JP5369656B2 - Hydrogen generator - Google Patents

Hydrogen generator Download PDF

Info

Publication number
JP5369656B2
JP5369656B2 JP2008313835A JP2008313835A JP5369656B2 JP 5369656 B2 JP5369656 B2 JP 5369656B2 JP 2008313835 A JP2008313835 A JP 2008313835A JP 2008313835 A JP2008313835 A JP 2008313835A JP 5369656 B2 JP5369656 B2 JP 5369656B2
Authority
JP
Japan
Prior art keywords
gas
reforming
fuel
hydrogen
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008313835A
Other languages
Japanese (ja)
Other versions
JP2010138007A (en
Inventor
慎一 飯尾
隆夫 和泉
保憲 岩切
真樹 星野
利春 大和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008313835A priority Critical patent/JP5369656B2/en
Publication of JP2010138007A publication Critical patent/JP2010138007A/en
Application granted granted Critical
Publication of JP5369656B2 publication Critical patent/JP5369656B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen generator capable of realizing the improvement of hydrogen generation efficiency. <P>SOLUTION: The hydrogen generator A1 which performs non-equilibrium hydrogen generation reaction is equipped with a reforming part 11 for reforming fuel by a reforming catalyst in flowing fuel in a fixed direction, a hydrogen separation film 12 for separating and extracting hydrogen gas from reformed gas which is reformed by the reforming part 11 and a permeation part 13 for flowing hydrogen gas separated and extracted by the hydrogen separation film 12 to the outside of the equipment. By equipping with a temperature dispersion suppression means 14 of the reforming catalyst in fuel flow direction of the reforming part 11, the reforming reaction heat is uniformly maintained over the whole fuel flow direction of the reforming part 11, and hydrogen generation efficiency is largely improved even if heating is at an upper limit temperature or less in the reformer. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、水素分離膜を備えた水素生成装置に関し、例えば、内燃機関や燃料電池等の装置に対する水素供給源として用いられる水素生成装置に関するものである。   The present invention relates to a hydrogen generation apparatus including a hydrogen separation membrane, for example, a hydrogen generation apparatus used as a hydrogen supply source for apparatuses such as an internal combustion engine and a fuel cell.

近年では、地球環境問題への関心の高まりから、燃料電池の利用が注目されている。燃料電池は、水素を燃料とし且つ酸素又は空気を酸化剤として電気化学的反応で発電するものであるが、自動車等への用途を考えた場合、燃料電池システム全体の容積をできる限り小さくすることが重要となる。このため、燃料は気体よりも液体であることが望ましく、その液体燃料から水素を抽出するための水素生成装置が必要である。また、自動車においては、水素をエンジンや排気ガス処理に使用することで、燃費や排気を向上させる方法も考えられている。   In recent years, the use of fuel cells has attracted attention due to the growing interest in global environmental problems. A fuel cell uses hydrogen as fuel and oxygen or air as an oxidant to generate electricity through an electrochemical reaction. When considering applications in automobiles, the volume of the fuel cell system as a whole should be as small as possible. Is important. For this reason, it is desirable that the fuel is a liquid rather than a gas, and a hydrogen generator for extracting hydrogen from the liquid fuel is required. In automobiles, a method of improving fuel consumption and exhaust gas by using hydrogen for engine and exhaust gas treatment has been considered.

従来の水素生成装置としては、炭化水素化合物に対し、水蒸気改質、シフト反応及びCO酸化反応の多段工程を経て、水素リッチな燃料ガスを生成するものがあった(例えば、特許文献1参照)。この水素生成装置は、改質反応で生じた水素を分離膜により一旦分離し、残ったガスを用いてシフト反応を行うことで反応を促進させ、水素の生成効率や水素分圧の向上を実現したものである。
特開2001−283890号公報
As a conventional hydrogen generator, there is one that generates a hydrogen-rich fuel gas through a multi-stage process of steam reforming, shift reaction, and CO oxidation reaction on a hydrocarbon compound (see, for example, Patent Document 1). . This hydrogen generator once separates the hydrogen generated in the reforming reaction with a separation membrane, and promotes the reaction by performing a shift reaction using the remaining gas, improving the hydrogen generation efficiency and hydrogen partial pressure. It is a thing.
JP 2001-283890 A

しかしながら、上記したような従来の水素生成装置にあっては、吸熱反応を生じる水蒸気改質を行っていることから、改質器の入口から出口までの間において改質触媒の温度を維持することが難しく、水蒸気改質反応などが滞り、水素生成の効率向上が妨げられるという問題点があった。また、反応場の温度全体を高めて反応速度を確保しようとしても、改質器の信頼性の観点から改質器内の最高温度に上限が設けられ、改質器全体にわたる水素生成効率の確保に限界があるという問題点があり、これらの問題点を解決することが課題であった。   However, in the conventional hydrogen generator as described above, since the steam reforming that generates an endothermic reaction is performed, the temperature of the reforming catalyst is maintained between the inlet and the outlet of the reformer. However, there is a problem that the steam reforming reaction is delayed and the efficiency improvement of hydrogen generation is hindered. In addition, even if it is attempted to secure the reaction rate by increasing the overall temperature of the reaction field, an upper limit is set on the maximum temperature in the reformer from the viewpoint of the reformer reliability, and hydrogen generation efficiency is ensured throughout the reformer. However, there is a problem that there is a limit, and it was a problem to solve these problems.

本発明は、上記従来の課題に着目して成されたもので、改質器内の上限温度以下の加熱であっても水素生成効率の向上を実現することができる水素生成装置を提供することを目的としている。   The present invention has been made paying attention to the above-mentioned conventional problems, and provides a hydrogen generator capable of improving the hydrogen generation efficiency even when heating is performed at a temperature lower than the upper limit temperature in the reformer. It is an object.

本発明の水素生成装置は、内燃機関に付設され、燃料を一定方向に流して改質触媒により同燃料を改質する改質部と、改質部で改質した改質ガスから水素ガスを分離抽出する水素分離膜と、水素分離膜で分離抽出した水素ガスを装置外部に流す透過部を備えて、非平衡水素生成反応を行う水素生成装置であって、改質部の燃料流れ方向における改質触媒の温度ばらつき抑制手段を備え、温度ばらつき抑制手段が、外部又は内部で発生させた加熱用ガスを改質部の改質触媒の加熱源とし、改質部の燃料流れ方向に対して逆方向に加熱用ガスを流すガス流路と、改質部の燃料流れ方向に沿う方向に加熱用ガスを流すガス流路を備え、さらに、温度ばらつき抑制手段が、加熱用ガスとして内燃機関の排気ガスを用い、排気ガス中の残留酸素量を検出する酸素検出器と、酸素検出器で検出した残留酸素量に応じてガス流路の途中から燃料を追加供給する燃料追加供給器を備えた構成としており、上記構成をもって従来の課題を解決するための手段としている。
また、本発明の水素生成装置は、燃料を一定方向に流して改質触媒により同燃料を改質する改質部と、改質部で改質した改質ガスから水素ガスを分離抽出する水素分離膜と、水素分離膜で分離抽出した水素ガスを装置外部に流す透過部を備えて、非平衡水素生成反応を行う水素生成装置であって、改質部の燃料流れ方向における改質触媒の温度ばらつき抑制手段を備え、温度ばらつき抑制手段が、外部又は内部で発生させた加熱用ガスを改質部の改質触媒の加熱源とし、改質部の燃料流れ方向に対して逆方向に加熱用ガスを流すガス流路と、改質部の燃料流れ方向に沿う方向に加熱用ガスを流すガス流路を備え、さらに、温度ばらつき抑制手段が、燃料と酸化剤の混合燃焼による燃焼ガスを加熱用ガスとし、ガス流路に燃料及び酸化剤を理論空燃比以上の混合比率で供給する空燃比調整器と、ガス流路からの排気ガス中の残留酸素量を検出する酸素検出器と、酸素検出器で検出した残留酸素量に応じてガス流路の途中から燃料を追加供給する燃料追加供給器を備えたことを特徴としている。
A hydrogen generator according to the present invention is attached to an internal combustion engine, and reforms the fuel with a reforming catalyst by flowing the fuel in a fixed direction, and hydrogen gas from the reformed gas reformed in the reforming unit. A hydrogen generation apparatus that includes a hydrogen separation membrane for separation and extraction, and a permeation section that allows hydrogen gas separated and extracted by the hydrogen separation membrane to flow outside the apparatus, and performs a non-equilibrium hydrogen generation reaction in a fuel flow direction of the reforming section A reforming catalyst temperature variation suppressing means is provided , and the temperature variation suppressing means uses the heating gas generated externally or internally as a heating source of the reforming catalyst of the reforming section, and with respect to the fuel flow direction of the reforming section. A gas flow path for flowing the heating gas in the reverse direction, and a gas flow path for flowing the heating gas in the direction along the fuel flow direction of the reforming section. Uses exhaust gas to detect the amount of residual oxygen in the exhaust gas That an oxygen detector, in accordance with the residual amount of oxygen detected by the oxygen detector has a structure having a fuel Add supplying fuel added supplier from the middle of the gas flow path, in order to solve the conventional problems with the above configuration As a means of.
Further, the hydrogen generator of the present invention includes a reforming unit that reforms the fuel with a reforming catalyst by flowing the fuel in a fixed direction, and a hydrogen that separates and extracts hydrogen gas from the reformed gas reformed in the reforming unit. A hydrogen generation apparatus that performs a non-equilibrium hydrogen generation reaction, comprising a separation membrane and a permeation section for flowing hydrogen gas separated and extracted by the hydrogen separation membrane to the outside of the apparatus, wherein the reforming catalyst in the fuel flow direction of the reforming section Temperature variation suppression means is provided, and the temperature variation suppression means uses the heating gas generated externally or internally as a heating source for the reforming catalyst of the reforming section and heats it in the direction opposite to the fuel flow direction of the reforming section. A gas flow path for flowing the working gas, and a gas flow path for flowing the heating gas in a direction along the fuel flow direction of the reforming section. Theory for heating gas and fuel and oxidant in gas flow path An air-fuel ratio regulator that supplies a mixture ratio equal to or greater than the fuel ratio, an oxygen detector that detects the amount of residual oxygen in the exhaust gas from the gas flow path, and a gas flow path that depends on the amount of residual oxygen detected by the oxygen detector. It is characterized by having an additional fuel supply device for supplying additional fuel from the middle.

なお、上記構成において、温度ばらつき抑制手段は、改質触媒全体の温度が概ね均等になるように同改質触媒を加熱する。したがって、温度ばらつき抑制手段は、改質触媒全体の温度を必ずしも均一にするのではなく、改質触媒の温度分布のばらつきを可及的に抑制するものである。   In the above configuration, the temperature variation suppressing means heats the reforming catalyst so that the temperature of the entire reforming catalyst becomes substantially equal. Therefore, the temperature variation suppressing means does not necessarily make the temperature of the entire reforming catalyst uniform, but suppresses variations in temperature distribution of the reforming catalyst as much as possible.

本発明の水素生成装置によれば、改質部の燃料流れ方向全体にわたって改質反応熱が均等に確保され、改質器内の上限温度以下の加熱であっても水素生成効率を大幅に高めることができ、装置の小型化にも貢献することができる。また、装置の小型化に伴って車載が容易になり、内燃機関への水素供給が可能となって、ひいては燃費及び排気の向上を図ることができる。さらに、上記の水素生成装置は、排気ガスの残留酸素量に基づいて算出した量の燃料を追加供給することで、ガス流路の出口側で排気ガス(加熱用ガス)を完全燃焼させて加熱用ガスを昇温させ、これにより、改質部における改質触媒全体にわたって温度を均一化し、改質効率を向上させて水素生成量を増大させることができる。
さらに、本発明の水素生成装置によれば、改質部の燃料流れ方向全体にわたって改質反応熱が均等に確保され、改質器内の上限温度以下の加熱であっても水素生成効率を大幅に高めることができ、装置の小型化にも貢献することができる。また、装置の小型化に伴って車載が容易になり、燃料電池自動車や内燃機関への水素供給が可能となって、ひいては燃費及び排気の向上を図ることができる。さらに、上記の水素生成装置は、空燃費調整器において燃料と酸化剤(空気)の供給比率を逆転させて、理論空燃比以下の供給比率のところに酸化剤の追加供給を行うことで、改質部における改質触媒全体にわたって温度を均一化し、改質効率を向上させて水素生成量を増大させることができる。
According to the hydrogen generator of the present invention, the reforming reaction heat is evenly ensured over the entire fuel flow direction of the reforming section, and the hydrogen generation efficiency is greatly increased even when the heating is performed at the upper limit temperature or lower in the reformer. And can contribute to downsizing of the apparatus. Further, vehicle becomes easier with the downsizing of the device, making it possible to supply hydrogen to the internal combustion engine, which leads to an improvement of fuel consumption and exhaust. Furthermore, the hydrogen generator described above additionally heats the exhaust gas (heating gas) at the outlet side of the gas flow path by additionally supplying an amount of fuel calculated based on the amount of residual oxygen in the exhaust gas. It is possible to raise the temperature of the working gas, thereby making the temperature uniform throughout the reforming catalyst in the reforming section, improving the reforming efficiency, and increasing the amount of hydrogen produced.
Furthermore, according to the hydrogen generator of the present invention, the reforming reaction heat is evenly ensured over the entire fuel flow direction of the reforming section, and the hydrogen generation efficiency is greatly improved even when the heating is performed below the upper limit temperature in the reformer. And can contribute to downsizing of the apparatus. In addition, as the apparatus becomes smaller, the vehicle can be easily mounted, hydrogen can be supplied to the fuel cell vehicle and the internal combustion engine, and the fuel consumption and exhaust can be improved. Furthermore, the hydrogen generator described above is improved by reversing the supply ratio of fuel and oxidant (air) in the air-fuel ratio adjuster and performing additional supply of oxidant at a supply ratio below the stoichiometric air-fuel ratio. It is possible to make the temperature uniform throughout the reforming catalyst in the mass part, improve the reforming efficiency, and increase the amount of hydrogen generation.

図1〜図3は、本発明の水素生成装置の参考例を説明する図である。
図1に示す水素生成装置A1は、円筒状のケーシングC内に、燃料を一定方向に流して改質触媒により同燃料を改質する改質部11と、改質部11で改質した改質ガスから水素ガスを分離抽出する水素分離膜12と、水素分離膜12で分離抽出した水素ガスを装置外部に流す透過部13を同心状に配置し、非平衡水素生成反応を行うものとなっている。そして、この水素生成装置A1は、中心線上に、改質部11の燃料流れ方向における改質触媒の温度ばらつき抑制手段14を備えている。
1-3 is a figure explaining the reference example of the hydrogen generator of this invention.
A hydrogen generator A1 shown in FIG. 1 includes a reforming unit 11 that reforms the fuel in a cylindrical casing C by flowing the fuel in a certain direction and reforms the fuel with a reforming catalyst. A hydrogen separation membrane 12 that separates and extracts hydrogen gas from the gas and a permeation section 13 that allows the hydrogen gas separated and extracted by the hydrogen separation membrane 12 to flow outside the apparatus are arranged concentrically to perform a non-equilibrium hydrogen generation reaction. ing. The hydrogen generator A1 includes a reforming catalyst temperature variation suppressing means 14 in the fuel flow direction of the reforming unit 11 on the center line.

温度ばらつき抑制手段14は、改質部11に効率良く熱を伝えられる構造であることが望ましく、図2(a)に示すように、改質部11に隣接するガス流路15を備え、このガス流路15内において、燃料と酸化剤(空気)の混合燃焼による燃焼ガスを加熱用ガスとする内部加熱方式を採用することができる。   It is desirable that the temperature variation suppressing means 14 has a structure capable of efficiently transferring heat to the reforming unit 11, and includes a gas flow path 15 adjacent to the reforming unit 11 as shown in FIG. In the gas flow path 15, an internal heating method can be employed in which the combustion gas resulting from the mixed combustion of fuel and oxidant (air) is the heating gas.

また、温度ばらつき抑制手段14は、図2(b)に示すように、改質部11に隣接するガス流路15を備え、外部の燃焼器16で燃料と酸化剤(空気)を混合燃焼させて、その燃焼ガスを加熱用ガスとしてガス流路15に供給する外部加熱方式を採用することもできる。   Further, as shown in FIG. 2 (b), the temperature variation suppressing means 14 includes a gas flow path 15 adjacent to the reforming unit 11, and mixes and burns fuel and oxidant (air) in an external combustor 16. In addition, an external heating method in which the combustion gas is supplied to the gas flow path 15 as a heating gas can be employed.

さらに、温度ばらつき抑制手段14は、図2(c)に示すように、当該水素生成装置A1が内燃機関Eに付設したものである場合、改質部11に隣接するガス流路15を備え、内燃機関の排気ガスを加熱用ガスとしてガス流路15に供給する外部加熱方式を採用することもできる。   Further, as shown in FIG. 2C, the temperature variation suppressing means 14 includes a gas flow path 15 adjacent to the reforming unit 11 when the hydrogen generator A1 is attached to the internal combustion engine E. An external heating system that supplies exhaust gas of the internal combustion engine as a heating gas to the gas flow path 15 can also be employed.

さらに、ガス流路15内には燃焼触媒を設けることができる。燃焼触媒は、燃料や水素を燃焼して加熱用ガスを得ることができる触媒であり、例えば、白金及びパラジウム等の貴金属や、銅、コバルト及び鉄等の遷移金属をアルミナ、セリア、シリカ及びチタニア等の無機多孔体に担持したものである。なお、改質部11、透過部13及び温度ばらつき抑制手段14のガス流路15には、ガスの流れの偏りを低減して熱交換率を高めるために、伝熱用フィン等を設けるのがより望ましい。   Further, a combustion catalyst can be provided in the gas flow path 15. A combustion catalyst is a catalyst that can burn a fuel or hydrogen to obtain a heating gas. For example, a noble metal such as platinum and palladium, or a transition metal such as copper, cobalt, and iron is converted into alumina, ceria, silica, and titania. It is carried on an inorganic porous material such as. The gas flow path 15 of the reforming section 11, the permeation section 13 and the temperature variation suppressing means 14 is provided with heat transfer fins or the like in order to reduce the deviation of the gas flow and increase the heat exchange rate. More desirable.

改質部11の改質触媒は、例えば、燃料改質用触媒、脱水素反応用触媒、及び水性ガスシフト反応用触媒等である。具体的には、白金、ロジウム及びルテニウム等の貴金属や、銅、コバルト及び鉄等の遷移金属をアルミナ、セリア、シリカ及びチタニア等の無機多孔体に担持したものである。改質触媒の層は、ペレット状の触媒を充填したものでも良い。また、触媒成分粉末を含むスラリーをスプレーやウォッシュコート法等により、改質部11内のフィン等に塗布すると好適である。   Examples of the reforming catalyst of the reforming unit 11 include a fuel reforming catalyst, a dehydrogenation reaction catalyst, and a water gas shift reaction catalyst. Specifically, noble metals such as platinum, rhodium and ruthenium, and transition metals such as copper, cobalt and iron are supported on an inorganic porous material such as alumina, ceria, silica and titania. The reforming catalyst layer may be filled with a pellet-shaped catalyst. In addition, it is preferable to apply the slurry containing the catalyst component powder to the fins or the like in the reforming portion 11 by spraying or a wash coat method.

燃料には、ガソリンなどの液体炭化水素、エタノールなどのアルコール、アルデヒド類、及び天然ガスなど、反応によって水素を生成可能な種々の炭化水素系燃料を用いることができる。なお、燃料が硫黄分を含有する場合には、脱硫器を設けて脱硫した燃料をに用いると良い。   As the fuel, various hydrocarbon fuels that can generate hydrogen by reaction, such as liquid hydrocarbons such as gasoline, alcohols such as ethanol, aldehydes, and natural gas can be used. In addition, when a fuel contains sulfur content, it is good to use the fuel desulfurized by providing a desulfurizer.

水素分離膜12には、Pd系合金,V,Nb及びZr系合金の膜や、シリカ系及びゼオライト系の分子篩機能を利用した膜を使用することができる。水素分離膜12は、薄膜であるほど水素透過量が増すために薄膜化が進んでいる。本発明の水素生成装置A1でも薄膜化した水素分離膜12を用いることで、装置全体をより小型化することができると共に、Pdの使用量も抑えることができる。   The hydrogen separation membrane 12 may be a Pd-based alloy, V, Nb, or Zr-based alloy membrane, or a membrane using a silica-based or zeolite-based molecular sieve function. As the hydrogen separation membrane 12 is thinner, the amount of hydrogen permeation is increased, so that the thickness of the hydrogen separation membrane 12 is increasing. By using the thin hydrogen separation membrane 12 in the hydrogen generator A1 of the present invention as well, the entire device can be further miniaturized and the amount of Pd used can be suppressed.

また、装置の小型化を図るには、平板状の水素分離膜12が必要である。平板状の水素分離膜12を製造するには、支持プレート上に水素分離膜12を形成する方法や、予め形成した水素分離膜12を支持プレートに載置して強度を確保する方法などがある。   In order to reduce the size of the apparatus, a flat hydrogen separation membrane 12 is required. In order to manufacture the flat hydrogen separation membrane 12, there are a method of forming the hydrogen separation membrane 12 on the support plate, a method of securing the strength by placing the previously formed hydrogen separation membrane 12 on the support plate, and the like. .

上記の支持プレートは、水素分離膜12を補強する機能に加えて、透過した水素の流れを妨げないようにする機能も必要であり、例えば、多孔質体から成るものを用いることができる。多孔質体は、セラミック製や金属製である。ただし、金属製の多孔質体を用いる場合には、水素分離膜12と合金を形成する可能性のある成分を含有していることがあるので、支持プレートの表面に水素分離膜12との合金化を阻止するための保護層を設ける必要がある。具体的には、金属製多孔質体の表面にアルミナやジルコニアなどの保護層を形成する。   In addition to the function of reinforcing the hydrogen separation membrane 12, the support plate needs to have a function of preventing the flow of permeated hydrogen from flowing. For example, a support plate made of a porous material can be used. The porous body is made of ceramic or metal. However, when a metal porous body is used, since it may contain a component that may form an alloy with the hydrogen separation membrane 12, an alloy with the hydrogen separation membrane 12 is formed on the surface of the support plate. It is necessary to provide a protective layer for preventing the formation. Specifically, a protective layer such as alumina or zirconia is formed on the surface of the metal porous body.

透過部13は、改質ガス中の水素を水素分離膜12を介して引き抜き、装置外部に流す部分である。   The permeation part 13 is a part that draws out hydrogen in the reformed gas through the hydrogen separation membrane 12 and flows it outside the apparatus.

ここで、図3(a)は、水蒸気改質温度とメタン転化率との関係を示すグラフである。すなわち、メタンを水蒸気改質する場合、一般的には800℃〜900℃程度の反応温度があれば、平衡上100%近くのメタンを水素とCOに転化することができる。 Here, Fig.3 (a) is a graph which shows the relationship between steam reforming temperature and a methane conversion rate. That is, when steam reforming methane, generally, if there is a reaction temperature of about 800 ° C. to 900 ° C., nearly 100% of methane can be converted into hydrogen and CO 2 in equilibrium.

しかし、このような温度環境で改質装置を設計する場合、反応器自身や触媒、その他の構成部位に充分な信頼性を持たせるのは難しい。また、改質反応の面から見ても、日常的に1000℃に近い反応温度を作り出すのは容易ではない。さらに、500℃〜600℃程度の温度でもメタンの水蒸気改質は起きるが、一般的に転化率が20%程度に留まるため、メタンの副次生成を伴う改質反応における全体の水素収率を考えると、その値は概して高いものではない。   However, when designing a reformer in such a temperature environment, it is difficult to give sufficient reliability to the reactor itself, the catalyst, and other components. In view of the reforming reaction, it is not easy to create a reaction temperature close to 1000 ° C. on a daily basis. Furthermore, although steam reforming of methane occurs even at temperatures of about 500 ° C. to 600 ° C., since the conversion rate generally remains at about 20%, the overall hydrogen yield in the reforming reaction involving by-production of methane is reduced. If you think about it, its value is generally not high.

これに対して、例えば、改質部11と水素透過部13と温度ばらつき抑制手段14を備えた水素生成装置A1を用いて、生成した水素を反応場から引き抜いて非平衡状態を作り出すと、転化率の低い温度域であっても改質反応を促進することができる。   On the other hand, for example, when a hydrogen generation apparatus A1 provided with the reforming unit 11, the hydrogen permeation unit 13, and the temperature variation suppressing means 14 is used to extract the generated hydrogen from the reaction field to create a non-equilibrium state, The reforming reaction can be promoted even in a low temperature range.

また、例えば水蒸気改質のような吸熱反応を伴う改質反応が起こると、図3(c)中に破線で示すように、改質部11の出口側で温度が低下し、改質効率も低下する。このため、改質部11の燃料流れ方向全体にわたって、反応に要する熱量を確保することが必要である。以上の点から、改質反応からメタン水蒸気改質に至る水素収率の高い改質反応プロセスと、改質装置設計との両立性を考えると、水素生成装置の入口から出口までの温度を改質触媒の温度とほぼ一定に保つことが重要である。   In addition, when a reforming reaction accompanied by an endothermic reaction such as steam reforming occurs, for example, as shown by a broken line in FIG. descend. For this reason, it is necessary to ensure the amount of heat required for the reaction over the entire fuel flow direction of the reforming section 11. Considering the compatibility between the reforming reaction process with high hydrogen yield from reforming reaction to methane steam reforming and reformer design, the temperature from the inlet to the outlet of the hydrogen generator is improved. It is important to keep the temperature of the quality catalyst almost constant.

そこで、当該水素生成装置A1では、改質部11と、水素分離膜12と、透過部13を備えて、非平衡水素生成反応を行うと共に、温度ばらつき抑制手段14により、改質部11の燃料流れ方向において改質触媒全体を均等に加熱する。これにより、改質部11の改質触媒の温度を低くしても、メタンの転化率が向上し、図3(b)に示すように、水素生成量が増大してメタンの生成量が減少することとなる。   Therefore, the hydrogen generation apparatus A1 includes the reforming unit 11, the hydrogen separation membrane 12, and the permeation unit 13, and performs a non-equilibrium hydrogen generation reaction. The entire reforming catalyst is heated evenly in the flow direction. Thereby, even if the temperature of the reforming catalyst of the reforming unit 11 is lowered, the conversion rate of methane is improved, and as shown in FIG. 3B, the hydrogen generation amount increases and the methane generation amount decreases. Will be.

参考例1)
図1に示す水素生成装置A1において、改質部11に改質触媒としてRh/Al2O3を使用し、改質触媒の温度を540℃〜580℃に保った。改質部11にはエタノール及び水蒸気をS/C=2になるように供給し、温度ばらつき抑制手段14のガス流路15部には、改質部11の温度が上記の温度になるように加熱用ガスを供給した。改質部11と透過部13の間に水素分離膜12を設け、改質部11と透過部13の水素分圧差が0.9MPaになるように調整した。これにより、大量の水素を効果的に生成することができた。
( Reference Example 1)
In the hydrogen generator A1 shown in FIG. 1, Rh / Al 2 O 3 was used as the reforming catalyst in the reforming unit 11, and the temperature of the reforming catalyst was maintained at 540 ° C. to 580 ° C. Ethanol and water vapor are supplied to the reforming section 11 so that S / C = 2, and the temperature of the reforming section 11 is set to the above temperature in the gas flow path 15 section of the temperature variation suppressing means 14. Gas for heating was supplied. A hydrogen separation membrane 12 was provided between the reforming unit 11 and the permeation unit 13 and adjusted so that the hydrogen partial pressure difference between the reforming unit 11 and the permeation unit 13 was 0.9 MPa. Thereby, a large amount of hydrogen was able to be produced effectively.

(比較例1)
改質部と水素分離膜と透過部を備えた水素生成装置において、改質部の改質触媒の温度を450℃〜590℃に保ち、改質部における水蒸気改質反応、及び水素分離膜による水素引き抜きを実施した。その結果、比較例1の水素生成装置は、参考例の水素生成装置A1の水素生成量に対して、その75%に相当する水素透過量しか得られなかった。
(Comparative Example 1)
In a hydrogen generator equipped with a reforming unit, a hydrogen separation membrane, and a permeation unit, the temperature of the reforming catalyst in the reforming unit is maintained at 450 ° C. to 590 ° C., and the steam reforming reaction in the reforming unit and the hydrogen separation membrane Hydrogen abstraction was performed. As a result, the hydrogen generator of Comparative Example 1 was able to obtain only a hydrogen permeation amount corresponding to 75% of the hydrogen generation amount of the hydrogen generator A1 of the reference example .

図4は、本発明の水素生成装置の他の参考例を説明する図である。なお、先の参考例と同一の構成部位は、同一符号を付して詳細な説明を省略する。 FIG. 4 is a diagram for explaining another reference example of the hydrogen generator of the present invention. Note that the same components as those in the previous reference example are denoted by the same reference numerals, and detailed description thereof is omitted.

図4(a)は水素生成装置A2の改質部11の部分の水平断面図である。したがって、図示の水素生成装置A2は、紙面に垂直な方向に改質部11、水素分離膜及び透過部を層状を備えている。この水素生成装置A2は、燃料を一定方向(図中で右方向)に流す平行な二本の改質部11を備えると共に、改質部11の燃料流れ方向における改質触媒の温度ばらつき抑制手段14を備えている。   FIG. 4A is a horizontal sectional view of the reforming unit 11 of the hydrogen generator A2. Therefore, the illustrated hydrogen generator A2 includes a reforming unit 11, a hydrogen separation membrane, and a permeation unit in a direction perpendicular to the paper surface. This hydrogen generator A2 includes two parallel reforming sections 11 that allow fuel to flow in a fixed direction (right direction in the drawing), and means for suppressing temperature variation of the reforming catalyst in the fuel flow direction of the reforming section 11. 14 is provided.

温度ばらつき抑制手段14は、先に図2を用いて説明したように、外部又は内部で発生させた加熱用ガスを改質部の改質触媒の加熱源とし、この参考例では、改質部11の燃料流れ方向に対して逆方向に加熱用ガスを流す三本のガス流路15を備えている。これらのガス流路15は、両改質部11の間及び両側に配置してある。 Temperature variation suppression means 14, as described with reference to FIG. 2 above, the heating gas generated in the external or internal heating source for the reforming catalyst of the reforming section, in this reference example, the reforming section The three gas flow paths 15 for flowing the heating gas in the direction opposite to the fuel flow direction 11 are provided. These gas flow paths 15 are disposed between the reforming sections 11 and on both sides.

ここで、上記の水素生成装置A2において、仮に、改質部11の燃料と加熱用ガスを同方向に流すと、改質部11での改質反応が吸熱反応であるため、図4(c)中の破線で示すように、改質部11の出口側で温度が低下し、改質効率も低下する。   Here, in the above hydrogen generator A2, if the fuel of the reforming unit 11 and the heating gas are caused to flow in the same direction, the reforming reaction in the reforming unit 11 is an endothermic reaction. ), The temperature decreases on the outlet side of the reforming section 11, and the reforming efficiency also decreases.

そこで、水素生成装置A2は、改質部11の燃料流れ方向に対して各ガス流路15の加熱用ガスを逆方向に流すことで、図4(c)中に実線で示すように、改質部11のピーク温度を出口側にシフトさせることができる。これにより、水素生成装置A2は、改質触媒の入口側の反応温度を保ちつつ出口側の反応温度も確保し、改質触媒全体の温度を概ね均等化し、図4(b)に示すように、水素生成量が増大してメタンの生成量が減少することとなる。   In view of this, the hydrogen generator A2 is adapted to flow the heating gas in each gas flow path 15 in the reverse direction with respect to the fuel flow direction of the reforming unit 11, thereby improving the reforming as shown by the solid line in FIG. The peak temperature of the mass part 11 can be shifted to the outlet side. As a result, the hydrogen generator A2 ensures the reaction temperature on the outlet side while maintaining the reaction temperature on the inlet side of the reforming catalyst, substantially equalizes the temperature of the entire reforming catalyst, as shown in FIG. 4 (b). As a result, the amount of hydrogen produced increases and the amount of methane produced decreases.

図5は、本発明の水素生成装置のさらに他の参考例を説明する図である。なお、先の参考例と同一の構成部位は、同一符号を付して詳細な説明を省略する。 FIG. 5 is a diagram for explaining still another reference example of the hydrogen generator of the present invention. Note that the same components as those in the previous reference example are denoted by the same reference numerals, and detailed description thereof is omitted.

図5(a)に示す水素生成装置A3は、改質部11、水素分離膜12、透過部13及び温度ばらつき抑制手段14を備えている。この参考例態の温度ばらつき抑制手段14は、外部又は内部で発生させた加熱用ガスを改質部11の改質触媒の加熱源とし、改質部11の燃料流れ方向に沿う方向に加熱用ガスを流すガス流路15と、加熱用ガスの流量を増減させるガス流量調整器17を備えている。 The hydrogen generator A3 illustrated in FIG. 5A includes a reforming unit 11, a hydrogen separation membrane 12, a permeating unit 13, and a temperature variation suppressing unit 14. The temperature variation suppression means 14 of this reference example uses heating gas generated outside or inside as a heating source of the reforming catalyst of the reforming unit 11 and is used for heating in a direction along the fuel flow direction of the reforming unit 11. A gas flow path 15 for flowing gas and a gas flow rate regulator 17 for increasing and decreasing the flow rate of the heating gas are provided.

ここで、ガス流量調整器17は、外部で発生させた加熱用ガスをガス流路15に供給する外部加熱方式(図2b、c参照)である場合には、その加熱用ガスの流量を増減させることとなり、内部で燃料と酸化剤を混合燃焼させて、その燃焼ガスを加熱用ガスとしてガス流路15に供給する内部加熱方式(図2a参照)である場合には、燃料及び酸化剤の流量を増減させることで燃焼ガス(加熱用ガス)の流量を増減させる。   Here, the gas flow rate regulator 17 increases or decreases the flow rate of the heating gas in the case of the external heating method (see FIGS. 2b and 2c) in which the heating gas generated outside is supplied to the gas flow path 15. In the case of the internal heating system (see FIG. 2a) in which the fuel and oxidant are mixed and burned inside and the combustion gas is supplied to the gas passage 15 as a heating gas, the fuel and oxidant are The flow rate of the combustion gas (heating gas) is increased or decreased by increasing or decreasing the flow rate.

上記の水素生成装置A3では、加熱用ガスの流量を増大させるとガス流路15における加熱用ガスの流速も増大し、図5(c)に示すように、これに伴ってガス流路15の出口側で温度が上昇する。これにより、水素生成装置A3では、図5(b)に示すように、加熱用ガスにより加熱される改質部11のピーク温度が出口側にシフトし、改質部11における改質触媒の出口側の部分を昇温させることができ、その結果、改質効率が向上して水素生成量も増大する。 In the hydrogen generation device A3, when the flow rate of the heating gas is increased, the flow velocity of the heating gas in the gas flow path 15 is also increased . As shown in FIG. The temperature rises on the exit side. Thereby, in the hydrogen generator A3, as shown in FIG. 5B, the peak temperature of the reforming section 11 heated by the heating gas is shifted to the outlet side, and the reforming catalyst outlet in the reforming section 11 The temperature of the portion on the side can be raised, and as a result, the reforming efficiency is improved and the amount of hydrogen generation is increased.

また、上記の水素生成装置A3は、例えば、改質部11の出口側に排気温度を検出する温度センサ18を設け、この温度センサ18の検出値に基づいてガス流量調整器17を制御することで、改質部11の自動的な温度調整が可能となる。   Further, the hydrogen generator A3 includes, for example, a temperature sensor 18 that detects the exhaust gas temperature on the outlet side of the reforming unit 11, and controls the gas flow rate regulator 17 based on the detected value of the temperature sensor 18. Thus, the temperature of the reforming unit 11 can be automatically adjusted.

すなわち、水素生成装置A3は、図5(d)に示すように、ステップS1において、温度センサ18の検出値が所定値以下になって昇温指示信号を受信すると、ステップS2において、加熱用ガスの流量が増大するようにガス流量調整器17を駆動する。これにより、改質部11の排気温度も上昇する。そして、ステップS3において、温度センサ18の検出値が所定値以上になったか否か(昇温完了信号を受信したか否か)を判定し、所定値以上ではない場合(No)にはステップS2に戻り、所定値以上になった場合(Yes)には制御を終了する。 That is, as shown in FIG. 5 (d) , when the hydrogen generator A3 receives the temperature increase instruction signal when the detected value of the temperature sensor 18 is equal to or lower than the predetermined value in step S1, the heating gas is detected in step S2. The gas flow rate regulator 17 is driven so that the flow rate increases. As a result, the exhaust temperature of the reforming unit 11 also increases. In step S3, it is determined whether or not the detected value of the temperature sensor 18 is equal to or greater than a predetermined value (whether or not a temperature increase completion signal has been received). Returning to step S4, when the predetermined value or more is reached (Yes), the control is terminated.

図6及び図7は、本発明の水素生成装置の実施形態を説明する図であり、図8は、さらに他の参考例を説明する図である。なお、先の参考例と同一の構成部位は、同一符号を付して詳細な説明を省略する。 6 and 7 are diagrams for explaining an embodiment of the hydrogen generator of the present invention , and FIG. 8 is a diagram for explaining still another reference example . Note that the same components as those in the previous reference example are denoted by the same reference numerals, and detailed description thereof is omitted.

図6は水素生成装置A4の改質部11の部分の水平断面図である。したがって、図示の水素生成装置A4は、紙面に垂直な方向に改質部11、水素分離膜及び透過部を層状を備えている。この水素生成装置A2は、燃料を一定方向(図中で右方向)に流す平行な二本の改質部11を備えると共に、改質部11の燃料流れ方向における改質触媒の温度ばらつき抑制手段14を備えている。   FIG. 6 is a horizontal sectional view of the reforming unit 11 of the hydrogen generator A4. Accordingly, the illustrated hydrogen generator A4 includes a reformer 11, a hydrogen separation membrane, and a permeate layer in a direction perpendicular to the paper surface. This hydrogen generator A2 includes two parallel reforming sections 11 that allow fuel to flow in a fixed direction (right direction in the drawing), and means for suppressing temperature variation of the reforming catalyst in the fuel flow direction of the reforming section 11. 14 is provided.

温度ばらつき抑制手段14は、外部又は内部で発生させた加熱用ガスを改質部の改質触媒の加熱源とし、この実施形態では、改質部11の燃料流れ方向に対して逆方向に加熱用ガスを流す中央のガス流路15Aと、改質部11の燃料流れ方向に沿う方向に加熱用ガスを流す両側のガス流路15B,15Bを備えている。   The temperature variation suppressing means 14 uses heating gas generated externally or internally as a heating source of the reforming catalyst of the reforming section, and in this embodiment, heats in the direction opposite to the fuel flow direction of the reforming section 11. The central gas flow path 15A for flowing the working gas and the gas flow paths 15B and 15B on both sides for flowing the heating gas in the direction along the fuel flow direction of the reforming section 11 are provided.

また、図7は水素生成装置A5の温度ばらつき抑制手段14の部分の水平断面図である。したがって、図示の水素生成装置A5は、紙面に垂直な方向において、温度ばらつき抑制手段14に重合する改質部や、水素分離膜及び透過部を層状を備えている。   FIG. 7 is a horizontal sectional view of the temperature variation suppressing means 14 of the hydrogen generator A5. Therefore, the illustrated hydrogen generator A5 includes a reforming unit that polymerizes on the temperature variation suppressing means 14, a hydrogen separation membrane, and a permeating unit in a direction perpendicular to the paper surface.

温度ばらつき抑制手段14は、外部又は内部で発生させた加熱用ガスを改質部の改質触媒の加熱源とし、この実施形態では、図中に太い矢印で示す改質部の燃料流れ方向に対して、逆方向に加熱用ガスを流す二本のガス流路15Aと、改質部11の燃料流れ方向に沿う方向に加熱用ガスを流す二本のガス流路15Bを備えている。各ガス流路15A,15Bは、隣接する流路同士の加熱用ガスの流れ方向が互いに逆方向になるように配置してある。   The temperature variation suppressing means 14 uses the heating gas generated externally or internally as a heating source of the reforming catalyst of the reforming section. In this embodiment, the temperature variation suppressing means 14 extends in the fuel flow direction of the reforming section indicated by a thick arrow in the figure. On the other hand, two gas flow paths 15A for flowing the heating gas in the reverse direction and two gas flow paths 15B for flowing the heating gas in the direction along the fuel flow direction of the reforming unit 11 are provided. The gas flow paths 15A and 15B are arranged such that the flow directions of the heating gas between the adjacent flow paths are opposite to each other.

図8は水素生成装置A6の温度ばらつき抑制手段14の部分の水平断面図である。したがって、図示の水素生成装置A6は、紙面に垂直な方向において、温度ばらつき抑制手段14に重合する改質部や、水素分離膜及び透過部を層状を備えている。  FIG. 8 is a horizontal sectional view of a portion of the temperature variation suppressing means 14 of the hydrogen generator A6. Therefore, the illustrated hydrogen generator A6 includes a reforming unit that polymerizes in the temperature variation suppressing means 14, a hydrogen separation membrane, and a permeation unit in a direction perpendicular to the paper surface.

温度ばらつき抑制手段14は、外部又は内部で発生させた加熱用ガスを改質部の改質触媒の加熱源とし、この参考例では、図中に太い矢印で示す改質部の燃料流れ方向に対して、直交方向に加熱用ガスを流す四本のガス流路15を備えている。各ガス流路15は、隣接する流路同士の加熱用ガスの流れ方向が互いに逆方向になるように配置してある。 The temperature variation suppressing means 14 uses the heating gas generated outside or inside as a heating source of the reforming catalyst of the reforming section. In this reference example , in the fuel flow direction of the reforming section indicated by a thick arrow in the figure. On the other hand, the four gas flow paths 15 which flow the heating gas in the orthogonal direction are provided. Each gas flow path 15 is arrange | positioned so that the flow direction of the gas for heating of adjacent flow paths may become a mutually reverse direction.

上記の三例の水素生成装置A4〜A6は、いずれも温度ばらつき抑制手段14により改質部11の燃料流れ方向全体にわたって改質触媒を均等に加熱することができ、これにより、先の各参考例と同様に、改質効率を向上させて水素生成量を増大させることができる。 The hydrogen generators A4 to A6 of the above three examples can uniformly heat the reforming catalyst over the entire fuel flow direction of the reforming unit 11 by the temperature variation suppressing means 14, and thereby each of the above references Similar to the example , the reforming efficiency can be improved and the amount of hydrogen generation can be increased.

図9は、本発明の水素生成装置のさらに他の実施形態を説明する図である。なお、先の参考例及び実施形態と同一の構成部位は、同一符号を付して詳細な説明を省略する。 FIG. 9 is a diagram illustrating still another embodiment of the hydrogen generator of the present invention. Note that the same components as those in the previous reference example and embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図9(a)に示す水素生成装置A7は、内燃機関Eに付設する装置であって、先の参考例及び実施形態と同様に、改質部、水素分離膜、透過部及び温度ばらつき抑制手段14を備えている。この実施形態の温度ばらつき抑制手段14は、加熱用ガスとして内燃機関Eの排気ガスを用いる外部加熱方式であって、排気ガス中の残留酸素量を検出する酸素検出器19と、酸素検出器19で検出した残留酸素量に応じてガス流路15の途中から燃料を追加供給する燃料追加供給器20を備えている。酸素検出器19には、酸素センサや空燃比センサ等を用いることができる。 A hydrogen generation apparatus A7 shown in FIG. 9A is an apparatus attached to the internal combustion engine E, and is similar to the previous reference example and embodiment, the reforming section, the hydrogen separation membrane, the permeation section, and the temperature variation suppressing means. 14 is provided. The temperature variation suppressing means 14 of this embodiment is an external heating system that uses the exhaust gas of the internal combustion engine E as a heating gas, and an oxygen detector 19 that detects the amount of residual oxygen in the exhaust gas, and an oxygen detector 19. An additional fuel supply device 20 for supplying additional fuel from the middle of the gas flow path 15 in accordance with the amount of residual oxygen detected in FIG. For the oxygen detector 19, an oxygen sensor, an air-fuel ratio sensor, or the like can be used.

また、水素生成装置A7は、改質部に対して燃料及び酸化剤を供給する燃料供給器21及び水蒸気供給器22と、温度ばらつき抑制手段14のガス流路15に対して内燃機関Eの排気ガスの流量を増減する調整供給するガス流量調整器23と、酸素検出器19の検出値に基づいて燃料追加供給器20やガス量調整器23を制御する制御器24を備えている。先の燃料追加供給器20には、改質部に燃料を供給する燃料供給器21から燃料が供給される。   Further, the hydrogen generator A7 is configured to exhaust the internal combustion engine E with respect to the fuel supply unit 21 and the water vapor supply unit 22 that supply fuel and an oxidant to the reforming unit, and the gas flow path 15 of the temperature variation suppressing unit 14. A gas flow rate regulator 23 for adjusting and increasing the gas flow rate, and a controller 24 for controlling the additional fuel supply device 20 and the gas amount regulator 23 based on the detection value of the oxygen detector 19 are provided. Fuel is supplied to the previous fuel additional supply device 20 from a fuel supply device 21 that supplies fuel to the reforming unit.

上記の水素生成装置A7は、内燃機関Eがリーン燃焼することにより、その排気ガス(加熱用ガス)に残留酸素が含まれているので、図(c)に示すように、排気ガスの残留酸素量に基づいて燃料の追加供給量を算出する。そして、ガス流路15の途中から、算出した量の燃料を追加供給することで、ガス流路15の出口側で排気ガス(加熱用ガス)を完全燃焼させて加熱用ガスを昇温させる。これにより、図(b)に示すように、改質部11における改質触媒全体にわたって温度が均一化され、改質効率を向上させて水素生成量を増大させることができる。 The above hydrogen generator A7, by the internal combustion engine E is lean combustion because it contains residual oxygen in the exhaust gas (heating gas), as shown in FIG. 9 (c), the residual exhaust gas The additional supply amount of fuel is calculated based on the oxygen amount. Then, by additionally supplying the calculated amount of fuel from the middle of the gas flow path 15, exhaust gas (heating gas) is completely burned on the outlet side of the gas flow path 15 to raise the temperature of the heating gas. Thus, as shown in FIG. 9 (b), the temperature is made uniform throughout the reforming catalyst in the reforming unit 11, it is possible to increase the amount of hydrogen generated to improve the reforming efficiency.

また、水素生成装置A7は、改質部の自動的な温度調整が可能となる。すなわち、水素生成装置A7は、図9(d)に示すように、ステップS11において、酸素検出器19の検出値が所定値以上になって昇温指示信号を受信すると、ステップS12において、燃料の追加供給量を算出し、ステップS13において、燃料追加供給器20によりガス流路15の途中から燃料を追加供給する。そして、ステップS14において、酸素検出器19の検出値が所定値以下になったか否か(昇温完了信号を受信したか否か)を判定し、所定値以下ではない場合(No)には、排気ガス中の残留酸素量が充分にあるのでステップS13に戻り、所定値以下になった場合(Yes)には、排気ガス中の残留酸素量が不足しているので制御を終了する。   Further, the hydrogen generator A7 can automatically adjust the temperature of the reforming unit. That is, as shown in FIG. 9 (d), when the hydrogen detector A7 receives the temperature increase instruction signal when the detected value of the oxygen detector 19 reaches or exceeds a predetermined value in step S11, in step S12, The additional supply amount is calculated, and fuel is additionally supplied from the middle of the gas flow path 15 by the additional fuel supplier 20 in step S13. In step S14, it is determined whether or not the detection value of the oxygen detector 19 is equal to or less than a predetermined value (whether or not a temperature increase completion signal is received). Since there is a sufficient amount of residual oxygen in the exhaust gas, the process returns to step S13, and when it is equal to or less than the predetermined value (Yes), the control is terminated because the amount of residual oxygen in the exhaust gas is insufficient.

なお、水素生成装置A7は、残留酸素量が不足していると判断した場合でも、先の図5に示す参考例と同様にガス流量調整器23を備えているので、温度ばらつき抑制手段14のガス流路15に対する排気ガス(加熱用ガス)の流量を増減させることによっても改質部の改質触媒全体にわたって温度の均等化を図ることができる。 Even when it is determined that the residual oxygen amount is insufficient, the hydrogen generator A7 includes the gas flow rate regulator 23 as in the reference example shown in FIG. The temperature can be equalized over the entire reforming catalyst in the reforming section by increasing or decreasing the flow rate of the exhaust gas (heating gas) to the gas flow path 15.

図10は、本発明の水素生成装置のさらに他の実施形態を説明する図である。なお、先の実施形態と同一の構成部位は、同一符号を付して詳細な説明を省略する。   FIG. 10 is a diagram illustrating still another embodiment of the hydrogen generator of the present invention. Note that the same components as those of the previous embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図10(a)に示す水素生成装置A8は、先の実施形態と同様に、改質部、水素分離膜、透過部及び温度ばらつき抑制手段14を備えている。この実施形態の温度ばらつき抑制手段14は、燃料と酸化剤の混合燃焼による燃焼ガスを加熱用ガスとした内部加熱方式であって、ガス流路15に燃料及び酸化剤を理論空燃比以上の混合比率で供給する空燃調整器25と、ガス流路15からの排気ガス中の残留酸素量を検出する酸素検出器(図9の符号19参照)と、酸素検出器(19)で検出した残留酸素量に応じてガス流路15の途中から燃料を追加供給する燃料追加供給器20を備えている。 The hydrogen generator A8 shown in FIG. 10A includes a reforming unit, a hydrogen separation membrane, a permeation unit, and a temperature variation suppressing unit 14 as in the previous embodiment. The temperature variation suppressing means 14 of this embodiment is an internal heating method in which the combustion gas resulting from the mixed combustion of fuel and oxidant is used as a heating gas, and the fuel and oxidant are mixed in the gas flow path 15 at a theoretical air fuel ratio or higher. and air-fuel ratio regulator 25 supplies a ratio, the oxygen detector for detecting the residual oxygen amount in the exhaust gas from the gas flow channel 15 (the reference numeral 19 in FIG. 9), detected by the oxygen detector (19) An additional fuel supply device 20 for supplying additional fuel from the middle of the gas flow path 15 according to the residual oxygen amount is provided.

また、水素生成装置A8は、改質部に対して燃料及び酸化剤を供給する燃料供給器21及び水蒸気供給器22を備えており、燃料供給器21から空燃調整器25を経てガス流路15に燃料を供給する。 The hydrogen generating device A8 is provided with a fuel supply device 21 and the steam supply unit 22 for supplying the fuel and oxidant from the fuel supply 21 through the air-fuel ratio regulator 25 the gas stream relative to the reformer Fuel is supplied to the passage 15.

上記の水素生成装置A8は、温度ばらつき抑制手段14のガス流路15に燃料を供給する段階で、空燃調整器25によって燃料及び酸化剤(空気)を理論空燃比以上に設定しておき、酸素検出器(19)によってガス流路15からの排気ガス中の残留酸素量を検出し、図10(c)に示すように、ガス流路15の出口側で理論空燃比付近になるように、燃料追加供給器20によってガス流路15の途中から燃料を追加供給する。このような制御は、先の図9(d)に示すフローチャートと同様の工程で自動的に行うことができる。 The above hydrogen generator A8 is a step for supplying the fuel to the gas flow path 15 of the temperature variation suppressing means 14, may be set fuel and oxidant (air) to the stoichiometric air-fuel ratio than the air-fuel ratio regulator 25 The oxygen detector (19) detects the amount of residual oxygen in the exhaust gas from the gas flow path 15 so that it becomes close to the stoichiometric air-fuel ratio at the outlet side of the gas flow path 15 as shown in FIG. 10 (c). In addition, additional fuel is supplied from the middle of the gas flow path 15 by the additional fuel supplier 20. Such control can be automatically performed in the same process as the flowchart shown in FIG.

これにより、水素生成装置A8は、図10(b)に示すように、改質部における改質触媒全体にわたって温度が均一化され、改質効率を向上させて水素生成量を増大させることができる。   Thereby, as shown in FIG.10 (b), hydrogen generator A8 can make temperature uniform throughout the reforming catalyst in a reforming part, can improve reforming efficiency, and can increase the amount of hydrogen production. .

また、上記の水素生成装置A8は、空燃調整器25において燃料と酸化剤(空気)の供給比率を逆転させて、理論空燃比以下の供給比率のところに酸化剤の追加供給を行って同様の効果を得ることができる。 Also, the above hydrogen generator A8 reverses the supply ratio of the fuel and oxidant (air) in the air-fuel ratio regulator 25, and then add the supply of the oxidizing agent at the following feed ratio the stoichiometric air-fuel ratio Similar effects can be obtained.

図11は、本発明の水素生成装置のさらに他の参考例を説明する図である。なお、先の参考例及び実施形態と同一の構成部位は、同一符号を付して詳細な説明を省略する。 FIG. 11 is a diagram for explaining still another reference example of the hydrogen generator of the present invention. Note that the same components as those in the previous reference example and embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図11(a)は水素生成装置A9の温度ばらつき抑制手段14の部分の水平断面図である。この参考例の温度ばらつき抑制手段14は、燃料と酸化剤の混合燃焼による燃焼ガスを加熱用ガスとした内部加熱方式であって、ガス流路15の内部に多数の伝熱用フィン26を備えると共に、ガス流路15のガス流れ方向において伝熱用フィン26の設置密度を異ならせている。より具体的には、ガス流路15の入口側の伝熱用フィン26の設置密度よりも、出口側の伝熱用フィン26の設置密度の方が大きくなっている。つまり、ガス流路15の前半の伝熱用フィン26の数よりも、後半の伝熱用フィン26の数が多くなっている。 FIG. 11A is a horizontal sectional view of a portion of the temperature variation suppressing means 14 of the hydrogen generator A9. The temperature variation suppressing means 14 of this reference example is an internal heating system in which the combustion gas resulting from the mixed combustion of fuel and oxidant is a heating gas, and includes a large number of heat transfer fins 26 inside the gas flow path 15. At the same time, the installation density of the heat transfer fins 26 is varied in the gas flow direction of the gas flow path 15. More specifically, the installation density of the heat transfer fins 26 on the outlet side is larger than the installation density of the heat transfer fins 26 on the inlet side of the gas flow path 15. That is, the number of heat transfer fins 26 in the latter half is larger than the number of heat transfer fins 26 in the first half of the gas flow path 15.

上記の水素生成装置A9は、入口側の伝熱用フィン26の設置密度よりも、出口側の伝熱用フィン26の設置密度を大きくすることで、ガス流路15の後半における流路内面積が増大されて熱伝導率も高くなり、図11(c)に示すように、ガス流路15の出口側で燃料転化率も向上する。これにより、水素生成装置A9は、図11(b)に示すように、改質部における改質触媒全体にわたって温度が均一化され、改質効率を向上させて水素生成量を増大させることができる。   The hydrogen generating device A9 described above has a flow passage area in the second half of the gas flow passage 15 by increasing the installation density of the heat transfer fins 26 on the outlet side than the installation density of the heat transfer fins 26 on the inlet side. Is increased to increase the thermal conductivity, and the fuel conversion rate is also improved on the outlet side of the gas flow path 15 as shown in FIG. As a result, as shown in FIG. 11B, the hydrogen generator A9 can make the temperature uniform over the entire reforming catalyst in the reforming section, improve the reforming efficiency, and increase the hydrogen generation amount. .

図12は、本発明の水素生成装置のさらに他の参考例を説明する図である。なお、先の参考例及び実施形態と同一の構成部位は、同一符号を付して詳細な説明を省略する。 FIG. 12 is a diagram for explaining still another reference example of the hydrogen generator of the present invention. Note that the same components as those in the previous reference example and embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図12(a)は水素生成装置A10の温度ばらつき抑制手段14の部分の水平断面図である。この参考例の温度ばらつき抑制手段14は、燃料と酸化剤の混合燃焼による燃焼ガスを加熱用ガスとした内部加熱方式であって、ガス流路15のガス流れ方向における複数箇所(図示例では二箇所)に燃焼触媒27が配置してある。 FIG. 12A is a horizontal sectional view of a portion of the temperature variation suppressing means 14 of the hydrogen generator A10. The temperature variation suppressing means 14 of this reference example is an internal heating method in which the combustion gas produced by the mixed combustion of fuel and oxidant is a heating gas, and is provided at a plurality of locations in the gas flow direction of the gas flow path 15 (two in the illustrated example). The combustion catalyst 27 is disposed at a location).

上記の水素生成装置A10は、温度ばらつき抑制手段14が燃料と酸化剤を用いる内部加熱方式であるから、燃焼触媒27を使用することで低温燃焼させることができる。この場合には、燃焼触媒27で主に酸化反応を起こすので、上述の如く複数箇所に燃焼触媒27を配置することで、図12(c)に示すように、ガス流路15の出口側で燃料転化率も向上する。   The hydrogen generator A10 described above is an internal heating method in which the temperature variation suppressing means 14 uses a fuel and an oxidant, so that it can be burned at a low temperature by using the combustion catalyst 27. In this case, since the oxidation reaction is mainly caused by the combustion catalyst 27, by arranging the combustion catalyst 27 at a plurality of locations as described above, as shown in FIG. Fuel conversion rate is also improved.

これにより、水素生成装置A10は、ガス流路15の熱を分散させることができ、図12(b)に示すように、改質部における改質触媒全体にわたって温度を均一化することができ、改質効率を向上させて水素生成量を増大させることができる。   Thereby, the hydrogen generator A10 can disperse the heat of the gas flow path 15, and as shown in FIG. 12B, the temperature can be made uniform over the entire reforming catalyst in the reforming section. The reforming efficiency can be improved and the amount of hydrogen generation can be increased.

図13は、本発明の水素生成装置のさらに他の参考例を説明する図である。なお、先の参考例及び実施形態と同一の構成部位は、同一符号を付して詳細な説明を省略する。 FIG. 13 is a diagram for explaining still another reference example of the hydrogen generator of the present invention. Note that the same components as those in the previous reference example and embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図13(a)は水素生成装置A11の温度ばらつき抑制手段14の部分の水平断面図である。この参考例の温度ばらつき抑制手段14は、燃料と酸化剤の混合燃焼による燃焼ガスを加熱用ガスとした内部加熱方式であって、ガス流路15のガス流れ方向に複数(図示例は二つ)の燃焼触媒27A,27Bが配置してある。 FIG. 13A is a horizontal sectional view of a portion of the temperature variation suppressing means 14 of the hydrogen generator A11. The temperature variation suppressing means 14 of this reference example is an internal heating system in which the combustion gas resulting from the mixed combustion of fuel and oxidant is a heating gas, and there are a plurality of (two in the illustrated example) in the gas flow direction of the gas flow path 15. ) Combustion catalysts 27A and 27B are disposed.

そして、温度ばらつき抑制手段14は、ガス流路15のガス流れ方向に隣接する燃焼触媒27A,27Bにおいて、ガス流路15の入口側の燃焼触媒27Aよりも、ガス流路15の出口側の燃焼触媒27Bの塗布量及び基金属担持量の少なくとも一方を大きくしている。   Then, the temperature variation suppressing means 14 combusts at the outlet side of the gas flow path 15 more than the combustion catalyst 27A at the inlet side of the gas flow path 15 in the combustion catalysts 27A and 27B adjacent in the gas flow direction of the gas flow path 15. At least one of the coating amount of the catalyst 27B and the base metal loading amount is increased.

上記の水素生成装置A11は、ガス流路15の後半で燃料の転化率が100%となるように燃焼触媒27A,27Bを分けることで、図13(c)に示すように、ガス流路15での熱の発生が二段になり、改質部への伝達する熱の偏りを防いで、改質部の改質触媒の後半部分の温度を確保することができる。   As shown in FIG. 13C, the hydrogen generation device A11 separates the combustion catalysts 27A and 27B so that the fuel conversion rate becomes 100% in the latter half of the gas flow path 15, as shown in FIG. The generation of heat at the two stages becomes two-stage, and the temperature of the latter half of the reforming catalyst in the reforming section can be secured by preventing the bias of heat transmitted to the reforming section.

これにより、水素生成装置A11は、ガス流路15の熱を分散させることができ、図13(b)に示すように、改質部における改質触媒全体にわたって温度を均一化することができ、改質効率を向上させて水素生成量を増大させることができる   Thereby, the hydrogen generator A11 can disperse the heat of the gas flow path 15, and as shown in FIG. 13B, the temperature can be made uniform over the entire reforming catalyst in the reforming section. Improve reforming efficiency and increase hydrogen production

図14は、本発明の水素生成装置のさらに他の参考例を説明する図である。なお、先の参考例及び実施形態と同一の構成部位は、同一符号を付して詳細な説明を省略する。 FIG. 14 is a diagram for explaining still another reference example of the hydrogen generator of the present invention. Note that the same components as those in the previous reference example and embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図示の水素生成装置A12における温度ばらつき抑制手段14は、燃料と酸化剤の混合燃焼による燃焼ガスを加熱用ガスとした内部加熱方式であって、ガス流路15の出口側に電気的な加熱器(ヒーター)28を備えている。   The temperature variation suppressing means 14 in the hydrogen generator A12 shown in the figure is an internal heating method in which the combustion gas obtained by the mixed combustion of fuel and oxidant is a heating gas, and an electric heater is provided on the outlet side of the gas flow path 15. (Heater) 28 is provided.

上記の水素生成装置A12は、ガス流路15に供給する燃料及び酸化剤(空気)の混合燃焼熱のみでは、改質部の温度を入口から出口までほぼ均等に保てない場合に、ガス流路
15の後半で加熱器28により加熱用ガスを昇温させる。これにより、水素生成装置A12は、改質部における改質触媒全体にわたって温度を均一化することができ、改質効率を向上させて水素生成量を増大させることができる
The hydrogen generator A12 described above has a gas flow when the temperature of the reforming section cannot be kept almost even from the inlet to the outlet only by the mixed combustion heat of the fuel and oxidant (air) supplied to the gas flow path 15. In the latter half of the path 15, the heating gas is heated by the heater 28. Thereby, the hydrogen generator A12 can make the temperature uniform over the entire reforming catalyst in the reforming section, and can improve the reforming efficiency and increase the hydrogen generation amount.

図15は、本発明の水素生成装置のさらに他の参考例を説明する図である。なお、先の参考例及び実施形態と同一の構成部位は、同一符号を付して詳細な説明を省略する。 FIG. 15 is a diagram for explaining still another reference example of the hydrogen generator of the present invention. Note that the same components as those in the previous reference example and embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図15(a)に示す水素生成装置A13は、先の各参考例と同様に、改質部11、水素分離膜12、透過部13及び温度ばらつき抑制手段14を備えている。この実施形態の温度ばらつき抑制手段14は、外部又は内部で発生させた加熱用ガスを流すガス流路15を備えると共に、改質部11の入口温度を検出する入口温度検出器29Aと、改質部11の出口温度を検出する出口温度検出器29Dと、改質部11の改質触媒の複数箇所の温度を検出する触媒温度検出器29B,29Cと、制御器30を備えている。 The hydrogen generator A13 shown in FIG. 15A includes the reforming unit 11, the hydrogen separation membrane 12, the permeating unit 13, and the temperature variation suppressing means 14 as in the previous reference examples . The temperature variation suppressing means 14 of this embodiment includes a gas flow path 15 for flowing a heating gas generated outside or inside, an inlet temperature detector 29A for detecting the inlet temperature of the reforming unit 11, and reforming. An outlet temperature detector 29 </ b> D that detects the outlet temperature of the part 11, catalyst temperature detectors 29 </ b> B and 29 </ b> C that detect temperatures at a plurality of locations of the reforming catalyst of the reforming part 11, and a controller 30 are provided.

そして、制御器30は、出口温度検出器29Dで検出した改質部11の出口温度が、各温度検出器29A〜29Dの検出値に基づく改質触媒の平均温度及びその標準偏差の三倍値に満たない場合に、改質部11の改質触媒に対する加熱を行うものとなっている。   Then, the controller 30 determines that the outlet temperature of the reforming unit 11 detected by the outlet temperature detector 29D is three times the average temperature of the reforming catalyst and its standard deviation based on the detected values of the temperature detectors 29A to 29D. If it is less than the above, the reforming catalyst of the reforming unit 11 is heated.

この改質触媒に対する加熱とは、例えば、図5に示す参考例における加熱用ガスの流量の増減、図9及び図10に示す実施形態におけるガス流路15への燃料の追加供給、図14に示す参考例における加熱器28の作動などの制御である。 The heating to the reforming catalyst is, for example, increase / decrease in the flow rate of the heating gas in the reference example shown in FIG. 5, additional supply of fuel to the gas flow path 15 in the embodiment shown in FIGS. 9 and 10, and FIG. It is control, such as an action | operation of the heater 28 in the reference example shown.

上記の水素生成装置A13は、図15(b)に示すように、ステップS21において、各温度検出器29A〜29Dからの検出値に基づいて改質部11の改質触媒の平均温度及びその標準偏差を算出し、ステップS22において、出口温度検出器29Dによる改質部11の出口温度が、改質触媒の平均温度及びその標準偏差の三倍値以上であるか否かを判定する。なお、標準偏差の三倍値としたのは、水素の収率が上がる変曲点が実験的に三倍値周辺にあるからである。   As shown in FIG. 15 (b), the hydrogen generator A13 described above, in step S21, based on the detected values from the temperature detectors 29A to 29D, the average temperature of the reforming catalyst of the reforming unit 11 and its standard. The deviation is calculated, and in step S22, it is determined whether or not the outlet temperature of the reforming unit 11 by the outlet temperature detector 29D is equal to or higher than the average temperature of the reforming catalyst and the standard deviation thereof. The reason why the value is triple the standard deviation is that the inflection point where the yield of hydrogen increases is experimentally around the triple value.

そして、水素生成装置A13は、ステップS22において、改質部11の出口温度が改質触媒の平均温度及びその標準偏差の三倍値以上である場合(Yes)には、ステップS23において、温度ばらつき抑制手段14に対する昇温指示信号を解除して制御を終了する。また、ステップS22において、改質部11の出口温度が改質触媒の平均温度及びその標準偏差の三倍値に満たない場合(No)には、ステップS24において、温度ばらつき抑制手段14に対する昇温指示信号を発信し、ステップS25において温度制御を実施する。   Then, in Step S22, when the outlet temperature of the reforming unit 11 is equal to or more than three times the average temperature of the reforming catalyst and its standard deviation (Yes), the hydrogen generator A13 determines the temperature variation in Step S23. The temperature increase instruction signal for the suppression means 14 is canceled and the control is terminated. In step S22, when the outlet temperature of the reforming unit 11 is less than the average temperature of the reforming catalyst and three times the standard deviation (No), in step S24, the temperature rise for the temperature variation suppressing means 14 is increased. An instruction signal is transmitted, and temperature control is performed in step S25.

すなわち、加熱用ガスの流量の増加、ガス流路15への燃料の追加供給、加熱器28の作動などを行って、改質部11の改質触媒全体の温度を均等化し、これにより、改質効率を向上させて水素生成量を増大させることができる。   That is, the temperature of the entire reforming catalyst of the reforming unit 11 is equalized by increasing the flow rate of the heating gas, supplying additional fuel to the gas flow path 15, operating the heater 28, and the like. It is possible to improve the quality efficiency and increase the amount of hydrogen produced.

上記の水素生成装置A13では、炭化水素若しくはアルコールを水蒸気改質する場合、使用する改質触媒にもよるが、概ね400℃以上の改質温度が必要である。この改質温度以上であれば、改質燃料は、分解や脱水素、シフト反応、水蒸気改質等を起こし、メタンやCOなど分子量の軽いものに順次分解・改質される。   In the above hydrogen generator A13, when a hydrocarbon or alcohol is steam reformed, a reforming temperature of approximately 400 ° C. or higher is required, although depending on the reforming catalyst used. Above this reforming temperature, the reformed fuel undergoes decomposition, dehydrogenation, shift reaction, steam reforming, and the like, and is sequentially decomposed and reformed to those having a light molecular weight such as methane and CO.

また、非平衡水素生成反応を起こしている場合では、改質触媒の平均温度を前述の400℃以上に保っていれば、改質反応により複成されたメタンやCOもメタン水蒸気改質やCOの水生ガスシフト反応を起こし、より高い水素生成効率を得ることができる。したがって、当該水素生成装置は、改質部11の出口温度を400℃〜600℃程度に保つことにより、非平衡水素生成反応から高効率な水素生成を実現することができる。   In the case where a non-equilibrium hydrogen generation reaction is taking place, if the average temperature of the reforming catalyst is maintained at 400 ° C. or higher, methane and CO compounded by the reforming reaction are also converted into methane steam reforming and CO. The aquatic gas shift reaction can occur and higher hydrogen production efficiency can be obtained. Therefore, the hydrogen generation apparatus can realize highly efficient hydrogen generation from a non-equilibrium hydrogen generation reaction by maintaining the outlet temperature of the reforming unit 11 at about 400 ° C. to 600 ° C.

なお、本発明の水素生成装置は、その構成が上記各実施形態に限定されるものではなく、各実施形態及び各参考例の温度ばらつき抑制手段の具体的構成を適宜組み合わせることも可能であって、本発明の要旨を逸脱しない範囲で構成の細部を変更することができる。 The configuration of the hydrogen generator of the present invention is not limited to the above embodiments, and the specific configuration of the temperature variation suppressing means of each embodiment and each reference example can be appropriately combined. The details of the configuration can be changed without departing from the scope of the present invention.

本発明の水素生成装置の参考例を説明する断面図である。It is sectional drawing explaining the reference example of the hydrogen generator of this invention. 内部加熱方式の温度ばらつき抑制手段を説明する断面図(a)、外部加熱方式の温度ばらつき抑制手段を説明する各々断面図(b)(c)である。FIG. 4 is a cross-sectional view (a) illustrating temperature variation suppressing means of the internal heating method, and cross-sectional views (b) and (c) illustrating temperature variation suppressing means of the external heating method. 水蒸気改質温度とメタンの転化率との関係を示すグラフ(a)、改質部における物質の生成量を示すグラフ(b)、及び改質部における温度を示すグラフ(c)である。It is the graph (a) which shows the relationship between steam reforming temperature and the conversion rate of methane, the graph (b) which shows the production amount of the substance in a reforming part, and the graph (c) which shows the temperature in a reforming part. 本発明の水素生成装置の他の参考例を説明する水平断面図(a)、改質部における物質の生成量を示すグラフ(b)、及び改質部における温度を示すグラフ(c)である。It is the horizontal sectional view (a) explaining the other reference example of the hydrogen generator of this invention, the graph (b) which shows the production amount of the substance in a reforming part, and the graph (c) which shows the temperature in a reforming part. . 本発明の水素生成装置のさらに他の参考例を説明する断面図(a)、改質部における温度を示すグラフ(b)、加熱用ガスの流速とガス流路の温度を示すグラフ(c)、及び制御工程を説明するフローチャート(d)である。Sectional drawing (a) explaining the further another reference example of the hydrogen generator of this invention, the graph (b) which shows the temperature in a reforming part, the graph (c) which shows the flow velocity of the gas for heating, and the temperature of a gas flow path And FIG. 6 is a flowchart (d) illustrating a control process. 本発明の水素生成装置の一実施形態を説明する水平断面図である。It is a horizontal sectional view explaining one embodiment of the hydrogen generator of the present invention. 本発明の水素生成装置の他の実施形態を説明する水平断面図である。It is a horizontal sectional view explaining other embodiments of the hydrogen generator of the present invention. 本発明の水素生成装置のさらに他の参考例を説明する水平断面図である。It is a horizontal sectional view explaining the other reference example of the hydrogen generator of the present invention. 本発明の水素生成装置のさらに他の実施形態を説明するブロック図(a)、改質部における温度を示すグラフ(b)、ガス流路に対する燃料の供給量を示すグラフ(c)、及び制御工程を説明するフローチャート(d)である。Further block diagram illustrating another embodiment of a hydrogen generator of the present invention (a), a graph showing the temperature in the reformer unit (b), a graph showing the amount of fuel supplied to the gas flow path (c), and the control It is a flowchart (d) explaining a process. 本発明の水素生成装置のさらに他の実施形態を説明するブロック図(a)、改質部における温度を示すグラフ(b)、及びガス流路に対する空燃比を示すグラフ(c)である。Further block diagram illustrating another embodiment of a hydrogen generator of the present invention (a), is a graph showing the temperature in the reformer unit (b), and a graph showing the air-fuel ratio with respect to the gas flow path (c). 本発明の水素生成装置のさらに他の参考例を説明する水平断面図(a)、改質部における温度を示すグラフ(b)、及びガス流路に対する燃料転化率を示すグラフ(c)である。It is the horizontal sectional view (a) explaining the other reference example of the hydrogen generator of this invention, the graph (b) which shows the temperature in a reforming part, and the graph (c) which shows the fuel conversion rate with respect to a gas flow path. . 本発明の水素生成装置のさらに他の参考例を説明する水平断面図(a)、改質部における温度を示すグラフ(b)、及びガス流路に対する燃料転化率を示すグラフ(c)である。It is the horizontal sectional view (a) explaining the other reference example of the hydrogen generator of this invention, the graph (b) which shows the temperature in a reforming part, and the graph (c) which shows the fuel conversion rate with respect to a gas flow path. . 本発明の水素生成装置のさらに他の参考例を説明する水平断面図(a)、改質部における温度を示すグラフ(b)、及びガス流路に対する燃料転化率を示すグラフ(c)である。It is the horizontal sectional view (a) explaining the other reference example of the hydrogen generator of this invention, the graph (b) which shows the temperature in a reforming part, and the graph (c) which shows the fuel conversion rate with respect to a gas flow path. . 本発明の水素生成装置のさらに他の参考例を説明する水平断面図である。It is a horizontal sectional view explaining the other reference example of the hydrogen generator of the present invention. 本発明の水素生成装置のさらに他の参考例を説明する断面図(a)、及び制御工程を説明するフローチャート(b)である。It is sectional drawing (a) explaining the further reference example of the hydrogen generator of this invention, and the flowchart (b) explaining a control process.

符号の説明Explanation of symbols

A1〜A13 水素生成装置
E 内燃機関
11 改質部
12 水素分離膜
13 透過部
14 温度ばらつき抑制手段
15 ガス流路
15A ガス流路
15B ガス流路
17 ガス流量調整器
19 酸素検出器
20 燃料追加供給器
23 ガス流量調整器
24 制御器
25 空燃調整器
26 伝熱用フィン
27 燃焼触媒
27A 燃焼触媒
27B 燃焼触媒
28 加熱器
29A 入口温度検出器
29B 触媒温度検出器
29C 触媒温度検出器
29D 出口温度検出器
A1 to A13 Hydrogen generator E Internal combustion engine 11 Reforming unit 12 Hydrogen separation membrane 13 Permeating unit 14 Temperature variation suppressing means 15 Gas flow channel 15A Gas flow channel 15B Gas flow channel 17 Gas flow rate regulator 19 Oxygen detector 20 Fuel supply vessel 23 gas flow regulator 24 controller 25 air-fuel ratio regulator 26 the heat transfer fins 27 combustion catalyst 27A combustion catalyst 27B combustion catalyst 28 heater 29A inlet temperature detector 29B catalyst temperature detector 29C catalyst temperature detector 29D outlet temperature Detector

Claims (9)

内燃機関に付設され、燃料を一定方向に流して改質触媒により同燃料を改質する改質部と、改質部で改質した改質ガスから水素ガスを分離抽出する水素分離膜と、水素分離膜で分離抽出した水素ガスを装置外部に流す透過部を備えて、非平衡水素生成反応を行う水素生成装置であって、
改質部の燃料流れ方向における改質触媒の温度ばらつき抑制手段を備え
温度ばらつき抑制手段が、外部又は内部で発生させた加熱用ガスを改質部の改質触媒の加熱源とし、改質部の燃料流れ方向に対して逆方向に加熱用ガスを流すガス流路と、改質部の燃料流れ方向に沿う方向に加熱用ガスを流すガス流路を備え、
さらに、温度ばらつき抑制手段が、加熱用ガスとして内燃機関の排気ガスを用い、排気ガス中の残留酸素量を検出する酸素検出器と、酸素検出器で検出した残留酸素量に応じてガス流路の途中から燃料を追加供給する燃料追加供給器を備えたことを特徴とする水素生成装置。
A reforming unit attached to the internal combustion engine, for flowing the fuel in a fixed direction and reforming the fuel with a reforming catalyst, a hydrogen separation membrane for separating and extracting hydrogen gas from the reformed gas reformed in the reforming unit, A hydrogen generation apparatus that includes a permeation section that allows hydrogen gas separated and extracted by a hydrogen separation membrane to flow outside the apparatus, and performs a non-equilibrium hydrogen generation reaction,
Provided with means for suppressing temperature variation of the reforming catalyst in the fuel flow direction of the reforming section ,
A gas flow path in which the temperature variation suppressing means uses the heating gas generated outside or inside as a heating source of the reforming catalyst of the reforming section and flows the heating gas in a direction opposite to the fuel flow direction of the reforming section. And a gas flow path for flowing a heating gas in a direction along the fuel flow direction of the reforming section,
Further, the temperature variation suppressing means uses the exhaust gas of the internal combustion engine as the heating gas, detects an amount of residual oxygen in the exhaust gas, and a gas flow path according to the amount of residual oxygen detected by the oxygen detector A hydrogen generator comprising an additional fuel supply device for additionally supplying fuel from the middle of the fuel .
燃料を一定方向に流して改質触媒により同燃料を改質する改質部と、改質部で改質した改質ガスから水素ガスを分離抽出する水素分離膜と、水素分離膜で分離抽出した水素ガスを装置外部に流す透過部を備えて、非平衡水素生成反応を行う水素生成装置であって、
改質部の燃料流れ方向における改質触媒の温度ばらつき抑制手段を備え、
温度ばらつき抑制手段が、外部又は内部で発生させた加熱用ガスを改質部の改質触媒の加熱源とし、改質部の燃料流れ方向に対して逆方向に加熱用ガスを流すガス流路と、改質部の燃料流れ方向に沿う方向に加熱用ガスを流すガス流路を備え、
さらに、温度ばらつき抑制手段が、燃料と酸化剤の混合燃焼による燃焼ガスを加熱用ガスとし、ガス流路に燃料及び酸化剤を理論空燃比以上の混合比率で供給する空燃比調整器と、ガス流路からの排気ガス中の残留酸素量を検出する酸素検出器と、酸素検出器で検出した残留酸素量に応じてガス流路の途中から燃料を追加供給する燃料追加供給器を備えたことを特徴とする水素生成装置。
A reforming unit that reforms the fuel with a reforming catalyst by flowing the fuel in a certain direction, a hydrogen separation membrane that separates and extracts hydrogen gas from the reformed gas reformed in the reforming unit, and a separation separation and extraction with the hydrogen separation membrane A hydrogen generation apparatus that includes a permeation section that allows the hydrogen gas to flow outside the apparatus to perform a non-equilibrium hydrogen generation reaction,
Provided with means for suppressing temperature variation of the reforming catalyst in the fuel flow direction of the reforming section,
A gas flow path in which the temperature variation suppressing means uses the heating gas generated outside or inside as a heating source of the reforming catalyst of the reforming section and flows the heating gas in a direction opposite to the fuel flow direction of the reforming section. And a gas flow path for flowing a heating gas in a direction along the fuel flow direction of the reforming section,
Further, the temperature variation suppression means uses an air-fuel ratio regulator that supplies combustion gas from a mixed combustion of fuel and oxidant as a heating gas, and supplies the fuel and oxidant to the gas flow path at a mixture ratio equal to or higher than the theoretical air-fuel ratio; An oxygen detector that detects the amount of residual oxygen in the exhaust gas from the flow path and an additional fuel supply device that additionally supplies fuel from the middle of the gas flow path according to the amount of residual oxygen detected by the oxygen detector A hydrogen generator characterized by this.
燃料を一定方向に流して改質触媒により同燃料を改質する改質部と、改質部で改質した改質ガスから水素ガスを分離抽出する水素分離膜と、水素分離膜で分離抽出した水素ガスを装置外部に流す透過部を備えて、非平衡水素生成反応を行う水素生成装置であって、
改質部の燃料流れ方向における改質触媒の温度ばらつき抑制手段を備え、
温度ばらつき抑制手段が、外部又は内部で発生させた加熱用ガスを改質部の改質触媒の加熱源とし、改質部の燃料流れ方向に沿う方向に加熱用ガスを流すガス流路と、改質部の燃料流れ方向に対して逆方向に加熱用ガスを流すガス流路と、加熱用ガスの流量を増減させるガス流量調整器を備えていることを特徴とする水素生成装置。
A reforming unit that reforms the fuel with a reforming catalyst by flowing the fuel in a certain direction, a hydrogen separation membrane that separates and extracts hydrogen gas from the reformed gas reformed in the reforming unit, and a separation separation and extraction with the hydrogen separation membrane A hydrogen generation apparatus that includes a permeation section that allows the hydrogen gas to flow outside the apparatus to perform a non-equilibrium hydrogen generation reaction,
Provided with means for suppressing temperature variation of the reforming catalyst in the fuel flow direction of the reforming section,
A gas flow path in which the temperature variation suppressing means uses the heating gas generated outside or inside as a heating source of the reforming catalyst of the reforming section, and flows the heating gas in a direction along the fuel flow direction of the reforming section; A hydrogen generating apparatus comprising: a gas flow path for flowing a heating gas in a direction opposite to a fuel flow direction of the reforming unit; and a gas flow rate regulator for increasing or decreasing the flow rate of the heating gas.
温度ばらつき抑制手段が、外部又は内部で発生させた加熱用ガスを改質部の改質触媒の加熱源とし、改質部の燃料流れ方向に対して直交方向に加熱用ガスを流すガス流路を備えていることを特徴とする請求項1〜3のいずれか1項に記載の水素生成装置。   The gas flow path in which the temperature variation suppression means uses the heating gas generated externally or internally as the heating source of the reforming catalyst of the reforming section and flows the heating gas in a direction orthogonal to the fuel flow direction of the reforming section The hydrogen generator according to any one of claims 1 to 3, wherein the hydrogen generator is provided. 温度ばらつき抑制手段が、ガス流路の内部に多数の伝熱用フィンを備えると共に、ガス流路のガス流れ方向において伝熱用フィンの設置密度を異ならせたことを特徴とする請求項1〜4のいずれか1項に記載の水素生成装置。   The temperature variation suppressing means comprises a large number of heat transfer fins inside the gas flow path, and the installation density of the heat transfer fins is varied in the gas flow direction of the gas flow path. 5. The hydrogen generator according to any one of 4 above. ガス流路の入口側の伝熱用フィンの設置密度よりも、出口側の伝熱用フィンの設置密度の方が大きいことを特徴とする請求項5に記載の水素生成装置。   6. The hydrogen generator according to claim 5, wherein the installation density of the heat transfer fins on the outlet side is larger than the installation density of the heat transfer fins on the inlet side of the gas flow path. 温度ばらつき抑制手段が、燃料と酸化剤の混合燃焼による燃焼ガスを加熱用ガスとし、ガス流路のガス流れ方向における複数箇所に燃焼触媒が配置してあることを特徴とする請求項1〜5のいずれか1項に記載の水素生成装置。   6. The temperature variation suppressing means uses a combustion gas produced by mixed combustion of fuel and oxidant as a heating gas, and combustion catalysts are arranged at a plurality of locations in the gas flow direction of the gas flow path. The hydrogen generator according to any one of the above. ガス流路のガス流れ方向に隣接する燃焼触媒において、ガス流路の入口側の燃焼触媒よりも、ガス流路の出口側の燃焼触媒の塗布量及び基金属担持量の少なくとも一方が大きいことを特徴とする請求項7に記載の水素生成装置。   In the combustion catalyst adjacent to the gas flow direction of the gas flow path, at least one of the coating amount of the combustion catalyst on the outlet side of the gas flow path and the support amount of the base metal is larger than the combustion catalyst on the inlet side of the gas flow path. 8. The hydrogen generator according to claim 7, wherein 温度ばらつき抑制手段が、ガス流路の出口側に電気的な加熱器を備えていることを特徴とする請求項1〜8のいずれか1項に記載の水素生成装置。   The hydrogen generator according to any one of claims 1 to 8, wherein the temperature variation suppressing means includes an electric heater on the outlet side of the gas flow path.
JP2008313835A 2008-12-10 2008-12-10 Hydrogen generator Expired - Fee Related JP5369656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008313835A JP5369656B2 (en) 2008-12-10 2008-12-10 Hydrogen generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008313835A JP5369656B2 (en) 2008-12-10 2008-12-10 Hydrogen generator

Publications (2)

Publication Number Publication Date
JP2010138007A JP2010138007A (en) 2010-06-24
JP5369656B2 true JP5369656B2 (en) 2013-12-18

Family

ID=42348478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008313835A Expired - Fee Related JP5369656B2 (en) 2008-12-10 2008-12-10 Hydrogen generator

Country Status (1)

Country Link
JP (1) JP5369656B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102316734B1 (en) * 2021-05-31 2021-10-26 고등기술연구원연구조합 Water gas conversion isothermal catalytic reaction device including a catalytic membrane

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6149030B2 (en) * 2012-03-26 2017-06-14 Jxtgエネルギー株式会社 Fuel cell module and fuel cell system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6117578A (en) * 1998-04-16 2000-09-12 International Fuel Cells, Llc Catalyzed wall fuel gas reformer
JP2001283890A (en) * 2000-01-24 2001-10-12 Toyota Motor Corp Fuel gas generating system of fuel cell
JP2002143675A (en) * 2000-09-04 2002-05-21 Kawasaki Heavy Ind Ltd Reactor as well as catalyst used for this reactor, and method for manufacturing the catalyst
JP2004060910A (en) * 2002-07-25 2004-02-26 Nippon Soken Inc Control of flame burning condition
JP2004234999A (en) * 2003-01-30 2004-08-19 Nissan Motor Co Ltd Fuel cell system for vehicle
JP4314558B2 (en) * 2003-03-27 2009-08-19 日産自動車株式会社 Reforming reactor
JP2005214013A (en) * 2004-01-27 2005-08-11 Mitsubishi Heavy Ind Ltd Power generation system using methane-containing gas as supply gas
JP2005298260A (en) * 2004-04-09 2005-10-27 Nissan Motor Co Ltd Fuel reforming system
JP2006001816A (en) * 2004-06-21 2006-01-05 Mitsubishi Heavy Ind Ltd Apparatus and method for manufacturing hydrogen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102316734B1 (en) * 2021-05-31 2021-10-26 고등기술연구원연구조합 Water gas conversion isothermal catalytic reaction device including a catalytic membrane

Also Published As

Publication number Publication date
JP2010138007A (en) 2010-06-24

Similar Documents

Publication Publication Date Title
JP5773240B2 (en) Gas generator and method for converting fuel to low oxygen gas and / or high hydrogen gas
US20080038598A1 (en) Fuel cell fuel processor with hydrogen buffering and staged membrane
US20040063577A1 (en) Catalyst for autothermal reforming of hydrocarbons with increased water gas shift activity
US20220081291A1 (en) Parallel reforming in chemical plant
KR20210130156A (en) Syngas production by steam methane reforming
JP4933818B2 (en) Operation method of solid oxide fuel cell system
Iaquaniello et al. Catalytic partial oxidation coupled with membrane purification to improve resource and energy efficiency in syngas production
JP5369656B2 (en) Hydrogen generator
WO2021251471A1 (en) Co2 methanation reaction apparatus provided with selective oxidation catalyst for co, and metod for removing co from gas
WO2022049147A1 (en) Production of syntehsis gas in a plant comprising an electric steam reformer downstream of fired reformer
JP2009084135A (en) Fuel processor, driving method therefor, and fuel cell system
JP3772619B2 (en) Hydrogen generator
JPH10291803A (en) Production method of synthetic gas and device therefor
KR20190059638A (en) Catalytic combustor of a liquid fuel containing high water content
JP2005231968A (en) Steam reforming system
US20230312340A1 (en) Process control of a serial reformer section by electrical reforming
JP2005146311A (en) Fuel reforming device, and method of producing reformed gas
JP2006052120A (en) Method for rapidly generating hydrogen and reactor module therefor
JP4500092B2 (en) HYDROGEN GENERATOR, ITS OPERATION METHOD, AND FUEL CELL SYSTEM INCLUDING THE SAME
JP2003048702A (en) Carbon monoxide removing apparatus for reducing amount of carbon monoxide in reformed gas
KR101796071B1 (en) Multistage catalyst reactor for the selective oxidation using precious metal catalyst and mixed metal oxide catalyst
JP5333722B2 (en) Hydrogen generator
JP2005320212A (en) Method for manufacturing hydrogen
JP2004000949A (en) Catalyst for removing co in hydrogen rich gas based on water gas shift reaction, treatment apparatus using the catalyst and treatment method
JP2002128507A (en) Hydrogen-purifying unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees