JP5353356B2 - Solid-state imaging device and manufacturing method thereof - Google Patents

Solid-state imaging device and manufacturing method thereof Download PDF

Info

Publication number
JP5353356B2
JP5353356B2 JP2009073547A JP2009073547A JP5353356B2 JP 5353356 B2 JP5353356 B2 JP 5353356B2 JP 2009073547 A JP2009073547 A JP 2009073547A JP 2009073547 A JP2009073547 A JP 2009073547A JP 5353356 B2 JP5353356 B2 JP 5353356B2
Authority
JP
Japan
Prior art keywords
silicon
photoelectric conversion
solid
imaging device
state imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009073547A
Other languages
Japanese (ja)
Other versions
JP2010225986A (en
Inventor
拓海 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2009073547A priority Critical patent/JP5353356B2/en
Publication of JP2010225986A publication Critical patent/JP2010225986A/en
Application granted granted Critical
Publication of JP5353356B2 publication Critical patent/JP5353356B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Description

本発明は、CCDやCMOSからなる光電変換素子を形成した固体撮像素子と、その製造方法に関する。   The present invention relates to a solid-state imaging element in which a photoelectric conversion element composed of a CCD or a CMOS is formed, and a manufacturing method thereof.

近年、撮像装置は画像の記録、通信、放送の内容の拡大に伴って広く用いられるようになっている。撮像装置として種々の形式のものが提案されているが、小型、軽量で高性能のものが安定して製造されるようになった固体撮像素子を用いた撮像装置が、普及してきている。   In recent years, imaging devices have been widely used with the expansion of the contents of image recording, communication, and broadcasting. Various types of imaging devices have been proposed, but imaging devices using solid-state imaging devices that have been stably manufactured with small size, light weight, and high performance have become widespread.

固体撮像素子は、撮影対象物からの光学像を受け、入射した光を電気信号に変換する複数の光電変換素子を有する。光電変換素子の種類はCCD(電荷結合素子)タイプとCMOS(相補型金属酸化物半導体)タイプとに大別される。また、光電変換素子の配列形態から、光電変換素子を1列に配置したリニアセンサー(ラインセンサー)と、光電変換素子を縦横に2次元的に配列させたエリアセンサー(面センサー)との2種類に大別される。いずれのセンサにおいても光電変換素子の数(画素数)が多いほど撮影された画像は精密になる。   The solid-state imaging device has a plurality of photoelectric conversion elements that receive an optical image from a subject and convert incident light into an electrical signal. The types of photoelectric conversion elements are roughly classified into CCD (charge coupled device) type and CMOS (complementary metal oxide semiconductor) type. In addition, there are two types of photoelectric conversion elements: linear sensors (line sensors) in which photoelectric conversion elements are arranged in a row, and area sensors (surface sensors) in which photoelectric conversion elements are two-dimensionally arranged vertically and horizontally. It is divided roughly into. In any sensor, the larger the number of photoelectric conversion elements (number of pixels), the more accurate the captured image.

また、光電変換素子に入射する光の経路に、特定の波長の光を透過する各種のカラーフィルタを設けることで対象物の色情報を得ることを可能としたカラーセンサーも普及している。カラーフィルタの色としては、赤色(R)、青色(B)、緑色(G)の3色からなる3原色系、あるいは、シアン色(C)、マゼンタ色(M)、イエロー色(Y)からなる補色系が一般的である。   In addition, a color sensor that can obtain color information of an object by providing various color filters that transmit light of a specific wavelength in the path of light incident on the photoelectric conversion element is also widespread. As the color of the color filter, three primary colors consisting of three colors of red (R), blue (B), and green (G), or cyan (C), magenta (M), and yellow (Y) are used. A complementary color system is generally used.

固体撮像素子に要求される性能で重要な課題の一つに、入射する光への感度を向上させることが挙げられる。撮影した画像の情報量を多くするためには受光部となる光電変換素子を微細化して高集積化する必要がある。しかし、光電変換素子を微細化した場合、各光電変換素子の面積が小さくなり、受光部として利用できる面積割合も減るので、光を取り込む面積が小さくなるため、光電変換素子の受光部に取り込める光の量が少なくなり、感度は低下する。   One of the important issues in performance required for a solid-state imaging device is to improve the sensitivity to incident light. In order to increase the amount of information of a photographed image, it is necessary to miniaturize and highly integrate a photoelectric conversion element serving as a light receiving unit. However, when the photoelectric conversion element is miniaturized, the area of each photoelectric conversion element is reduced, and the area ratio that can be used as the light receiving unit is also reduced. The amount is reduced and the sensitivity is reduced.

このような、微細化した固体撮像素子の感度の低下を防止するための手段として、光電変換素子の受光部に効率良く光を取り込むために、対象物から入射される光を集光して光電変換素子の受光部に導くマイクロレンズを形成する技術が提案されている。マイクロレンズで光を集光して光電変換素子の受光部に導くことで、受光部の見かけ上の開口率(面積)を大きくすることが可能になり、固体撮像素子の感度の向上が可能になる。とは言え、固体撮像素子の微細化がさらに進むと、微細化したマイクロレンズを正確な位置精度で正常な形状を保って形成することは一層難しくなるので、充分な効果を得られないこともある。   As a means for preventing such a decrease in sensitivity of the miniaturized solid-state imaging device, in order to efficiently capture light into the light receiving portion of the photoelectric conversion device, the light incident from the object is condensed and photoelectrically A technique for forming a microlens that leads to a light receiving portion of a conversion element has been proposed. By condensing the light with a microlens and guiding it to the light receiving part of the photoelectric conversion element, it becomes possible to increase the apparent aperture ratio (area) of the light receiving part and improve the sensitivity of the solid-state image sensor Become. However, if the solid-state imaging device is further miniaturized, it becomes more difficult to form a miniaturized microlens while maintaining a normal shape with an accurate positional accuracy, so that a sufficient effect may not be obtained. is there.

一方、シリコン基板に設けられる光電変換素子の受光部が、トランジスタや配線領域を避けて配置されることにより、特に微細化した光電変換素子を多く並べる場合に、受光部領域の開口率を大きくすることは困難である。これを改良するため、トランジスタや配線層を形成するシリコン基板の片面に対して、その裏面側に光電変換素子を設けて、裏面を受光部とする裏面照射型固体撮像素子と呼称される技術も提案されている(特許文献1参照)。   On the other hand, the light receiving portion of the photoelectric conversion element provided on the silicon substrate is arranged away from the transistor and the wiring region, so that the aperture ratio of the light receiving portion region is increased particularly when many miniaturized photoelectric conversion elements are arranged. It is difficult. In order to improve this, there is also a technique called a back-illuminated solid-state imaging device in which a photoelectric conversion element is provided on the back side of one side of a silicon substrate on which transistors and wiring layers are formed, and the back side is a light receiving part. It has been proposed (see Patent Document 1).

光電変換素子は入射した光を電気信号に変換するが、光が所定の光電変換素子に入射せず、異なった光電変換素子(例えば、隣接した光電変換素子)に入射した場合、得られる画像にノイズが生じる。特に、カラーフィルタを配設したカラーセンサの場合、カラーフィルタを通過した光が異なる色に対応する光電変換素子に入射すると、得られる画像に混色の問題が生じる。このような誤入射による問題は、隣接する光電変換素子との境界部や斜め方向から光電変換素子に入射する光に発生しやすい。そのため、入射する光が、所望する光電変換素子とは異なった光電変換素子に入射するのを防止するため、遮光壁を固体撮像素子の側端部や個々のカラーフィルタ間に設ける技術が提案されている。   The photoelectric conversion element converts the incident light into an electrical signal, but when the light does not enter the predetermined photoelectric conversion element and enters a different photoelectric conversion element (for example, an adjacent photoelectric conversion element), Noise is generated. In particular, in the case of a color sensor provided with a color filter, if light passing through the color filter enters a photoelectric conversion element corresponding to a different color, a problem of color mixing occurs in an obtained image. Such a problem due to erroneous incidence is likely to occur in light incident on the photoelectric conversion element from the boundary portion between adjacent photoelectric conversion elements or from an oblique direction. For this reason, in order to prevent incident light from entering a photoelectric conversion element different from the desired photoelectric conversion element, a technique for providing a light shielding wall between the side edge of the solid-state image sensor and individual color filters has been proposed. ing.

前記裏面照射型固体撮像素子においても、上述の事情は同様であるが、裏面照射型固体撮像素子の場合は、光電変換素子から見て受光部と反対側に設けた配線層が光電変換素子間の隙間を通して入射した光を反射して、固体撮像素子内部で散乱光もしくは迷光となることにより、不適切な光電変換素子に受光してしまうという現象も加わるので、ノイズや混色の問題は一層大きな影響を与える。   The situation described above is also the same in the back-illuminated solid-state image sensor, but in the case of the back-illuminated solid-state image sensor, a wiring layer provided on the side opposite to the light receiving portion as viewed from the photoelectric transducer is between the photoelectric transducers. The problem of noise and color mixing is even greater because the incident light is reflected through the gaps and becomes scattered light or stray light inside the solid-state image sensor, causing it to be received by an inappropriate photoelectric conversion element. Influence.

特開2005−259828号公報JP 2005-259828 A

本発明は、上記の問題点に鑑みて成されたもので、その課題とするところは、裏面照射型の固体撮像素子において、光電変換素子間の隙間を通して入射した光が配線層で反射することを防ぎ、反射光によるノイズや混色の問題を生じさせない固体撮像素子とその製造方法を提案することである。   The present invention has been made in view of the above-mentioned problems, and the problem is that in a back-illuminated solid-state imaging device, light incident through a gap between photoelectric conversion elements is reflected by a wiring layer. It is to propose a solid-state imaging device and a method for manufacturing the same that prevent the occurrence of noise and color mixing problems due to reflected light.

上記の課題を解決するための手段として、請求項1に記載の発明は、薄膜板状のシリコン層と、前記シリコン層の片方の面側に設けられた配線層と、前記シリコン層の前記配線層と反対側の面に受光部を面して形成された複数の光電変換素子と、前記シリコン層の光電変換素子を形成した面側であって、隣接する受光部間の間隙に形成されたシリコンからなる凸部と、前記シリコンからなる凸部を覆って平坦面を形成する平坦化透明層と、前記平坦化透明層の上面に前記光電変換素子受光部の各々に対応して設けられたカラーフィルタと、を有することを特徴とする固体撮像素子である。   As means for solving the above problems, the invention according to claim 1 is a thin film plate-like silicon layer, a wiring layer provided on one side of the silicon layer, and the wiring of the silicon layer. A plurality of photoelectric conversion elements formed on the surface opposite to the layer facing the light receiving portion, and the surface on which the photoelectric conversion elements of the silicon layer are formed, and formed in a gap between adjacent light receiving portions Protruding portions made of silicon, flattening transparent layers that cover the protruding portions made of silicon and forming a flat surface, and provided on the upper surface of the flattening transparent layer in correspondence with each of the photoelectric conversion element light receiving portions And a color filter.

また、請求項2に記載の発明は、前記カラーフィルタの上面に前記光電変換素子受光部の各々に対応して、マイクロレンズが設けられたことを特徴とする請求項1に記載の固体撮像素子である。   The invention according to claim 2 is characterized in that a microlens is provided on the upper surface of the color filter corresponding to each of the light receiving portions of the photoelectric conversion element. It is.

また、請求項3に記載の発明は、請求項1または2に記載の固体撮像素子を製造する方法であって、前記シリコンからなる凸部は前記シリコン層と一体であり、前記シリコンからなる凸部を形成する工程が、前記薄膜板状のシリコン層の片面を選択的にエッチングすることを特徴とする固体撮像素子の製造方法である。   The invention according to claim 3 is a method of manufacturing the solid-state imaging device according to claim 1 or 2, wherein the convex portion made of silicon is integral with the silicon layer, and the convex portion made of silicon. The step of forming the portion is a method of manufacturing a solid-state imaging device, wherein one side of the thin film plate-like silicon layer is selectively etched.

本発明の固体撮像素子によれば、裏面照射型の固体撮像素子において、入射光が光電変換素子間の隙間を通ることを前記シリコンからなる凸部が遮るので、配線層で反射する光を与えず、その結果、入射光の一部が不適切な光電変換素子に受光されてしまうという現象を発生させない。このため、ノイズや混色の問題を生じさせない固体撮像素子を提供できる。   According to the solid-state imaging device of the present invention, in the back-illuminated solid-state imaging device, the projected portion made of silicon blocks the incident light from passing through the gap between the photoelectric conversion devices, so that the light reflected by the wiring layer is given. As a result, a phenomenon that part of incident light is received by an inappropriate photoelectric conversion element does not occur. For this reason, it is possible to provide a solid-state imaging device that does not cause noise and color mixing problems.

また、本発明の固体撮像素子の製造方法によれば、前記シリコンからなる凸部を形成する工程が、前記薄膜板状のシリコン層の片面を選択的にエッチングするので、微細な加工を高精度で行うことができ、前記シリコンからなる凸部の平面配置の位置精度も高さの均一性も良好に得られるので、後工程で形成されるカラーフィルタやマイクロレンズとの位置関係を高精度に制御でき、固体撮像素子の全体高さも良好に制御できる。このため、高品質の固体撮像素子を製造することができる。   Further, according to the method for manufacturing a solid-state imaging device of the present invention, the step of forming the convex portion made of silicon selectively etches one surface of the thin film plate-like silicon layer. Since the position accuracy of the planar arrangement of the projections made of silicon and the uniformity of the height can be obtained well, the positional relationship with the color filter and microlens formed in the subsequent process is highly accurate. The overall height of the solid-state imaging device can be controlled well. For this reason, a high quality solid-state image sensor can be manufactured.

さらに、本発明の固体撮像素子の製造方法によれば、前記シリコンからなる凸部が前記薄膜板状のシリコン層から選択的にエッチングされて残る部分を利用するので、平板に新たな材料で凸部を設ける場合に較べて工程が簡単であるばかりでなく、素子の信頼性に影響する材料特性も安定したものが利用できる。このため、低コストで高品質の固体撮像素子を製造することができる。   Furthermore, according to the method for manufacturing a solid-state imaging device of the present invention, the convex portion made of silicon is a portion that remains after being selectively etched from the thin film plate-like silicon layer. Compared with the case where the portion is provided, not only the process is simple, but also those having stable material characteristics that affect the reliability of the element can be used. For this reason, a high-quality solid-state imaging device can be manufactured at low cost.

本発明の固体撮像素子の一例を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating an example of the solid-state image sensor of this invention. 従来の固体撮像素子の一例を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating an example of the conventional solid-state image sensor. 本発明の固体撮像素子の他の一例を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating another example of the solid-state image sensor of this invention. 従来の固体撮像素子の他の一例を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating another example of the conventional solid-state image sensor. 本発明の固体撮像素子の製造方法の一例を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating an example of the manufacturing method of the solid-state image sensor of this invention.

以下、図面に従って、発明を実施するための形態を説明する。なお、以下の断面模式図は、いずれも固体撮像素子の一部分を拡大して示したものであり、適宜図面上左右に連なる形態であることは言うまでもない。図1は、本発明の固体撮像素子の一例を説明するための断面模式図であって、シリコン基板からなる薄膜板状のシリコン層10の片方の面側に絶縁層90を配して配線層20を設ける。配線層20は、通常、アルミニウム等の金属からなる多層配線構造を有し、後述の光電変換素子からの電気信号を伝送処理する。前記シリコン層10の前記配線層20と反対側の面に受光部を面して形成された複数の光電変換素子30と、前記シリコン層10の光電変換素子受光部側表面の複数の受光部間隙上に配置されたシリコンからなる凸部40と、前記シリコンからなる凸部を覆って平坦面を形成する平坦化透明層50と、前記平坦化透明層50の上面に前記光電変換素子受光部の各々に対応して設けられたカラーフィルタ61、62、63と、を有する。カラーフィルタ61、62、63は、隣り合う異なる色の画素の連なりを表している。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the invention will be described with reference to the drawings. It should be noted that the following schematic cross-sectional views are all enlarged views of a part of the solid-state imaging device, and needless to say, are appropriately connected to the left and right in the drawing. FIG. 1 is a schematic cross-sectional view for explaining an example of a solid-state imaging device according to the present invention. An insulating layer 90 is arranged on one surface side of a thin-film silicon layer 10 made of a silicon substrate. 20 is provided. The wiring layer 20 usually has a multilayer wiring structure made of a metal such as aluminum, and transmits an electrical signal from a photoelectric conversion element described later. A plurality of photoelectric conversion elements 30 formed on the surface of the silicon layer 10 opposite to the wiring layer 20 so as to face the light receiving section, and a plurality of light receiving section gaps on the surface of the silicon layer 10 on the photoelectric conversion element light receiving section side. A convex portion 40 made of silicon disposed on the top, a flattened transparent layer 50 covering the convex portion made of silicon and forming a flat surface, and an upper surface of the flattened transparent layer 50 of the photoelectric conversion element light receiving portion. Color filters 61, 62, 63 provided corresponding to each of them. The color filters 61, 62, and 63 represent a series of adjacent pixels of different colors.

また、図3は、本発明の固体撮像素子の他の一例を説明するための断面模式図であって、図1に示したカラーフィルタ61、62、63の各画素の上面にマイクロレンズ70をそれぞれに設け、従って、前記光電変換素子受光部の各々に対応してマイクロレンズ70を設けた例であるが、図では、簡単のために、中央のカラーフィルタ画素62の上面のみにマイクロレンズ70を表記した。矢印表記の入射光81、82も部分的にしか表記していないが、図1、図3、及び後述の図2、図4にあっても、撮像対象となる画像からの光が、カラーフィルタの上面全体に注ぐことを表す。図3、図4ではマイクロレンズ70により、入射光81が集束しつつ光電変換素子30の受光面に達することを示す。一方、入射光82は、カラーフィルタ画素の間隙近傍で、入射光81が通る画素62とは異なる画素63を通り、図1、図3では、シリコンからなる凸部40によって遮蔽される。   FIG. 3 is a schematic cross-sectional view for explaining another example of the solid-state imaging device of the present invention. A microlens 70 is provided on the upper surface of each pixel of the color filters 61, 62, and 63 shown in FIG. In this example, the microlens 70 is provided corresponding to each of the photoelectric conversion element light receiving portions. However, in the drawing, the microlens 70 is provided only on the upper surface of the central color filter pixel 62 for the sake of simplicity. Was written. Although the incident light 81 and 82 indicated by arrows are only partially shown, the light from the image to be imaged is also a color filter in FIGS. 1 and 3 and FIGS. 2 and 4 described later. This means pouring over the entire top surface. 3 and 4 show that the incident light 81 reaches the light receiving surface of the photoelectric conversion element 30 while being focused by the microlens 70. On the other hand, the incident light 82 passes through a pixel 63 different from the pixel 62 through which the incident light 81 passes in the vicinity of the gap between the color filter pixels, and is blocked by the convex portion 40 made of silicon in FIGS.

図2は、従来の固体撮像素子の一例を説明するための断面模式図であり、図4は、従来の固体撮像素子の他の一例を説明するための断面模式図である。図2、図4では、シリコンからなる凸部40が無く、シリコンからなる凸部40に較べて比較的薄いシリコン層1
0による遮蔽効果は充分でないので、入射光82の一定割合の光が配線層の表面に入射し、配線層20の入射光側の面で反射される。上記のように、裏面照射型の固体撮像素子において、光電変換素子間の隙間を通して入射した光が配線層で反射することとなり、この反射光が固体撮像素子内部での散乱光もしくは迷光となり、ノイズや混色の問題を生じ易い。
FIG. 2 is a schematic cross-sectional view for explaining an example of a conventional solid-state imaging device, and FIG. 4 is a schematic cross-sectional view for explaining another example of a conventional solid-state imaging device. 2 and 4, there is no convex portion 40 made of silicon, and a relatively thin silicon layer 1 compared to the convex portion 40 made of silicon.
Since the shielding effect by 0 is not sufficient, a certain percentage of the incident light 82 enters the surface of the wiring layer and is reflected by the surface of the wiring layer 20 on the incident light side. As described above, in the back-illuminated solid-state image sensor, light incident through the gap between the photoelectric conversion elements is reflected by the wiring layer, and this reflected light becomes scattered light or stray light inside the solid-state image sensor, resulting in noise. And easily cause color mixing problems.

シリコンからなる凸部40は、元来、シリコン基板からなる薄膜板状のシリコン層10と一体のものである。すなわち、光電変換素子30を通常のフォトダイオードの製造工程に従ってシリコン基板の内部に光電変換素子30を形成した後に、光電変換素子30の受光面を窓明けする際に、各光電変換素子30の周辺部に位置するシリコン層のみを残すことにより、このシリコン層の残部をもって凸部とするもので、元のシリコン層の一部を活かして形成する。   The convex portion 40 made of silicon is originally integral with the thin film plate-like silicon layer 10 made of a silicon substrate. That is, when the photoelectric conversion element 30 is formed in the silicon substrate according to a normal photodiode manufacturing process and then the light receiving surface of the photoelectric conversion element 30 is opened, the periphery of each photoelectric conversion element 30 By leaving only the silicon layer located at the part, the remaining part of the silicon layer is used as a convex part, and is formed by utilizing a part of the original silicon layer.

前記シリコンからなる凸部40の形成工程を図面に従って説明する。
図5は、本発明の固体撮像素子の製造方法の一例を説明するための断面模式図であって、(a)、(b)の工程順に示す。図5(a)に示すシリコン層11は、図1〜図4のシリコン層10と同じものであるが、光電変換素子30の形成領域としてのシリコン層領域を他の加工されるシリコン層領域と区別して表す。配線層20を形成する面(シリコン基板のオモテ面側)の反対面(シリコン基板の裏面側)に受光部を向けて、かつ、素材のシリコン基板内部にあって配線層20に近い側に、通常の半導体のウェハプロセスにより、光電変換素子30を配列させて設ける。また、シリコン基板の光電変換素子を形成した面とは反対側の表(オモテ)面に絶縁層90を配しているが、絶縁層90内に前記配線層20を成膜工程およびフォトリソグラフィー工程により、形成する。前記配線層20を多層配線層とする場合に、層間の絶縁層と導通部分を構成に含むが、通常の手法で行われるものであって、図面での詳細説明は省略する。その後、シリコン基板の裏面から、グラインダーを用いてシリコンを一定量研磨する。研磨は、少なくとも後述するシリコンからなる凸部の高さが所望する高さを得られるまでの厚さとなるように行う。研磨除去領域のシリコン層13を除いて、光電変換素子30の配列された受光部より上のシリコン層12を加工する工程を、図5(b)に示す。
The formation process of the convex part 40 made of silicon will be described with reference to the drawings.
FIG. 5 is a schematic cross-sectional view for explaining an example of the manufacturing method of the solid-state imaging device of the present invention, which is shown in the order of steps (a) and (b). The silicon layer 11 shown in FIG. 5A is the same as the silicon layer 10 of FIGS. 1 to 4, but the silicon layer region as the formation region of the photoelectric conversion element 30 is replaced with another processed silicon layer region. Represented separately. The light receiving part is directed to the surface (the back side of the silicon substrate) opposite to the surface on which the wiring layer 20 is formed (the front side of the silicon substrate), and on the side close to the wiring layer 20 inside the silicon substrate of the material, The photoelectric conversion elements 30 are arranged and provided by a normal semiconductor wafer process. In addition, an insulating layer 90 is disposed on the surface (front side) opposite to the surface on which the photoelectric conversion element of the silicon substrate is formed. The wiring layer 20 is formed in the insulating layer 90 and a photolithography step. To form. In the case where the wiring layer 20 is a multilayer wiring layer, an interlayer insulating layer and a conductive portion are included in the configuration, but this is performed by a normal method, and detailed description in the drawings is omitted. Thereafter, a predetermined amount of silicon is polished from the back surface of the silicon substrate using a grinder. Polishing is performed so that at least the height of the convex portion made of silicon, which will be described later, is a thickness that allows a desired height to be obtained. FIG. 5B shows a process of processing the silicon layer 12 above the light receiving portion in which the photoelectric conversion elements 30 are arranged except for the silicon layer 13 in the polishing removal region.

前記シリコン層12をエッチングによりパターン形成して、シリコンからなる凸部40を得ることができる。上記のエッチングは、硫酸系、塩酸系、フッ酸系、の薬液を使用するウェットエッチング、又は、フッ素系やその他ハロゲン系のガスを使用するドライエッチングのいずれの方法でも可能である。エッチング用マスキング材料とのエッチング速度比やエッチング時のアンダーカットの少なさ等により、具体的な手段を選択するが、ドライエッチングを用いる方が、一般に、微細パターンの形成に適している。シリコン層14の領域が、最終的にドライエッチングにより除去される領域となる。なお、ドライエッチングによりシリコン層が除去される領域14は、前記光電変換素子30の受光部が窓明けされる領域となる。シリコンからなる凸部40は、隣接する光電変換素子間の間隙を覆うように形成するのが望ましい。   The silicon layer 12 can be patterned by etching to obtain a convex portion 40 made of silicon. The etching can be performed by either wet etching using sulfuric acid, hydrochloric acid or hydrofluoric acid, or dry etching using fluorine or other halogen gas. Specific means is selected depending on the etching rate ratio with the masking material for etching and the low undercut at the time of etching, but the use of dry etching is generally suitable for forming a fine pattern. The region of the silicon layer 14 becomes a region finally removed by dry etching. The region 14 where the silicon layer is removed by dry etching is a region where the light receiving portion of the photoelectric conversion element 30 is opened. The convex portion 40 made of silicon is desirably formed so as to cover the gap between adjacent photoelectric conversion elements.

前記シリコンからなる凸部40を形成した後に、固体撮像素子として完成させるまでの製造方法を以下に説明する。
シリコンからなる凸部40を間隙上に設けた光電変換素子30の配列に対応してカラーフィルタを設けるために、上記光電変換素子30とシリコンからなる凸部40の有効領域全体を覆うように、平坦化透明層50を形成する。平坦化透明層50は、カラーフィルタ61、62、63を形成する下地面の平坦化を行うために設けられるので、シリコンからなる凸部40を有しない従来とは異なり、本発明においては、充分な厚さと平坦性を持つことが必要である。透明な樹脂を塗布して、平坦化透明層50を形成する際、透明樹脂の粘度にもよるが、1回の塗布では充分な厚さが得られない場合、複数回に分けて透明樹脂を塗布して積層することにより、形成できる。
A manufacturing method from the formation of the convex portion 40 made of silicon to the completion of the solid-state imaging device will be described below.
In order to provide a color filter corresponding to the arrangement of the photoelectric conversion elements 30 provided with the convex portions 40 made of silicon on the gap, so as to cover the entire effective area of the photoelectric conversion elements 30 and the convex portions 40 made of silicon, A flattened transparent layer 50 is formed. Since the flattening transparent layer 50 is provided for flattening the base surface on which the color filters 61, 62 and 63 are formed, unlike the conventional case without the convex portion 40 made of silicon, the flattening transparent layer 50 is sufficient in the present invention. Thickness and flatness are required. When forming a flattened transparent layer 50 by applying a transparent resin, depending on the viscosity of the transparent resin, if a sufficient thickness cannot be obtained by a single application, the transparent resin is divided into a plurality of times. It can be formed by applying and laminating.

カラーフィルタ61、62、63は、着色感光性樹脂を所定の色に応じて選択し、パターン露光、現像を行い、残存した着色感光性樹脂膜を各色層とするフォトリソグラフィー法を繰り返すことにより、形成する。   The color filters 61, 62, and 63 select a colored photosensitive resin according to a predetermined color, perform pattern exposure and development, and repeat a photolithography method using the remaining colored photosensitive resin film as each color layer. Form.

マイクロレンズ70を設ける場合は、フォトリソグラフィー法で、光電変換素子30およびカラーフィルタ61、62、63の各画素に対応する位置に樹脂パターンを形成した後に、熱リフロー法で溶融樹脂の表面張力を利用してレンズ形状とすることができる。   When the microlens 70 is provided, a resin pattern is formed at a position corresponding to each pixel of the photoelectric conversion element 30 and the color filters 61, 62, and 63 by a photolithography method, and then the surface tension of the molten resin is increased by a thermal reflow method. It can be used to form a lens.

以上、本発明の固体撮像素子によれば、裏面照射型の固体撮像素子において、入射光が光電変換素子間の隙間を通ることを前記シリコンからなる凸部が遮り、または、シリコンの厚みが厚くなった分、凸部を含めたシリコン部を光が通過する際の減衰が大きくなるため、配線層で反射する光を与えず、その結果、入射光の一部が不適切な光電変換素子に受光されてしまうという現象を発生させない。特に光電変換素子を1列に配置したリニアセンサー(ラインセンサー)では、光電変換素子を縦横に2次元的に配列させたエリアセンサー(面センサー)とは異なり、隣に別の光電変換素子の存在しない辺付近からの入射光の進入をもシリコンからなる凸部により遮ることができるので、特に大きな効果が得られる。   As described above, according to the solid-state imaging device of the present invention, in the back-illuminated solid-state imaging device, the projections made of silicon block the incident light from passing through the gaps between the photoelectric conversion elements, or the thickness of the silicon is thick. As a result, the attenuation when light passes through the silicon part including the convex part is increased, so that the light reflected by the wiring layer is not given, and as a result, a part of the incident light becomes an inappropriate photoelectric conversion element. The phenomenon that light is received does not occur. In particular, a linear sensor (line sensor) with photoelectric conversion elements arranged in a row is different from an area sensor (surface sensor) in which photoelectric conversion elements are arranged two-dimensionally vertically and horizontally, and there is another photoelectric conversion element next to it. Since the incident light from the vicinity of the side that is not to be blocked can be blocked by the convex portion made of silicon, a particularly great effect can be obtained.

また、本発明の裏面照射型の固体撮像素子は、入射光が光電変換素子間の隙間を通ることを前記シリコンからなる凸部が遮ることにより、配線層での反射光を発生させないことを主眼としているが、裏面照射型ではない一般の固体撮像素子においても、前記シリコンからなる凸部を光電変換素子間の隙間に配置することにより、画素間の遮光壁として使用できることは、容易に考えられる。   Further, the back-illuminated solid-state imaging device of the present invention mainly prevents incident light from passing through the gaps between the photoelectric conversion elements and preventing the reflected light from being generated on the wiring layer by the projections made of silicon. However, even in a general solid-state imaging device that is not a back-illuminated type, it can be easily considered that the convex portion made of silicon can be used as a light-shielding wall between pixels by arranging the convex portions made of silicon in the gaps between the photoelectric conversion devices. .

10・・・シリコン層
11・・・シリコン層(光電変換素子形成領域)
12・・・シリコン層(シリコン凸部形成領域)
13・・・シリコン層(研磨除去領域)
14・・・シリコン層(ドライエッチング除去領域)
20・・・配線層
30・・・光電変換素子
40・・・シリコンからなる凸部
50・・・平坦化透明層
61、62、63・・・カラーフィルタ
70・・・マイクロレンズ
81、82・・・入射光
90・・・絶縁層
10 ... Silicon layer 11 ... Silicon layer (photoelectric conversion element formation region)
12 ... Silicon layer (Silicon protrusion formation region)
13 ... Silicon layer (polishing removal area)
14 ... Silicon layer (dry etching removal region)
DESCRIPTION OF SYMBOLS 20 ... Wiring layer 30 ... Photoelectric conversion element 40 ... Convex part 50 which consists of silicon ... Flattening transparent layers 61, 62, 63 ... Color filter 70 ... Micro lens 81, 82. ..Incoming light 90 ... insulating layer

Claims (3)

薄膜板状のシリコン層と、前記シリコン層の片方の面側に設けられた配線層と、前記シリコン層の前記配線層と反対側の面に受光部を面して形成された複数の光電変換素子と、前記シリコン層の光電変換素子を形成した面側であって、隣接する受光部間の間隙に形成されたシリコンからなる凸部と、前記シリコンからなる凸部を覆って平坦面を形成する平坦化透明層と、前記平坦化透明層の上面に前記光電変換素子受光部の各々に対応して設けられたカラーフィルタと、を有することを特徴とする固体撮像素子。   A thin film plate-like silicon layer, a wiring layer provided on one side of the silicon layer, and a plurality of photoelectric conversions formed on the surface of the silicon layer opposite to the wiring layer with the light receiving portion facing On the surface side of the element and the photoelectric conversion element of the silicon layer, a convex part made of silicon formed in a gap between adjacent light receiving parts, and a flat surface covering the convex part made of silicon are formed A solid-state imaging device comprising: a flattening transparent layer to be formed; and a color filter provided on an upper surface of the flattening transparent layer in correspondence with each of the photoelectric conversion element light receiving portions. 前記カラーフィルタの上面に前記光電変換素子受光部の各々に対応して、マイクロレンズが設けられたことを特徴とする請求項1に記載の固体撮像素子。   2. The solid-state imaging device according to claim 1, wherein a microlens is provided on the upper surface of the color filter corresponding to each of the photoelectric conversion element light receiving portions. 請求項1または2に記載の固体撮像素子を製造する方法であって、前記シリコンからなる凸部は前記シリコン層と一体であり、前記シリコンからなる凸部を形成する工程が、前記薄膜板状のシリコン層の片面を選択的にエッチングすることを特徴とする固体撮像素子の製造方法。   3. The method of manufacturing the solid-state imaging device according to claim 1, wherein the convex portion made of silicon is integrated with the silicon layer, and the step of forming the convex portion made of silicon is the thin film plate shape. A method for manufacturing a solid-state imaging device, wherein one side of a silicon layer is selectively etched.
JP2009073547A 2009-03-25 2009-03-25 Solid-state imaging device and manufacturing method thereof Expired - Fee Related JP5353356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009073547A JP5353356B2 (en) 2009-03-25 2009-03-25 Solid-state imaging device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009073547A JP5353356B2 (en) 2009-03-25 2009-03-25 Solid-state imaging device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010225986A JP2010225986A (en) 2010-10-07
JP5353356B2 true JP5353356B2 (en) 2013-11-27

Family

ID=43042833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009073547A Expired - Fee Related JP5353356B2 (en) 2009-03-25 2009-03-25 Solid-state imaging device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5353356B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6740628B2 (en) * 2016-02-12 2020-08-19 凸版印刷株式会社 Solid-state image sensor and manufacturing method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2786076B2 (en) * 1993-04-27 1998-08-13 浜松ホトニクス株式会社 Solid-state imaging device and manufacturing method thereof
JP2005057058A (en) * 2003-08-05 2005-03-03 Sanyo Electric Co Ltd Solid-state imaging device
JP4508619B2 (en) * 2003-12-03 2010-07-21 キヤノン株式会社 Method for manufacturing solid-state imaging device
KR100660714B1 (en) * 2005-12-29 2006-12-21 매그나칩 반도체 유한회사 Cmos image sensor with backside illumination and method for manufacturing the same
JP2008034836A (en) * 2006-07-03 2008-02-14 Univ Kinki Solid-state image sensing device
JP4667408B2 (en) * 2007-02-23 2011-04-13 富士フイルム株式会社 Manufacturing method of back-illuminated solid-state imaging device

Also Published As

Publication number Publication date
JP2010225986A (en) 2010-10-07

Similar Documents

Publication Publication Date Title
US9508767B2 (en) Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic apparatus
US8969776B2 (en) Solid-state imaging device, method of manufacturing the same, and electronic apparatus having an on-chip micro lens with rectangular shaped convex portions
KR100654143B1 (en) Solid-state imaging device, method for manufacturing solid-state imaging device, camera
US8742525B2 (en) Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic apparatus
KR101683297B1 (en) Solid-state imaging device, solid-state imaging device manufacturing method, elelctronic device, and lens array
US10986293B2 (en) Solid-state imaging device including microlenses on a substrate and method of manufacturing the same
KR20140100888A (en) Solid-state image pickup device, electronic apparatus, and manufacturing method
JP2011171328A (en) Solid-state image pickup element and method of manufacturing the same
JP4957564B2 (en) Solid-state imaging device and imaging apparatus using the same
JP2008210904A (en) Solid-state image sensing device and its manufacturing method
JP5353356B2 (en) Solid-state imaging device and manufacturing method thereof
JP2009267000A (en) Solid-state image pickup element
JP2008016559A (en) Solid-state imaging apparatus
JP5446374B2 (en) Solid-state imaging device and manufacturing method thereof
JP2006216904A (en) Color solid state image sensor and method of fabricating the same
JP2009170585A (en) Solid-state imaging apparatus
KR20080060484A (en) Image sensor and fabricating method thereof
JP2011165791A (en) Solid-state imaging element, and method of manufacturing the same
JP4951819B2 (en) Solid-state imaging device and manufacturing method thereof
JP2011165923A (en) Color solid-state imaging element, and method of manufacturing the same
JP5510053B2 (en) Manufacturing method of color filter for linear sensor
JP2017120816A (en) Solid-state image sensor, and method of manufacturing the same
JP2008098345A (en) Solid-state imaging apparatus, its manufacturing method, and camera
KR100835114B1 (en) Image sensor and method for manufacturing therof
JP2013077839A (en) Solid-state imaging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130812

R150 Certificate of patent or registration of utility model

Ref document number: 5353356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees