JP5360278B2 - レーザー加工装置、被加工物の加工方法および被加工物の分割方法 - Google Patents
レーザー加工装置、被加工物の加工方法および被加工物の分割方法 Download PDFInfo
- Publication number
- JP5360278B2 JP5360278B2 JP2012213920A JP2012213920A JP5360278B2 JP 5360278 B2 JP5360278 B2 JP 5360278B2 JP 2012213920 A JP2012213920 A JP 2012213920A JP 2012213920 A JP2012213920 A JP 2012213920A JP 5360278 B2 JP5360278 B2 JP 5360278B2
- Authority
- JP
- Japan
- Prior art keywords
- processing
- workpiece
- cleavage
- stage
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Processing Of Stones Or Stones Resemblance Materials (AREA)
- Laser Beam Processing (AREA)
- Dicing (AREA)
Description
本発明は、レーザー光を照射して被加工物を加工するレーザー加工方法およびこれに用いるレーザー加工装置に関する。
パルスレーザー光を照射して被加工物を加工する技術(以下、単にレーザー加工もしくはレーザー加工技術とも称する)として種々のものがすでに公知である(例えば、特許文献1ないし特許文献4参照)。
特許文献1に開示されているのは、被加工物たるダイを分割する際に、レーザーアブレーションにより分割予定線に沿って断面V字形の溝(ブレイク溝)を形成し、この溝を起点としてダイを分割する手法である。一方、特許文献2に開示されているのは、デフォーカス状態のレーザー光を被加工物(被分割体)の分割予定線に沿って照射することにより被照射領域に周囲よりも結晶状態の崩れた断面略V字形の融解改質領域(変質領域)を生じさせ、この融解改質領域の最下点を起点として被加工物を分割する手法である。
特許文献1および特許文献2に開示の技術を用いて分割起点を形成する場合はいずれも、その後の分割が良好に行われるために、レーザー光の走査方向である分割予定線方向に沿って均一な形状のV字形断面(溝断面もしくは変質領域断面)を形成することが、重要である。そのための対応として、例えば、1パルスごとのレーザー光の被照射領域(ビームスポット)が前後で重複するようにレーザー光の照射が制御される。
例えば、レーザー加工の最も基本的なパラメータである、繰り返し周波数(単位kHz)をRとし、走査速度(単位mm/sec)をVとするとき、両者の比V/Rがビームスポットの中心間隔となるが、特許文献1および特許文献2に開示の技術においては、ビームスポット同士に重なりが生じるよう、V/Rが1μm以下となる条件で、レーザー光の照射および走査が行われる。
また、特許文献3には、表面に積層部を有する基板の内部に集光点を合わせてレーザー光を照射することによって基板内部に改質領域を形成し、この改質領域を切断の起点とする態様が開示されている。
また、特許文献4には、1つの分離線に対して複数回のレーザー光走査を繰り返し、分離線方向に連続する溝部および改質部と、分離線方向に連続しない内部改質部とを深さ方向の上下に形成する態様が開示されている。
一方、特許文献5には、パルス幅がpsecオーダーという超短パルスのレーザー光を用いた加工技術であって、パルスレーザー光の集光スポット位置を調整することにより、被加工物(板体)の表層部位から表面に至って微小クラックが群生した微小な溶解痕を形成し、これらの溶解痕の連なった線状の分離容易化領域を形成する態様が開示されている。
レーザー光により分割起点を形成し、その後、ブレーカーにより分割を行うという手法は、従来より行われている機械的切断法であるダイヤモンドスクライビングと比較して、自動性・高速性・安定性・高精度性において有利である。
しかしながら、レーザー光による分割起点の形成を従来の手法にて行った場合、レーザー光が照射された部分に、いわゆる加工痕(レーザー加工痕)が形成されることが不可避であった。加工痕とは、レーザー光が照射された結果、照射前とは材質や構造が変化した変質領域である。加工痕の形成は、通常、分割されたそれぞれの被加工物(分割素片)の特性等に悪影響を与えるために、なるべく抑制されることが好ましい。
例えば、サファイアなどの硬脆性かつ光学的に透明な材料からなる基板の上にLED構造などの発光素子構造を形成した被加工物を、特許文献2に開示されているような従来のレーザー加工によってチップ単位に分割することで得られた発光素子のエッジ部分(分割の際にレーザー光の照射を受けた部分)においては、幅が数μm程度で深さが数μm〜数十μm程度の加工痕が連続的に形成されてなる。係る加工痕が、発光素子内部で生じた光を吸収してしまい、素子からの光の取り出し効率を低下させてしまうという問題がある。特に、屈折率の高いサファイア基板を用いた発光素子構造の場合に係る問題が顕著である。
本発明の発明者は、鋭意検討を重ねた結果、被加工物にレーザー光を照射して分割起点を形成するにあたって、該被加工物の劈開性もしくは裂開性を利用することで、加工痕の形成が好適に抑制されるとの知見を得た。加えて、係る加工には超短パルスのレーザー光を用いることが好適であるとの知見を得た。
特許文献1ないし特許文献5においては、被加工物の劈開性もしくは裂開性を利用する分割起点の形成態様について、何らの開示も示唆もなされてはいない。
また、レーザー光によって分割起点を形成する場合、レーザー光の照射により形成される被加工領域(特許文献1のブレイク溝や特許文献2の変質領域など)が、被分割体の厚み方向のできるだけ深いところまで形成されるほど、その後に被分割体を表面に対して垂直に分割する際の歩留まりが向上する。しかしながら、上述した発光素子構造を有する被加工物のように、サファイアなどの硬脆性を有する基板の上に金属薄膜層や半導体層などの異種材料層が形成されている場合は、厚み方向の十分に深いところまで被加工領域を形成することが難しい、という問題があった。
本発明は係る課題に鑑みてなされたものであり、加工痕の形成が抑制されるとともに、基板上に異種材料層が形成されてなる被分割体について、その分割がより確実に実現される分割起点の形成が可能となる、被分割体の加工方法、およびこれに用いるレーザー加工装置を提供することを目的とする。
上記課題を解決するため、請求項1の発明は、レーザー光を発する少なくとも1つの光源と、被加工物が載置されるステージと、を備えるレーザー加工装置であって、前記少なくとも1つの光源として、予備加工用レーザー光を出射する第1の光源と本加工用レーザー光を出射する第2の光源とを備えるとともに、前記第1の光源から前記ステージに至る第1の光路での前記予備加工用レーザー光の照射と前記第2の光源から前記ステージに至る第2の光路での前記本加工用レーザー光の照射とを切り替え可能な光路切替手段、をさらに備え、前記本加工用レーザー光が、パルス幅がpsecオーダーの超短パルス光であり、前記ステージが第1の方向と第2の方向とに移動可能とされてなり、前記被加工物が下地基板の上に異種材料層が形成された異種材料付き基板である場合に、前記被加工物を載置した前記ステージが前記第1の方向に移動する間は、前記第1の光源から前記予備加工用レーザー光を出射して前記被加工物に照射することにより、被照射領域において前記下地基板を露出させる予備加工を行い、前記被加工物を載置した前記ステージが前記第2の方向に移動する間は、前記本加工用レーザー光の個々の単位パルス光ごとの被照射領域が前記下地基板の露出部分において離散的に形成されるように前記第2の光源から前記本加工用レーザー光を出射して前記被加工物に照射することによって、前記被照射領域同士の間で前記下地基板の劈開もしくは裂開を生じさせる本加工を行い、前記被加工物に分割のための起点を形成する、ことを特徴とする。
請求項2の発明は、請求項1に記載のレーザー加工装置であって、前記被加工物に前記分割のための起点を形成する際に、異なる前記単位パルス光によって形成する少なくとも2つの被照射領域を、前記被加工物の劈開もしくは裂開容易方向において隣り合うように形成する、ことを特徴とする。
請求項3の発明は、請求項2に記載のレーザー加工装置であって、全ての前記被照射領域を、前記被加工物の劈開もしくは裂開容易方向に沿って形成する、ことを特徴とする。
請求項4の発明は、請求項2に記載のレーザー加工装置であって、前記少なくとも2つの被照射領域の形成を、前記被加工物の相異なる2つの前記劈開もしくは裂開容易方向において交互に行う、ことを特徴とする。
請求項5の発明は、請求項1ないし請求項4のいずれかに記載のレーザー加工装置であって、前記被加工物に前記分割のための起点を形成する際に、前記被照射領域を、前記被加工物の相異なる2つの劈開もしくは裂開容易方向に対して等価な方向において形成する、ことを特徴とする。
請求項6の発明は、下地基板の上に異種材料層が形成された異種材料付き基板である被加工物に分割起点を形成するための加工方法であって、被加工物を第1の方向と第2の方向とに移動可能なステージに載置する載置工程と、前記ステージを前記第1の方向に移動させつつ、第1の光源から出射させた予備加工用レーザー光を照射することにより、被照射領域において下地基板を露出させる予備加工工程と、前記第1の光源とは異なる第2の光源から出射させた、パルス幅がpsecオーダーの超短パルス光である本加工用レーザー光の、個々の単位パルス光ごとの被照射領域が、前記下地基板の露出部分において離散的に形成されるように、前記ステージを前記第2の方向に移動させつつ前記本加工用レーザー光を前記被加工物に照射することによって、前記被照射領域同士の間で前記下地基板の劈開もしくは裂開を生じさせる本加工工程と、を備え、前記第1の光源から前記ステージに至る第1の光路での前記予備加工用レーザー光の照射と前記第2の光源から前記ステージに至る第2の光路での前記本加工用レーザー光の照射とを所定の光路切替手段によって切り替え可能とし、前記光路切替手段から前記ステージまでの前記第1と第2の光路を共通化する、ことを特徴とする。
請求項7の発明は、請求項6に記載の加工方法であって、異なる前記単位パルス光によって形成する少なくとも2つの被照射領域を、前記被加工物の劈開もしくは裂開容易方向において隣り合うように形成する、ことを特徴とする。
請求項8の発明は、請求項7に記載の加工方法であって、全ての前記被照射領域を、前記被加工物の劈開もしくは裂開容易方向に沿って形成する、ことを特徴とする。
請求項9の発明は、請求項7に記載の加工方法であって、前記少なくとも2つの被照射領域の形成を、前記被加工物の相異なる2つの前記劈開もしくは裂開容易方向において交互に行う、ことを特徴とする。
請求項10の発明は、請求項6ないし請求項9のいずれかに記載の加工方法であって、前記被照射領域を、前記被加工物の相異なる2つの劈開もしくは裂開容易方向に対して等価な方向において形成する、ことを特徴とする。
請求項11の発明は、被加工物を分割する方法であって、請求項6ないし請求項10のいずれかに記載の方法によって分割起点が形成された被加工物を、前記分割起点に沿って分割する、ことを特徴とする。
請求項1ないし請求項11の発明によれば、下地基板の上に金属層や半導体層などの異種材料層が形成された被加工物に対しても、分割起点を好適に形成することができ、さらに該被加工物を好適に分割することができる。また、被加工物の変質による加工痕の形成や被加工物の飛散などを局所的なものに留めることができる。
<加工対象>
本実施の形態においては、異種材料付き基板に対する分割起点の形成について説明する。ここで、異種材料付き基板とは、下地基板(具体的には、サファイアなどの硬脆性の基板)の上に金属薄膜層や半導体層などの異種材料層が形成されてなるものをいう。下地基板の厚みや異種材料層の厚みには特段の制限はないが、通常、前者は取り扱いの容易さの観点から数百μm〜数mm程度の厚みを有し、後者はnmオーダーからμmオーダー程度の厚みに形成されてなる。すなわち、異種材料層に比して下地基板の厚みが相対的に大きいのが異種材料付き基板の一般的な態様である。
本実施の形態においては、異種材料付き基板に対する分割起点の形成について説明する。ここで、異種材料付き基板とは、下地基板(具体的には、サファイアなどの硬脆性の基板)の上に金属薄膜層や半導体層などの異種材料層が形成されてなるものをいう。下地基板の厚みや異種材料層の厚みには特段の制限はないが、通常、前者は取り扱いの容易さの観点から数百μm〜数mm程度の厚みを有し、後者はnmオーダーからμmオーダー程度の厚みに形成されてなる。すなわち、異種材料層に比して下地基板の厚みが相対的に大きいのが異種材料付き基板の一般的な態様である。
<劈開/裂開加工の原理>
まず、本発明の実施の形態において行われる加工の一態様である、劈開/裂開加工の原理を説明する。劈開/裂開加工とは、概略的に言えば、パルスレーザー光(以下、単にレーザー光とも称する)を走査しつつ被加工物の上面(被加工面)に照射することによって、個々のパルスごとの被照射領域の間で被加工物の劈開もしくは裂開を順次に生じさせていき、それぞれにおいて形成された劈開面もしくは裂開面の連続面として分割のための起点(分割起点)を形成するものである。
まず、本発明の実施の形態において行われる加工の一態様である、劈開/裂開加工の原理を説明する。劈開/裂開加工とは、概略的に言えば、パルスレーザー光(以下、単にレーザー光とも称する)を走査しつつ被加工物の上面(被加工面)に照射することによって、個々のパルスごとの被照射領域の間で被加工物の劈開もしくは裂開を順次に生じさせていき、それぞれにおいて形成された劈開面もしくは裂開面の連続面として分割のための起点(分割起点)を形成するものである。
なお、本実施の形態において、裂開とは、劈開面以外の結晶面に沿って被加工物が略規則的に割れる現象を指し示すものとし、当該結晶面を裂開面と称する。なお、結晶面に完全に沿った微視的な現象である劈開や裂開以外に、巨視的な割れであるクラックがほぼ一定の結晶方位に沿って発生する場合もある。物質によっては主に劈開、裂開もしくはクラックのいずれか1つのみが起こるものもあるが、以降においては、説明の煩雑を避けるため、劈開、裂開、およびクラックを区別せずに劈開/裂開などと総称する。さらに、上述のような態様の加工を、単に劈開/裂開加工と称する。
以下においては、被加工物が六方晶の単結晶物質であり、そのa1軸、a2軸、およびa3軸の各軸方向が、劈開/裂開容易方向である場合を例に説明する。例えば、C面サファイア基板などがこれに該当する。六方晶のa1軸、a2軸、a3軸は、C面内において互いに120°ずつの角度をなして互いに対称の位置にある。本発明の加工には、これらの軸の方向と加工予定線の方向(加工予定方向)との関係によって、いくつかのパターンがある。以下、これらについて説明する。なお、以下においては、個々のパルスごとに照射されるレーザー光を単位パルス光と称する。
<第1加工パターン>
第1加工パターンは、a1軸方向、a2軸方向、a3軸方向のいずれかと加工予定線とが平行な場合の劈開/裂開加工の態様である。より一般的にいえば、劈開/裂開容易方向と加工予定線の方向とが一致する場合の加工態様である。
第1加工パターンは、a1軸方向、a2軸方向、a3軸方向のいずれかと加工予定線とが平行な場合の劈開/裂開加工の態様である。より一般的にいえば、劈開/裂開容易方向と加工予定線の方向とが一致する場合の加工態様である。
図1は、第1加工パターンによる加工態様を模式的に示す図である。図1においては、a1軸方向と加工予定線Lとが平行な場合を例示している。図1(a)は、係る場合のa1軸方向、a2軸方向、a3軸方向と加工予定線Lとの方位関係を示す図である。図1(b)は、レーザー光の1パルス目の単位パルス光が加工予定線Lの端部の被照射領域RE1に照射された状態を示している。
一般に、単位パルス光の照射は、被加工物の極微小領域に対して高いエネルギーを与えることから、係る照射は、被照射面において単位パルス光の(レーザー光の)の被照射領域相当もしくは被照射領域よりも広い範囲において物質の変質・溶融・蒸発除去などを生じさせる。
ところが、単位パルス光の照射時間つまりはパルス幅を極めて短く設定すると、レーザー光のスポットサイズより狭い、被照射領域RE1の略中央領域に存在する物質が、照射されたレーザー光から運動エネルギーを得ることで被照射面に垂直な方向に飛散したり変質したりする一方、係る飛散に伴って生じる反力を初めとする単位パルス光の照射によって生じる衝撃や応力が、該被照射領域の周囲、特に、劈開/裂開容易方向であるa1軸方向、a2軸方向、a3軸方向に作用する。これにより、当該方向に沿って、見かけ上は接触状態を保ちつつも微小な劈開もしくは裂開が部分的に生じたり、あるいは、劈開や裂開にまでは至らずとも熱的な歪みが内在される状態が生じる。換言すれば、超短パルスの単位パルス光の照射が、劈開/裂開容易方向に向かう上面視略直線状の弱強度部分を形成するための駆動力として作用しているともいえる。
図1(b)においては、上記各劈開/裂開容易方向において形成される弱強度部分のうち、加工予定線Lの延在方向と合致する+a1方向における弱強度部分W1を破線矢印にて模式的に示している。
続いて、図1(c)に示すように、レーザー光の2パルス目の単位パルス光が照射されて、加工予定線L上において被照射領域RE1から所定距離だけ離れた位置に被照射領域RE2が形成されると、1パルス目と同様に、この2パルス目においても、劈開/裂開容易方向に沿った弱強度部分が形成されることになる。例えば、−a1方向には弱強度部分W2aが形成され、+a1方向には弱強度部分W2bが形成されることになる。
ただし、この時点においては、1パルス目の単位パルス光の照射によって形成された弱強度部分W1が弱強度部分W2aの延在方向に存在する。すなわち、弱強度部分W2aの延在方向は他の箇所よりも小さなエネルギーで劈開または裂開が生じ得る箇所となっている。そのため、実際には、2パルス目の単位パルス光の照射がなされると、その際に生じる衝撃や応力が劈開/裂開容易方向およびその先に存在する弱強度部分に伝播し、弱強度部分W2aから弱強度部分W1にかけて、完全な劈開もしくは裂開が、ほぼ照射の瞬間に生じる。これにより、図1(d)に示す劈開/裂開面C1が形成される。なお、劈開/裂開面C1は、被加工物の図面視垂直な方向において数μm〜数十μm程度の深さにまで形成され得る。しかも、後述するように、劈開/裂開面C1においては、強い衝撃や応力を受けた結果として結晶面の滑りが生じ、深さ方向に起伏が生じる。
そして、図1(e)に示すように、その後、加工予定線Lに沿ってレーザー光を走査することにより被照射領域RE1、RE2、RE3、RE4・・・・に順次に単位パルス光を照射していくと、これに応じて、劈開/裂開面C2、C3・・・が順次に形成されていくことになる。係る態様にて劈開/裂開面を連続的に形成するのが、第1加工パターンにおける劈開/裂開加工である。
別の見方をすれば、単位パルス光の照射によって熱的エネルギーが与えられることで被加工物の表層部分が膨張し、被照射領域RE1、RE2、RE3、RE4・・・・のそれぞれの略中央領域よりも外側において劈開/裂開面C1、C2、C3・・・に垂直な引張応力が作用することで、劈開/裂開が進展しているともいえる。
すなわち、第1加工パターンにおいては、加工予定線Lに沿って離散的に存在する複数の被照射領域と、それら複数の被照射領域の間に形成された劈開/裂開面とが、全体として、被加工物を加工予定線Lに沿って分割する際の分割起点となる。係る分割起点の形成後は、所定の治具や装置を用いた分割を行うことで、加工予定線Lに概ね沿う態様にて被加工物を分割することができる。
なお、このような劈開/裂開加工を実現するには、パルス幅の短い、短パルスのレーザー光を照射する必要がある。具体的には、パルス幅が100psec以下のレーザー光を用いることが必要である。例えば、1psec〜50psec程度のパルス幅を有するレーザー光を用いるのが好適である。
一方、単位パルス光の照射ピッチ(被照射スポットの中心間隔)は、4μm〜50μmの範囲で定められればよい。これよりも照射ピッチが大きいと、劈開/裂開容易方向における弱強度部分の形成が劈開/裂開面を形成し得るほどにまで進展しない場合が生じるため、上述のような劈開/裂開面からなる分割起点を確実に形成するという観点からは、好ましくない。なお、走査速度、加工効率、製品品質の点からは、照射ピッチは大きい方が好ましいが、劈開/裂開面の形成をより確実なものとするには、4μm〜30μmの範囲で定めるのが望ましく、4μm〜15μm程度であるのがより好適である。
いま、レーザー光の繰り返し周波数がR(kHz)である場合、1/R(msec)ごとに単位パルス光がレーザー光源から発せられることになる。被加工物に対してレーザー光が相対的に速度V(mm/sec)で移動する場合、照射ピッチΔ(μm)は、Δ=V/Rで定まる。従って、レーザー光の走査速度Vと繰り返し周波数は、Δが数μm程度となるように定められる。例えば、走査速度Vは50mm/sec〜3000mm/sec程度であり、繰り返し周波数Rが1kHz〜200kHz、特には10kHz〜200kHz程度であるのが好適である。VやRの具体的な値は、被加工物の材質や吸収率、熱伝導率、融点などを勘案して適宜に定められてよい。
レーザー光は、約1μm〜10μm程度のビーム径にて照射されることが好ましい。係る場合、レーザー光の照射におけるピークパワー密度はおおよそ0.1TW/cm2〜数10TW/cm2となる。
また、レーザー光の照射エネルギー(パルスエネルギー)は0.1μJ〜50μJの範囲内で適宜に定められてよい。
図2は、第1加工パターンでの劈開/裂開加工により分割起点を形成した被加工物の表面についての光学顕微鏡像である。具体的には、サファイアC面基板を被加工物とし、そのC面上に、a1軸方向を加工予定線Lの延在方向として7μmの間隔にて被照射スポットを離散的に形成する加工を行った結果を示している。図2に示す結果は、実際の被加工物が上述したメカニズムで加工されていることを示唆している。
また、図3は、第1加工パターンに係る加工によって分割起点を形成したサファイアC面基板を、該分割起点に沿って分割した後の、表面(C面)から断面にかけてのSEM(走査電子顕微鏡)像である。なお、図3においては、表面と断面との境界部分を破線にて示している。
図3において観察される、当該表面から10μm前後の範囲に略等間隔に存在する、被加工物の表面から内部に長手方向を有する細長い三角形状あるいは針状の領域が、単位パルス光の照射によって直接に変質や飛散除去等の現象が生じた領域(以下、直接変質領域と称する)である。そして、それら直接変質領域の間に存在する、図面視左右方向に長手方向を有する筋状部分がサブミクロンピッチで図面視上下方向に多数連なっているように観察される領域が、劈開/裂開面である。これら直接変質領域および劈開/裂開面よりも下方が、分割によって形成された分割面である。
劈開/裂開面が形成された領域は、レーザー光の照射を受けた領域ではないので、この第1加工パターンに係る加工においては、離散的に形成された直接変質領域のみが加工痕となっている。しかも、直接変質領域の被加工面におけるサイズは、数百nm〜1μm程度に過ぎない。すなわち、第1加工パターンでの加工を行うことで、従来に比して加工痕の形成が好適に抑制された分割起点の形成が実現される。
なお、SEM像において筋状部分として観察されているのは、実際には、劈開/裂開面に形成された、0.1μm〜1μm程度の高低差を有する微小な凹凸である。係る凹凸は、サファイアのような硬脆性の無機化合物を対象に劈開/裂開加工を行う際に、単位パルス光の照射によって被加工物に強い衝撃や応力が作用することによって、特定の結晶面に滑りが生じることにより形成されたものである。
このような微細な凹凸は存在するものの、図3からは、波線部分を境に表面と断面とが概ね直交していると判断されることから、微細な凹凸が加工誤差として許容される限りにおいて、第1加工パターンにより分割起点を形成し、被加工物を、該分割起点に沿って分割することで、被加工物をその表面に対して概ね垂直に分割することできるといえる。
なお、後述するように、係る微細な凹凸を積極的に形成することが好ましい場合もある。例えば、次述する第2加工パターンによる加工によって顕著に得られる光取り出し効率の向上という効果を、第1加工パターンによる加工によってもある程度は奏することがある。
<第2加工パターン>
第2加工パターンは、a1軸方向、a2軸方向、a3軸方向のいずれかと加工予定線とが垂直な場合の劈開/裂開加工の態様である。なお、第2加工パターンにおいて用いるレーザー光の条件は、第1加工パターンと同様である。より一般的にいえば、相異なる2つの劈開/裂開容易方向に対して等価な方向(2つの劈開/裂開容易方向の対称軸となる方向)が加工予定線の方向となる場合の加工態様である。
第2加工パターンは、a1軸方向、a2軸方向、a3軸方向のいずれかと加工予定線とが垂直な場合の劈開/裂開加工の態様である。なお、第2加工パターンにおいて用いるレーザー光の条件は、第1加工パターンと同様である。より一般的にいえば、相異なる2つの劈開/裂開容易方向に対して等価な方向(2つの劈開/裂開容易方向の対称軸となる方向)が加工予定線の方向となる場合の加工態様である。
図4は、第2加工パターンによる加工態様を模式的に示す図である。図4においては、a1軸方向と加工予定線Lとが直交する場合を例示している。図4(a)は、係る場合のa1軸方向、a2軸方向、a3軸方向と加工予定線Lとの方位関係を示す図である。図4(b)は、レーザー光の1パルス目の単位パルス光が加工予定線Lの端部の被照射領域RE11に照射された状態を示している。
第2加工パターンの場合も、超短パルスの単位パルス光を照射することで、第1加工パターンと同様に、弱強度部分が形成される。図4(b)においては、上記各劈開/裂開容易方向において形成される弱強度部分のうち、加工予定線Lの延在方向に近い−a2方向および+a3方向における弱強度部分W11a、W12aを破線矢印にて模式的に示している。
そして、図4(c)に示すように、レーザー光の2パルス目の単位パルス光が照射されて、加工予定線L上において被照射領域RE11から所定距離だけ離れた位置に被照射領域RE12が形成されると、1パルス目と同様に、この2パルス目においても、劈開/裂開容易方向に沿った弱強度部分が形成されることになる。例えば、−a3方向には弱強度部分W11bが形成され、+a2方向には弱強度部分W12bが形成され、+a3方向には弱強度部分W12cが形成され、−a2方向には弱強度部分W11cが形成されることになる。
係る場合も、第1加工パターンの場合と同様、1パルス目の単位パルス光の照射によって形成された弱強度部分W11a、W12aがそれぞれ、弱強度部分W11b、W12bの延在方向に存在するので、実際には、2パルス目の単位パルス光の照射がなされると、その際に生じる衝撃や応力が劈開/裂開容易方向およびその先に存在する弱強度部分に伝播する。すなわち、図4(d)に示すように、劈開/裂開面C11a、C11bが形成される。なお、係る場合も、劈開/裂開面C11a、C11bは、被加工物の図面視垂直な方向において数μm〜数十μm程度の深さにまで形成され得る。
引き続き、図4(e)に示すように加工予定線Lに沿ってレーザー光を走査し、被照射領域RE11、RE12、RE13、RE14・・・・に順次に単位パルス光を照射していくと、その照射の際に生じる衝撃や応力によって、図面視直線状の劈開/裂開面C11aおよびC11b、C12aおよびC12b、C13aおよびC13b、C14aおよびC14b・・・が加工予定線Lに沿って順次に形成されていくことになる。
この結果、加工予定線Lに関して対称に劈開/裂開面が位置する状態が実現される。第2加工パターンにおいては、加工予定線Lに沿って離散的に存在する複数の被照射領域と、それら千鳥状に存在する劈開/裂開面とが、全体として、被加工物を加工予定線Lに沿って分割する際の分割起点となる。
図5は、第2加工パターンでの劈開/裂開加工により分割起点を形成した被加工物の表面についての光学顕微鏡像である。具体的には、サファイアC面基板を被加工物とし、そのC面上に、a1軸方向に直交する方向を加工予定線Lの延在方向として7μmの間隔にて被照射スポットを離散的に形成する加工を行った結果を示している。図5からは、実際の被加工物においても、図4(e)に模式的に示したものと同様に表面視千鳥状の(ジグザグ状の)劈開/裂開面が確認される。係る結果は、実際の被加工物が上述したメカニズムで加工されていることを示唆している。
また、図6は、第2加工パターンに係る加工によって分割起点を形成したサファイアC面基板を、該分割起点に沿って分割した後の、表面(C面)から断面にかけてのSEM像である。なお、図6においては、表面と断面との境界部分を破線にて示している。
図6からは、分割後の被加工物の断面の表面から10μm前後の範囲においては、被加工物の断面が、図4(e)に模式的に示した千鳥状の配置に対応する凹凸を有していることが確認される。係る凹凸を形成しているのが、劈開/裂開面である。なお、図6における凹凸のピッチは5μm程度である。第1加工パターンによる加工の場合と同様、劈開/裂開面は平坦ではなく、単位パルス光の照射に起因して特定の結晶面に滑りが生じたことに伴うサブミクロンピッチの凹凸が生じている。
また、係る凹凸の凸部の位置に対応して表面部分から深さ方向にかけて延在するのが、直接変質領域の断面である。図3に示した第1加工パターンによる加工により形成された直接変質領域と比べると、その形状は不均一なものとなっている。そして、これら直接変質領域および劈開/裂開面よりも下方が、分割によって形成された分割面である。
第2加工パターンの場合も、離散的に形成された直接変質領域のみが加工痕となっている点では第1加工パターンと同様である。そして、直接変質領域の被加工面におけるサイズは、数百nm〜2μm程度に過ぎない。すなわち、第2加工パターンでの加工を行う場合も、加工痕の形成が従来よりも好適にされた分割起点の形成が実現される。
第2加工パターンによる加工の場合、劈開/裂開面に形成されたサブミクロンピッチの凹凸に加えて、隣り合う劈開/裂開面同士が数μm程度のピッチで凹凸を形成している。このような凹凸形状を有する断面を形成する態様は、サファイアなどの硬脆性かつ光学的に透明な材料からなる基板の上に、LED構造などの発光素子構造を形成した被加工物をチップ(分割素片)単位に分割する場合に有効である。発光素子の場合、レーザー加工によって基板に形成された加工痕の箇所において、発光素子内部で生じた光が吸収されてしまうと、素子からの光の取り出し効率が低下してしまうことになるが、第2加工パターンによる加工を行うことによって基板の加工断面にこの図6に示したような凹凸を意図的に形成した場合には、当該位置での全反射率が低下し、発光素子においてより高い光取り出し効率が実現されることになる。
<第3加工パターン>
第3加工パターンは、超短パルスのレーザー光を用いる点、a1軸方向、a2軸方向、a3軸方向のいずれかと加工予定線とが垂直である(相異なる2つの劈開/裂開容易方向に対して等価な方向が加工予定線の方向となる)点では、第2加工パターンと同様であるが、レーザー光の照射態様が第2加工パターンと異なる。
第3加工パターンは、超短パルスのレーザー光を用いる点、a1軸方向、a2軸方向、a3軸方向のいずれかと加工予定線とが垂直である(相異なる2つの劈開/裂開容易方向に対して等価な方向が加工予定線の方向となる)点では、第2加工パターンと同様であるが、レーザー光の照射態様が第2加工パターンと異なる。
図7は、第3加工パターンによる加工態様を模式的に示す図である。図7においては、a1軸方向と加工予定線Lとが直交する場合を例示している。図7(a)は、係る場合のa1軸方向、a2軸方向、a3軸方向と加工予定線Lとの方位関係を示す図である。
上述した第2加工パターンでは、図7(a)に示したものと同じ方位関係のもと、レーザー光を、加工予定線Lの延在方向である、a2軸方向とa3軸方向のちょうど真ん中の方向(a2軸方向とa3軸方向とに対して等価な方向)に沿って、直線的に走査していた。第3加工パターンでは、これに代わり、図7(b)に示すように、個々の被照射領域が、加工予定線Lを挟む2つの劈開/裂開容易方向に交互に沿う態様にて千鳥状に(ジグザグに)形成されるように、それぞれの被照射領域を形成する単位パルス光が照射される。図7の場合であれば、−a2方向と+a3方向とに交互に沿って被照射領域RE21、RE22、RE23、RE24、RE25・・・が形成されている。
係る態様にて単位パルス光が照射された場合も、第1および第2加工パターンと同様に、それぞれの単位パルス光の照射に伴って、被照射領域の間に劈開/裂開面が形成される。図7(b)に示す場合であれば、被照射領域RE21、RE22、RE23、RE24、RE25・・・がこの順に形成されることで、劈開/裂開面C21、C22、C23、C24・・・が順次に形成される。
結果として、第3加工パターンにおいては、加工予定線Lを軸とする千鳥状の配置にて離散的に存在する複数の被照射領域と、それぞれの被照射領域の間に形成される劈開/裂開面とが、全体として、被加工物を加工予定線Lに沿って分割する際の分割起点となる。
そして、当該分割起点に沿って実際に分割を行った場合には、第2加工パターンと同様に、分割後の被加工物の断面の表面から10μm前後の範囲においては、劈開/裂開面による数μmピッチの凹凸が形成される。しかも、それぞれの劈開/裂開面には、第1および第2加工パターンの場合と同様に、単位パルス光の照射に起因して特定の結晶面に滑りが生じたことに伴うサブミクロンピッチの凹凸が生じる。また、直接変質領域の形成態様も第2加工パターンと同様である。すなわち、第3加工パターにおいても、加工痕の形成は第2加工パターンと同程度に抑制される。
従って、このような第3加工パターンによる加工の場合も、第2パターンによる加工と同様、劈開/裂開面に形成されたサブミクロンピッチの凹凸に加えて、劈開/裂開面同士により数μm程度のピッチの凹凸が形成されるので、第3加工パターンによる加工を、発光素子を対象に行った場合も、得られた発光素子は、上述したような光の取り出し効率の向上という観点からはより好適なものとなる。
なお、被加工物の種類によっては、より確実に劈開/裂開を生じさせるべく、いずれも加工予定線L上の位置である、図7(b)の被照射領域RE21と被照射領域RE22の中点、被照射領域RE22と被照射領域RE23の中点、被照射領域RE23と被照射領域RE24の中点、被照射領域RE24と被照射領域RE25の中点・・・・にも、被照射領域を形成するようにしてもよい。
ところで、第3加工パターンにおける被照射領域の配置位置は、部分的には劈開/裂開容易方向に沿っている。上述のように加工予定線L上の中点位置にも被照射領域を形成する場合についても同様である。すなわち、第3加工パターンは、少なくとも2つの被照射領域を、被加工物の劈開/裂開容易方向において隣り合わせて形成する、という点で、第1加工パターンと共通するということもできる。従って、見方を変えれば、第3加工パターンは、レーザー光を走査する方向を周期的に違えつつ第1加工パターンによる加工を行っているものであると捉えることもできる。
また、第1および第2加工パターンの場合は、被照射領域が一直線上に位置するので、レーザー光の出射源を加工予定線に沿って一直線上に移動させ、所定の形成対象位置に到達するたびに単位パルス光を照射して被照射領域を形成すればよく、係る形成態様が最も効率的である。ところが、第3加工パターンの場合、被照射領域を一直線上にではなく千鳥状に(ジグザグに)形成するので、レーザー光の出射源を実際に千鳥状に(ジグザグに)移動させる手法だけでなく、種々の手法にて被照射領域を形成することができる。なお、本実施の形態において、出射源の移動とは、被加工物と出射源との相対移動を意味しており、被加工物が固定されて出射源が移動する場合のみならず、出射源が固定されて被加工物が移動する(実際には被加工物を載置するステージが移動する)態様も含んでいる。
例えば、出射源とステージとを加工予定線に平行に等速で相対移動させつつ、レーザー光の出射方向を加工予定線に垂直な面内にて周期的に変化させることなどによって、上述のような千鳥状の配置関係をみたす態様にて被照射領域を形成することも可能である。
あるいは、複数の出射源を平行に等速で相対移動させつつ、個々の出射源からの単位パルス光の照射タイミングを周期的に変化させることで、上述のような千鳥状の配置関係をみたす態様にて被照射領域を形成することも可能である。
図8は、これら2つの場合の加工予定線と被照射領域の形成予定位置との関係を示す図である。いずれの場合も、図8に示すように、被照射領域RE21、RE22、RE23、RE24、RE25・・・の形成予定位置P21、P22、P23、P24、P25・・・をあたかも加工予定線Lに平行な直線Lα、Lβ上に交互に設定し、直線Lαに沿った形成予定位置P21、P23、P25・・・・での被照射領域の形成と、直線Lβに沿った形成予定位置P22、P24・・・・での被照射領域の形成とを、同時並行的に行うものと捉えることができる。
なお、出射源を千鳥状に(ジグザグに)移動させる場合、レーザー光の出射源を直接移動させるにせよ、被加工物が載置されるステージを移動させることによってレーザー光を相対的に走査させるにせよ、出射源あるいはステージの移動は二軸同時動作となる。これに対して、出射源あるいはステージのみを加工予定線に平行に移動させる動作は一軸動作である。従って、出射源の高速移動つまりは加工効率の向上を実現するうえにおいては、後者の方がより適しているといえる。
以上の各加工パターンに示すように、本実施の形態において行われる劈開/裂開加工は、単位パルス光の離散的な照射を、主に被加工物において連続的な劈開/裂開を生じさせるための衝撃や応力を付与する手段として用いる加工態様である。被照射領域における被加工物の変質(つまりは加工痕の形成)や飛散などは、あくまで付随的なものとして局所的に生じるものに過ぎない。このような特徴を有する本実施の形態の劈開/裂開加工は、単位パルス光の照射領域をオーバーラップさせつつ、連続的あるいは断続的に変質・溶融・蒸発除去を生じさせることによって加工を行う従来の加工手法とは、そのメカニズムが本質的に異なるものである。
そして、個々の被照射領域に瞬間的に強い衝撃や応力が加わればよいので、レーザー光を高速で走査しつつ照射することが可能である。具体的には、最大で1000mm/secという極めて高速走査つまりは高速加工が実現可能である。従来の加工方法での加工速度はせいぜい200mm/sec程度であることを鑑みると、その差異は顕著である。当然ながら、本実施の形態において実現される加工方法は従来の加工方法に比して各段に生産性を向上させるものであるといえる。
なお、本実施の形態における劈開/裂開加工は、上述の各加工パターンのように被加工物の結晶方位(劈開/裂開容易方向の方位)と加工予定線とが所定の関係にある場合に特に有効であるが、適用対象はこれらに限られず、原理的には、両者が任意の関係にある場合や被加工物が多結晶体である場合にも適用可能である。これらの場合、加工予定線に対して劈開/裂開が生じる方向が必ずしも一定しないため、分割起点に不規則な凹凸が生じ得るが、被照射領域の間隔や、パルス幅を初めとするレーザー光の照射条件を適宜に設定することで、係る凹凸が加工誤差の許容範囲内に留まった実用上問題のない加工が行える。
<異種材料付き基板の加工>
次に、上述した劈開/裂開加工を、異種材料付き基板に対する分割起点の形成に適用する場合について説明する。具体的には、異種材料付き基板に対して、金属薄膜層もしくは半導体層の側から分割起点を形成しようとする場合を対象に説明する。
次に、上述した劈開/裂開加工を、異種材料付き基板に対する分割起点の形成に適用する場合について説明する。具体的には、異種材料付き基板に対して、金属薄膜層もしくは半導体層の側から分割起点を形成しようとする場合を対象に説明する。
係る場合、異種材料層の表面側から上述の第1ないし第3加工パターンにて劈開/裂開加工を試みたとしても、異種材料層自体の材質の問題や、異なる材質の界面を横断する態様による劈開/裂開面の形成が難しいという理由により、異種材料付き基板の厚みの大部分を占める下地基板にまで達する劈開/裂開面を好適に形成することは難しい。
そこで、本実施の形態においては、分割予定位置に存在する異種材料をあらかじめ除去しておいたうえで、下地基板のみに対し上述した劈開/裂開加工を行うことにより、異種材料付き基板に対し分割起点を形成するようにする。すなわち、本実施の形態において行う異種材料付き基板に対する分割起点の形成は、概略的には、下地基板上に存在する異種材料層を除去し、下地基板を露出させる予備加工と、予備加工によって露出した下地基板に対し上述した劈開/裂開加工にて分割起点を形成する本加工とを含む。本実施の形態において行われる、予備加工と本加工とからなる加工態様を、二段階加工と称する。
まず、予備加工と本加工の基本的な加工態様について説明する。図9は被加工物10が下地基板101の上に金属薄膜層102を形成してなる異種材料付き基板である場合の加工の様子を模式的に示す側断面図である。図10は被加工物10が下地基板101の上に半導体層103を形成してなる異種材料付き基板である場合の加工の様子を模式的に示す側断面図である。図9、図10ともに、被加工物10の表面(具体的には金属薄膜層102の表面102aもしくは半導体層103の表面103a)上であって図面に垂直な方向に、加工予定線Lが設定されているとする。
いずれの場合もまず、予備加工用レーザー光LBaを所定の出射源Eaから被加工物10に照射し、該予備加工用レーザー光LBaによって加工予定線L上を走査する(図9(a)、図10(a))。これにより、加工予定線L上に沿って、金属薄膜層102もしくは半導体層103の該加工予定線Lの近傍部分が徐々に除去され、下地基板101の上面101sを底部とする第1溝部102gもしくは103gが徐々に形成される(図9(b)、図10(b))。すなわち、下地基板101の上面101sが露出する。これが予備加工である。
係る予備加工の際、予備加工用レーザー光LBaは、個々の単位パルス光のビームスポット同士に重なり(オーバーラップ)が生じるような条件で被加工面に照射される。同一位置をレーザー光が同一位置に照射される回数Nは、レーザー光のビームスポット径がφ(μm)、走査速度がV(mm/sec)、繰り返し周波数がR(kHz)とすると、N=φ×R/Vで概算される。予備加工用レーザー光LBaの照射は、係る式によって得られる回数Nの値が、最低でも2となる照射条件にて行われるようにする。N>10となる照射条件にて行われるのがより好ましい。特に、繰り返し周波数Rが高く設定されるのが好ましい。
一方で、予備加工用レーザー光LBaは、金属薄膜層102もしくは半導体層103の部分除去が行われる程度のエネルギーで照射されればよい。必要以上のエネルギーによる照射は、下地基板101の上面101sにダメージを与えてしまうことになり、予備加工に続く本加工として行う劈開/裂開加工が良好に行えなくなるため好ましくない。
また、第1溝部102gもしくは103gの幅は、予備加工に続いて行う本加工に際して照射される本加工用レーザー光LBbのビームが遮られることなく第1溝部102gもしくは103gを通過するのに十分な程度であればよい。具体的な値は、下地基板101に対して照射されるレーザー光の集光NA値と第1溝部102gもしくは103gの厚み(つまりは金属薄膜層102もしくは半導体層103の厚み)にもよるが、サファイアからなる下地基板101の上にIII族窒化物からなる半導体層103を設けた被加工物の場合であれば、10μm程度であるのが好ましく、最大でも25μm程度である。
これらの条件を満たす限りにおいて、予備加工用レーザー光LBaとしては、UVレーザーや、半導体レーザー、CO2レーザーなどの従来公知の種々のレーザー種を用いることができる。なお、上述した劈開/裂開加工を行う際に用いるような、psecオーダーのパルス幅を有するレーザー光を予備加工用レーザー光LBaとして用いる場合であれば、予備加工用レーザー光LBaは、図9(a)、図10(a)に示すようにその焦点位置が被加工物10の表面よりも上方に位置するような照射条件で照射されるのが好適である。このようにすることで、予備加工用レーザー光LBaのパルス幅や繰り返し周波数、照射エネルギー(パルスエネルギー)などが本加工用レーザー光LBbと同様であっても、予備加工が好適に行える。
そして、予備加工によって加工予定線Lに沿う線状に露出した下地基板101の上面101sに対し、所定の出射源Ebから出射させた本加工用レーザー光LBbを該上面101sの延在方向に沿って走査させつつ照射する(図9(c)、図10(c))ことにより、下地基板101に対して、加工予定線L上に沿った劈開/裂開加工を行う。これにより、下地基板101には、加工予定線Lに沿って、劈開・裂開面101wを有する第2溝部101gが形成される(図9(d)、図10(d))。これが本加工である。
本加工は、下地基板101に対して加工予定線Lに沿った劈開/裂開を生じさせる加工であるため、本加工用レーザー光LBbは、上述した第1ないし第3加工パターンのいずれかが実現される条件にて照射されればよい。
本加工の結果として得られた第2溝部101g(より具体的にはその先端部)が、異種材料付き基板である被加工物10の分割起点となる。本加工は、硬脆性を有する下地基板101のみに対して劈開/裂開加工を施すものであるので、分割予定線の位置において劈開/裂開を好適に生じさせることができる。その結果として、下地基板101には、先端部が充分に深いところまで達する第2溝部101gが形成される。すなわち、異種材料付き基板である被加工物10に良好な分割起点が形成される。
<レーザー加工装置の概要>
次に、上述した二段階加工を実現可能なレーザー加工装置について説明する。
次に、上述した二段階加工を実現可能なレーザー加工装置について説明する。
図11は、本実施の形態に係るレーザー加工装置50の基本的な構成を概略的に示す模式図である。レーザー加工装置50は、レーザー光照射部50Aと、観察部50Bと、例えば石英などの透明な部材からなり、被加工物10をその上に載置するステージ7と、レーザー加工装置50の種々の動作(観察動作、アライメント動作、加工動作など)を制御するコントローラ1とを主として備える。
レーザー光照射部50Aは、レーザー光を出射するレーザー光源SLと、レーザー光が被加工物10に照射される際の光路を設定する光学系5とを備え、ステージ7に載置された被加工物10にレーザー光を照射する部位である。なお、図11においては、図示の簡単のため、レーザー光源SLを1つのみ示しているが、本実施の形態に係るレーザー加工装置50が2つのレーザー光源SL(第1レーザー光源SL1、第2レーザー光源SL2)を備えており、光学系5もこれに応じた構成を有する態様であってもよい。レーザー光源SLを含めた光学系5の構成の詳細は後述する。
観察部50Bは、該被加工物10をレーザー光が照射される側(これを表面または被加工面と称する)から直接に観測する表面観察と、ステージ7に載置された側(これを裏面または載置面と称する)から該ステージ7を介して観察する裏面観察とを行う部位である。
ステージ7は、移動機構7mによってレーザー光照射部50Aと観察部50Bとの間で水平方向に移動可能とされてなる。移動機構7mは、図示しない駆動手段の作用により水平面内で所定のXY2軸方向にステージ7を移動させる。これにより、レーザー光照射部50A内におけるレーザー光照射位置の移動や、観察部50B内における観察位置の移動や、レーザー光照射部50Aと観察部50Bとの間のステージ7の移動などが実現されてなる。なお、移動機構7mについては、所定の回転軸を中心とした、水平面内における回転(θ回転)動作も、水平駆動と独立に行えるようになっている。
また、レーザー加工装置50においては、表面観察と裏面観察とを適宜に切り替え可能に行えるようになっている。これにより、被加工物10の材質や状態に応じた最適な観察を柔軟かつ速やかに行うことができる。
ステージ7は、石英など透明な部材で形成されているが、その内部には、被加工物10を吸着固定するための吸気通路となる図示しない吸引用配管が設けられてなる。吸引用配管は、例えば、ステージ7の所定位置を機械加工により削孔することにより設けられる。
被加工物10をステージ7の上に載置した状態で、例えば吸引ポンプなどの吸引手段11により吸引用配管に対し吸引を行い、吸引用配管のステージ7載置面側先端に設けられた吸引孔に対し負圧を与えることで、被加工物10(および固定シート4)がステージ7に固定されるようになっている。なお、図11においては、加工対象である被加工物10が固定シート4に貼り付けられている場合を例示しているが、好ましくは、固定シート4の外縁部には該固定シート4を固定するための図示しない固定リングが配置される。
<照明系および観察系>
観察部50Bは、ステージ7に載置された被加工物10に対してステージ7の上方から落射照明光源S1からの落射照明光L1の照射と斜光照明光源S2からの斜光透過照明光L2の照射とを重畳的に行いつつ、ステージ7の上方側からの表面観察手段6による表面観察と、ステージ7の下方側からの裏面観察手段16による裏面観察とを、行えるように構成されている。
観察部50Bは、ステージ7に載置された被加工物10に対してステージ7の上方から落射照明光源S1からの落射照明光L1の照射と斜光照明光源S2からの斜光透過照明光L2の照射とを重畳的に行いつつ、ステージ7の上方側からの表面観察手段6による表面観察と、ステージ7の下方側からの裏面観察手段16による裏面観察とを、行えるように構成されている。
具体的には、落射照明光源S1から発せられた落射照明光L1が、図示を省略する鏡筒内に設けられたハーフミラー9で反射され、被加工物10に照射されるようになっている。また、観察部50Bは、ハーフミラー9の上方(鏡筒の上方)に設けられたCCDカメラ6aと該CCDカメラ6aに接続されたモニタ6bとを含む表面観察手段6を備えており、落射照明光L1を照射させた状態でリアルタイムに被加工物10の明視野像の観察を行うことが出来るようになっている。
また、観察部50Bにおいては、ステージ7の下方に、より好ましくは、後述するハーフミラー19の下方(鏡筒の下方)に設けられたCCDカメラ16aと該CCDカメラ16aに接続されたモニタ16bとを含む裏面観察手段16を備えている。なお、モニタ16bと表面観察手段6に備わるモニタ6bとは共通のものであってもよい。
また、ステージ7の下方に備わる同軸照明光源S3から発せられた同軸照明光L3が、図示を省略する鏡筒内に設けられたハーフミラー19で反射され、集光レンズ18にて集光されたうえで、ステージ7を介して被加工物10に照射されるようになっていてもよい。さらに好ましくは、ステージ7の下方に斜光照明光源S4を備えており、斜光照明光L4を、ステージ7を介して被加工物10に対して照射できるようになっていてもよい。これらの同軸照明光源S3や斜光照明光源S4は、例えば被加工物10の表面側に不透明な金属層などがあって表面側からの観察が該金属層からの反射が生じて困難な場合など、被加工物10を裏面側から観察する際に好適に用いることできる。
<コントローラ>
コントローラ1は、上述の各部の動作を制御し、被加工物10の加工処理を実現させる制御部2と、レーザー加工装置50の動作を制御するプログラム3pや加工処理の際に参照される種々のデータを記憶する記憶部3とをさらに備える。
コントローラ1は、上述の各部の動作を制御し、被加工物10の加工処理を実現させる制御部2と、レーザー加工装置50の動作を制御するプログラム3pや加工処理の際に参照される種々のデータを記憶する記憶部3とをさらに備える。
制御部2は、例えばパーソナルコンピュータやマイクロコンピュータなどの汎用のコンピュータによって実現されるものであり、記憶部3に記憶されているプログラム3pが該コンピュータに読み込まれ実行されることにより、種々の構成要素が制御部2の機能的構成要素として実現される。
具体的には、制御部2は、移動機構7mによるステージ7の駆動や集光レンズ18の合焦動作など、加工処理に関係する種々の駆動部分の動作を制御する駆動制御部21と、CCDカメラ6aおよび16aによる撮像を制御する撮像制御部22と、レーザー光源SLからのレーザー光LBの照射および光学系5における光路の設定態様を制御する照射制御部23と、吸引手段11によるステージ7への被加工物10の吸着固定動作を制御する吸着制御部24と、与えられた加工位置データD1(後述)および加工モード設定データD2(後述)に従って加工対象位置への加工処理を実行させる加工処理部25とを、主として備える。
記憶部3は、ROMやRAMおよびハードディスクなどの記憶媒体によって実現される。なお、記憶部3は、制御部2を実現するコンピュータの構成要素によって実現される態様であってもよいし、ハードディスクの場合など、該コンピュータとは別体に設けられる態様であってもよい。
記憶部3には、被加工物10について設定された加工予定線の位置を記述した加工位置データD1が外部から与えられて記憶される。また、記憶部3には、レーザー光の個々のパラメータについての条件や光学系5における光路の設定条件やステージ7の駆動条件(あるいはそれらの設定可能範囲)などが加工モードごとに記述された、加工モード設定データD2が、あらかじめ記憶されている。
なお、レーザー加工装置50に対してオペレータが与える種々の入力指示は、コントローラ1において実現されるGUIを利用して行われるのが好ましい。例えば、加工処理部25の作用により加工処理用メニューがGUIにて提供される。オペレータは、係る加工処理用メニューに基づいて、後述する加工モードの選択や、加工条件の入力などを行う。
以上のような構成を有するレーザー加工装置50においては、レーザー光源SLから発せられ光学系5を経たレーザー光LBの照射と、被加工物10が載置固定されたステージ7の移動とを組み合わせることによって、光学系5を経たレーザー光LBを被加工物10に対して相対的に走査させつつ被加工物10の加工を行えるようになっている。原理的には、上述した第1ないし第3加工パターンの全てを実現可能である。
<アライメント動作>
レーザー加工装置50においては、加工処理に先立ち、観察部50Bにおいて、被加工物10の配置位置を微調整するアライメント動作が行えるようになっている。アライメント動作は、被加工物10に定められているXY座標軸をステージ7の座標軸と一致させるために行う処理である。係るアライメント処理は、上述した加工パターンでの加工を行う場合に、被加工物の結晶方位と加工予定線とレーザー光の走査方向とが各加工パターンにおいて求められる所定の関係をみたすようにするうえで重要である。
レーザー加工装置50においては、加工処理に先立ち、観察部50Bにおいて、被加工物10の配置位置を微調整するアライメント動作が行えるようになっている。アライメント動作は、被加工物10に定められているXY座標軸をステージ7の座標軸と一致させるために行う処理である。係るアライメント処理は、上述した加工パターンでの加工を行う場合に、被加工物の結晶方位と加工予定線とレーザー光の走査方向とが各加工パターンにおいて求められる所定の関係をみたすようにするうえで重要である。
アライメント動作は、公知の技術を適用して実行することが可能であり、加工パターンに応じて適宜の態様にて行われればよい。例えば、1つの母基板を用いて作製された多数個のデバイスチップを切り出す場合など、被加工物10の表面に繰り返しパターンが形成されているような場合であれば、パターンマッチングなどの手法を用いることで適切なアライメント動作が実現される。この場合、概略的にいえば、被加工物10に形成されている複数のアライメント用マークの撮像画像をCCDカメラ6aあるいは16aが取得し、それらの撮像画像の撮像位置の相対的関係に基づいて加工処理部25がアライメント量を特定し、駆動制御部21が該アライメント量に応じて移動機構7mによりステージ7を移動させることによって、アライメントが実現される。
係るアライメント動作を行うことによって、加工処理における加工位置が正確に特定される。なお、アライメント動作終了後、被加工物10を載置したステージ7はレーザー光照射部50Aへと移動し、引き続いてレーザー光LBを照射することによる加工処理が行われることになる。なお、観察部50Bからレーザー光照射部50Aへのステージ7の移動は、アライメント動作時に想定された加工予定位置と実際の加工位置とがずれないように保証されている。
<光学系の具体的構成とレーザー加工装置の動作態様>
次に、異種材料付き基板である被加工物10に対する二段階加工を実現するためにレーザー加工装置50が備える具体的構成(主に、レーザー光源SLを含めた光学系5の構成)と、当該構成に基づくレーザー加工装置50の動作態様について説明する。二段階加工を実現するための光学系5の具体的な構成としては、主に2通りのものがあり、それぞれに、二段階加工を実現するための動作態様が異なる。以下、それぞれの態様の詳細について順次に説明する。
次に、異種材料付き基板である被加工物10に対する二段階加工を実現するためにレーザー加工装置50が備える具体的構成(主に、レーザー光源SLを含めた光学系5の構成)と、当該構成に基づくレーザー加工装置50の動作態様について説明する。二段階加工を実現するための光学系5の具体的な構成としては、主に2通りのものがあり、それぞれに、二段階加工を実現するための動作態様が異なる。以下、それぞれの態様の詳細について順次に説明する。
(第1の態様)
図12は、第1の態様において二段階加工に用いるレーザー加工装置50が備える光学系5の構成を、レーザー光源SLを含めて示す図である。なお、図12においては、図面視左右方向が、一の加工予定線に対する加工の際のステージ7の移動方向であるとする。
図12は、第1の態様において二段階加工に用いるレーザー加工装置50が備える光学系5の構成を、レーザー光源SLを含めて示す図である。なお、図12においては、図面視左右方向が、一の加工予定線に対する加工の際のステージ7の移動方向であるとする。
第1の態様に係るレーザー加工装置50は、レーザー光源SLとして、パルス幅がpsecオーダーのレーザー光を発するもの(psecレーザー光源とも称する)を用いる。より具体的には、波長が500nm〜1600nmであり、パルス幅は1psec〜50psec程度であるレーザー光を発するものを用いる。また、第2レーザー光LB2の繰り返し周波数Rは10kHz〜200kHz程度、レーザー光の照射エネルギー(パルスエネルギー)は0.1μJ〜50μJ程度であるのが好適である。
また、第1の態様に係るレーザー加工装置50の光学系5は、レーザー光源SLからステージ7へと至る光路OPの途中に、ビームエキスパンダー51と、対物レンズ系52とを備える。また、第1の態様に係るレーザー加工装置50は、駆動制御部21の制御に基づき動作する図示しない駆動機構によって、対物レンズ系52を昇降自在とする対物レンズ昇降機構53を備える。
さらに、光学系5には、レーザー光LBの光路の向きを変換する目的で、適宜の個数のミラー5aが適宜に位置に設けられていてもよい。図12においては、2つのミラー5aが設けられた場合を例示している。
なお、後述する第2の態様も含め、本実施の形態に係るレーザー加工装置50において、レーザー光源SLから出射されるレーザー光LBの偏光状態は、円偏光であっても直線偏光であってもよい。ただし、直線偏光の場合、結晶性被加工材料中での加工断面の曲がりとエネルギー吸収率の観点から、偏光方向が走査方向と略平行にあるように、例えば両者のなす角が±1°以内にあるようにされることが好ましい。
また、出射光が直線偏光の場合、光学系5がアッテネータ5bを備えることが好ましい。アッテネータ5bはレーザー光LBの光路上の適宜の位置に配置され、出射されたレーザー光LBの強度を調整する役割を担う。
また、第1の態様においては、光路OP上に備わる対物レンズ系52のうち、最もステージ7に近い位置に配された対物レンズ52eが、ステージ7の図面視水平方向における移動範囲の上方位置に配置されてなる。これにより、対物レンズ52eがレーザー光LBの直接の出射源となる。
一の加工予定線に対する二段階加工を行うにあたっては、まず、被加工物10が、その加工予定線をステージ7の移動方向に合致させる態様にてステージ7に載置される。この状態から、被加工物10が載置されたステージ7を一方向に移動させ(これを順方向移動と称する)つつ、レーザー光源SLから一の加工予定線に対し予備加工用レーザー光LBaの照射条件にてレーザー光LBを照射することにより、予備加工を行い、下地基板101を露出させる。その後、反対方向へとステージ7を移動させ(これを逆方向移動と称する)つつ、当該加工予定線に沿う下地基板101の露出箇所に対し、レーザー光源SLから本加工用レーザー光LBbの照射条件にてレーザー光LBを照射することにより本加工を行う。すなわち、第1の態様においては、被加工物10に照射される予備加工用レーザー光Lbaと本加工用レーザー光LBbとが、ステージ7の移動に同期する態様にて、一のレーザー光源SLから交互に出射される。
より詳細には、対物レンズ昇降機構53の作用による対物レンズ系52の配置位置の調整も、ステージ7の移動に同期させて行われる。予備加工に際しては、予備加工用レーザー光LBaとなるレーザー光LBの焦点が、被加工物10よりも上方の位置に定められる。一方、本加工に際しては、本加工用レーザー光LBbとなるレーザー光の焦点が、被加工物10の表面(より詳細には下地基板101の上面)に合致するように、対物レンズ昇降機構53の作用によって対物レンズ系52の配置位置が調整される。
互いに平行な複数の加工予定線に対して二段階加工を行う場合は、一の加工予定線に対する加工が終了すると、次の加工予定線について上述の手順を繰り返すようにすればよい。
なお、本加工を逆方向移動によって行うことは必須の態様ではなく、予備加工および本加工をいずれも順方向移動によってのみ行うようにしてもよい。
(第2の態様)
第2の態様は、第1の態様とは異なる構成によって二段階加工を実現するものである。図13は、第2の態様において二段階加工に用いるレーザー加工装置50が備える光学系5の構成を、レーザー光源SLを含めて示す図である。
第2の態様は、第1の態様とは異なる構成によって二段階加工を実現するものである。図13は、第2の態様において二段階加工に用いるレーザー加工装置50が備える光学系5の構成を、レーザー光源SLを含めて示す図である。
図13に示す、第2の態様に係るレーザー加工装置50は、2つのレーザー光源SL(第1レーザー光源SL1、第2レーザー光源SL2)と2つのビームエキスパンダー51(511、512)を備える一方で、対物レンズ系52は1つのみ備えている。第1レーザー光源SL1を出発点とする第1光路OP1と、第2レーザー光源SL2を出発点とする第2光路OP2とは、光路切替機構54において切り替えられるようになっており、いずれか一方のみが対物レンズ系52さらにはステージ7へと至る光路OPと一の光路をなすようになっている。光路切替機構54は、周知の切り替えミラー機構などによって実現されるものであり、照射制御部23の制御に基づき動作する。なお、第2の態様における対物レンズ系52およびステージ7の配置関係については、第1の態様と共通している。
第2の態様にて二段階加工を行う場合、第1レーザー光源SL1に対しては予備加工用レーザー光LBaの照射条件を設定し、第2レーザー光源SL2に対しては本加工用レーザー光LBbの照射条件を設定する。そして、ステージ7が順方向移動する際には第1光路OP1を通る第1レーザー光LB1が光路OPを通るように、ステージ7が逆方向移動する際には第2光路OP2を通る第2レーザー光LB2が光路OPを通るように、光路切替機構54を動作させる。すなわち、光路切替機構54による光路の切替が、ステージ7の移動に同期させて行われる。
すると、順方向移動の際には予備加工用レーザー光LBaとしての第1レーザー光LB1が被加工物10の加工予定線の位置に照射されるので、加工予定線の位置において下地基板101を露出させる予備加工が実現される。これに続く逆方向移動の際には、本加工用レーザー光LBbとしての第2レーザー光LB2が予備加工により形成された下地基板101の露出箇所に照射されるので、当該個所において劈開/裂開を生じさせる本加工が実現される。すなわち、双方向走査による二段階加工が実現される。
互いに平行な複数の加工予定線に対して二段階加工を行う場合は、一の加工予定線に対する加工が終了すると、次の加工予定線について上述の手順を繰り返すようにすればよい。
<加工パターンごとの処理の進め方>
ここまでは、光学系の構成の違いに伴う動作態様の違いについて説明したが、実際に異種材料付き基板である被加工物10に対して二段階加工を行うにあたっては、加工予定線の設定やアライメントなどを、本加工での劈開/裂開加工に採用する加工パターン(上述の第1ないし第3加工パターンのいずれか)に応じて適切に行う必要がある。あるいは、本加工の加工パターンに応じて、予備加工の条件等を調整する必要がある。以下、この点を説明する。
ここまでは、光学系の構成の違いに伴う動作態様の違いについて説明したが、実際に異種材料付き基板である被加工物10に対して二段階加工を行うにあたっては、加工予定線の設定やアライメントなどを、本加工での劈開/裂開加工に採用する加工パターン(上述の第1ないし第3加工パターンのいずれか)に応じて適切に行う必要がある。あるいは、本加工の加工パターンに応じて、予備加工の条件等を調整する必要がある。以下、この点を説明する。
まず、本加工を第1加工パターンで行う場合は、加工予定線を下地基板101の劈開/裂開容易方向に平行に設定する。そして、該劈開/裂開容易方向とステージ7の移動方向とが一致するように被加工物10をアライメントしたうえで、それぞれの加工予定線に対して二段階加工を行えばよい。
本加工を第2加工パターンで行う場合は、加工予定線を下地基板101の劈開/裂開容易方向に垂直に設定する。そして、該劈開/裂開容易方向とステージ7の移動方向とが直交するように被加工物10をアライメントしたうえで、それぞれの加工予定線に対して二段階加工を行えばよい。
本加工を第3加工パターンで行う場合は、図8に示したような、加工予定線Lに平行な直線Lα、Lβあるいはさらに加工予定線L自体に沿って、実体的にあるいは仮想的に複数のレーザー光LB(本加工用レーザー光LBb)を走査させるようにしてもよい。なお、仮想的に複数のレーザー光を走査させるとは、実際には1つの光路にてレーザー光を照射するもののその光路を時間的に変化させることで、複数の光路にてレーザー光を照射する場合と同様の走査態様が実現されることをいう。係る場合、予備加工においては、より直線Lα、Lβの位置までを含むより幅の広い領域にて下地基板101を露出させる必要がある。
あるいは、下地基板101の2つの劈開/裂開方向に対して加工予定線が等価な位置となるように、被加工物10をアライメントしたうえで、予備加工においては上述のように幅広の露出部分を形成しておき、本加工においては、それぞれの劈開/裂開方向について交互に本加工用レーザー光LBbによる走査が行われるように、所定の周期でステージ7の移動方向を交互に違えるようにしてもよい。
1 コントローラ
2 制御部
3 記憶部
4 固定シート
5 光学系
7 ステージ
7m 移動機構
10 被加工物
10a (被加工物の)載置面
50 レーザー加工装置
50A レーザー光照射部
51 ビームエキスパンダー
52 対物レンズ系
52e (出射源となる)対物レンズ
53 対物レンズ昇降機構
54 光路切替機構
101 下地基板
102 金属薄膜層
103 半導体層
C1〜C3、C11a、C11b、C21〜C24 劈開/裂開面
Ea (予備加工用レーザー光の)出射源
Eb (本加工用レーザー光の)出射源
L 加工予定線
LB レーザー光
LBa 予備加工用レーザー光
LBb 本加工用レーザー光
OP 光路
RE、RE1〜RE4、RE11〜RE15、RE21〜RE25 被照射領域
SL レーザー光源
2 制御部
3 記憶部
4 固定シート
5 光学系
7 ステージ
7m 移動機構
10 被加工物
10a (被加工物の)載置面
50 レーザー加工装置
50A レーザー光照射部
51 ビームエキスパンダー
52 対物レンズ系
52e (出射源となる)対物レンズ
53 対物レンズ昇降機構
54 光路切替機構
101 下地基板
102 金属薄膜層
103 半導体層
C1〜C3、C11a、C11b、C21〜C24 劈開/裂開面
Ea (予備加工用レーザー光の)出射源
Eb (本加工用レーザー光の)出射源
L 加工予定線
LB レーザー光
LBa 予備加工用レーザー光
LBb 本加工用レーザー光
OP 光路
RE、RE1〜RE4、RE11〜RE15、RE21〜RE25 被照射領域
SL レーザー光源
Claims (11)
- レーザー光を発する少なくとも1つの光源と、
被加工物が載置されるステージと、
を備えるレーザー加工装置であって、
前記少なくとも1つの光源として、予備加工用レーザー光を出射する第1の光源と本加工用レーザー光を出射する第2の光源とを備えるとともに、
前記第1の光源から前記ステージに至る第1の光路での前記予備加工用レーザー光の照射と前記第2の光源から前記ステージに至る第2の光路での前記本加工用レーザー光の照射とを切り替え可能な光路切替手段、
をさらに備え、
前記本加工用レーザー光が、パルス幅がpsecオーダーの超短パルス光であり、
前記ステージが第1の方向と第2の方向とに移動可能とされてなり、
前記光路切替手段から前記ステージまでの前記第1と第2の光路が共通化されてなり、
前記被加工物が下地基板の上に異種材料層が形成された異種材料付き基板である場合に、
前記被加工物を載置した前記ステージが前記第1の方向に移動する間は、前記第1の光源から前記予備加工用レーザー光を出射して前記被加工物に照射することにより、被照射領域において前記下地基板を露出させる予備加工を行い、
前記被加工物を載置した前記ステージが前記第2の方向に移動する間は、前記本加工用レーザー光の個々の単位パルス光ごとの被照射領域が前記下地基板の露出部分において離散的に形成されるように前記第2の光源から前記本加工用レーザー光を出射して前記被加工物に照射することによって、前記被照射領域同士の間で前記下地基板の劈開もしくは裂開を生じさせる本加工を行い、前記被加工物に分割のための起点を形成する、
ことを特徴とするレーザー加工装置。 - 請求項1に記載のレーザー加工装置であって、
前記被加工物に前記分割のための起点を形成する際に、異なる前記単位パルス光によって形成する少なくとも2つの被照射領域を、前記被加工物の劈開もしくは裂開容易方向において隣り合うように形成する、
ことを特徴とするレーザー加工装置。 - 請求項2に記載のレーザー加工装置であって、
全ての前記被照射領域を、前記被加工物の劈開もしくは裂開容易方向に沿って形成する、
ことを特徴とするレーザー加工装置。 - 請求項2に記載のレーザー加工装置であって、
前記少なくとも2つの被照射領域の形成を、前記被加工物の相異なる2つの前記劈開もしくは裂開容易方向において交互に行う、
ことを特徴とするレーザー加工装置。 - 請求項1ないし請求項4のいずれかに記載のレーザー加工装置であって、
前記被加工物に前記分割のための起点を形成する際に、前記被照射領域を、前記被加工物の相異なる2つの劈開もしくは裂開容易方向に対して等価な方向において形成する、
ことを特徴とするレーザー加工装置。 - 下地基板の上に異種材料層が形成された異種材料付き基板である被加工物に分割起点を形成するための加工方法であって、
被加工物を第1の方向と第2の方向とに移動可能なステージに載置する載置工程と、
前記ステージを前記第1の方向に移動させつつ、第1の光源から出射させた予備加工用レーザー光を照射することにより、被照射領域において下地基板を露出させる予備加工工程と、
前記第1の光源とは異なる第2の光源から出射させた、パルス幅がpsecオーダーの超短パルス光である本加工用レーザー光の、個々の単位パルス光ごとの被照射領域が、前記下地基板の露出部分において離散的に形成されるように、前記ステージを前記第2の方向に移動させつつ前記本加工用レーザー光を前記被加工物に照射することによって、前記被照射領域同士の間で前記下地基板の劈開もしくは裂開を生じさせる本加工工程と、
を備え、
前記第1の光源から前記ステージに至る第1の光路での前記予備加工用レーザー光の照射と前記第2の光源から前記ステージに至る第2の光路での前記本加工用レーザー光の照射とを所定の光路切替手段によって切り替え可能とし、
前記光路切替手段から前記ステージまでの前記第1と第2の光路を共通化する、
ことを特徴とする被加工物の加工方法。 - 請求項6に記載の被加工物の加工方法であって、
異なる前記単位パルス光によって形成する少なくとも2つの被照射領域を、前記被加工物の劈開もしくは裂開容易方向において隣り合うように形成する、
ことを特徴とする被加工物の加工方法。 - 請求項7に記載の被加工物の加工方法であって、
全ての前記被照射領域を、前記被加工物の劈開もしくは裂開容易方向に沿って形成する、
ことを特徴とする被加工物の加工方法。 - 請求項7に記載の被加工物の加工方法であって、
前記少なくとも2つの被照射領域の形成を、前記被加工物の相異なる2つの前記劈開もしくは裂開容易方向において交互に行う、
ことを特徴とする被加工物の加工方法。 - 請求項6ないし請求項9のいずれかに記載の加工方法であって、
前記被照射領域を、前記被加工物の相異なる2つの劈開もしくは裂開容易方向に対して等価な方向において形成する、
ことを特徴とする被加工物の加工方法。 - 被加工物を分割する方法であって、
請求項6ないし請求項10のいずれかに記載の方法によって分割起点が形成された被加工物を、前記分割起点に沿って分割する、
ことを特徴とする被加工物の分割方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012213920A JP5360278B2 (ja) | 2012-09-27 | 2012-09-27 | レーザー加工装置、被加工物の加工方法および被加工物の分割方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012213920A JP5360278B2 (ja) | 2012-09-27 | 2012-09-27 | レーザー加工装置、被加工物の加工方法および被加工物の分割方法 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010221589A Division JP5333399B2 (ja) | 2010-09-30 | 2010-09-30 | レーザー加工装置、被加工物の加工方法および被加工物の分割方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013027929A JP2013027929A (ja) | 2013-02-07 |
JP5360278B2 true JP5360278B2 (ja) | 2013-12-04 |
Family
ID=47785505
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012213920A Expired - Fee Related JP5360278B2 (ja) | 2012-09-27 | 2012-09-27 | レーザー加工装置、被加工物の加工方法および被加工物の分割方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5360278B2 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6121281B2 (ja) * | 2013-08-06 | 2017-04-26 | 株式会社ディスコ | ウエーハの加工方法 |
JP2015170675A (ja) * | 2014-03-06 | 2015-09-28 | 株式会社ディスコ | 板状物の加工方法 |
JP6324796B2 (ja) * | 2014-04-21 | 2018-05-16 | 株式会社ディスコ | 単結晶基板の加工方法 |
JP7139050B2 (ja) * | 2018-08-02 | 2022-09-20 | 株式会社ディスコ | ウェーハの加工方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5284651B2 (ja) * | 2008-01-29 | 2013-09-11 | 株式会社ディスコ | ウエーハの加工方法 |
KR101697383B1 (ko) * | 2009-02-25 | 2017-01-17 | 니치아 카가쿠 고교 가부시키가이샤 | 반도체 소자의 제조 방법 |
-
2012
- 2012-09-27 JP JP2012213920A patent/JP5360278B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2013027929A (ja) | 2013-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5056839B2 (ja) | 被加工物の加工方法および被加工物の分割方法 | |
TWI469842B (zh) | 雷射加工裝置、被加工物之加工方法及被加工物之分割方法 | |
JP5240272B2 (ja) | レーザー加工装置、被加工物の加工方法および被加工物の分割方法 | |
JP5333399B2 (ja) | レーザー加工装置、被加工物の加工方法および被加工物の分割方法 | |
JP5104920B2 (ja) | レーザー加工装置、被加工物の加工方法および被加工物の分割方法 | |
JP5240267B2 (ja) | レーザー加工装置、被加工物の加工方法および被加工物の分割方法 | |
JP5360278B2 (ja) | レーザー加工装置、被加工物の加工方法および被加工物の分割方法 | |
JP5354064B2 (ja) | レーザー加工装置、被加工物の加工方法および被加工物の分割方法 | |
JP5104919B2 (ja) | レーザー加工装置、被加工物の加工方法および被加工物の分割方法 | |
JP5646550B2 (ja) | 被加工物の加工方法、被加工物の分割方法およびレーザー加工装置 | |
JP5472278B2 (ja) | レーザー加工装置 | |
JP5646549B2 (ja) | レーザー加工装置 | |
JP5104911B2 (ja) | 被加工物の加工方法、被加工物の分割方法およびレーザー加工装置 | |
JP5382101B2 (ja) | 被加工物の加工方法および被加工物の分割方法 | |
JP5624174B2 (ja) | 被加工物の加工方法、被加工物の分割方法およびレーザー加工装置 | |
JP5382102B2 (ja) | 被加工物の加工方法および被加工物の分割方法 | |
JP5360266B2 (ja) | レーザー加工装置、被加工物の加工方法および被加工物の分割方法 | |
JP5104910B2 (ja) | 被加工物の加工方法および被加工物の分割方法 | |
JP5104912B2 (ja) | レーザー加工装置 | |
JP5360267B2 (ja) | 被加工物の加工方法および被加工物の分割方法 | |
JP5282812B2 (ja) | 被加工物の加工方法および被加工物の分割方法 | |
JP5472277B2 (ja) | レーザー加工装置 | |
JP5360277B2 (ja) | 被加工物分割用のレーザー加工装置、被加工物の加工方法および被加工物の分割方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130806 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130819 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |