長のピーク波長を、600 nm 〜 660 nmの範囲でシフトさせることができる。ただし、m = a = b = 1の場合、酸素のモル比oは、0 ≦ o ≦ mの範囲で制御することが好ましく、更に好ましくは0 ≦ o ≦ 0.3の範囲で制御する。 On the other hand, in the phosphor having the composition of the above-described composition formula M m A a B b O o N n : Z, the crystal structure of the phosphor is changed by controlling the molar ratio o of oxygen, The peak wavelength of the emission wavelength can be shifted in the range of 600 nm to 660 nm. However, when m = a = b = 1, the molar ratio o of oxygen is preferably controlled in the range of 0 ≦ o ≦ m, more preferably in the range of 0 ≦ o ≦ 0.3.
本実施の形態における蛍光体を粉体の形で用いる場合には、当該蛍光体粉体の平均粒径が20μm以下であることが好ましい。これは、蛍光体粉体において発光は主に粒子表面で起こると考えられるため、平均粒径が20μm以下であれば、粉体単位重量あたりの表面積を確保でき輝度の低下を回避できるからである。更に、当該粉体をペースト状とし、発光体素子等に塗布した場合にも当該粉体の密度を高めることができ、この観点からも輝度の低下を回避することができる。また、本発明者らの検討によると、詳細な理由は不明であるが、蛍光体粉末の発光効率の観点から、平均粒径が0.1μmより大きいことが好ましいことも判明した。以上のことより、本実施の形態における蛍光体粉体の平均粒径は、0.1μm以上20μm以下であることが好ましい。 When the phosphor in the present embodiment is used in the form of powder, the average particle size of the phosphor powder is preferably 20 μm or less. This is because light emission is considered to occur mainly on the particle surface in the phosphor powder, and if the average particle size is 20 μm or less, a surface area per unit weight of the powder can be secured and a reduction in luminance can be avoided. . Furthermore, the density of the powder can be increased even when the powder is formed into a paste and applied to a light-emitting element or the like, and a decrease in luminance can be avoided also from this viewpoint. Further, according to the study by the present inventors, although the detailed reason is unknown, it has been found that the average particle size is preferably larger than 0.1 μm from the viewpoint of the luminous efficiency of the phosphor powder. From the above, the average particle diameter of the phosphor powder in the present embodiment is preferably 0.1 μm or more and 20 μm or less.
本実施の形態における蛍光体の製造に際して、M元素(+II価)、A元素(+III価)、B元素(+IV価)の原料として、それぞれの窒化物、酸化物、いずれの化合物を用いても良い。例えば、M元素の窒化物(M3N2)・酸化物(MO)、A元素、B元素の窒化物(AN,B3N4)を用いて混合してもよい。そして、この窒化物、酸化物、両者の配合比を制御することで、mの値を変えることなく蛍光体中の酸素量、窒素量の制御をおこなうことができる。勿論、窒化物、酸化物とはいっても、酸素のみと化合した化合物、窒素のみと化合した化合物に限る意味ではなく、例えば、炭酸塩、蓚酸塩等のように焼成中に分解し、実質的に酸化物となる当該元素と酸素とを有する化合物のことであり、窒化物の場合も当該元素と窒素とを有する化合物のことである。 In the production of the phosphor in the present embodiment, any of the nitrides, oxides, and compounds may be used as raw materials for the M element (+ II valence), A element (+ III valence), and B element (+ IV valence). good. For example, M element nitride (M 3 N 2 ), oxide (MO), A element, and B element nitride (AN, B 3 N 4 ) may be used for mixing. By controlling the compounding ratio of the nitride, oxide, and both, the amount of oxygen and nitrogen in the phosphor can be controlled without changing the value of m. Of course, nitrides and oxides are not limited to compounds combined only with oxygen and compounds combined only with nitrogen, but are decomposed during firing, such as carbonates and oxalates. In the case of a nitride, it is a compound having the element and nitrogen.
但し、以下の説明においては便宜のため、当該元素と酸素とを有する化合物として、当該元素の酸化物、当該元素と窒素とを有する化合物として、当該元素の窒化物を例として説明する。 However, in the following description, for convenience, the compound having the element and oxygen will be described as an example of the oxide of the element, and the nitride of the element as the compound having the element and nitrogen.
例えば、酸素のモル比o = 0、m = a = b = 1の条件で秤量する場合であれば、各原料をモル比でM3N2 : AN : B3N4= 1 : 3 : 1で秤量すれば良い。更に、このとき、付活剤のZ元素が例えばII価の元素の場合は、Z元素はM元素の一部を置換するため、この置換を考慮して当該蛍光体をMmAaBbOoNn:Zzと表記した際、(m + z) = a = b = 1とすることが好ましい。これにより、当該蛍光体の組成は化学的に安定な組成をとることができる。また酸素のモル比o = 0.25、m = a = b = 1の条件で秤量する場合であれば、各原料をモル比でM3N2 : MO : AN : B3N4= 0.75 : 0.75 : 3 : 1で秤量すれば良い。 For example, when weighing under the conditions of oxygen molar ratio o = 0, m = a = b = 1, each raw material is molar ratio M 3 N 2 : AN: B 3 N 4 = 1: 3: 1 And weigh it. Further, at this time, if the element Z, for example, II-valent element of the activator, the element Z substitute a part of the element M, the phosphor in consideration of this replacement M m A a B b When expressed as O o N n : Z z , it is preferable that (m + z) = a = b = 1. Thereby, the composition of the phosphor can be a chemically stable composition. If the oxygen molar ratio o = 0.25 and m = a = b = 1 are weighed, each raw material is molar ratio M 3 N 2 : MO: AN: B 3 N 4 = 0.75: 0.75: Weighing with 3: 1.
更に、本実施の形態においては、ホウ素化合物、フッ素化合物を添加剤として添加することにより、発光特性が向上することを見出した。この場合、焼成後の試料中にホウ素が3.0 重量%以下になるようにホウ素化合物、例えば、BN、H3BO3、B2O6、B2O3、BCl3などを添加すると良く、中でもBN、H3BO3が好ましい。これらホウ素化合物の混合使用も可能である。ホウ素化合物は熱伝導率が高い物質であるため、原料に添加することにより、焼成中における原料の温度分布が均一となり、固相反応を促進させるために発光特性が向上するものと推定される。添加の方法としては、原料混合の際に一緒に添加し、混合することで可能である。 Furthermore, in this Embodiment, it discovered that the light emission characteristic improved by adding a boron compound and a fluorine compound as an additive. In this case, it is preferable to add a boron compound such as BN, H 3 BO 3 , B 2 O 6 , B 2 O 3 , BCl 3 or the like so that boron is 3.0% by weight or less in the sample after firing. BN and H 3 BO 3 are preferred. Mixture use of these boron compounds is also possible. Since a boron compound is a substance having a high thermal conductivity, it is presumed that by adding it to the raw material, the temperature distribution of the raw material becomes uniform during firing and the light emission characteristics are improved in order to promote the solid-phase reaction. As an addition method, it is possible to add and mix together at the time of mixing raw materials.
また、フッ素化合物の場合、焼成後の試料中にフッ素が3.0 重量%以下になるようにフッ素化合物、例えば、CaF2、AlF3、EuF2、EuF3を添加することが好ましい。これらのフッ素化合物は原料であるAlN、Si3N4に比べ融点が低く、液相を生じやすく、AlN、Si3N4などの原料粒子表面を覆うことにより、原子の拡散を促進させることができるため発光特性が向上するものと考えられる。また、フッ素とカルシウム、フッ素とアルミニウム、フッ素とユーロピウムがそれぞれ結合したフッ素化合物は、M元素がCa、A元素がAl、B元素がSi、Z元素がEuである蛍光体に添加される場合に、当該組成式の元素と同じ元素を含んでいるため好ましいと考えられる。これらフッ素化合物の混合使用も可能である。 In the case of a fluorine compound, it is preferable to add a fluorine compound such as CaF 2 , AlF 3 , EuF 2 , or EuF 3 so that fluorine is 3.0 wt% or less in the sample after firing. These fluorine compounds have a lower melting point than the raw materials AlN and Si 3 N 4 , tend to form a liquid phase, and promote the diffusion of atoms by covering the surface of the raw material particles such as AlN and Si 3 N 4. Therefore, it is considered that the emission characteristics are improved. Fluorine compounds in which fluorine and calcium, fluorine and aluminum, and fluorine and europium are bonded to each other are added to phosphors with M element as Ca, A element as Al, B element as Si, and Z element as Eu. It is considered preferable because it contains the same element as the element of the composition formula. Mixture use of these fluorine compounds is also possible.
これら原料中に添加するホウ素、フッ素の添加量と、焼成後のホウ素、フッ素の含有量とは必ずしも一致しない。これは、ホウ素、フッ素は焼成中に一部が飛散してしまうために、含有量が原料の添加時よりも少なくなってしまったり、各原料中にも微量のホウ素、フッ素が含まれているために、原料の添加時よりも多くなってしまうからである。尚、便宜のため、以降の説明は、組成式中における酸素の記載を省いて行う。 The amount of boron and fluorine added to these raw materials does not necessarily match the content of boron and fluorine after firing. This is because boron and fluorine are partially scattered during firing, so the content is less than when adding raw materials, and each raw material also contains a small amount of boron and fluorine. For this reason, it becomes more than that at the time of addition of the raw material. For the sake of convenience, the following description will be made without the description of oxygen in the composition formula.
次に、本実施の形態における蛍光体の製造方法について、Ca0.985AlSiN3:Eu0.0150の製造を例として説明する。
M元素、A元素、B元素の各窒化物原料は市販の原料でよいが、純度は高い方が好ましいことから、好ましくは2N以上、更に好ましくは3N以上のものを準備する。また、この原料については、最終的に得られる蛍光体に求められる粒径・形状に合せて、近似の粒径、形状のものを準備すると良い。蛍光体に求められる平均粒径は0.1μmから20.0μm、より好ましくは1.0μmから10.0μmであるため、焼成後の蛍光体粒子の粒径制御という観点から、各原料の平均粒径は0.1μmから10.0μmのものが好ましい。全ての原料の平均粒径が0.1μmから10.0μmであることが好ましいが、少なくとも、母体構造を形成する元素の原料であって融点が高いAlN、Si3N4について上記平均粒径のものを使用することによっても、発光特性の優れた当該蛍光体を作製することができる。原料が0.1μm以上の平均粒径であれば、焼結しにくく、焼成後の解砕工程で発光強度が低下しない。また、平均粒径が20.0μm以下であれば反応が均一となり好ましい。下記のZ元素の原料、添加物の原料についても同様に、平均粒径が0.1μmから20.0μmのものが好ましく、より好ましくは1.0μmから10.0μmである。
Next, a method for manufacturing the phosphor in the present embodiment will be described by taking Ca 0.985 AlSiN 3 : Eu 0.0150 as an example.
Each nitride raw material of M element, A element, and B element may be a commercially available raw material, but preferably has a purity of 2N or higher, and more preferably 3N or higher. In addition, as for this raw material, a material having an approximate particle size and shape may be prepared in accordance with the particle size and shape required for the finally obtained phosphor. The average particle size required for the phosphor is 0.1 μm to 20.0 μm, more preferably 1.0 μm to 10.0 μm. From the viewpoint of controlling the particle size of the phosphor particles after firing, the average particle size of each raw material is 0.1 μm. To 10.0 μm are preferred. The average particle size of all raw materials is preferably 0.1 μm to 10.0 μm, but at least AlN and Si 3 N 4 which are raw materials of elements forming the parent structure and have a high melting point have the above average particle size. By using the phosphor, the phosphor having excellent light emission characteristics can be produced. If the raw material has an average particle size of 0.1 μm or more, it is difficult to sinter, and the emission intensity does not decrease in the crushing step after firing. Further, if the average particle size is 20.0 μm or less, the reaction becomes uniform, which is preferable. Similarly, the following Z element raw materials and additive raw materials preferably have an average particle diameter of 0.1 μm to 20.0 μm, more preferably 1.0 μm to 10.0 μm.
Z元素の原料も市販の窒化物原料、もしくは酸化物原料で良いが、やはり純度は高い方が好ましく、好ましくは2N以上、更に好ましくは3N以上のものを準備する。尚、Z元素の酸化物原料中に含まれる酸素も蛍光体の組成中に供給されるので、上述のM元素原料、A元素原料、及びB元素原料の配合検討の際に、当該酸素供給量を考慮することが好ましい。そして蛍光体の組成中に酸素を含ませたくない場合には、Z元素単体またはZ元素の窒化物を原料として用いればよい。 The raw material for the element Z may be a commercially available nitride raw material or oxide raw material, but it is also preferable that the purity is higher, preferably 2N or higher, more preferably 3N or higher. In addition, since oxygen contained in the oxide raw material of the Z element is also supplied during the composition of the phosphor, the oxygen supply amount in the above-described mixing study of the M element raw material, the A element raw material, and the B element raw material Is preferably taken into account. In the case where it is not desired to include oxygen in the composition of the phosphor, a Z element simple substance or a nitride of Z element may be used as a raw material.
添加剤の原料も市販のホウ素化合物、もしくはフッ素化合物原料で良いが、やはり純度は高いほうが好ましく、好ましくは2N以上、更に好ましくは3N以上のものを準備する。 The raw material of the additive may be a commercially available boron compound or a fluorine compound raw material, but it is also preferable that the purity is higher, preferably 2N or higher, more preferably 3N or higher.
Ca0.985AlSiN3:Eu0.0150の製造であれば、例えばM元素、A元素、B元素の窒化物として、それぞれCa3N2(2N)、AlN(3N)、Si3N4(3N)を準備すればよい。Z元素としては、Eu2O3(3N)を準備し、添加剤としてホウ素化合物及び/またはフッ素化合物を準備する。 For production of Ca 0.985 AlSiN 3 : Eu 0.0150 , for example, prepare Ca 3 N 2 (2N), AlN (3N), and Si 3 N 4 (3N) as nitrides of M element, A element, and B element, respectively. do it. Eu 2 O 3 (3N) is prepared as a Z element, and a boron compound and / or a fluorine compound is prepared as an additive.
これらの原料について、各元素のモル比がCa : Al : Si : Eu = 0.985 : 1 : 1 : 0.015となるように、各原料の混合比を、それぞれ、Ca3N2を0.985/3 mol、AlNを1 mol、Si3N4を1/3 mol、Eu2O3を0.015/2 mol秤量し、更に添加剤についても任意の量を秤量し一緒に混合する。 About these raw materials, the mixing ratio of each raw material was set to 0.985 / 3 mol of Ca 3 N 2 so that the molar ratio of each element was Ca: Al: Si: Eu = 0.985: 1: 1: 1.015, Weigh 1 mol of AlN, 1/3 mol of Si 3 N 4 and 0.015 / 2 mol of Eu 2 O 3 , and weigh any amount of additives and mix them together.
当該秤量・混合は、原料である窒化物の酸化を防ぐために不活性雰囲気下のグローブボックス内での操作が便宜である。また、各原料元素の窒化物は水分の影響を受けやすいため、不活性ガスは水分を十分取り除いたものを使用するのが良い。各原料元素として窒化物原料を用いる場合、原料の分解を回避するため混合方式は乾式混合が好ましく、ボールミルや乳鉢等を用いる通常の乾式混合方法でよい。尚、原料の分解を抑えられる有機溶媒を用いるのであれば、湿式混合も可能である。 The weighing / mixing is conveniently performed in a glove box under an inert atmosphere in order to prevent oxidation of nitride as a raw material. Moreover, since the nitride of each raw material element is easily affected by moisture, it is preferable to use an inert gas from which moisture has been sufficiently removed. When a nitride raw material is used as each raw material element, dry mixing is preferable as a mixing method in order to avoid decomposition of the raw material, and a normal dry mixing method using a ball mill, a mortar, or the like may be used. In addition, if an organic solvent which can suppress decomposition | disassembly of a raw material is used, wet mixing is also possible.
混合が完了した原料をるつぼに入れ、窒素等の不活性雰囲気中、もしくはアンモニア雰囲気、水素雰囲気、及び窒素と水素の混合ガス雰囲気中で1000℃以上、好ましくは1300℃以上、更に好ましくは1400 〜 1600℃で30分以上、好ましくは3時間以上保持し、炉内を加圧状態にして焼成する。炉内圧力は加圧状態であれば良く、3.0kgf/cm2以下でも十分満足のいく特性の蛍光体を得ることができる。保持時間は焼結温度が高いほど反応が迅速に進むため短縮出来る。一方、焼結温度が低い場合でも、当該温度を長時間保持することにより目的の発光特性を得ることが出来る。しかし、焼結時間が長いほど粒子成長が進み、粒子形状が大きくなるため、目的とする粒子サイズに応じて焼結時間を設定すればよい。 The mixed raw material is put into a crucible, and is in an inert atmosphere such as nitrogen, or in an ammonia atmosphere, a hydrogen atmosphere, and a mixed gas atmosphere of nitrogen and hydrogen at 1000 ° C. or higher, preferably 1300 ° C. or higher, more preferably 1400 to Hold at 1600 ° C. for 30 minutes or longer, preferably 3 hours or longer, and fire in a pressurized state in the furnace. The pressure in the furnace may be a pressurized state, and a phosphor having sufficiently satisfactory characteristics can be obtained even at 3.0 kgf / cm 2 or less. The holding time can be shortened because the reaction proceeds more rapidly as the sintering temperature is higher. On the other hand, even when the sintering temperature is low, the desired light emission characteristics can be obtained by maintaining the temperature for a long time. However, as the sintering time is longer, particle growth proceeds and the particle shape becomes larger, so the sintering time may be set according to the target particle size.
尚、るつぼとしてはAl2O3るつぼ、Si3N4るつぼ、AlNるつぼ、サイアロンるつぼ、C(カーボン)るつぼ、BN(窒化ホウ素)るつぼなどの不活性雰囲気中でも問題ないものを使用することができるが、BNるつぼを用いると、当該るつぼからの不純物混入を回避することができ好ましい。更に、BNるつぼを使用した際には、BN粉末を添加しなくても、BNるつぼと原料が接した部分からBが混入されるため、蛍光体の発光特性を改善させることができるが、Bが混入するのはるつぼと接した一部であり、原料粉末とBN粉末を混合し全体にBを混入させた場合と比較すると改善は小さい。つまり、BNるつぼを使用することによりBを混入させてもよいが、BN粉末と原料粉末を混合し、全体にBを混入させる方がより好ましい。 In addition, as a crucible, there can be used an Al 2 O 3 crucible, a Si 3 N 4 crucible, an AlN crucible, a sialon crucible, a C (carbon) crucible, a BN (boron nitride) crucible, or the like that does not cause any problems. However, it is preferable to use a BN crucible because it can avoid contamination of impurities from the crucible. In addition, when using a BN crucible, the emission characteristics of the phosphor can be improved because B is mixed from the portion where the BN crucible and the raw material are in contact without adding BN powder. It is a part in contact with the crucible, and the improvement is small compared with the case where B is mixed into the whole by mixing the raw material powder and BN powder. In other words, B may be mixed by using a BN crucible, but it is more preferable to mix BN powder and raw material powder and mix B in the whole.
焼成が完了した後、焼成物をるつぼから取り出し、乳鉢、ボールミル等の粉砕手段を用いて、所定の平均粒径となるように粉砕して組成式Ca0.985AlSiN3:Eu0.0150で示される蛍光体を製造することができる。 After the firing is completed, the fired product is taken out from the crucible, and ground using a grinding means such as a mortar and a ball mill, and then ground to a predetermined average particle size, and the phosphor represented by the composition formula Ca 0.985 AlSiN 3 : Eu 0.0150 Can be manufactured.
M元素、A元素、B元素、Z元素として、他の元素を用いた場合、及び付活剤であるEuの付活量を変更した場合も、各原料の仕込み時の配合量を所定の組成比に合わせることで、上述したものと同様の製造方法により、所定組成式を有する蛍光体を製造することができる。 When other elements are used as M element, A element, B element, and Z element, and when the activation amount of Eu as an activator is changed, the blending amount at the time of charging each raw material is a predetermined composition. By adjusting the ratio, a phosphor having a predetermined composition formula can be manufactured by the same manufacturing method as described above.
上述のように本実施の形態における蛍光体は、紫外〜可視光(波長域250 nm 〜550 nm)の広い範囲に良好な励起帯を有すると伴に、当該蛍光体の発光強度が高いことから、上述の紫外〜可視の光を発する発光部(後述のLED発光素子、放電灯など)と組合わせることにより、高出力の光源、更にはこの光源を含む照明ユニットを得ることができる。 As described above, the phosphor in the present embodiment has a good excitation band in a wide range of ultraviolet to visible light (wavelength range 250 nm to 550 nm), and the emission intensity of the phosphor is high. In combination with the above-described light emitting section (such as an LED light emitting element and a discharge lamp described later) that emits ultraviolet to visible light, a high output light source and an illumination unit including this light source can be obtained.
即ち、粉末状となった本実施の形態の蛍光体を、公知の方法により、発光部(特には、波長域250 nmから550 nmのいずれかの光を発光する発光部)と組み合わせることで、多様なディスプレイ装置、照明ユニットを製造することができる。例えば、発光部として紫外光を発生する放電灯と組み合わせることで蛍光灯や照明ユニット、ディスプレイ装置を製造することができ、また、発光部として紫外から可視光を発光するLED発光素子と組み合わせることでも、照明ユニットやディスプレイ装置を製造することができる。
製造された照明ユニット等は、黄色から赤色(580 nm 〜 680 nm)の範囲にブロードなピークを持ち、励起光である近紫外・紫外から可視光(250 nm 〜 550 nm)という長波長側に良好な励起帯を持つとともに、高い発光強度を有していた。
That is, by combining the phosphor of the present embodiment in powder form with a light emitting part (particularly, a light emitting part that emits light in a wavelength range of 250 nm to 550 nm) by a known method, Various display devices and lighting units can be manufactured. For example, it is possible to manufacture fluorescent lamps, lighting units, and display devices by combining with a discharge lamp that generates ultraviolet light as a light emitting part, and also by combining with an LED light emitting element that emits visible light from ultraviolet as a light emitting part. Lighting units and display devices can be manufactured.
The manufactured lighting unit has a broad peak in the range from yellow to red (580 nm to 680 nm), and from the near ultraviolet / ultraviolet light, which is the excitation light, to the long wavelength side, visible light (250 nm to 550 nm). It had a good excitation band and high emission intensity.
(比較例1)
比較例1として、市販のCa3N2(2N)、AlN(3N、平均粒径1.76μm)、Si3N4(3N、平均粒径0.774μm)、Eu2O3(3N)を準備し、それぞれCa3N2を0.985/3 mol、AlNを1 mol、Si3N4を1/3 mol、Eu2O3を0.015/2 molとなるように各原料を秤量した後、窒素雰囲気下のグローブボックス内において乳鉢を用いて混合した。混合した原料をSi3N4るつぼに入れ、炉内圧力0.5 kgf/cm2、窒素雰囲気中1500℃で3時間保持・焼成した後、1500℃から200℃まで1時間で冷却し、焼成が完了した後に解砕を行い、組成式Ca0.985AlSiN3:Eu0.015で示される蛍光体を得た。尚、この組成式は、使用した原料および配合比率より推定される組成である。
(Comparative Example 1)
As Comparative Example 1, commercially available Ca 3 N 2 (2N), AlN (3N, average particle size 1.76 μm), Si 3 N 4 (3N, average particle size 0.774 μm), Eu 2 O 3 (3N) were prepared. After weighing each raw material so that Ca 3 N 2 is 0.985 / 3 mol, AlN is 1 mol, Si 3 N 4 is 1/3 mol, and Eu 2 O 3 is 0.015 / 2 mol, respectively, under a nitrogen atmosphere In a glove box, mixing was performed using a mortar. Put the mixed raw material into a Si 3 N 4 crucible, hold and fire in an oven pressure of 0.5 kgf / cm 2 at 1500 ° C in a nitrogen atmosphere for 3 hours, then cool from 1500 ° C to 200 ° C in 1 hour, and firing is completed Then, crushing was performed to obtain a phosphor represented by the composition formula Ca 0.985 AlSiN 3 : Eu 0.015 . In addition, this composition formula is a composition estimated from the used raw material and a mixture ratio.
得られた蛍光体に波長460 nmの単色光の励起光源を照射し発光特性を測定した。測定した発光特性の項目において、ピーク波長とは、発光スペクトル中において最も発光強度の高い波長を示したピークの波長をnm単位で表したものである。発光強度とは、ピーク波長における発光強度を相対強度で示したもので、当該比較例1の強度を100%と規格化したものである。色度はJISZ8701に規定する算出方法により色度x,yを求めたものである。また、蛍光体粒子試料中に含まれるホウ素濃度は、吸光光度法により測定した値である。
当該蛍光体の組成式、ホウ素濃度分析結果、発光特性(ピーク波長、発光強度、色度)、粉体特性(粒子径、比表面積 BET)の測定結果を図1に示す。
The phosphor obtained was irradiated with a monochromatic excitation light source having a wavelength of 460 nm, and the emission characteristics were measured. In the measured emission characteristic item, the peak wavelength is the wavelength of the peak showing the wavelength with the highest emission intensity in the emission spectrum in nm units. The emission intensity is the intensity at the peak wavelength expressed as a relative intensity. The intensity of Comparative Example 1 is normalized to 100%. The chromaticity is obtained by calculating the chromaticity x, y by a calculation method defined in JISZ8701. Further, the boron concentration contained in the phosphor particle sample is a value measured by absorptiometry.
FIG. 1 shows the measurement results of the composition formula, boron concentration analysis results, emission characteristics (peak wavelength, emission intensity, chromaticity), and powder characteristics (particle diameter, specific surface area BET) of the phosphor.
(実施例1〜4)
実施例1〜4では、蛍光体試料の製造において、比較例1で説明した、Ca3N2(2N)、AlN(3N)、Si3N4(3N)、Eu2O3(3N)の各原料の他に、添加剤として窒化ホウ素 BN(3N)を加え、更に、るつぼとしてSi3N4るつぼからBNるつぼに変更し、各々実施例1〜4とした以外は、比較例1と同様に蛍光体試料を作製した。
(Examples 1-4)
In Examples 1 to 4, in the production of the phosphor sample, the Ca 3 N 2 (2N), AlN (3N), Si 3 N 4 (3N), and Eu 2 O 3 (3N) described in Comparative Example 1 were used. In addition to each raw material, boron nitride BN (3N) was added as an additive, and the crucible was changed from a Si 3 N 4 crucible to a BN crucible, and each was changed to Examples 1 to 4, and each was similar to Comparative Example 1. A phosphor sample was prepared.
つまり、実施例1ではCa0.985AlSiN3:Eu0.015の混合原料(焼成前)中にBN粉末を0.1重量%添加し、同じように実施例2では0.5重量%、実施例3では1.0重量%、実施例4では2.0重量%、BN粉末をそれぞれ添加した。 That is, in Example 1, 0.1% by weight of BN powder was added to a mixed raw material of Ca 0.985 AlSiN 3 : Eu 0.015 (before firing), and similarly, 0.5% by weight in Example 2, 1.0% by weight in Example 3, In Example 4, 2.0 wt% BN powder was added.
実施例1〜4についても、比較例1と同様に、当該蛍光体の組成式、ホウ素濃度分析結果、発光特性(ピーク波長、発光強度、色度)、粉体特性(粒子径、比表面積 BET)の測定結果を図1に示し、図2にホウ素含有量と相対発光強度(比較例1の発光強度の相対強度を100%とした)の関係を示す。 In Examples 1 to 4, as in Comparative Example 1, the composition formula of the phosphor, the boron concentration analysis result, the emission characteristics (peak wavelength, emission intensity, chromaticity), and powder characteristics (particle diameter, specific surface area BET) ) Measurement results are shown in FIG. 1, and FIG. 2 shows the relationship between the boron content and the relative luminescence intensity (relative intensity of the luminescence intensity of Comparative Example 1 is 100%).
図1から、BN粉末を添加することによりホウ素含有量が増加することを確認できる。比較例1のホウ素含有量は0.0001重量%以下だが、実施例1から実施例4のそれぞれBN粉末を添加した場合には、ホウ素含有量が増加し、BN粉末添加量が0.1重量%のときホウ素含有量は0.063重量%となり、BN粉末添加量が0.5重量%ではホウ素含有量は0.170重量%、BN粉末添加量が1.0重量%ではホウ素含有量は0.310重量%、BN粉末添加量が2.0重量%ではホウ素含有量は0.640重量%と増加していった。 From FIG. 1, it can confirm that boron content increases by adding BN powder. The boron content of Comparative Example 1 is 0.0001% by weight or less. However, when each of the BN powders of Examples 1 to 4 is added, the boron content increases, and boron is added when the BN powder addition amount is 0.1% by weight. The content is 0.063% by weight. When the added amount of BN powder is 0.5% by weight, the boron content is 0.170% by weight. When the added amount of BN powder is 1.0% by weight, the boron content is 0.310% by weight and the added amount of BN powder is 2.0% by weight. Then the boron content increased to 0.640% by weight.
また、図1、図2からホウ素を含有させることにより、発光強度が向上することを確認できる。ホウ素含有量が0.15重量%から0.35重量%の範囲で発光強度はピークを示し、BN添加なしの比較例1に比べ発光強度が19.6%度向上した。また、ホウ素を含有するとピーク波長が長波長側にシフトする傾向にある。更に、ホウ素含有量が0.310重量%以下(実施例1〜3)では、平均粒径はBN添加なしの比較例1とほぼ同じであるが、ホウ素含有量が0.640重量%(実施例4)では、平均粒径は10.58μmとなり、BN添加なしの比較例1(5.851μm)と比較し2倍程度になった。この結果より、ホウ素をある範囲で含有する蛍光体では、反応が促進され、発光強度が改善したものと考えられる。 Further, it can be confirmed from FIG. 1 and FIG. 2 that the emission intensity is improved by containing boron. The emission intensity showed a peak when the boron content was in the range of 0.15 wt% to 0.35 wt%, and the emission intensity was improved by 19.6% compared to Comparative Example 1 without addition of BN. Further, when boron is contained, the peak wavelength tends to shift to the longer wavelength side. Furthermore, when the boron content is 0.310% by weight or less (Examples 1 to 3), the average particle diameter is almost the same as that of Comparative Example 1 without BN addition, but when the boron content is 0.640% by weight (Example 4). The average particle size was 10.58 μm, which was about twice that of Comparative Example 1 (5.851 μm) without BN addition. From this result, it is considered that a phosphor containing boron in a certain range promotes the reaction and improves the emission intensity.
(実施例5〜7)
実施例5〜7では、蛍光体試料の製造において、比較例1で説明した、Ca3N2(2N)、AlN(3N)、Si3N4(3N)、Eu2O3(3N)の各原料の他に、添加剤としてフッ化カルシウム CaF2(3N)を加え、更に、るつぼとしてSi3N4るつぼからBNるつぼに変更し、各々実施例5〜7とした以外は、比較例1と同様に蛍光体試料を作製した。
(Examples 5 to 7)
In Examples 5 to 7, in the production of the phosphor sample, the Ca 3 N 2 (2N), AlN (3N), Si 3 N 4 (3N), and Eu 2 O 3 (3N) described in Comparative Example 1 were used. In addition to the raw materials, calcium fluoride CaF 2 (3N) was added as an additive, and the crucible was changed from a Si 3 N 4 crucible to a BN crucible. A phosphor sample was prepared in the same manner as described above.
つまり、実施例5ではCa0.985AlSiN3:Eu0.015が1.0 molできる原料に対して、CaF2を0.025 mol添加し、同じように実施例6ではCaF2を0.050 mol添加し、実施例7ではCaF2を0.100 mol添加した。 That is, in Example 5, 0.025 mol of CaF 2 was added to a raw material capable of 1.0 mol of Ca 0.985 AlSiN 3 : Eu0.015. Similarly, in Example 6, 0.050 mol of CaF 2 was added. 0.100 mol of CaF 2 was added.
比較例1及び実施例5〜7について、各々の蛍光体の組成式、フッ素濃度分析結果、発光特性(ピーク波長、発光強度、色度)、粉体特性(粒子径、比表面積 BET)の測定結果を図3に示し、図4にフッ素含有量と相対発光強度(比較例1の発光強度の相対強度を100%とした)の関係を示す。 For Comparative Example 1 and Examples 5 to 7, measurement of composition formulas, fluorine concentration analysis results, emission characteristics (peak wavelength, emission intensity, chromaticity), powder characteristics (particle diameter, specific surface area BET) of each phosphor The results are shown in FIG. 3, and FIG. 4 shows the relationship between the fluorine content and the relative light emission intensity (relative intensity of the light emission intensity of Comparative Example 1 is 100%).
図3から、CaF2粉末を添加することによりフッ素含有量が増加することを確認できる。比較例1のフッ素含有量は0.10重量%以下だが、実施例5〜7においてそれぞれCaF2粉末を添加した場合にはフッ素含有量が増加し、CaF2粉末添加量が0.025 molのときフッ素含有量は0.40重量%となり、CaF2粉末添加量が0.050 molではフッ素含有量は0.80重量%、CaF2粉末添加量が0.100 molではフッ素含有量は1.70重量%と増加していった。 From Figure 3, it can be confirmed that the fluorine content is increased by the addition of CaF 2 powder. Although the fluorine content of Comparative Example 1 is 0.10% by weight or less, when CaF 2 powder is added in each of Examples 5 to 7, the fluorine content increases. When the CaF 2 powder addition amount is 0.025 mol, the fluorine content When the CaF 2 powder addition amount was 0.050 mol, the fluorine content increased to 0.80 wt%, and when the CaF 2 powder addition amount was 0.100 mol, the fluorine content increased to 1.70 wt%.
また、ホウ素の場合と同様に、図3、図4からフッ素を含有させることにより、発光強度が向上することを確認できる。この発光強度は、フッ素含有量が0.40重量%までは徐々に向上し、0.40重量%より多くなると減少している。更に、この発光強度は、フッ素含有量が0.40重量%でピークを示し、CaF2添加なしの比較例1に比べ17.3%向上した。また、フッ素を含有するとピーク波長がやや長波長側にシフトする傾向にある。更に、フッ素含有量が1.70重量%以下では、平均粒径はBN添加なしの比較例1とほぼ同じであった。この結果より、ホウ素と同様に、フッ素をある範囲で含有する蛍光体においても、反応が促進され、発光強度が改善したものと考えられる。 Further, as in the case of boron, it can be confirmed from FIG. 3 and FIG. 4 that the emission intensity is improved by containing fluorine. The emission intensity gradually increases until the fluorine content is 0.40% by weight, and decreases when the fluorine content exceeds 0.40% by weight. Further, the emission intensity showed a peak at a fluorine content of 0.40% by weight, and was improved by 17.3% compared to Comparative Example 1 in which no CaF 2 was added. Further, when fluorine is contained, the peak wavelength tends to slightly shift to the longer wavelength side. Furthermore, when the fluorine content was 1.70% by weight or less, the average particle size was almost the same as in Comparative Example 1 without BN addition. From this result, it is considered that the reaction is promoted and the emission intensity is improved in the phosphor containing fluorine in a certain range as well as boron.
Claims (9)
組成式MmAaBbNn:Zと表記される蛍光体の原料に、フッ素化合物を添加することを特徴とする蛍光体の製造方法。 A method for producing the phosphor according to any one of claims 1 to 3,
A method for producing a phosphor, comprising adding a fluorine compound to a phosphor raw material represented by a composition formula M m A a B b N n : Z.
上記蛍光体の原料であるAlN及びSi3N4の平均粒径を0.1μmから10.0μmとすることを特徴とする蛍光体の製造方法。 It is a manufacturing method of the fluorescent substance according to claim 4,
A method for producing a phosphor, characterized in that an average particle size of AlN and Si 3 N 4 which are raw materials of the phosphor is 0.1 μm to 10.0 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009272267A JP5394903B2 (en) | 2009-11-30 | 2009-11-30 | Phosphor, production method thereof, and light source |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009272267A JP5394903B2 (en) | 2009-11-30 | 2009-11-30 | Phosphor, production method thereof, and light source |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004248405A Division JP2006063214A (en) | 2004-08-27 | 2004-08-27 | Fluorophor and method for producing the same and light source |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010047774A JP2010047774A (en) | 2010-03-04 |
JP5394903B2 true JP5394903B2 (en) | 2014-01-22 |
Family
ID=42065094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009272267A Expired - Lifetime JP5394903B2 (en) | 2009-11-30 | 2009-11-30 | Phosphor, production method thereof, and light source |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5394903B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6288343B2 (en) * | 2013-04-26 | 2018-03-07 | 日亜化学工業株式会社 | Phosphor and light emitting device using the same |
JP6167913B2 (en) | 2013-04-26 | 2017-07-26 | 日亜化学工業株式会社 | Phosphor and light emitting device using the same |
JP6130808B2 (en) * | 2014-04-16 | 2017-05-17 | デンカ株式会社 | Phosphor and light emitting device |
US10590342B2 (en) | 2016-08-25 | 2020-03-17 | Nichia Corporation | Nitride fluorescent material, method of producing nitride fluorescent material and light emitting device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4218328B2 (en) * | 2002-11-29 | 2009-02-04 | 日亜化学工業株式会社 | Nitride phosphor and light emitting device using the same |
KR100900282B1 (en) * | 2004-06-18 | 2009-05-29 | 도쿠리츠교세이호징 붓시쯔 자이료 겐큐키코 | ?-SiAlON, ?-SiAlON PHOSPHOR AND METHOD FOR PRODUCING SAME |
JP4568867B2 (en) * | 2004-06-29 | 2010-10-27 | 独立行政法人物質・材料研究機構 | Method for producing composite nitride phosphor |
JP4933739B2 (en) * | 2004-08-02 | 2012-05-16 | Dowaホールディングス株式会社 | Phosphor and phosphor film for electron beam excitation, and color display device using them |
-
2009
- 2009-11-30 JP JP2009272267A patent/JP5394903B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2010047774A (en) | 2010-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4511885B2 (en) | Phosphor, LED and light source | |
JP2006063214A (en) | Fluorophor and method for producing the same and light source | |
JP4524470B2 (en) | Phosphor, method for producing the same, and light source using the phosphor | |
JP4511849B2 (en) | Phosphor and its manufacturing method, light source, and LED | |
JP5016187B2 (en) | Nitride phosphor, method for producing nitride phosphor, light source and LED using the nitride phosphor | |
JP4414821B2 (en) | Phosphor, light source and LED | |
JP4729278B2 (en) | Phosphor and light emitting device | |
JP4543251B2 (en) | Phosphor and light source | |
JP5245411B2 (en) | Phosphor, method for producing the same, and light emitting device using the phosphor | |
JP4524468B2 (en) | Phosphor, method for producing the same, light source using the phosphor, and LED | |
JP4975269B2 (en) | Phosphor and method for producing the same, and light emitting device using the phosphor | |
JP4207489B2 (en) | α-sialon phosphor | |
JP5227503B2 (en) | Phosphor, phosphor sheet, phosphor production method, and light emitting device using the phosphor | |
US20100258766A1 (en) | Phosphor and manufacturing method for the same, and light source | |
JP5140061B2 (en) | Phosphor, production method thereof, and light source | |
JP2015228419A (en) | Semiconductor light-emitting device | |
JP2006282872A (en) | Nitride phosphor or oxynitride phosphor and manufacturing method for the same, and light-emitting device using the same | |
JP5394903B2 (en) | Phosphor, production method thereof, and light source | |
JP2008024852A (en) | Method for producing phosphor | |
JP4415065B1 (en) | Phosphor and light emission wavelength shifting method, light source and LED | |
JP2007137946A (en) | Phosphor, light emitting device using the same, image display device and illumination device | |
JP2010265463A (en) | Nitride phosphor, manufacturing method of nitride phosphor, and light source and led using the nitride phosphor | |
JP2004027022A (en) | Oxynitride phosphor | |
JP2009256681A (en) | White light emitting diode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091224 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091224 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120501 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120515 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120712 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130226 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130425 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131015 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131017 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5394903 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |