JP5369499B2 - Vehicle power supply - Google Patents

Vehicle power supply Download PDF

Info

Publication number
JP5369499B2
JP5369499B2 JP2008146151A JP2008146151A JP5369499B2 JP 5369499 B2 JP5369499 B2 JP 5369499B2 JP 2008146151 A JP2008146151 A JP 2008146151A JP 2008146151 A JP2008146151 A JP 2008146151A JP 5369499 B2 JP5369499 B2 JP 5369499B2
Authority
JP
Japan
Prior art keywords
voltage value
remaining capacity
vehicle
vehicle battery
open
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008146151A
Other languages
Japanese (ja)
Other versions
JP2009070800A (en
Inventor
貴宏 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, AutoNetworks Technologies Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2008146151A priority Critical patent/JP5369499B2/en
Publication of JP2009070800A publication Critical patent/JP2009070800A/en
Application granted granted Critical
Publication of JP5369499B2 publication Critical patent/JP5369499B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、車載発電機と、車載発電機が発電した電力により充電される車載バッテリとを備え、アクセサリスイッチがオンである場合に、車載バッテリの充放電電流値を積算し、積算した電流量に基づき、車載バッテリの残容量(SOC;State Of Charge)を算出する車両用電源装置に関するものである。   The present invention includes an in-vehicle generator and an in-vehicle battery that is charged by electric power generated by the in-vehicle generator. When the accessory switch is on, the charge / discharge current value of the in-vehicle battery is integrated and the integrated current amount The present invention relates to a vehicle power supply device that calculates a state of charge (SOC) of a vehicle-mounted battery.

車両用電源装置の車載バッテリの残容量は、バッテリの充放電に伴う分極現象が存在する為、検出するのが容易ではない。車載バッテリの満充電状態から積算した車載バッテリの充放電電流値に基づき、車載バッテリの残容量を算出する方法では、充放電電流値を検出する電流センサに起因した計測誤差が蓄積して、真値との誤差が拡大していくという問題がある。
そこで、車載バッテリの開放電圧と残容量との対応関係から、アクセサリスイッチがオンになる前に取得した車載バッテリの開放電圧と、アクセサリスイッチがオンになっている期間(車両走行中)に積算した車載バッテリの充放電電流とに基づき、車両走行中の車載バッテリの残容量を算出する方法が考えられている。
The remaining capacity of the in-vehicle battery of the vehicle power supply device is not easy to detect because there is a polarization phenomenon associated with charging / discharging of the battery. In the method of calculating the remaining capacity of the in-vehicle battery based on the charge / discharge current value of the in-vehicle battery accumulated from the full charge state of the in-vehicle battery, the measurement error due to the current sensor that detects the charge / discharge current value accumulates and is true. There is a problem that the error with the value increases.
Therefore, from the correspondence between the open-circuit voltage of the in-vehicle battery and the remaining capacity, the open-circuit voltage of the in-vehicle battery acquired before the accessory switch was turned on and the period during which the accessory switch was turned on (during vehicle travel) were integrated. A method of calculating the remaining capacity of the in-vehicle battery while the vehicle is traveling is considered based on the charge / discharge current of the in-vehicle battery.

車両用電源装置のオルタネータの発電電圧は約14V、車載バッテリの出力電圧は約12.8Vであり、電気負荷の消費電流の状況等により、電源電圧は変動する。近時、車両の速度値に基づき、アイドリング、加速走行、定常走行及び減速走行の各車両状態を判定し、判定した車両状態に応じた、例えば、図13に示すような発電モードで発電し、車載バッテリへの充電を制御する充電制御を行う車両用電源装置が増加している。   The power generation voltage of the alternator of the vehicle power supply device is about 14V, and the output voltage of the in-vehicle battery is about 12.8V. The power supply voltage varies depending on the current consumption of the electric load. Recently, based on the speed value of the vehicle, each vehicle state of idling, acceleration travel, steady travel and deceleration travel is determined, and in accordance with the determined vehicle state, for example, power is generated in a power generation mode as shown in FIG. There are an increasing number of vehicle power supply devices that perform charge control for controlling charging of an in-vehicle battery.

この充電制御における発電モードは、加速走行のようにエンジンの負荷が大きいときは、発電電圧を降下させて車載バッテリへの充電を停止し、減速走行のようにエンジンの負荷が小さいときは、発電電圧を上昇させて車載バッテリへ充電するように定められている。また、アイドリング中は、発電電圧を中間的な値にしておき、車載バッテリの容量が低下すると、発電電圧を上昇させて車載バッテリへ充電するものもある。これによりエンジンの負荷を軽減し、車両の燃費向上を図っている。   The power generation mode in this charging control is to reduce the power generation voltage when the engine load is large, such as in acceleration travel, and to stop charging the in-vehicle battery, and to generate power when the engine load is small, such as in deceleration travel. It is stipulated that the on-board battery is charged by increasing the voltage. In addition, during idling, the generated voltage is set to an intermediate value, and when the capacity of the in-vehicle battery decreases, the generated voltage is increased to charge the in-vehicle battery. This reduces the load on the engine and improves the fuel efficiency of the vehicle.

特許文献1には、電池の残存容量及び/又は残像寿命を予測する予測方法が開示されている。この予測方法は、予め0A(0アンペア)時の電圧と無負荷放電電圧との関係を求める第一工程と、対象電池を一定時間通電し、電気量Qを測定すると共にその前後における0A時の電圧V01,V02を求める第二工程と、第二工程で得た0A時の電圧V01,V02を第一工程の関係に適用して対応する無負荷放置電圧Vna,Vnbを求める第三工程とを有している。また、予め対象電池と同一機種の劣化状態毎に求めた放電可能電気量に対する無負荷放電電圧との関係に第二工程で得られた電気量Qと第三工程で得られた通電前後の無負荷放電電圧Vna,Vnbを適用して残存容量及び/又は残像寿命を予測する。
特開2003−28940号公報
Patent Document 1 discloses a prediction method for predicting the remaining capacity and / or afterimage life of a battery. In this prediction method, the first step for obtaining the relationship between the voltage at 0 A (0 ampere) and the no-load discharge voltage in advance, energizing the target battery for a certain period of time, measuring the amount of electricity Q, and before and after that at the time of 0 A A second step for obtaining the voltages V01 and V02 and a third step for obtaining the corresponding no-load leaving voltages Vna and Vnb by applying the voltages V01 and V02 at 0A obtained in the second step to the relationship of the first step. Have. In addition, in relation to the no-load discharge voltage with respect to the dischargeable amount of electricity obtained for each deterioration state of the same model as the target battery, the amount of electricity Q obtained in the second step and the amount before and after energization obtained in the third step The remaining capacity and / or afterimage life is predicted by applying the load discharge voltages Vna and Vnb.
JP 2003-28940 A

上述した車載バッテリの開放電圧値と積算した車載バッテリの充放電電流値とに基づき、車載バッテリの残容量を算出する方法では、放電電流値を検出する電流センサに起因した計測誤差は、アクセサリスイッチがオフになりオンになる都度リセットされる。しかし、図14に示すように、バッテリ(電池)の残容量と開放電圧値とは略線形関係にあることが一般的に知られているが、充放電を繰返したバッテリでは、図14のD部分に示すように、満充電付近における相関関係が変化する場合があり、開放電圧値に基づいて残容量を推測すると、真値との誤差が大きくなる可能性があるという問題がある。   In the method of calculating the remaining capacity of the in-vehicle battery based on the above-described open-circuit voltage value of the in-vehicle battery and the integrated charge / discharge current value of the in-vehicle battery, the measurement error caused by the current sensor that detects the discharge current value is an accessory switch. It is reset whenever is turned off and turned on. However, as shown in FIG. 14, it is generally known that the remaining capacity of the battery (battery) and the open-circuit voltage value are in a substantially linear relationship. As shown in the part, there is a case where the correlation in the vicinity of the full charge may change, and there is a problem that when the remaining capacity is estimated based on the open-circuit voltage value, an error from the true value may be increased.

本発明は、上述したような事情に鑑みてなされたものであり、車載バッテリの開放電圧値と積算した車載バッテリの充放電電流値とに基づき、車載バッテリの残容量を算出しても、誤差が大きくなることがない車両用電源装置を提供することを目的とする。   The present invention has been made in view of the circumstances as described above, and even if the remaining capacity of the in-vehicle battery is calculated based on the open-circuit voltage value of the in-vehicle battery and the accumulated charge / discharge current value of the in-vehicle battery, the error may occur. An object of the present invention is to provide a vehicular power supply device that does not increase.

第1発明に係る車両用電源装置は、車載発電機と、該車載発電機が発電した電力により充電される車載バッテリと、アクセサリスイッチがオンである場合に、前記車載バッテリの充放電電流値を検出する手段と、該手段が検出した充放電電流値を積算する手段と、該手段が積算した電流量に基づき、前記車載バッテリの残容量を算出する算出手段とを備えた車両用電源装置において、予め求めた前記車載バッテリの残容量と開放電圧値との第1関係、及び放電深さと該放電深さのバッテリを満充電にした場合の満充電時開放電圧値との第2関係を記憶した記憶手段と、前記アクセサリスイッチがオンになる前の前記車載バッテリの電圧値を取得する電圧値取得手段とを備え、前記記憶手段は、前記電圧値取得手段が取得した取得電圧値を記憶し、前記電圧値取得手段が取得した取得電圧値が、前記第1関係の残容量70%に対応する第1開放電圧値以下であるか否かを判定する第1判定手段を備え、前記算出手段は、前記第1判定手段が、前記取得電圧値は前記第1開放電圧値以下であると判定した場合に、前記取得電圧値に対応する開始時残容量を前記第1関係に基づいて算出し、算出した開始時残容量、及び前記電流量に基づき、前記車載バッテリの残容量を算出するように構成してあり、前記第1判定手段が、取得電圧値は前記第1開放電圧値を超えると判定した場合に、前記記憶手段に記憶された取得電圧値の最低値に対応する残容量を前記第1関係に基づいて算出し、算出した前記残容量から換算した放電深さに対応する満充電時開放電圧値を前記第2関係に基づいて算出し、算出した前記満充電時開放電圧値に基づいて、前記第1関係の残容量が70%を超える部分を補正し、補正した前記部分に基づいて、前記取得電圧値に対応する開始時残容量を算出するように構成してあることを特徴とする。 The vehicular power supply device according to the first aspect of the present invention provides an in-vehicle generator, an in-vehicle battery charged with electric power generated by the in-vehicle generator, and a charge / discharge current value of the in-vehicle battery when an accessory switch is on. In a vehicle power supply device comprising: means for detecting; means for integrating the charge / discharge current value detected by the means; and a calculating means for calculating the remaining capacity of the in-vehicle battery based on the amount of current accumulated by the means The first relationship between the remaining capacity of the in-vehicle battery and the open voltage value obtained in advance, and the second relationship between the discharge depth and the open voltage value at full charge when the battery of the discharge depth is fully charged are stored. memory means for said and a voltage value acquiring means for accessory switch to obtain a voltage value of the vehicle battery before turned on, the storage means stores the voltage value acquiring voltage value acquiring unit acquires , Acquires a voltage value by the voltage value acquiring unit has acquired, includes a first determination hand stage equal to or smaller than a first open circuit voltage value corresponding to the remaining capacity of 70% of the first relationship, the calculation And a means for calculating a remaining start-time capacity corresponding to the acquired voltage value based on the first relationship when the first determining means determines that the acquired voltage value is equal to or less than the first open-circuit voltage value. and the calculated start remaining capacity, and based on the current amount, the configured to calculate the remaining capacity of the battery tare is, the first determination unit, the acquisition voltage value the first open-circuit voltage value When it is determined that the remaining capacity is exceeded, the remaining capacity corresponding to the lowest value of the acquired voltage value stored in the storage unit is calculated based on the first relationship, and corresponds to the discharge depth converted from the calculated remaining capacity. Calculate the open-circuit voltage value at full charge based on the second relationship Then, based on the calculated full-charge open-circuit voltage value, a portion where the remaining capacity of the first relationship exceeds 70% is corrected, and on the basis of the corrected portion, the remaining start time corresponding to the acquired voltage value is corrected. wherein the configuration tare Rukoto to calculate the volume.

この車両用電源装置においては、車載発電機と、車載発電機が発電した電力により充電される車載バッテリとを備え、アクセサリスイッチがオンである場合に、車載バッテリの充放電電流値を検出し、検出した充放電電流値を積算して、積算した電流量に基づき、車載バッテリの残容量を算出する。
記憶手段に、予め求めた車載バッテリの開放電圧値及び残容量の第1関係を記憶してある。電圧値取得手段が、アクセサリスイッチがオンになる前の車載バッテリの電圧値を取得し、第1判定手段が、その取得した取得電圧値が、第1関係の残容量70%に対応する第1開放電圧値以下であるか否かを判定する。第1判定手段が、取得電圧値は第1開放電圧値以下であると判定した場合に、算出手段が、取得電圧値に対応する開始時残容量を第1関係に基づいて求め、求めた開始時残容量、及び積算した電流量に基づき、車載バッテリの残容量を算出する。
放電深さとは、バッテリの満充電容量に対する放電容量の割合をいう。
この車両用電源装置においては、記憶手段に、放電深さと満充電時開放電圧値との第2関係、及び取得電圧値を記憶してある。第1判定手段が取得電圧値は第1開放電圧値を超えると判定した場合に、算出手段は、取得電圧値の最低値に対応する残容量を第1関係に基づいて算出し、該残容量を100%から減じて放電深さを得、放電深さに対応する満充電時開放電圧値を第2関係に基づいて算出する。算出手段は、該満充電時開放電圧値に基づいて、第1関係の残容量が70%を超える部分を補正し、補正した前記部分に基づいて、取得電圧値に対応する開始時残容量を算出する。そして、算出手段は、前記開始時残容量、及び積算した電流量に基づき、車載バッテリの残容量を算出する。
In this vehicle power supply device, it includes an in-vehicle generator and an in-vehicle battery that is charged by the electric power generated by the in-vehicle generator, and when the accessory switch is on, detects the charge / discharge current value of the in-vehicle battery, The detected charge / discharge current values are integrated, and the remaining capacity of the in-vehicle battery is calculated based on the integrated current amount.
The first relationship between the open-circuit voltage value of the in-vehicle battery and the remaining capacity obtained in advance is stored in the storage means. The voltage value acquisition means acquires the voltage value of the in-vehicle battery before the accessory switch is turned on, and the first determination means has the first acquired voltage value corresponding to 70% of the remaining capacity of the first relationship. It is determined whether or not it is less than the open circuit voltage value. When the first determination unit determines that the acquired voltage value is equal to or less than the first open-circuit voltage value, the calculation unit calculates the start remaining capacity corresponding to the acquired voltage value based on the first relationship, and the calculated start The remaining capacity of the in-vehicle battery is calculated based on the remaining time capacity and the accumulated current amount.
The discharge depth refers to the ratio of the discharge capacity to the full charge capacity of the battery.
In this vehicle power supply device, the storage means stores the second relationship between the discharge depth and the fully charged open-circuit voltage value, and the acquired voltage value. When the first determination unit determines that the acquired voltage value exceeds the first open-circuit voltage value, the calculation unit calculates a remaining capacity corresponding to the lowest value of the acquired voltage value based on the first relationship, and the remaining capacity Is obtained by subtracting from 100%, and the full-charge open-circuit voltage value corresponding to the discharge depth is calculated based on the second relationship. The calculation means corrects a portion where the remaining capacity of the first relationship exceeds 70% based on the full-charge open-circuit voltage value, and calculates a starting remaining capacity corresponding to the acquired voltage value based on the corrected portion. calculate. And a calculation means calculates the remaining capacity of a vehicle-mounted battery based on the said remaining capacity at the time of start and the integrated electric current amount.

第2発明に係る車両用電源装置は、第1発明において、前記車載発電機の発電電圧値を高低に制御する発電電圧制御手段と、前記算出手段が算出した残容量が70%を超えるか否かを判定する第2判定手段とを更に備え、前記第2判定手段が、前記残容量が70%を超えると判定した場合に、前記発電電圧制御手段は、前記車載バッテリへの充電を禁止する為に、発電電圧を低く設定するように構成してあることを特徴とする。   According to a second aspect of the present invention, there is provided a vehicular power supply apparatus according to the first aspect, wherein the power generation voltage control means for controlling the power generation voltage value of the in-vehicle generator to a high level and the remaining capacity calculated by the calculation means exceed 70%. And a second determination means for determining whether or not the generated voltage control means prohibits charging of the in-vehicle battery when the second determination means determines that the remaining capacity exceeds 70%. For this purpose, the power generation voltage is set low.

この車両用電源装置においては、発電電圧制御手段が、車載発電機の発電電圧値を高低に制御し、第2判定手段が、算出手段が算出した残容量が70%を超えるか否かを判定する。第2判定手段が、70%を超えると判定した場合に、発電電圧制御手段は、車載バッテリへの充電を禁止する為に、発電電圧を低く設定する。   In this vehicle power supply device, the generated voltage control means controls the generated voltage value of the on-vehicle generator to be high and low, and the second determining means determines whether or not the remaining capacity calculated by the calculating means exceeds 70%. To do. When the second determination means determines that it exceeds 70%, the generated voltage control means sets the generated voltage low in order to prohibit charging of the in-vehicle battery.

発明に係る車両用電源装置は、第1又は第2発明において、前記第2関係は、3以上の放電深さにつき求めてあることを特徴とする。 According to a third aspect of the present invention, in the first or second aspect of the invention, the second relationship is obtained for three or more discharge depths.

この車両用電源装置においては、車載バッテリの放電深さに対応する満充電時開放電圧値の誤差をより低減することができ、第1関係の前記部分をより良好に補正することができる。   In this vehicle power supply device, it is possible to further reduce the error of the full-charge open-circuit voltage value corresponding to the discharge depth of the in-vehicle battery, and to correct the portion of the first relationship better.

発明に係る車両用電源装置は、第1から第3発明のいずれかにおいて、前記第2関係は、放電深さが10%を超える場合につき求めてあることを特徴とする。 The fourth invention for a vehicle power supply device according to, in any one of the first through third aspects, wherein the second relation, the discharge depth is characterized in that, calculated in regard to the case of more than 10%.

放電深さが10%に至るまでは、満充電時開放電圧値はほとんど変化しない。
この車両用電源装置においては、放電深さが10%を超える場合につき第2関係を求めるので、バッテリの放電深さに対応する満充電時開放電圧値の誤差をより低減することができ、第1関係の前記部分をより良好に補正することができる。
Until the discharge depth reaches 10%, the open-circuit voltage value at the time of full charge hardly changes.
In this vehicle power supply device, since the second relationship is obtained when the discharge depth exceeds 10%, it is possible to further reduce the error of the full-charge open-circuit voltage value corresponding to the discharge depth of the battery. It is possible to correct the one-related portion better.

発明に係る車両用電源装置によれば、車載バッテリの開放電圧値と積算した車載バッテリの充放電電流値とに基づき、車載バッテリの残容量を算出するに際し、開始時残容量が70%以内である場合に算出するので、残容量の誤差が低減された車両用電源装置を実現することができる。 According to the vehicle power supply device of the present invention, when calculating the remaining capacity of the in-vehicle battery based on the open-circuit voltage value of the in-vehicle battery and the integrated charge / discharge current value of the in-vehicle battery, the remaining capacity at the start is within 70% Therefore, it is possible to realize a vehicular power supply device in which an error in the remaining capacity is reduced.

発明に係る車両用電源装置によれば、取得電圧値が第1開放電圧値を超える場合に、第1関係の残容量が70%を超える部分を補正した上で、開始時残容量を求めるので、該開始時残容量に基づいて算出する現時点の残容量の誤差が低減された車両用電源装置を実現することができる。 According to the vehicle power supply device of the present invention, when the acquired voltage value exceeds the first open-circuit voltage value, the start remaining capacity is obtained after correcting the portion where the remaining capacity of the first relationship exceeds 70%. Therefore, it is possible to realize a vehicular power supply device in which an error in the current remaining capacity calculated based on the starting remaining capacity is reduced.

以下に、本発明をその実施の形態を示す図面に基づき説明する。
実施の形態1.
図1は、実施の形態1に係る車両用電源装置の概略構成を示すブロック図である。
この車両用電源装置は、オルタネータ(車載発電機、交流発電機)1が、エンジン15に連動して発電する。その発電電圧は、オルタネータ1に付設されたレギュレータ(発電電圧制御手段)2が、オルタネータ1の界磁電流を調節することにより定電圧制御され、また昇降圧制御される。
Hereinafter, the present invention will be described with reference to the drawings illustrating embodiments thereof.
Embodiment 1 FIG.
Figure 1 is a block diagram showing the schematic configuration of a vehicle power supply device according to Embodiment 1 of implementation.
In this vehicular power supply device, an alternator (on-vehicle generator, AC generator) 1 generates power in conjunction with the engine 15. The generated voltage is controlled at a constant voltage by a regulator (generated voltage control means) 2 attached to the alternator 1 by adjusting the field current of the alternator 1 and is also controlled in a step-up / step-down manner.

オルタネータ1が発電した電力は、オルタネータ1内で整流された後、リレーボックス11内のヒューズF0、及びアクセサリスイッチ16の接点16aを通じて、車載バッテリ4に充電される。電流検出器3が、車載バッテリ4の充放電電流値を検出して、充電制御ECU(Electronic Control Unit)(発電電圧制御手段)12に与え、充電制御ECU12内の電圧値取得手段5が、車載バッテリ4の入出力電圧値を取得する。充電制御ECU12にはアクセサリスイッチ16のオン/オフ信号が与えられる。   The electric power generated by the alternator 1 is rectified in the alternator 1 and then charged to the in-vehicle battery 4 through the fuse F0 in the relay box 11 and the contact 16a of the accessory switch 16. The current detector 3 detects the charge / discharge current value of the in-vehicle battery 4 and gives it to a charge control ECU (Electronic Control Unit) (power generation voltage control means) 12. The voltage value acquisition means 5 in the charge control ECU 12 The input / output voltage value of the battery 4 is acquired. An on / off signal of the accessory switch 16 is given to the charging control ECU 12.

充電制御ECU12は、車両走行系から車両の速度信号を与えられ、与えられた速度信号に基づき、アイドリング、加速走行、定常走行及び減速走行の各車両状態を判定する。次いで、判定した車両状態に応じた発電モードで発電するように、レギュレータ2及びオルタネータ1を制御する充電制御を行う。
発電モードは、前記図13に示すように、加速走行のようにエンジン15の負荷が大きいときは、発電電圧を降下させて車載バッテリ4への充電を停止し、減速走行のようにエンジン15の負荷が小さいときは、発電電圧を上昇させて車載バッテリ4へ充電するように定められている。また、アイドリング中は、発電電圧を中間的な値にしておき、車載バッテリ4の容量が低下すると、発電電圧を上昇させて車載バッテリへ充電するように定められている。これによりエンジンの負荷を軽減し、車両の燃費向上を図っている。
The charging control ECU 12 is given a vehicle speed signal from the vehicle running system, and determines each vehicle state of idling, acceleration running, steady running and deceleration running based on the given speed signal. Next, charge control is performed to control the regulator 2 and the alternator 1 so that power is generated in the power generation mode corresponding to the determined vehicle state.
In the power generation mode, as shown in FIG. 13, when the load on the engine 15 is large as in acceleration traveling, the power generation voltage is lowered to stop charging the in-vehicle battery 4, and the engine 15 is decelerated in deceleration traveling. When the load is small, the in-vehicle battery 4 is charged by increasing the generated voltage. During idling, the power generation voltage is set to an intermediate value, and when the capacity of the in-vehicle battery 4 decreases, the power generation voltage is increased to charge the in-vehicle battery. This reduces the load on the engine and improves the fuel efficiency of the vehicle.

充電制御ECU12は記憶部14を備えており、記憶部14には、車載バッテリ4の残容量(SOC;State Of Charge)と開放電圧値との関係を求めて得られた第1マップ(第1関係)18が記憶されている。図4は、第1マップ18を示すグラフである。第1マップ18は、実測又は演算により求めた、車載バッテリの開放電圧値及び残容量の略線形関係を示すデータであり、図14のD部分が示すような、残容量が70%を超える線形関係から外れる部分は削除されている。   The charge control ECU 12 includes a storage unit 14, and the storage unit 14 stores a first map (first) obtained by obtaining a relationship between a remaining capacity (SOC) of the in-vehicle battery 4 and an open-circuit voltage value. (Relationship) 18 is stored. FIG. 4 is a graph showing the first map 18. The first map 18 is data indicating a substantially linear relationship between the open-circuit voltage value of the in-vehicle battery and the remaining capacity obtained by actual measurement or calculation, and the remaining capacity is linear that exceeds 70% as indicated by a D portion in FIG. Parts that are out of the relationship have been deleted.

車載バッテリ4の出力電圧は、例えば、ヒューズF1及びリレー6の接点を通じて電気負荷8に、ヒューズF2及びリレー7の接点を通じて電気負荷9に、ヒューズF3及びリレー13の接点を通じて電気負荷10にそれぞれ印加される。車載バッテリ4の出力電圧は、その他の電気負荷へもそれぞれのヒューズ及びスイッチを通じて印加される。リレー6、7及び13は、スイッチSW1、SW2及びSW3によりオン/オフされる。   The output voltage of the in-vehicle battery 4 is applied, for example, to the electric load 8 through the contact of the fuse F1 and the relay 6, to the electric load 9 through the contact of the fuse F2 and the relay 7, and to the electric load 10 through the contact of the fuse F3 and the relay 13, respectively. Is done. The output voltage of the in-vehicle battery 4 is also applied to other electric loads through the respective fuses and switches. Relays 6, 7 and 13 are turned on / off by switches SW1, SW2 and SW3.

以下に、このような構成の車両用電源装置の動作を、それを示す図2及び図3のフローチャートを参照しながら説明する。
充電制御ECU12は、アクセサリスイッチ16がオンになる前は(S3)、電圧値取得手段5により車載バッテリ(バッテリ)4の電圧値Vを読込み、記憶更新している(S1)。
充電制御ECU12は、アクセサリスイッチ16がオンになると(S3:YES)、その直前に記憶更新した電圧値Vが、所定電圧値(第1開放電圧値:第1マップ18で車載バッテリの残容量70%に対応する開放電圧値)以下であるか否かを判定する(S5)。次いで、前記電圧値Vが所定電圧値以下であれば、前記電圧値Vを開放電圧値として、第1マップ18を参照し、前記電圧値Vから開始時残容量(SOC)を算出する(S7)。充電制御ECU12は、図4のグラフに基づき、前記電圧値Vに対応する開始時SOCを求める。
The operation of the vehicular power supply apparatus having such a configuration will be described below with reference to the flowcharts shown in FIGS.
Before the accessory switch 16 is turned on (S3), the charging control ECU 12 reads the voltage value V of the in-vehicle battery (battery) 4 by the voltage value acquisition means 5 and updates the storage (S1).
When the accessory switch 16 is turned on (S3: YES), the charging control ECU 12 determines that the voltage value V stored and updated immediately before that is a predetermined voltage value (first open-circuit voltage value: the remaining capacity 70 of the in-vehicle battery 70 in the first map 18). It is determined whether or not it is equal to or less than the open circuit voltage value corresponding to% (S5). Next, if the voltage value V is equal to or less than a predetermined voltage value, the remaining voltage at start (SOC) is calculated from the voltage value V with reference to the first map 18 with the voltage value V as an open-circuit voltage value (S7). ). The charging control ECU 12 obtains the starting SOC corresponding to the voltage value V based on the graph of FIG.

充電制御ECU12は、次に、電流検出器3が検出した車載バッテリ4の充放電電流値を読込み(S9)、アクセサリスイッチ16がオンになって(S3:YES)からの充放電電流値の積算を行う(S11)。次いで、算出した開始時SOC(S7)、及び積算した電流量(S11)に基づき、車載バッテリ4の現在のSOCを算出する(S13)。   Next, the charge control ECU 12 reads the charge / discharge current value of the in-vehicle battery 4 detected by the current detector 3 (S9), and integrates the charge / discharge current value after the accessory switch 16 is turned on (S3: YES). (S11). Next, the current SOC of the in-vehicle battery 4 is calculated based on the calculated start SOC (S7) and the integrated current amount (S11) (S13).

充電制御ECU12は、次に、算出したSOC(S13)が、70%を超えているか否かを判定し(S15)、70%を超えていれば(S15:YES)、発電モード(図13参照)をLoに設定して、オルタネータ1から車載バッテリ4への充電を禁止する(S19)。次いで、電流検出器3が検出した車載バッテリ4の充放電電流値を読込む(S9)。
充電制御ECU12は、算出したSOC(S13)が、70%を超えていなければ(S15:NO)、発電モード(図13参照)をHiに設定して、オルタネータ1から車載バッテリ4へ充電させる(S17)。次いで、電流検出器3が検出した車載バッテリ4の充放電電流値を読込む(S9)。
Next, the charging control ECU 12 determines whether or not the calculated SOC (S13) exceeds 70% (S15), and if it exceeds 70% (S15: YES), the power generation mode (see FIG. 13). ) Is set to Lo, and charging from the alternator 1 to the in-vehicle battery 4 is prohibited (S19). Next, the charge / discharge current value of the in-vehicle battery 4 detected by the current detector 3 is read (S9).
If the calculated SOC (S13) does not exceed 70% (S15: NO), the charging control ECU 12 sets the power generation mode (see FIG. 13) to Hi and charges the in-vehicle battery 4 from the alternator 1 ( S17). Next, the charge / discharge current value of the in-vehicle battery 4 detected by the current detector 3 is read (S9).

充電制御ECU12は、前記電圧値Vが前記所定電圧値以下でなければ(S5:NO)、開放電圧値Vに対応する残容量(SOC)を70%と仮定する(S21)。
充電制御ECU12は、次に、電流検出器3が検出した車載バッテリ4の充放電電流値を読込み(S23)、アクセサリスイッチ16がオンになって(S3:YES)からの充放電電流値の積算を行う(S25)。次いで、仮定したSOC70%(S21)、及び積算した電流値(S25)に基づき、車載バッテリ4の現在のSOCを仮に算出する(S27)。
If the voltage value V is not less than or equal to the predetermined voltage value (S5: NO), the charging control ECU 12 assumes that the remaining capacity (SOC) corresponding to the open circuit voltage value V is 70% (S21).
Next, the charge control ECU 12 reads the charge / discharge current value of the in-vehicle battery 4 detected by the current detector 3 (S23), and integrates the charge / discharge current value after the accessory switch 16 is turned on (S3: YES). (S25). Next, based on the assumed SOC 70% (S21) and the integrated current value (S25), the current SOC of the in-vehicle battery 4 is temporarily calculated (S27).

充電制御ECU12は、次に、仮に算出したSOC(S27)が、40%以上であるか否かを判定し(S29)、40%以上であれば(S29:YES)、発電モード(図13参照)をLoに設定して、オルタネータ1から車載バッテリ4への充電を禁止する(S33)。次いで、電流検出器3が検出した車載バッテリ4の充放電電流値を読込む(S23)。
充電制御ECU12は、仮に算出したSOC(S27)が、40%以上でなければ(S29:NO)、発電モード(図13参照)をHiに設定して、オルタネータ1から車載バッテリ4へ充電させる(S31)。次いで、電流検出器3が検出した車載バッテリ4の充放電電流値を読込む(S23)。
Next, the charging control ECU 12 determines whether or not the calculated SOC (S27) is 40% or more (S29), and if it is 40% or more (S29: YES), the power generation mode (see FIG. 13). ) Is set to Lo, and charging from the alternator 1 to the in-vehicle battery 4 is prohibited (S33). Next, the charge / discharge current value of the in-vehicle battery 4 detected by the current detector 3 is read (S23).
If the calculated SOC (S27) is not 40% or more (S29: NO), the charging control ECU 12 sets the power generation mode (see FIG. 13) to Hi and charges the in-vehicle battery 4 from the alternator 1 ( S31). Next, the charge / discharge current value of the in-vehicle battery 4 detected by the current detector 3 is read (S23).

ここで、仮定したSOC70%(S21)は、実際には、70%<SOC≦100%であると推定され、仮定したSOC70%(S21)に基づき仮に算出したSOC(S27)が、40%未満になると、実際には、40%<SOC≦70%となる。
従って、SOCが40%以上である(S29)場合は、車載バッテリ4への充電を禁止する(S33)ことにより、次回にアクセサリスイッチ16がオンになった(S3)ときには、開放電圧値Vが、残容量70%に対応する開放電圧値以下となっている(S5:YES)可能性が高い。これにより、車載バッテリ4のSOCを70%以下に維持することができ、車載バッテリ4のSOCの誤差は大きくなることがない。
Here, the assumed SOC 70% (S21) is actually estimated to be 70% <SOC ≦ 100%, and the SOC (S27) temporarily calculated based on the assumed SOC 70% (S21) is less than 40%. Then, in practice, 40% <SOC ≦ 70%.
Therefore, when the SOC is 40% or more (S29), by prohibiting charging of the in-vehicle battery 4 (S33), when the accessory switch 16 is turned on next time (S3), the open circuit voltage value V is There is a high possibility that the open-circuit voltage value corresponding to the remaining capacity of 70% or less (S5: YES). As a result, the SOC of the in-vehicle battery 4 can be maintained at 70% or less, and the SOC error of the in-vehicle battery 4 does not increase.

実施の形態2.
図5は、本発明の実施の形態2に係る車両用電源装置の概略構成を示すブロック図である。図中、図1と同一部分は同一符号を付して詳細な説明を省略する。
本実施の形態に係る車両用電源装置の充電制御ECU12の記憶部14には、前記第1マップ18に加えて、車載バッテリ4の放電深さと満充電時開放電圧値との関係を求めて得られた第2マップ19(図11参照)が記憶されている。
Embodiment 2. FIG.
FIG. 5 is a block diagram showing a schematic configuration of the vehicle power supply device according to Embodiment 2 of the present invention. In the figure, the same parts as those in FIG.
In addition to the first map 18, the storage unit 14 of the charging control ECU 12 of the vehicle power supply device according to the present embodiment obtains the relationship between the discharge depth of the in-vehicle battery 4 and the fully charged open circuit voltage value. The obtained second map 19 (see FIG. 11) is stored.

以下に、このような構成の車両用電源装置の動作を、それを示す図6及び図7のフローチャートを参照しながら説明する。
充電制御ECU12は、アクセサリスイッチ16がオンになる前は(S43)、電圧値取得手段5により車載バッテリ4の電圧値Vを読込み、記憶更新している(S41)。後述する、アクセサリスイッチ16がオンになる直前に読込まれた電圧値Vは記憶部14に記憶される。又は、前記電圧値Vの最低値を記憶し、更新することにしてもよい。
充電制御ECU12は、アクセサリスイッチ16がオンになると(S43:YES)、その直前に記憶更新した電圧値V(開放電圧値)が、前記所定電圧値(第1開放電圧値)以下であるか否かを判定する(S45)。
充電制御ECU12は、前記電圧値Vが所定電圧値以下であると判定した場合(S45:YES)、記憶部14から第1マップ18を読み出し、前記電圧値Vに対応する開始時SOCを第1マップ18に基づいて算出する(S47)。
The operation of the vehicular power supply apparatus having such a configuration will be described below with reference to the flowcharts shown in FIGS.
Before the accessory switch 16 is turned on (S43), the charging control ECU 12 reads the voltage value V of the in-vehicle battery 4 by the voltage value acquisition means 5 and updates the storage (S41). A voltage value V read immediately before the accessory switch 16 is turned on, which will be described later, is stored in the storage unit 14. Alternatively, the minimum value of the voltage value V may be stored and updated.
When the accessory switch 16 is turned on (S43: YES), the charging control ECU 12 determines whether or not the voltage value V (open voltage value) stored and updated immediately before is less than or equal to the predetermined voltage value (first open voltage value). Is determined (S45).
When the charge control ECU 12 determines that the voltage value V is equal to or less than the predetermined voltage value (S45: YES), the charge control ECU 12 reads the first map 18 from the storage unit 14, and sets the start SOC corresponding to the voltage value V to the first value. Calculation is made based on the map 18 (S47).

充電制御ECU12は、次に、電流検出器3が検出した車載バッテリ4の充放電電流値を読込み(S49)、アクセサリスイッチ16がオンになって(S43:YES)から現時点までの充放電電流値の積算を行う(S51)。次いで、算出した開始時SOC(S47)、及び積算した電流量(S51)に基づき、車載バッテリ4の現時点のSOCを算出する(S53)。   Next, the charge control ECU 12 reads the charge / discharge current value of the in-vehicle battery 4 detected by the current detector 3 (S49), and the charge / discharge current value from when the accessory switch 16 is turned on (S43: YES) to the present time. (S51). Next, the current SOC of the in-vehicle battery 4 is calculated based on the calculated start SOC (S47) and the accumulated current amount (S51) (S53).

充電制御ECU12は、次に、算出したSOC(S53)が、70%を超えているか否かを判定し(S55)、70%を超えていると判定した場合(S55:YES)、発電モード(図13参照)をLoに設定して、オルタネータ1から車載バッテリ4への充電を禁止し(S59)、処理をステップS49へ戻す。
充電制御ECU12は、算出したSOC(S53)が、70%を超えていないと判定した場合(S55:NO)、発電モード(図13参照)をHiに設定して、オルタネータ1から車載バッテリ4へ充電させ(S57)、処理をステップS49へ戻す。
Next, the charging control ECU 12 determines whether or not the calculated SOC (S53) exceeds 70% (S55). If it is determined that the calculated SOC (S53) exceeds 70% (S55: YES), the power generation mode ( 13) is set to Lo, charging from the alternator 1 to the in-vehicle battery 4 is prohibited (S59), and the process returns to step S49.
When it is determined that the calculated SOC (S53) does not exceed 70% (S55: NO), the charging control ECU 12 sets the power generation mode (see FIG. 13) to Hi, and from the alternator 1 to the in-vehicle battery 4 The battery is charged (S57), and the process returns to step S49.

充電制御ECU12は、前記電圧値Vが前記所定電圧値以下でないと判定した場合(S45:NO)、記憶部14から、これまでに記憶された電圧値Vの最低値を取得する(S61)。充電制御ECU12は、記憶部14から第1マップ18を読み出し、該第1マップ18に基づいて前記最低値に対応するSOCを算出する(S63)。   When it is determined that the voltage value V is not less than or equal to the predetermined voltage value (S45: NO), the charging control ECU 12 obtains the lowest value of the voltage value V stored so far from the storage unit 14 (S61). The charge control ECU 12 reads the first map 18 from the storage unit 14, and calculates the SOC corresponding to the lowest value based on the first map 18 (S63).

そして、充電制御ECU12は、前記SOCを100%から減じて放電深さ(過去の放電深さの最大値に相当する)を求め、記憶部14から第2マップ19を読み出し、該第2マップ19に基づいて、前記放電深さに対応する満充電時開放電圧値を算出する(S65)。   Then, the charging control ECU 12 obtains a discharge depth (corresponding to the maximum value of the past discharge depth) by subtracting the SOC from 100%, reads the second map 19 from the storage unit 14, and the second map 19 Based on the above, a full-charge open-circuit voltage value corresponding to the discharge depth is calculated (S65).

以下に、前記第2マップ19の作成方法について説明する。
まず、車載バッテリ4の放電深さ(DOD)を10%、30%、50%、100%と変えた場合につき、放電容量と開放電圧値との関係を調べた。図8、図9、及び図10は、DODが10%、30%、50%の場合につき、放電容量と開放電圧値との関係を調べた結果を示すグラフである。図8、図9、及び図10において、◇は初期の車載バッテリ4のデータ、○はそれぞれのDODの車載バッテリ4のデータを示す。
図8、図9、及び図10より、DODが10%の場合、初期の車載バッテリ4と、DOD10%まで放電した後の車載バッテリ4とで、満充電時開放電圧値は変わらないが、DODが30%、50%の場合、DOD30%、50%まで放電した後の車載バッテリ4の満充電時開放電圧値は、初期の車載バッテリ4の満充電時開放電圧値より大きくなっていることが分かる。この変化量はDOD30%の方が大きい。
Hereinafter, a method for creating the second map 19 will be described.
First, when the discharge depth (DOD) of the in-vehicle battery 4 was changed to 10%, 30%, 50%, and 100%, the relationship between the discharge capacity and the open-circuit voltage value was examined. 8, FIG. 9, and FIG. 10 are graphs showing the results of examining the relationship between the discharge capacity and the open-circuit voltage value when the DOD is 10%, 30%, and 50%. 8, 9, and 10, ◇ indicates initial data of the in-vehicle battery 4, and ○ indicates data of the in-vehicle battery 4 of each DOD.
8, 9, and 10, when the DOD is 10%, the open-circuit voltage value at full charge does not change between the initial in-vehicle battery 4 and the in-vehicle battery 4 after discharging to DOD 10%. Is 30% and 50%, the fully-charged open-circuit voltage value of the in-vehicle battery 4 after discharging to DOD 30% and 50% may be larger than the initial fully-charged open-circuit voltage value of the in-vehicle battery 4 I understand. This amount of change is larger at DOD 30%.

図11は、上述のようにして求めた放電深さと満充電時開放電圧値との関係を示したグラフである。図中、破線は測定データ、実線は測定データの近似曲線(線形近似)を示す。ここで、近似曲線は対数近似により求めることにしてもよい。また、放電深さ0〜10%においては、満充電時開放電圧値はあまり変化しないので、放電深さ0〜10%の範囲の測定データを使用せずに近似曲線を求めることにしてもよい。
以上のようにして得られた近似曲線を第2マップ19として記憶部14に記憶する。
FIG. 11 is a graph showing the relationship between the discharge depth obtained as described above and the full-charge open-circuit voltage value. In the figure, a broken line indicates measurement data, and a solid line indicates an approximate curve (linear approximation) of the measurement data. Here, the approximate curve may be obtained by logarithmic approximation. Further, since the open-circuit voltage value at the time of full charge does not change much at the discharge depth of 0 to 10%, the approximate curve may be obtained without using the measurement data in the range of the discharge depth of 0 to 10%. .
The approximate curve obtained as described above is stored in the storage unit 14 as the second map 19.

充電制御ECU12は、前記第2マップ19を用いて得られた満充電時開放電圧値に基づいて第1マップ18を補正する(S67)。
図12は、補正した第1マップ18を示すグラフである。
車載バッテリ4の過去の放電深さの最大値に対応する満充電時開放電圧値が13.0Vである場合を例として挙げる。充電制御ECU12は、SOCが70%である場合のグラフ上の点と、SOCが100%であり、満充電時開放電圧値が13.0Vである点とを直線で結び、第1マップ18のSOCが70%〜100%である部分を補正する。上述したように、記憶部14に記憶された電圧値Vの最低値は更新され、車載バッテリ4における放電深さの最大値は更新される。従って、ステップS45において電圧値Vが所定電圧値を超えていると判定され(S45:NO)、前記放電深さが更新された場合に、第1マップ18も更新されることになる。
The charging control ECU 12 corrects the first map 18 based on the fully charged open-circuit voltage value obtained using the second map 19 (S67).
FIG. 12 is a graph showing the corrected first map 18.
The case where the full-charge open-circuit voltage value corresponding to the maximum value of the past discharge depth of the in-vehicle battery 4 is 13.0V will be described as an example. The charging control ECU 12 connects the point on the graph when the SOC is 70% and the point where the SOC is 100% and the full-charge open circuit voltage value is 13.0 V by a straight line, A portion where the SOC is 70% to 100% is corrected. As described above, the minimum value of the voltage value V stored in the storage unit 14 is updated, and the maximum value of the discharge depth in the in-vehicle battery 4 is updated. Therefore, when it is determined in step S45 that the voltage value V exceeds the predetermined voltage value (S45: NO) and the discharge depth is updated, the first map 18 is also updated.

充電制御ECU12は、前記電圧値Vに対応する開始時SOCを、補正した第1マップ18により算出し(S69)、処理をステップS49へ進め、以後の処理を行う。   The charging control ECU 12 calculates the starting SOC corresponding to the voltage value V using the corrected first map 18 (S69), advances the process to step S49, and performs the subsequent processes.

以上のように、本実施の形態においては、電圧値Vが所定電圧値を超える場合に、第1マップ18の残容量が70%を超える部分を補正した上で、開始時SOCを求めるので、該開始時SOCを用いて算出する現時点のSOCの誤差が低減されている。
なお、本実施の形態においては、ステップS55において、ステップS53において算出したSOCが70%を超えるか否かを判定し、発電電圧を制御することにしているが、このステップS55、57、及び59の処理は行わないことにしてもよい。但し、ステップS55、57、及び59の処理を行う方が、SOCを70%以下にすることができ、SOCをより正確に算出することができるので好ましい。
As described above, in the present embodiment, when the voltage value V exceeds the predetermined voltage value, the SOC at the start is obtained after correcting the portion where the remaining capacity of the first map 18 exceeds 70%. The error of the current SOC calculated using the starting SOC is reduced.
In the present embodiment, in step S55, it is determined whether or not the SOC calculated in step S53 exceeds 70%, and the generated voltage is controlled. However, steps S55, 57, and 59 are used. This processing may not be performed. However, it is preferable to perform the processes in steps S55, 57, and 59 because the SOC can be reduced to 70% or less and the SOC can be calculated more accurately.

施の形態1に係る車両用電源装置の概略構成を示すブロック図である。Is a block diagram showing the schematic configuration of a vehicle power supply device according to Embodiment 1 of implementation. 施の形態1に係る車両用電源装置の動作例を示すフローチャートである。Is a flowchart showing an operation example of the vehicle power supply device according to Embodiment 1 of implementation. 施の形態1に係る車両用電源装置の動作例を示すフローチャートである。Is a flowchart showing an operation example of the vehicle power supply device according to Embodiment 1 of implementation. バッテリの残容量と開放電圧値との関係を求めて得られた第1マップを示すグラフである。It is a graph which shows the 1st map obtained by calculating | requiring the relationship between the remaining capacity of a battery, and an open circuit voltage value. 本発明の実施の形態2に係る車両用電源装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the vehicle power supply device which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る車両用電源装置の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the vehicle power supply device which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る車両用電源装置の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the vehicle power supply device which concerns on Embodiment 2 of this invention. DODが10%の場合につき、放電容量と開放電圧値との関係を調べた結果を示すグラフである。It is a graph which shows the result of having investigated the relationship between discharge capacity and an open circuit voltage value when DOD is 10%. DODが30%の場合につき、放電容量と開放電圧値との関係を調べた結果を示すグラフである。It is a graph which shows the result of having investigated the relationship between discharge capacity and an open circuit voltage value when DOD is 30%. DODが50%の場合につき、放電容量と開放電圧値との関係を調べた結果を示すグラフである。It is a graph which shows the result of having investigated the relationship between discharge capacity and an open circuit voltage value when DOD is 50%. 放電深さと満充電時開放電圧値との関係を示したグラフである。It is the graph which showed the relationship between discharge depth and the open circuit voltage value at the time of a full charge. 補正した第1マップを示すグラフである。It is a graph which shows the corrected 1st map. 車両用電源装置の充電制御の例を示す説明図である。It is explanatory drawing which shows the example of charge control of the power supply device for vehicles. 車載バッテリの開放電圧値及び残容量の相関関係の例を示す特性図である。It is a characteristic view which shows the example of the correlation of the open circuit voltage value and remaining capacity of a vehicle-mounted battery.

符号の説明Explanation of symbols

1 オルタネータ(車載発電機、交流発電機)
2 レギュレータ(発電電圧制御手段)
3 電流検出器(充放電電流値を検出する手段)
4 車載バッテリ
5 電圧値取得手段
6,7,13 リレー
8,9,10 電気負荷
11 リレーボックス
12 充電制御ECU(発電電圧制御手段、第1、第2、第3判定手段、算出手段、積算する手段)
14 記憶部
15 エンジン
16 アクセサリスイッチ
18 第1マップ
19 第2マップ
SW1,SW2,SW3 スイッチ
1 Alternator (on-vehicle generator, AC generator)
2 Regulator (Power generation voltage control means)
3 Current detector (means to detect charge / discharge current value)
4 vehicle-mounted battery 5 voltage value acquisition means 6, 7, 13 relay 8, 9, 10 electric load 11 relay box 12 charge control ECU (power generation voltage control means, first, second, third determination means, calculation means, integration means)
14 storage unit 15 engine 16 accessory switch 18 first map 19 second map SW1, SW2, SW3 switch

Claims (4)

車載発電機と、該車載発電機が発電した電力により充電される車載バッテリと、アクセサリスイッチがオンである場合に、前記車載バッテリの充放電電流値を検出する手段と、該手段が検出した充放電電流値を積算する手段と、該手段が積算した電流量に基づき、前記車載バッテリの残容量を算出する算出手段とを備えた車両用電源装置において、
予め求めた前記車載バッテリの残容量と開放電圧値との第1関係、及び放電深さと該放電深さのバッテリを満充電にした場合の満充電時開放電圧値との第2関係を記憶した記憶手段と、
前記アクセサリスイッチがオンになる前の前記車載バッテリの電圧値を取得する電圧値取得手段
を備え、
前記記憶手段は、前記電圧値取得手段が取得した取得電圧値を記憶し、
前記電圧値取得手段が取得した取得電圧値が、前記第1関係の残容量70%に対応する第1開放電圧値以下であるか否かを判定する第1判定手段を備え、
前記算出手段は、
前記第1判定手段が、前記取得電圧値は前記第1開放電圧値以下であると判定した場合に、前記取得電圧値に対応する開始時残容量を前記第1関係に基づいて算出し、
算出した開始時残容量、及び前記電流量に基づき、前記車載バッテリの残容量を算出するように構成してあり、
前記第1判定手段が、取得電圧値は前記第1開放電圧値を超えると判定した場合に、前記記憶手段に記憶された取得電圧値の最低値に対応する残容量を前記第1関係に基づいて算出し、
算出した前記残容量から換算した放電深さに対応する満充電時開放電圧値を前記第2関係に基づいて算出し、
算出した前記満充電時開放電圧値に基づいて、前記第1関係の残容量が70%を超える部分を補正し、
補正した前記部分に基づいて、前記取得電圧値に対応する開始時残容量を算出するように構成してあることを特徴とする車両用電源装置。
An in-vehicle generator, an in-vehicle battery charged with electric power generated by the in-vehicle generator, a means for detecting a charge / discharge current value of the in-vehicle battery when the accessory switch is on, and a charge detected by the means In the vehicle power supply device comprising: means for integrating the discharge current value; and calculation means for calculating the remaining capacity of the in-vehicle battery based on the amount of current accumulated by the means.
The first relationship between the remaining capacity of the in-vehicle battery and the open voltage value obtained in advance, and the second relationship between the discharge depth and the open voltage value at full charge when the battery of the discharge depth is fully charged are stored. Storage means;
Voltage value acquisition means for acquiring a voltage value of the in-vehicle battery before the accessory switch is turned on ;
With
The storage means stores the acquired voltage value acquired by the voltage value acquisition means,
Acquiring a voltage value by the voltage value acquiring unit has acquired, includes a first determination hand stage equal to or smaller than a first open circuit voltage value corresponding to the remaining capacity of 70% of the first relation,
The calculating means includes
When the first determination unit determines that the acquired voltage value is equal to or less than the first open-circuit voltage value, a starting remaining capacity corresponding to the acquired voltage value is calculated based on the first relationship,
Calculated start remaining capacity, and based on the current amount, Ri configured tear to calculate the remaining capacity of the vehicle battery,
When the first determination unit determines that the acquired voltage value exceeds the first open-circuit voltage value, the remaining capacity corresponding to the minimum value of the acquired voltage value stored in the storage unit is based on the first relationship. Calculated,
Calculating a full-charge open-circuit voltage value corresponding to the discharge depth converted from the calculated remaining capacity based on the second relationship;
Based on the calculated full-charge open-circuit voltage value, correct the portion where the remaining capacity of the first relationship exceeds 70%,
Based on the corrected said portion, the vehicle power supply device according to claim configured tare Rukoto to calculate the start time of remaining capacity corresponding to the acquired voltage value.
前記車載発電機の発電電圧値を高低に制御する発電電圧制御手段と、
前記算出手段が算出した残容量が70%を超えるか否かを判定する第2判定手段と
更に備え、
前記第2判定手段が、前記残容量が70%を超えると判定した場合に、前記発電電圧制御手段は、前記車載バッテリへの充電を禁止する為に、発電電圧を低く設定するように構成してある請求項1に記載の車両用電源装置。
Power generation voltage control means for controlling the power generation voltage value of the in-vehicle generator to high or low;
A second determination means for determining whether or not the remaining capacity calculated by the calculation means exceeds 70%;
When the second determination means determines that the remaining capacity exceeds 70%, the generated voltage control means is configured to set the generated voltage low in order to prohibit charging of the in-vehicle battery. The vehicle power supply device according to claim 1.
前記第2関係は、3以上の放電深さにつき求めてある請求項1又は2に記載の車両用電源装置。 The second relationship is a vehicle power supply device according to claim 1 or 2, calculated in regard to three or more discharge depth. 前記第2関係は、放電深さが10%を超える場合につき求めてある請求項1から3までのいずれか1項に記載の車両用電源装置。 The vehicular power supply device according to any one of claims 1 to 3 , wherein the second relationship is obtained when the discharge depth exceeds 10%.
JP2008146151A 2007-08-22 2008-06-03 Vehicle power supply Expired - Fee Related JP5369499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008146151A JP5369499B2 (en) 2007-08-22 2008-06-03 Vehicle power supply

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007216394 2007-08-22
JP2007216394 2007-08-22
JP2008146151A JP5369499B2 (en) 2007-08-22 2008-06-03 Vehicle power supply

Publications (2)

Publication Number Publication Date
JP2009070800A JP2009070800A (en) 2009-04-02
JP5369499B2 true JP5369499B2 (en) 2013-12-18

Family

ID=40606812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008146151A Expired - Fee Related JP5369499B2 (en) 2007-08-22 2008-06-03 Vehicle power supply

Country Status (1)

Country Link
JP (1) JP5369499B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016079964A1 (en) 2014-11-19 2016-05-26 株式会社Gsユアサ Secondary cell management device and secondary cell management method
CN111146837A (en) * 2019-12-31 2020-05-12 Oppo广东移动通信有限公司 Charging method and device, electronic device and storage medium
CN116430255B (en) * 2023-03-27 2024-02-09 广州通则康威科技股份有限公司 Battery electric quantity self-adaptive display method, device, storage medium and system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3946391B2 (en) * 1999-09-29 2007-07-18 本田技研工業株式会社 Power storage device remaining capacity detection device
JP2002243813A (en) * 2001-02-16 2002-08-28 Nissan Motor Co Ltd Arithmetic unit for computing deterioration of capacity of secondary battery

Also Published As

Publication number Publication date
JP2009070800A (en) 2009-04-02

Similar Documents

Publication Publication Date Title
US8552688B2 (en) On-vehicle battery condition estimation device
JP4211715B2 (en) In-vehicle power supply system
US9855854B2 (en) Charge control device and charge control method
KR100439144B1 (en) Control device for hybrid vehicle
KR100995899B1 (en) Hybrid vehicle controller
JP4884945B2 (en) Charging state prediction program, overhead line-less traffic system and charging method thereof
JP4866187B2 (en) Battery control device, electric vehicle, and program for causing computer to execute processing for estimating charge state of secondary battery
KR100554241B1 (en) Apparatus for battery capacity measurement and for remaining capacity calculation
US7091626B2 (en) Method for regulating the generator voltage in a motor vehicle
EP2058891B1 (en) Charging control device for a storage battery
JP4001072B2 (en) Vehicle power generation system
CN111431261A (en) Power supply system for vehicle
US20120022732A1 (en) Method and device for controlling a micro-hybrid system with brake energy recovery capable of being mounted in an automobile
JP5369499B2 (en) Vehicle power supply
JP2005037286A (en) Battery charge/discharge current detection device
JP2007261433A (en) Battery control device and battery control method
KR20180031413A (en) Vehicle and control method thereof
EP1100171A2 (en) Device and method for determining state of charge
JP2004263619A (en) Power source control device for vehicle
JP5073416B2 (en) Vehicle power supply
JP4253544B2 (en) Vehicle generator control device
JP2007265693A (en) Apparatus and method for battery control
US8258742B2 (en) Charging control unit of electric power generation control device for motor vehicle
JP2001147260A (en) Remaining capacity detecting device for accumulator battery
JP2005014637A (en) Device for monitoring state of on-vehicle battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R150 Certificate of patent or registration of utility model

Ref document number: 5369499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees