JP5339318B2 - Low dielectric loss resin for multilayer wiring board, resin composition, prepreg, and multilayer wiring board - Google Patents

Low dielectric loss resin for multilayer wiring board, resin composition, prepreg, and multilayer wiring board Download PDF

Info

Publication number
JP5339318B2
JP5339318B2 JP2005246041A JP2005246041A JP5339318B2 JP 5339318 B2 JP5339318 B2 JP 5339318B2 JP 2005246041 A JP2005246041 A JP 2005246041A JP 2005246041 A JP2005246041 A JP 2005246041A JP 5339318 B2 JP5339318 B2 JP 5339318B2
Authority
JP
Japan
Prior art keywords
low dielectric
multilayer wiring
dielectric loss
resin
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005246041A
Other languages
Japanese (ja)
Other versions
JP2006093690A (en
Inventor
純 布重
永井  晃
俊夫 安田
和彦 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Hitachi Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Hitachi Ltd
Priority to JP2005246041A priority Critical patent/JP5339318B2/en
Publication of JP2006093690A publication Critical patent/JP2006093690A/en
Application granted granted Critical
Publication of JP5339318B2 publication Critical patent/JP5339318B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polyethers (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low dielectric-loss resin composition which can be melted into a low-boiling point general-purpose solvent and is excellent in the process workability of a wiring substrate while maintaining excellent characteristics of polyphenylene ether. <P>SOLUTION: The multilayer wiring substrate low dielectric loss resin which is a copolymer composed of repeating units of a formula (1). The multilayer wiring substrate uses the resin. Wherein, X is the repeating unit of a specific formula, R1 and R2 are each a hydrocarbon group of C1, and n and m are each an integer of 1 or more. <P>COPYRIGHT: (C)2006,JPO&amp;NCIPI

Description

本発明は高周波用実装材料に好適な低誘電損失樹脂、それを含む樹脂組成物、プリプレグ及びそれを用いた多層配線基板に関するものである。   The present invention relates to a low dielectric loss resin suitable for a high-frequency mounting material, a resin composition containing the resin, a prepreg, and a multilayer wiring board using the resin composition.

近年、PHS、携帯電話等の情報通信機器の信号帯域、コンピューターのCPUクロックタイムはGHz帯に達し、高周波化が進められている。電気信号の伝送損失は誘電正接及び周波数の積に比例する。そのため使用される信号の周波数が高いほど伝送損失は大きくなる。伝送損失の増大は信号の減衰を招き、信号伝送の信頼性低下を生じさせる。そのため高周波領域では誘電正接の極めて小さい絶縁材料が強く望まれる。   In recent years, the signal band of information communication devices such as PHS and mobile phones, and the CPU clock time of computers have reached the GHz band, and higher frequencies have been promoted. The transmission loss of electrical signals is proportional to the product of dielectric loss tangent and frequency. Therefore, the transmission loss increases as the frequency of the signal used increases. An increase in transmission loss causes signal attenuation, resulting in a decrease in signal transmission reliability. Therefore, an insulating material having a very small dielectric loss tangent is strongly desired in the high frequency region.

絶縁材料の低誘電正接(誘電損失)化には分子構造中の極性基の除去が有効である。そして、フッ素樹脂、硬化性ポリオレフィン、シアネートエステル系樹脂、硬化性ポリフェニレンエーテル、ジビニルベンゼンまたはジビニルナフタレンで変性したポリエーテルイミド等数多くの構造が提案されている。しかしフッ素樹脂は一般に熱可塑性樹脂で多層化には限界がある。また汎用溶剤に溶けないため、配線基板作製時に高温、高圧のプロセスを要する。硬化性ポリオレフィンは誘電特性に優れているが耐熱的には十分な特性が得られない。シアネートエステル及びポリエーテルイミドは耐熱性が優れているが、誘電特性に限界がある。   Removal of polar groups in the molecular structure is effective for reducing the dielectric loss tangent (dielectric loss) of the insulating material. Many structures such as a fluororesin, a curable polyolefin, a cyanate ester resin, a curable polyphenylene ether, a polyetherimide modified with divinylbenzene or divinylnaphthalene have been proposed. However, fluororesin is generally a thermoplastic resin and there are limits to multilayering. Moreover, since it does not dissolve in a general-purpose solvent, a high-temperature and high-pressure process is required when producing a wiring board. Although curable polyolefin is excellent in dielectric characteristics, sufficient characteristics cannot be obtained in terms of heat resistance. Cyanate esters and polyetherimides have excellent heat resistance but have limited dielectric properties.

これに対して硬化性ポリフェニレンは耐熱性、誘電特性を両立できる材料として開発されており、例えば特許文献1や特許文献2が報告されている。しかし、特許文献1に記載の樹脂はどのような分野に用いられるものか記載がない。また、特許文献2には、ポリフェニレン樹脂と共役芳香族ジエン化合物等との混合物を反応させることが記載されている。しかし、一般のポリフェニレンエーテルは一般的な低沸点の汎用溶剤にはほとんど溶けず、配線基板製造工程におけるワニス作製時にクロロホルム(ハロゲン系溶剤)や熱トルエン等を使用することが多く、環境、安全面に関して課題が残されている。   In contrast, curable polyphenylene has been developed as a material that can achieve both heat resistance and dielectric properties. For example, Patent Document 1 and Patent Document 2 have been reported. However, there is no description in what field the resin described in Patent Document 1 is used. Patent Document 2 describes reacting a mixture of a polyphenylene resin and a conjugated aromatic diene compound or the like. However, general polyphenylene ether is hardly soluble in general low-boiling general-purpose solvents, and chloroform (halogen-based solvent), hot toluene, etc. are often used for varnish preparation in the wiring board manufacturing process. There remains a problem with respect to.

特許文献3においては、熱硬化性ポリフェニレンエーテル樹脂と架橋剤を含む組成物を多層配線基板に用いることが開示されている。また、特許文献4には、ポリフェニレン樹脂と不飽和カルボン酸又はその無水物との反応物をプリント基板に使用することが記載されている。   Patent Document 3 discloses that a composition containing a thermosetting polyphenylene ether resin and a crosslinking agent is used for a multilayer wiring board. Patent Document 4 describes that a reaction product of a polyphenylene resin and an unsaturated carboxylic acid or an anhydride thereof is used for a printed circuit board.

非特許文献1においては、熱硬化性感光性のポリフェニレンエーテル樹脂が記載されており、この樹脂はアリル基を含むことが記載されている。   Non-Patent Document 1 describes a thermosetting photosensitive polyphenylene ether resin, and describes that this resin contains an allyl group.

特開平7−133347号公報JP 7-133347 A 特開2001−302791号公報JP 2001-302791 A 特開2003−17861号公報JP 2003-17861 A 特開2004−106274号公報JP 2004-106274 A 高分子学会年会予稿集,vol.53,No.1(2004)Proceedings of the Society of Polymer Science, vol. 53, no. 1 (2004)

本発明の課題は、ポリフェニレンエーテルの優れた特性を維持し、低沸点の汎用溶剤に可溶で、配線基板のプロセス加工性に優れた低誘電損失樹脂、それを含む樹脂組成物、その塑性物を用いたプリプレグ、及び多層配線基板を提供することである。   An object of the present invention is to maintain the excellent characteristics of polyphenylene ether, to be soluble in a low-boiling general-purpose solvent, and to have a low dielectric loss resin excellent in process processability of a wiring board, a resin composition containing the resin, and a plastic material thereof It is to provide a prepreg using multilayer and a multilayer wiring board.

本発明によれば、式(1)の繰り返し単位からなる共重合体である多層配線基板用低誘電損失樹脂が提供される。   According to the present invention, there is provided a low dielectric loss resin for a multilayer wiring board, which is a copolymer comprising a repeating unit of the formula (1).

Figure 0005339318
Figure 0005339318

ここで、Xは式(2)及び/又は式(3)の繰り返し単位であり、R1、が炭素数1の炭化水素基であり、R〜Rは炭素数3から9の炭化水素基であって、n、m、p、r、sは重合度を表す1以上の整数である。R〜Rの少なくとも1つは重合性不飽和結合を持っていてもよい。 Here, X is a repeating unit of formula (2) and / or formula (3), R 1 and R 2 are hydrocarbon groups having 1 carbon atom, and R 3 to R 8 are those having 3 to 9 carbon atoms. It is a hydrocarbon group, and n, m, p, r and s are integers of 1 or more representing the degree of polymerization. At least one of R 1 to R 8 may have a polymerizable unsaturated bond.

Figure 0005339318
Figure 0005339318

Figure 0005339318
Figure 0005339318

本発明の低誘電損失共重合体を用いることにより、低誘電損失の特性を維持しながら、耐熱性に優れ、さらに非ハロゲン系で、沸点が150℃以下の有機溶剤に可溶な樹脂組成物を得ることができる。これを絶縁層のマトリックス樹脂に用いた配線基板はエポキシ樹脂等の従来品と同じ加工性、成形性で製造でき、かつ電気特性は従来のエポキシ樹脂に比べて誘電損失の極めて低い性能を有している。また、はんだ耐熱性に代表される熱的性質も従来のエポキシ配線基板と同等か、それ以上の特性を有している。   By using the low dielectric loss copolymer of the present invention, a resin composition that is excellent in heat resistance while maintaining the characteristics of low dielectric loss, is non-halogen, and is soluble in an organic solvent having a boiling point of 150 ° C. or lower. Can be obtained. Wiring boards using this as the matrix resin for the insulating layer can be manufactured with the same processability and moldability as conventional products such as epoxy resins, and the electrical characteristics have extremely low dielectric loss performance compared to conventional epoxy resins. ing. In addition, the thermal properties typified by solder heat resistance are the same as or better than those of conventional epoxy wiring boards.

特許文献4においては、ポリフェニレンエーテルの末端の水酸基を利用した変性物が開示されているが、本発明のようにある程度の機械的強度を得るために高分子量体(分子量5,000以上、特に1万以上が望ましい)を用いるとき、末端だけでの変性では本発明が目的としている耐熱性、低沸点溶剤への溶解性に対する改善が十分でないと考えられる。これに対して本発明はポリフェニレンエーテルの主鎖の一部を特性改良に必要な分だけ共重合体により変性を試みたものである。そのため公知例と異なり、基板作成時のワニスを作るために必要な溶解性が確保され、かつ基板として実装信頼性を確保するのに必要不可欠なはんだ耐熱性において、従来のポリフェニレンエーテルに比べて飛躍的に優れた特性を得ることができた。   In Patent Document 4, a modified product using a hydroxyl group at the terminal of polyphenylene ether is disclosed. In order to obtain a certain degree of mechanical strength as in the present invention, a high molecular weight compound (molecular weight of 5,000 or more, particularly 1 It is considered that the modification with only the terminal does not sufficiently improve the heat resistance and solubility in a low-boiling solvent, which are the objectives of the present invention. In contrast, in the present invention, a part of the main chain of polyphenylene ether is modified with a copolymer by an amount necessary for improving the characteristics. Therefore, unlike the known examples, the solubility required to make the varnish at the time of circuit board creation is ensured, and the solder heat resistance, which is indispensable to ensure mounting reliability as a circuit board, is a leap forward compared to conventional polyphenylene ether. Excellent characteristics were obtained.

本発明の実施形態の1つとして、式(1)の繰り返し単位からなるランダム共重合体である多層配線基板用低誘電損失樹脂が提供される。   As one embodiment of the present invention, there is provided a low dielectric loss resin for a multilayer wiring board, which is a random copolymer comprising repeating units of the formula (1).

Figure 0005339318
Figure 0005339318

ここで、Xは式(2)及び/又は式(3)の繰り返し単位であり、R、Rは炭素数1の炭化水素基であって、R、R、Rは同一または異なって、炭素数2から9の飽和炭化水素基、不飽和炭化水素基、芳香族炭化水素基を有しており、R、R、Rは同一または異なって、炭素数1から9の飽和炭化水素基、不飽和炭化水素基、芳香族炭化水素基を有しており、m、n、p、r、sは重合度を表す1以上の整数である。 Here, X is a repeating unit of formula (2) and / or formula (3), R 1 and R 2 are C 1 hydrocarbon groups, and R 3 , R 5 and R 7 are the same or Differently, it has a saturated hydrocarbon group, an unsaturated hydrocarbon group or an aromatic hydrocarbon group having 2 to 9 carbon atoms, and R 4 , R 6 and R 8 are the same or different and have 1 to 9 carbon atoms. A saturated hydrocarbon group, an unsaturated hydrocarbon group, and an aromatic hydrocarbon group, and m, n, p, r, and s are integers of 1 or more representing the degree of polymerization.

Figure 0005339318
Figure 0005339318

Figure 0005339318
Figure 0005339318

上記共重合体の分子量は、好ましくは5、000から30、000である。本発明により、Xが式(2)の繰り返し単位である二元共重合体が提供される。また、Xが式(3)の繰り返し単位である三元共重合体が提供される。   The molecular weight of the copolymer is preferably 5,000 to 30,000. The present invention provides a binary copolymer in which X is a repeating unit of formula (2). There is also provided a terpolymer where X is a repeating unit of formula (3).

また、本発明における電子部品の製造方法は従来の一般的な手法を用いることができる。代表的な溶剤としてはハロゲン系化合物、芳香族炭化水素系化合物などがあるが、特にこれに限定せず用いることができる。ハロゲン系化合物としてはジクロロメタン、クロロホルム、四塩化メチル等がある。また芳香族炭化水素系ではトルエン、キシレン等がある。それ以外の溶剤としてはN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジエチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、テトラヒドロフラン、ジオキサン、シクロヘキサノン等が挙げられる。このような溶剤に共重合体は溶解あるいは均一分散させてワニスを作製することができる。   Also, the conventional general method can be used for the method of manufacturing an electronic component in the present invention. Typical solvents include halogen compounds and aromatic hydrocarbon compounds, but are not particularly limited and can be used. Halogen compounds include dichloromethane, chloroform, methyl tetrachloride and the like. Aromatic hydrocarbons include toluene and xylene. Other solvents include N, N-dimethylformamide, N, N-dimethylacetamide, diethyl ether, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, tetrahydrofuran, dioxane, cyclohexanone and the like. The varnish can be prepared by dissolving or uniformly dispersing the copolymer in such a solvent.

上記に挙げた溶媒のうち、本発明において、上記共重合体が、沸点が150℃以下の非ハロゲン系有機溶剤に20重量%以上可溶である多層配線基板用低誘電損失樹脂がより好ましい。従って、沸点150℃以下の非ハロゲン系有機溶剤と、該有機溶剤に溶解した上記低誘電損失樹脂を含む多層配線基板用樹脂組成物が提供される。この樹脂組成物は、必要に応じて着色剤、触媒(ラジカル架橋促進剤など)等を含んでもよい。   Among the solvents listed above, in the present invention, a low dielectric loss resin for a multilayer wiring board in which the copolymer is soluble in a non-halogen organic solvent having a boiling point of 150 ° C. or lower is more preferably 20% by weight or more. Accordingly, a resin composition for a multilayer wiring board comprising a non-halogen organic solvent having a boiling point of 150 ° C. or lower and the low dielectric loss resin dissolved in the organic solvent is provided. The resin composition may contain a colorant, a catalyst (such as a radical crosslinking accelerator) and the like as necessary.

ワニス作製にあたっては、上記溶剤に本発明の共重合体を所定量溶解あるいは均一分散させ、さらに必要に応じて第二成分、第三成分を加えることが可能である。また熱硬化物の架橋反応を促進するため、触媒ないしは促進剤を添加することができる。不飽和結合を架橋させる架橋反応触媒としては、カチオンまたはラジカル活性種が挙げられる。その他必要に応じて、フィラー等の充填剤、着色剤、難燃剤、接着付与剤、カップリング剤、消泡剤、レベリング剤、イオントラッパー、重合禁止剤、酸化防止剤、粘度調整剤等を添加することができる。   In producing the varnish, it is possible to dissolve or uniformly disperse a predetermined amount of the copolymer of the present invention in the above solvent, and further add a second component and a third component as necessary. Moreover, in order to accelerate | stimulate the crosslinking reaction of thermosetting material, a catalyst or an accelerator can be added. Examples of the crosslinking reaction catalyst for crosslinking the unsaturated bond include a cation or a radical active species. In addition, fillers such as fillers, colorants, flame retardants, adhesion promoters, coupling agents, antifoaming agents, leveling agents, ion trappers, polymerization inhibitors, antioxidants, viscosity modifiers, etc., are added as necessary. can do.

実際に多層配線基板に本発明の低誘電損失樹脂を適用するには、有機溶剤に溶解してワニスを調整し、これをガラスクロスなどの繊維基材に含浸し、乾燥し、プリプレグを作成する。上記式(1)、式(2)及び/又は式(3)のR〜Rは不飽和結合を持たない場合、熱可塑性樹脂である多層配線基板用低誘電損失樹脂が提供される。 In practice, in order to apply the low dielectric loss resin of the present invention to a multilayer wiring board, a varnish is prepared by dissolving in an organic solvent, and this is impregnated into a fiber base material such as a glass cloth and dried to prepare a prepreg. . When R 1 to R 8 in the above formula (1), formula (2) and / or formula (3) do not have an unsaturated bond, a low dielectric loss resin for a multilayer wiring board which is a thermoplastic resin is provided.

上記式(1)、式(2)及び/又は式(3)のR〜Rの少なくとも1つは不飽和結合を有する場合、熱硬化性樹脂である多層配線基板用低誘電損失樹脂が提供される。この熱硬化性樹脂は、硬化させる前には溶剤に可溶で、ワニスを調整することが可能であり、又それを用いてプリプレグを作ることが出来る。プリプレグは、ガラスクロス等の基材にワニスを含浸し、乾燥して用いる。これを公知の方法で、配線層と積層して多層配線基板を作る。 When at least one of R 1 to R 8 in the above formula (1), formula (2) and / or formula (3) has an unsaturated bond, a low dielectric loss resin for multilayer wiring boards, which is a thermosetting resin, is used. Provided. This thermosetting resin is soluble in a solvent before being cured, and the varnish can be adjusted, and a prepreg can be prepared using the varnish. The prepreg is used after impregnating a base material such as glass cloth with varnish and drying. This is laminated with a wiring layer by a known method to make a multilayer wiring board.

本発明は前記熱硬化性樹脂に誘電率が異なる種々の絶縁材料を分散した絶縁層を有する電気部品を包含する。このような構成にすることによって、絶縁層の誘電正接の増加を抑制しつつ、誘電率を容易に調整することができる。本発明の樹脂組成物ではブレンドする高分子量体の種類,添加量にて1GHzにおける誘電率を2.3〜3.0程度の範囲で調整することができる。更に絶縁層に1GHzにおける誘電率が1.0〜2.2の低誘電率絶縁体を分散した高周波用電気部品では、絶縁層の誘電率を1.5〜2.2程度に調整することが可能である。   The present invention includes an electrical component having an insulating layer in which various insulating materials having different dielectric constants are dispersed in the thermosetting resin. With this configuration, the dielectric constant can be easily adjusted while suppressing an increase in the dielectric loss tangent of the insulating layer. In the resin composition of the present invention, the dielectric constant at 1 GHz can be adjusted in the range of about 2.3 to 3.0 depending on the type and amount of high molecular weight material to be blended. Furthermore, in a high frequency electric component in which a low dielectric constant insulator having a dielectric constant of 1.0 to 2.2 at 1 GHz is dispersed in the insulating layer, the dielectric constant of the insulating layer can be adjusted to about 1.5 to 2.2. Is possible.

一方、本発明では絶縁層中に1GHzにおける誘電率が3.0〜10、000の高誘電率絶縁体を分散することによって誘電正接の増大を抑制しつつ、誘電率が3.1〜20の高誘電率絶縁層を有する高周波用電気部品を作成することができる。   On the other hand, in the present invention, the dielectric constant is 3.1 to 20 while suppressing an increase in dielectric loss tangent by dispersing a high dielectric constant insulator having a dielectric constant of 3.0 to 10,000 at 1 GHz in the insulating layer. A high-frequency electrical component having a high dielectric constant insulating layer can be produced.

代表的なポリフェニレンエーテルとしてはR〜Rが全て炭素数1の炭化水素基である2,6−ジメチルフェノールの重合体がある。この2,6−ジメチルフェノールの重合体の誘電特性は優れた値を示すが、熱可塑性樹脂で融点が200℃付近であり、これを用いた配線基板は部品実装におけるリフロー工程(最高260℃付近)で絶縁層の変形、流動が起き、耐熱的に問題がある。また配線基板として機械的強度(強靭性)が必要であり、分子量は1万以上であることが望ましい。それより分子量が低いと、樹脂の十分な強度を得ることが難しくなる。しかし2,6−ジメチルフェノールの重合体は分子量が1万以上になると溶剤に溶けにくくなり、クロロホルム(ハロゲン系溶剤)や熱トルエン(50℃以上)等の扱いが困難な溶剤を用いなければない。そのため従来の基板作製に一般的に用いられている非ハロゲン系で、かつ沸点が150℃以下の有機溶剤の適用は困難である。 As a typical polyphenylene ether, there is a polymer of 2,6-dimethylphenol in which R 1 to R 8 are all hydrocarbon groups having 1 carbon atom. The dielectric properties of this 2,6-dimethylphenol polymer show excellent values, but it is a thermoplastic resin with a melting point of around 200 ° C., and a wiring board using this is a reflow process in component mounting (around 260 ° C. at maximum) ) Causes deformation and flow of the insulating layer, which is problematic in terms of heat resistance. Further, the wiring board needs mechanical strength (toughness), and the molecular weight is desirably 10,000 or more. If the molecular weight is lower than that, it is difficult to obtain sufficient strength of the resin. However, 2,6-dimethylphenol polymer becomes difficult to dissolve in a solvent when the molecular weight is 10,000 or more, and a solvent that is difficult to handle, such as chloroform (halogen-based solvent) or hot toluene (50 ° C. or more) must be used. . For this reason, it is difficult to apply an organic solvent which is non-halogen-based and generally has a boiling point of 150.degree.

本発明では共重合体構造におけるR、Rが炭素数1の炭化水素基であり、R〜Rの一部に炭素数が3〜9の置換基を導入することにより、耐熱性に優れ、かつ溶剤に対して溶解性に優れた材料を提供することができる。本発明の置換基はメチル基よりも嵩高であり、樹脂の汎用有機溶媒に対する溶解性が向上し又耐熱性も向上する。 In the present invention, R 1 and R 2 in the copolymer structure are hydrocarbon groups having 1 carbon atom, and by introducing a substituent having 3 to 9 carbon atoms into a part of R 3 to R 8 , heat resistance is improved. In addition, it is possible to provide a material excellent in solubility in a solvent. The substituent of the present invention is bulkier than the methyl group, and the solubility of the resin in general-purpose organic solvents is improved and the heat resistance is also improved.

また、本発明の他の方法として、以下の構成がある。すなわち、ランダム共重合体構造におけるR、Rは炭素数1の炭化水素基であって、R、R、Rは同一または異なってもよい。また、炭素数2から9の飽和炭化水素基、不飽和炭化水素基、芳香族炭化水素基を有しており、R、R、Rは同一または異なってもよい。更に、炭素数1から9の飽和炭化水素基、不飽和炭化水素基、芳香族炭化水素基を有することにより、耐熱性に優れ、かつ溶剤に対して溶解性に優れた材料を提供することができる。本発明の置換基はメチル基よりも嵩高であり、樹脂の汎用有機溶媒に対する溶解性が向上し又耐熱性も向上する。 Another method of the present invention has the following configuration. That is, R 1 and R 2 in the random copolymer structure are hydrocarbon groups having 1 carbon atom, and R 3 , R 5 , and R 7 may be the same or different. Moreover, it has a C2-C9 saturated hydrocarbon group, unsaturated hydrocarbon group, and aromatic hydrocarbon group, and R 4 , R 6 , and R 8 may be the same or different. Furthermore, by having a saturated hydrocarbon group having 1 to 9 carbon atoms, an unsaturated hydrocarbon group, or an aromatic hydrocarbon group, it is possible to provide a material having excellent heat resistance and solubility in a solvent. it can. The substituent of the present invention is bulkier than the methyl group, and the solubility of the resin in general-purpose organic solvents is improved and the heat resistance is also improved.

置換基のひとつとしては不飽和結合を有する炭化水素基が挙げられる。具体的な例としてはビニル基、アリル基、イソプロペニル基、ブテニル基、イソブテニル基、ペンテニル基等の炭素数2〜9の様々な炭化水素基で不飽和結合を有する置換基である。これらの不飽和結合は熱により架橋反応が起き、配線基板の耐熱性向上に寄与する。すなわち配線基板において部品実装時のリフロー工程(最高260℃付近)で絶縁層の変形、流動を抑制できる。またメチル基に比べて分子鎖を長くした置換基を導入することにより、溶剤に対する溶解性も向上させることができる。   One of the substituents is a hydrocarbon group having an unsaturated bond. Specific examples include substituents having an unsaturated bond among various hydrocarbon groups having 2 to 9 carbon atoms such as vinyl group, allyl group, isopropenyl group, butenyl group, isobutenyl group, pentenyl group and the like. These unsaturated bonds cause a crosslinking reaction due to heat, and contribute to the improvement of heat resistance of the wiring board. In other words, the deformation and flow of the insulating layer can be suppressed in the reflow process (around 260 ° C. at the maximum) during component mounting on the wiring board. Moreover, the solubility with respect to a solvent can also be improved by introduce | transducing the substituent which lengthened the molecular chain compared with the methyl group.

他の置換基としては、芳香族炭化水素を含む炭化水素基が挙げられる。具体的な例としては、フェニル基、トリル基、キシリル基、クメニル基、メシチル基、ベンジル基、フェネチル基、スチリル基、シンナミル基等がある。これらの芳香族炭化水素基の導入は得られる共重合体の耐熱性を向上させ、かつバルキーな置換基の効果で溶剤に対する溶解性も向上させることができる。   Examples of other substituents include hydrocarbon groups including aromatic hydrocarbons. Specific examples include phenyl group, tolyl group, xylyl group, cumenyl group, mesityl group, benzyl group, phenethyl group, styryl group, cinnamyl group and the like. The introduction of these aromatic hydrocarbon groups can improve the heat resistance of the resulting copolymer, and can also improve the solubility in a solvent due to the effect of a bulky substituent.

さらに三元共重合体にすることにより、耐熱性、溶解性を一層向上させることができる。これらの置換基の導入量としては、5〜30モル%程度が望ましい。5モル%以下であると置換基導入の効果が少なく、耐熱性、溶解性に対する改善の効果が十分でないことがある。また30モル%以上では不飽和結合を有する置換基の場合、架橋密度が高くなりすぎ、得られる硬化物の靭性が低下する可能性がある。芳香族炭化水素の置換基の場合、嵩高い置換基が多くなりすぎ、ワニス作製時の溶液粘度の増加、得られる硬化物の密度の低下による機械的強度の低下などを生じる可能性が懸念される。本発明による共重合体は熱可塑性及び熱硬化性樹脂であり、そのガラス転移点は220℃以上である。   Furthermore, heat resistance and solubility can be further improved by using a ternary copolymer. The amount of introduction of these substituents is preferably about 5 to 30 mol%. If it is 5 mol% or less, the effect of introducing substituents is small, and the effect of improving heat resistance and solubility may not be sufficient. Moreover, in the case of 30 mol% or more, in the case of the substituent which has an unsaturated bond, a crosslinking density becomes high too much and the toughness of the hardened | cured material obtained may fall. In the case of aromatic hydrocarbon substituents, there are concerns that there may be excessive bulky substituents, resulting in an increase in solution viscosity at the time of varnish preparation and a decrease in mechanical strength due to a decrease in the density of the resulting cured product. The The copolymer according to the present invention is a thermoplastic and thermosetting resin, and its glass transition point is 220 ° C. or higher.

本発明において用いられる共重合体としては、以下に挙げるような物質がある。例えば不飽和結合を有する炭化水素基としては、(2,6−ジメチルフェニルエーテル)と(2−ビニル−6−メチルフェニルエーテル)の共重合体、(2,6−ジメチルフェニルエーテル)と(2−アリル−6−メチルフェニルエーテル)の共重合体、(2,6−ジメチルフェニルエーテル)と(2,6−ジビニルフェニルエーテル)の共重合体、(2,6−ジメチルフェニルエーテル)と(2,6−ジアリルフェニルエーテル)の共重合体、(2,6−ジメチルフェニルエーテル)と(2,6−ジイソプロペニルフェニルエーテル)の共重合体、(2,6−ジメチルフェニルエーテル)と(2,6−ジブテニルフェニルエーテル)の共重合体、(2,6−ジメチルフェニルエーテル)と(2,6−ジイソブテニルフェニルエーテル)の共重合体、(2,6−ジメチルフェニルエーテル)と(2,6−ジペンテニルフェニルエーテル)の共重合体、(2,6−ジメチルフェニルエーテル)と(2,6−ジイソペンテニルフェニルエーテル)の共重合体、(2,6−ジメチルフェニルエーテル)と(2,6−ジノネニルフェニルエーテル)の共重合体等が挙げられる。   Examples of the copolymer used in the present invention include the following substances. For example, as the hydrocarbon group having an unsaturated bond, a copolymer of (2,6-dimethylphenyl ether) and (2-vinyl-6-methylphenyl ether), (2,6-dimethylphenyl ether) and (2 -Allyl-6-methylphenyl ether) copolymer, (2,6-dimethylphenyl ether) and (2,6-divinylphenyl ether) copolymer, (2,6-dimethylphenyl ether) and (2 , 6-diallylphenyl ether), (2,6-dimethylphenyl ether) and (2,6-diisopropenyl phenyl ether), (2,6-dimethylphenyl ether) and (2 , 6-dibutenyl phenyl ether), a copolymer of (2,6-dimethylphenyl ether) and (2,6-diisobutenyl phenyl ether). A copolymer of (2,6-dimethylphenyl ether) and (2,6-dipentenyl phenyl ether), a copolymer of (2,6-dimethylphenyl ether) and (2,6-diisopentenyl phenyl ether) Examples thereof include a polymer and a copolymer of (2,6-dimethylphenyl ether) and (2,6-dinonenyl phenyl ether).

一方、芳香族炭化水素基を有する共重合体としては、(2,6−ジメチルフェニルエーテル)と(2−フェニル−6−メチルフェニルエーテル)の共重合体、(2,6−ジメチルフェニルエーテル)と(2−トリル−6−メチルフェニルエーテル)の共重合体、(2,6−ジメチルフェニルエーテル)と(2,6−ジフェニルフェニルエーテル)の共重合体、(2,6−ジメチルフェニルエーテル)と(2,6−ジトリルフェニルエーテル)の共重合体、(2,6−ジメチルフェニルエーテル)と(2,6−ジキシリルフェニルエーテル)の共重合体、(2,6−ジメチルフェニルエーテル)と(2,6−ジクメニルフェニルエーテル)の共重合体、(2,6−ジメチルフェニルエーテル)と(2,6−ジメシチルフェニルエーテル)の共重合体、(2,6−ジメチルフェニルエーテル)と(2,6−ジベンジルフェニルエーテル)の共重合体、(2,6−ジメチルフェニルエーテル)と(2,6−ジフェネチルフェニルエーテル)の共重合体、(2,6−ジメチルフェニルエーテル)と(2,6−ジスチリルフェニルエーテル)の共重合体、(2,6−ジメチルフェニルエーテル)と(2,6−ジシンナミルフェニルエーテル)の共重合体が挙げられる。   On the other hand, as a copolymer having an aromatic hydrocarbon group, a copolymer of (2,6-dimethylphenyl ether) and (2-phenyl-6-methylphenyl ether), (2,6-dimethylphenyl ether) And (2-tolyl-6-methylphenyl ether) copolymer, (2,6-dimethylphenyl ether) and (2,6-diphenylphenyl ether) copolymer, (2,6-dimethylphenyl ether) And (2,6-ditolylphenyl ether) copolymer, (2,6-dimethylphenyl ether) and (2,6-dixylphenyl ether) copolymer, (2,6-dimethylphenyl ether) Copolymer of (2,6-dicenyl phenyl ether) and (2,6-dimethylphenyl ether) and (2,6-dimesityl phenyl ether) , A copolymer of (2,6-dimethylphenyl ether) and (2,6-dibenzylphenyl ether), a copolymer of (2,6-dimethylphenyl ether) and (2,6-diphenethylphenyl ether) Copolymer, copolymer of (2,6-dimethylphenyl ether) and (2,6-distyrylphenyl ether), copolymer of (2,6-dimethylphenyl ether) and (2,6-dicinnamylphenyl ether) Coalescence is mentioned.

また、三元共重合体としては、(2,6−ジメチルフェニルエーテル)と(2−アリル−6−メチルフェニルエーテル)と(2,6−ジフェニルフェニルエーテル)の共重合体、(2,6−ジメチルフェニルエーテル)と(2−アリル−6−メチルフェニルエーテル)と(2−フェニル−6−メチルフェニルエーテル)の共重合体、(2,6−ジメチルフェニルエーテル)と(2,6−ジビニルフェニルエーテル)と(2,6−ジフェニルフェニルエーテル)の共重合体、(2,6−ジメチルフェニルエーテル)と(2,6−ジアリルフェニルエーテル)と(2,6−ジフェニルフェニルエーテル)の共重合体、(2,6−ジメチルフェニルエーテル)と(2,6−ジプロペニルフェニルエーテル)と(2,6−ジフェニルフェニルエーテル)の共重合体、(2,6−ジメチルフェニルエーテル)と(2,6−ジブテニルフェニルエーテル)と(2,6−ジフェニルフェニルエーテル)の共重合体、(2,6−ジメチルフェニルエーテル)と(2,6−ジイソブテニルフェニルエーテル)と(2,6−ジフェニルフェニルエーテル)の共重合体、(2,6−ジメチルフェニルエーテル)と(2,6−ジペンテニルフェニルエーテル)と(2,6−ジフェニルフェニルエーテル)の共重合体、(2,6−ジメチルフェニルエーテル)と(2,6−ジアリルフェニルエーテル)と(2,6−ジトリルフェニルエーテル)の共重合体、(2,6−ジメチルフェニルエーテル)と(2,6−ジアリルフェニルエーテル)と(2,6−ジキシリルフェニルエーテル)の共重合体、(2,6−ジメチルフェニルエーテル)と(2,6−ジブテニルフェニルエーテル)と(2,6−ジトリルフェニルエーテル)の共重合体、(2,6−ジメチルフェニルエーテル)と(2,6−ジブテニルフェニルエーテル)と(2,6−ジキシリルフェニルエーテル)の共重合体、(2,6−ジメチルフェニルエーテル)と(2,6−ジイソブテニルフェニルエーテル)と(2,6−ジトリルフェニルエーテル)の共重合体、(2,6−ジメチルフェニルエーテル)と(2,6−ジイソブテニルフェニルエーテル)と(2,6−ジキシリルフェニルエーテル)の共重合体、(2,6−ジメチルフェニルエーテル)と(2,6−ジイソペンテニルフェニルエーテル)と(2,6−ジフェニルフェニルエーテル)の共重合体等が挙げられる。   Further, as the terpolymer, a copolymer of (2,6-dimethylphenyl ether), (2-allyl-6-methylphenyl ether) and (2,6-diphenylphenyl ether), (2,6 -Dimethylphenyl ether), (2-allyl-6-methylphenyl ether) and (2-phenyl-6-methylphenyl ether) copolymer, (2,6-dimethylphenyl ether) and (2,6-divinyl) Copolymer of (phenyl ether) and (2,6-diphenyl phenyl ether), copolymer of (2,6-dimethylphenyl ether), (2,6-diallylphenyl ether) and (2,6-diphenylphenyl ether) Compound, (2,6-dimethylphenyl ether) and (2,6-dipropenyl phenyl ether) and (2,6-diphenylphenyl ether) A copolymer of (2,6-dimethylphenyl ether), (2,6-dibutenylphenyl ether) and (2,6-diphenylphenyl ether), (2,6-dimethylphenyl ether) and Copolymers of (2,6-diisobutenyl phenyl ether) and (2,6-diphenyl phenyl ether), (2,6-dimethylphenyl ether), (2,6-dipentenyl phenyl ether) and (2,6 -Diphenylphenyl ether), (2,6-dimethylphenyl ether), (2,6-diallylphenyl ether) and (2,6-ditolylphenyl ether), (2,6- A copolymer of (dimethylphenyl ether), (2,6-diallylphenyl ether), and (2,6-dixylphenyl ether), Copolymer of (tilphenyl ether), (2,6-dibutenyl phenyl ether) and (2,6-ditolyl phenyl ether), (2,6-dimethylphenyl ether) and (2,6-dibutenyl phenyl ether) ) And (2,6-dixylphenyl ether), (2,6-dimethylphenyl ether), (2,6-diisobutenyl phenyl ether) and (2,6-ditolylphenyl ether) A polymer, a copolymer of (2,6-dimethylphenyl ether), (2,6-diisobutenyl phenyl ether) and (2,6-dixylphenyl ether), (2,6-dimethylphenyl ether) and ( And a copolymer of (2,6-diisopentenyl phenyl ether) and (2,6-diphenyl phenyl ether).

本発明では、共重合体成分と相溶性のよいスチレン残基を含むゴム成分をブレンドすることにより、本発明の樹脂組成物からなる硬化物にさらなるフィルム形成能,柔軟性及び接着性を付与できる。これにより絶縁層と導体層との剥離が生じにくい、すなわち信頼性の高い各種の配線板の作製が可能となる。ゴム成分の例としては、スチレン−ブタジエン,スチレン−イソプレン,スチレン−エチレン−ブチレン−スチレン,スチレン−エチレン−プロピレン−スチレン,スチレン−マレイン酸−ブタジエン,アクリロニトリル−ブタジエン−スチレン,アクリロニトリル−エチレン−プロピレン−スチレンなどが挙げられる。ゴム成分の分子量は、5、000以上である。より好ましくは5、000〜100、000であることが望ましい。   In the present invention, by blending a rubber component containing a styrene residue that is compatible with the copolymer component, it is possible to impart further film-forming ability, flexibility and adhesion to the cured product comprising the resin composition of the present invention. . This makes it possible to produce various types of wiring boards that are unlikely to peel off the insulating layer and the conductor layer, that is, with high reliability. Examples of rubber components include styrene-butadiene, styrene-isoprene, styrene-ethylene-butylene-styrene, styrene-ethylene-propylene-styrene, styrene-maleic acid-butadiene, acrylonitrile-butadiene-styrene, acrylonitrile-ethylene-propylene- Examples include styrene. The molecular weight of the rubber component is 5,000 or more. More preferably, it is 5,000-100,000.

分子量が小さいと、フィルム形成能,柔軟性,接着性が不十分になる場合がある。また、分子量が大きすぎると樹脂組成物をワニス化した際に粘度が高くなり、混合攪拌,成膜,含浸が困難になる可能性がある。ゴム成分の種類に特に制限はなく、2種類以上混合して用いてもよい。ゴム成分の配合量としては5〜50重量%が望ましい。50重量%を超えると本発明の共重合体成分の特徴を十分に生かせなくなる。   If the molecular weight is small, the film forming ability, flexibility and adhesion may be insufficient. On the other hand, if the molecular weight is too large, the viscosity increases when the resin composition is varnished, which may make mixing and stirring, film formation, and impregnation difficult. There is no restriction | limiting in particular in the kind of rubber component, You may mix and use 2 or more types. As a compounding quantity of a rubber component, 5 to 50 weight% is desirable. If it exceeds 50% by weight, the characteristics of the copolymer component of the present invention cannot be fully utilized.

また、ゴム成分の構成元素全体に対して炭素原子及び水素原子の割合が99%以上のゴム成分を用いることにより、より一層の低誘電正接化を図ることが出来る。好ましい例としてはスチレン−ブタジエンが挙げられる。スチレン−ブタジエンは本発明の共重合体成分との相溶性が高く、誘電率が低い。これにより、共重合体成分の誘電特性を損なうことなく、樹脂組成物に柔軟性・接着性を付与することが出来る。一分子あたりのスチレン部位とブタジエン部位との比率については、スチレン部位の比率が30〜80wt%となることが望ましい。スチレン部位の比率が小さすぎると共重合体成分への相溶性が低下し、樹脂組成物の成膜性,強度,柔軟性が不十分となる。また、スチレン部位の比率が大きすぎると樹脂組成物の柔軟性,接着性が低下し、ピール強度が小さくなる。   Further, by using a rubber component having a carbon atom and hydrogen atom ratio of 99% or more with respect to the entire constituent elements of the rubber component, it is possible to further reduce the dielectric loss tangent. A preferred example is styrene-butadiene. Styrene-butadiene is highly compatible with the copolymer component of the present invention and has a low dielectric constant. Thereby, a softness | flexibility and adhesiveness can be provided to a resin composition, without impairing the dielectric characteristic of a copolymer component. About the ratio of the styrene site | part per molecule | numerator, it is desirable that the ratio of a styrene site | part will be 30-80 wt%. If the ratio of the styrene moiety is too small, the compatibility with the copolymer component is lowered, and the film-forming property, strength, and flexibility of the resin composition become insufficient. Moreover, when the ratio of a styrene site | part is too large, the softness | flexibility and adhesiveness of a resin composition will fall, and peel strength will become small.

ワニス作製にあたっては、上記溶剤に本発明の共重合体を所定量溶解あるいは均一分散させ、さらに必要に応じて第二成分、第三成分を加えることが可能である。また熱硬化物の架橋反応を促進するため、触媒ないしは促進剤を添加することができる。添加量は特に制限はないが共重合体100重量部に対して0.0005〜10重量部程度が望ましい。添加量が多すぎると誘電損失等電気特性に悪影響を及ぼす可能性がある。また添加量がすくないと、促進効果が十分でなくなる。架橋反応触媒ないしは促進剤を添加することにより、低温で架橋反応が進み、耐熱性に優れた絶縁材料を得ることができる。   In producing the varnish, it is possible to dissolve or uniformly disperse a predetermined amount of the copolymer of the present invention in the above solvent, and further add a second component and a third component as necessary. Moreover, in order to accelerate | stimulate the crosslinking reaction of thermosetting material, a catalyst or an accelerator can be added. The addition amount is not particularly limited, but is preferably about 0.0005 to 10 parts by weight with respect to 100 parts by weight of the copolymer. If the amount added is too large, it may adversely affect electrical characteristics such as dielectric loss. Also, if the amount added is too small, the promoting effect will not be sufficient. By adding a crosslinking reaction catalyst or accelerator, a crosslinking reaction proceeds at a low temperature, and an insulating material having excellent heat resistance can be obtained.

不飽和結合を架橋させる架橋反応触媒として、カチオンまたはラジカル活性種を以下に示す。カチオン触媒としてはBF 、PF 、AsF 、SbF を対アニオンとするジアリールヨードニウム塩、トリアリールスルホニウム塩及び脂肪族スルホニウム塩が挙げられる。ラジカル触媒としてはベンゾイン及びベンゾインメチルに代表されるベンゾイン系化合物、アセトフェノン及び2,2−ジメトキシ−2−フェニルアセトフェノンに代表されるアセトフェノン系化合物、チオキサントン及び2,4−ジエチルチオキサントンに代表されるチオキサントン系化合物、4,4’−ジアジドカルコン、2,6−ビス(4’−アジドベンザル)シクロヘキサノン及び4,4’−ジアジドベンゾフェノンに代表されるビスアジド化合物、アゾビスイソブチロニトリル、2,2−アゾビスプロパン、m,m’−アゾキシスチレン、ヒドラジン等のアゾ化合物、2,5−ジメチル−2,5−(t−ブチルパーオキシ)ヘキシン−3、2,5−ジメチル−2,5−(t−ブチルパーオキシ)ヘキサン、ジクミルパーオキサイド、ベンゾイルパーオキサイド等の有機過酸化物が挙げられる。その他必要に応じて、フィラー等の充填剤、着色剤、難燃剤、接着付与剤、カップリング剤、消泡剤、レベリング剤、イオントラッパー、重合禁止剤、酸化防止剤、粘度調整剤等を添加することができる。 As a crosslinking reaction catalyst for crosslinking unsaturated bonds, cation or radical active species are shown below. Examples of the cationic catalyst include diaryl iodonium salts, triaryl sulfonium salts, and aliphatic sulfonium salts having BF 4 , PF 6 , AsF 6 , and SbF 6 as counter anions. As radical catalysts, benzoin compounds represented by benzoin and benzoinmethyl, acetophenone and acetophenone compounds represented by 2,2-dimethoxy-2-phenylacetophenone, thioxanthone and thioxanthone represented by 2,4-diethylthioxanthone Compounds, bisazido compounds represented by 4,4′-diazidochalcone, 2,6-bis (4′-azidobenzal) cyclohexanone and 4,4′-diazidobenzophenone, azobisisobutyronitrile, 2,2- Azo compounds such as azobispropane, m, m′-azoxystyrene, hydrazine, 2,5-dimethyl-2,5- (t-butylperoxy) hexyne-3, 2,5-dimethyl-2,5- (T-Butylperoxy) hexane, dicumyl peroxide, ben Organic peroxides such as zoyl peroxide are listed. In addition, fillers such as fillers, colorants, flame retardants, adhesion promoters, coupling agents, antifoaming agents, leveling agents, ion trappers, polymerization inhibitors, antioxidants, viscosity modifiers, etc., are added as necessary. can do.

ここで配線基板の製造方法としては二仕様に分けることができる。ひとつは得られたワニスを補強材に含浸塗工して、プリプレグを作製する方法である.さらにもうひとつは銅箔等に直接塗り、絶縁層としては補強材のない樹脂のみの基板である。本発明では特に限定はないが、多くの実装部品を搭載するリジッド基板の場合は補強材を用いることが多い。またフレキシブル基板ないしはビルドアップ基板を構成するときは補強材を用いないことが多い。補強材としては現在配線基板として一般に適用されている織布、不織布、不織紙、フィルム等を用いることができる。代表的なものとしてはEガラス、Sガラス、Dガラス、シリカガラス、Aガラス等の無機酸化物、ポリイミド、ポリアラミド等の有機物等が挙げられる。本発明では絶縁層に高分子量体を分散させることによって、絶縁層に強度,伸び,導体配線への接着力,フィルム形成能を付与することができる。これによって多層配線板の作成に必要なプリプレグ,導体箔とプリプレグを積層して硬化した導体箔付き積層板(以下、積層板と略す)の作製が可能となるほか、薄膜形成プロセスによる高密度多層配線基板の作成も可能となる。   Here, the manufacturing method of the wiring board can be divided into two specifications. One is a method of making a prepreg by impregnating the obtained varnish into a reinforcing material. The other is a resin-only substrate coated directly on copper foil or the like and having no reinforcing material as an insulating layer. Although there is no particular limitation in the present invention, a reinforcing material is often used in the case of a rigid board on which many mounting parts are mounted. Further, when constituting a flexible substrate or a build-up substrate, a reinforcing material is often not used. As the reinforcing material, a woven fabric, a non-woven fabric, a non-woven paper, a film or the like that is generally applied as a wiring board can be used. Typical examples include inorganic oxides such as E glass, S glass, D glass, silica glass, and A glass, and organic substances such as polyimide and polyaramid. In the present invention, by dispersing the high molecular weight material in the insulating layer, the insulating layer can be given strength, elongation, adhesion to conductor wiring, and film forming ability. This makes it possible to produce prepregs necessary for the production of multilayer wiring boards, laminated sheets with conductor foil and prepreg laminated and cured (hereinafter abbreviated as laminated sheets), and high-density multilayers by thin film formation processes. It is also possible to create a wiring board.

前記高分子量体は分子量が5、000以上であることが好ましく、より好ましくは6、000〜100、000、更に好ましくは10、000〜60、000であることが好ましい。分子量が小さい場合は、機械強度の改善が不十分になる場合があり、分子量が大きすぎる場合は樹脂組成物をワニス化した際に粘度が高くなり、混合攪拌,成膜が困難になる。   The high molecular weight body preferably has a molecular weight of 5,000 or more, more preferably 6,000 to 100,000, still more preferably 10,000 to 60,000. When the molecular weight is small, the mechanical strength may not be improved sufficiently. When the molecular weight is too large, the viscosity increases when the resin composition is varnished, and mixing and stirring and film formation become difficult.

高分子量体の例としては、ブタジエン,イソプレン,スチレン,エチルスチレン,ジビニルベンゼン,N−ビニルフェニルマレイミド,アクリル酸エステル,アクリロニトリルから選ばれるモノマーの単独或いは共重合体,置換基を有していてもよいポリフェニレンオキサイド,環状ポリオレフィン,ポリシロキサン,ポリエーテルイミド等が挙げられる。中でもポリフェニレンオキサイド,環状ポリオレフィンは高強度で誘電正接性が低いので好ましい。   Examples of the high molecular weight substance may include a monomer selected from butadiene, isoprene, styrene, ethylstyrene, divinylbenzene, N-vinylphenylmaleimide, acrylate ester, acrylonitrile, a copolymer, and a substituent. Good polyphenylene oxide, cyclic polyolefin, polysiloxane, polyetherimide and the like can be mentioned. Among them, polyphenylene oxide and cyclic polyolefin are preferable because of high strength and low dielectric loss tangent.

実際に多層配線基板に本発明の樹脂を適用するには、有機溶剤に溶解してワニスを調整し、これをガラスクロスなどの繊維基材に含浸し、乾燥し、プリプレグを作成する。上記
式(1)、式(2)及び/又は式(3)のR〜Rは不飽和結合を持たない場合、熱可塑性樹脂である多層配線基板用低誘電損失樹脂が提供される。
To actually apply the resin of the present invention to a multilayer wiring board, a varnish is prepared by dissolving in an organic solvent, impregnated into a fiber base material such as glass cloth, and dried to prepare a prepreg. When R 1 to R 8 in the above formula (1), formula (2) and / or formula (3) do not have an unsaturated bond, a low dielectric loss resin for a multilayer wiring board which is a thermoplastic resin is provided.

上記式(1)、式(2)及び/又は式(3)のR〜Rの少なくとも1つが不飽和結合を有する場合、熱硬化性樹脂である多層配線基板用低誘電損失樹脂が提供される。この熱硬化性樹脂は、硬化させる前には溶剤に可溶で、ワニスを調整することが可能であり、又それを用いてプリプレグを作ることが出来る。プリプレグは、ガラスクロス等の基材にワニスを含浸し、乾燥して用いる。これを公知の方法で、配線層と積層して多層配線基板を作る。 When at least one of R 1 to R 8 in the above formula (1), formula (2) and / or formula (3) has an unsaturated bond, a low dielectric loss resin for a multilayer wiring board which is a thermosetting resin is provided. Is done. This thermosetting resin is soluble in a solvent before being cured, and the varnish can be adjusted, and a prepreg can be prepared using the varnish. The prepreg is used after impregnating a base material such as glass cloth with varnish and drying. This is laminated with a wiring layer by a known method to make a multilayer wiring board.

本発明は前記熱硬化性樹脂に誘電率が異なる種々の絶縁材料を分散した絶縁層を有する電気部品に適用することができる。このような構成にすることによって、絶縁層の誘電正接の増加を抑制しつつ、誘電率を容易に調整することができる。本発明の樹脂組成物ではブレンドする高分子量体の種類,添加量により1GHzにおける誘電率を2.3〜3.0程度の範囲で調整することができる。更に絶縁層に1GHzにおける誘電率が1.0〜2.2の低誘電率絶縁体を分散した高周波用電気部品では、絶縁層の誘電率を1.5〜2.2程度に調整することが可能である。絶縁層の誘電率を低減することにより、電気信号の一層の高速伝送が可能となる。これは電気信号の伝送速度が誘電率の平方根の逆数と比例関係にあるためであり、絶縁層の誘電率が低いほど伝送速度は高くなる。   The present invention can be applied to an electrical component having an insulating layer in which various insulating materials having different dielectric constants are dispersed in the thermosetting resin. With this configuration, the dielectric constant can be easily adjusted while suppressing an increase in the dielectric loss tangent of the insulating layer. In the resin composition of the present invention, the dielectric constant at 1 GHz can be adjusted in the range of about 2.3 to 3.0 depending on the type and amount of the high molecular weight material to be blended. Furthermore, in a high frequency electric component in which a low dielectric constant insulator having a dielectric constant of 1.0 to 2.2 at 1 GHz is dispersed in the insulating layer, the dielectric constant of the insulating layer can be adjusted to about 1.5 to 2.2. Is possible. By reducing the dielectric constant of the insulating layer, electrical signals can be transmitted at higher speed. This is because the transmission speed of the electric signal is proportional to the inverse of the square root of the dielectric constant. The lower the dielectric constant of the insulating layer, the higher the transmission speed.

前記低誘電率絶縁体としては低誘電率樹脂粒子,中空樹脂粒子,中空ガラスバルーンおよび空隙(空気)の1つ以上が好ましく、その粒子サイズは絶縁層の強度,絶縁信頼性の観点から、平均粒径0.2〜100μm、より好ましくは0.2〜60μmであることが好ましい。低誘電率樹脂粒子の例としてはポリテトラフルオロエチレン粒子,ポリスチレン−ジビニルベンゼン架橋粒子等が挙げられ、中空粒子としては中空スチレン−ジビニルベンゼン架橋粒子,シリカバルーン,ガラスバルーン,シラスバルーン等が挙げられる。低誘電率絶縁層は高速伝送性が要求される半導体装置の封止樹脂及びチップ間を電気的に接続するMCM基板等の配線,高周波用チップインダクタ等の回路の形成に適している。   The low dielectric constant insulator is preferably one or more of low dielectric constant resin particles, hollow resin particles, hollow glass balloons and voids (air), and the particle size is an average from the viewpoint of the strength of the insulating layer and the insulation reliability. The particle size is preferably 0.2 to 100 μm, more preferably 0.2 to 60 μm. Examples of the low dielectric constant resin particles include polytetrafluoroethylene particles, polystyrene-divinylbenzene crosslinked particles, and the hollow particles include hollow styrene-divinylbenzene crosslinked particles, silica balloons, glass balloons, and shirasu balloons. . The low dielectric constant insulating layer is suitable for forming a sealing resin of a semiconductor device that requires high-speed transmission, wiring such as an MCM substrate that electrically connects chips, and a circuit such as a high-frequency chip inductor.

一方、本発明では絶縁層中に1GHzにおける誘電率が3.0〜10、000の高誘電率絶縁体を分散することによって誘電正接の増大を抑制しつつ、誘電率が3.1〜20の高誘電率絶縁層を有する高周波用電気部品を作成することができる。絶縁層の誘電率を高くすることによって回路の小型化,コンデンサの高容量化が可能となり高周波用電気部品の小型化等に寄与できる。高誘電率,低誘電正接絶縁層はキャパシタ,共振回路用インダクタ,フィルター,アンテナ等の形成に適している。   On the other hand, in the present invention, the dielectric constant is 3.1 to 20 while suppressing an increase in dielectric loss tangent by dispersing a high dielectric constant insulator having a dielectric constant of 3.0 to 10,000 at 1 GHz in the insulating layer. A high-frequency electrical component having a high dielectric constant insulating layer can be produced. By increasing the dielectric constant of the insulating layer, it is possible to reduce the size of the circuit and increase the capacity of the capacitor, thereby contributing to the downsizing of high-frequency electrical components. The high dielectric constant and low dielectric loss tangent insulating layer is suitable for forming capacitors, resonant circuit inductors, filters, antennas and the like.

本発明に用いる高誘電率絶縁体としては、セラミック粒子または絶縁処理施した金属粒子が挙げられる。具体的には、シリカ,アルミナ,ジルコニア、セラミックス粒子;例えばMgSiO、Al、MgTiO、ZnTiO、ZnTiO、TiO、CaTiO、SrTiO,SrZrO,BaTi,BaTi,BaTi20、Ba(Ti,Sn)20、ZrTiO、(Zr,Sn)TiO、BaNdTi14、BaSmTiO14、Bi−BaO−Nd−TiO系、LaTi、BaTiO、Ba(Ti,Zr)O系、(Ba,Sr)TiO系等の高誘電率絶縁体を挙げることができ、同様に絶縁処理を施した金属微粒子;例えば金,銀,パラジウム,銅,ニッケル,鉄,コバルト,亜鉛,Mn−Mg−Zn系,Ni−Zn系,Mn−Zn系,カルボニル鉄,Fe−Si系,Fe−Al−Si系,Fe−Ni系等を挙げることができる。 Examples of the high dielectric constant insulator used in the present invention include ceramic particles or insulated metal particles. Specifically, silica, alumina, zirconia, ceramic particles; e.g. MgSiO 4, Al 2 O 3, MgTiO 3, ZnTiO 3, ZnTiO 4, TiO 2, CaTiO 3, SrTiO 3, SrZrO 3, BaTi 2 O 5, BaTi 4 O 9 , Ba 2 Ti 9 O 20 , Ba (Ti, Sn) 9 O 20 , ZrTiO 4 , (Zr, Sn) TiO 4 , BaNd 2 Ti 5 O 14 , BaSmTiO 14 , Bi 2 O 3 —BaO—Nd Examples thereof include high dielectric constant insulators such as 2 O 3 —TiO 2 , La 2 Ti 2 O 7 , BaTiO 3 , Ba (Ti, Zr) O 3 , and (Ba, Sr) TiO 3. Fine metal particles that have been subjected to insulation treatment, such as gold, silver, palladium, copper, nickel, iron, cobalt, zinc, Mn-Mg-Z System, Ni-Zn-based, Mn-Zn-based, carbonyl iron, Fe-Si-based, Fe-Al-Si-based, may be mentioned Fe-Ni system, or the like.

高誘電率絶縁体の粒子は破砕,造粒法または熱分解性金属化合物を噴霧,熱処理して金属微粒子を製造する噴霧熱分解法(特公昭63−31522号公報,特開平6−172802号公報,特開平6−279816号公報)等で作製される。噴霧熱分解法では出発材料である金属化合物、例えばカルボン酸塩,リン酸塩,硫酸塩等と、形成された金属と反応してセラッミク化するホウ酸,珪酸,リン酸あるいは、酸化後にセラミック化する各種金属塩を混合して噴霧熱分解処理する。これによって表面に絶縁層を有する金属粒子を形成することができる。高誘電率絶縁体の平均粒径は0.2〜100μm程度が好ましく、絶縁層の強度,絶縁信頼性の観点から、平均粒径0.2〜60μmが一層好ましい。粒径が小さくなると樹脂組成物の混練が困難となり、大きすぎると分散が不均一となり、絶縁破壊の起点となり、絶縁信頼性の低下を招く場合がある。高誘電率粒子の形状は、球形,破砕,ウイスカ状のいずれでもよい。以下、本発明を実施例、比較例により詳細に説明する。   The particles of the high dielectric constant insulator are crushed, granulated, or sprayed with a thermally decomposable metal compound and heat treated to produce metal fine particles (Japanese Patent Publication No. Sho 63-31522, Japanese Patent Laid-Open No. 6-172802). , Japanese Patent Laid-Open No. 6-279816) and the like. In the spray pyrolysis method, boric acid, silicic acid, phosphoric acid that reacts with the metal compound that is the starting material, such as carboxylate, phosphate, sulfate, etc., and forms a ceramic by reacting with the metal, or ceramic after oxidation Various metal salts are mixed and subjected to spray pyrolysis treatment. As a result, metal particles having an insulating layer on the surface can be formed. The average particle size of the high dielectric constant insulator is preferably about 0.2 to 100 μm, and more preferably an average particle size of 0.2 to 60 μm from the viewpoint of the strength of the insulating layer and the insulation reliability. If the particle size is small, it becomes difficult to knead the resin composition, and if it is too large, the dispersion becomes non-uniform, which may cause a dielectric breakdown, resulting in a decrease in insulation reliability. The shape of the high dielectric constant particles may be spherical, crushed, or whisker-like. Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples.

参考例1)(共重合体1の合成)
撹拌子を入れた二口フラスコにニトロベンゼン40ml、硫酸マグネシウム2.4g(20mmol)、塩化第一銅0.26g(2.7mmol)、ピリジン21.6ml(0.27mol)を入れ、50ml/分の酸素気流下、25℃で30分撹拌した。ニトロベンゼン25mlに溶解させた2,6−ジメチルフェノール4.4g(36mmol)と2−アリル−6−メチルフェノール0.59ml(4.0mmol)を反応器に加え、引き続き50ml/分の酸素気流下、25℃で90分間撹拌した。反応終了後、大過剰の塩酸/メタノールに沈殿させ、メタノールで数回洗浄後、クロロホルムに溶解させ、不溶物を濾別した。再び大過剰の塩酸/メタノールに再沈殿させ、メタノールで数回洗浄後、80℃/6時間真空乾燥して白色の固形物を得た。
Reference Example 1 (Synthesis of Copolymer 1)
Nitrobenzene 40 ml, magnesium sulfate 2.4 g (20 mmol), cuprous chloride 0.26 g (2.7 mmol), pyridine 21.6 ml (0.27 mol) were placed in a two-necked flask containing a stir bar, and 50 ml / min. The mixture was stirred at 25 ° C. for 30 minutes under an oxygen stream. 4.4 g (36 mmol) of 2,6-dimethylphenol dissolved in 25 ml of nitrobenzene and 0.59 ml (4.0 mmol) of 2-allyl-6-methylphenol were added to the reactor, and subsequently under an oxygen stream of 50 ml / min. Stir at 25 ° C. for 90 minutes. After completion of the reaction, the reaction mixture was precipitated in a large excess of hydrochloric acid / methanol, washed several times with methanol, dissolved in chloroform, and insolubles were filtered off. It was reprecipitated again in a large excess of hydrochloric acid / methanol, washed several times with methanol, and then dried in vacuo at 80 ° C. for 6 hours to obtain a white solid.

参考例2)(共重合体2の合成)
撹拌子を入れた二口フラスコにニトロベンゼン40ml、硫酸マグネシウム2.4g(20mmol)、塩化第一銅0.26g(2.7mmol)、ピリジン21.6ml(0.27mol)を入れ、50ml/分の酸素気流下、25℃で30分撹拌した。ニトロベンゼン25mlに溶解させた2,6−ジメチルフェノール3.9g(32mmol)と2,6−ビス(3−メチル−2−ブテニル)フェノール1.8g(8.0mmol)を反応器に加え、引き続き50ml/分の酸素気流下、25℃で90分間撹拌した。反応終了後、大過剰の塩酸(10ml)/メタノール(700ml)に沈殿させ、メタノールで数回洗浄後、クロロホルムに溶解させ、不溶物を濾別した。再び大過剰の塩酸/メタノールに再沈殿させ、メタノールで数回洗浄後、80℃/12時間真空乾燥して白色の固形物を得た。
( Reference Example 2) (Synthesis of Copolymer 2)
Nitrobenzene 40 ml, magnesium sulfate 2.4 g (20 mmol), cuprous chloride 0.26 g (2.7 mmol), pyridine 21.6 ml (0.27 mol) were placed in a two-necked flask containing a stir bar, and 50 ml / min. The mixture was stirred at 25 ° C. for 30 minutes under an oxygen stream. 3.9 g (32 mmol) of 2,6-dimethylphenol dissolved in 25 ml of nitrobenzene and 1.8 g (8.0 mmol) of 2,6-bis (3-methyl-2-butenyl) phenol were added to the reactor, followed by 50 ml. The mixture was stirred at 25 ° C. for 90 minutes under an oxygen stream / minute. After completion of the reaction, the reaction mixture was precipitated in a large excess of hydrochloric acid (10 ml) / methanol (700 ml), washed several times with methanol, dissolved in chloroform, and insoluble matter was filtered off. It was reprecipitated again in a large excess of hydrochloric acid / methanol, washed several times with methanol, and then dried in vacuo at 80 ° C./12 hours to obtain a white solid.

参考例3)(共重合体3の合成)
撹拌子を入れた二口フラスコにニトロベンゼン40ml、硫酸マグネシウム2.4g(20mmol)、塩化第一銅0.26g(2.7mmol)、ピリジン21.6ml(0.27mol)を入れ、50ml/分の酸素気流下、25℃で30分撹拌した。ニトロベンゼン25mlに溶解させた2,6−ジメチルフェノール4.4g(36mmol)と2,6−ジフェニルフェノール0.98g(4.0mmol)を反応器に加え、引き続き50ml/分の酸素気流下、25℃で90分間撹拌した。反応終了後、大過剰の塩酸(10ml)/メタノール(700ml)に沈殿させ、メタノールで数回洗浄後、クロロホルムに溶解させ、不溶物を濾別した。再び大過剰の塩酸/メタノールに再沈殿させ、メタノールで数回洗浄後、80℃/12時間真空乾燥して白色の固形物を得た。
( Reference Example 3) (Synthesis of Copolymer 3)
Nitrobenzene 40 ml, magnesium sulfate 2.4 g (20 mmol), cuprous chloride 0.26 g (2.7 mmol), pyridine 21.6 ml (0.27 mol) were placed in a two-necked flask containing a stir bar, and 50 ml / min. The mixture was stirred at 25 ° C. for 30 minutes under an oxygen stream. 4.4 g (36 mmol) of 2,6-dimethylphenol dissolved in 25 ml of nitrobenzene and 0.98 g (4.0 mmol) of 2,6-diphenylphenol were added to the reactor, followed by 25 ° C. under an oxygen stream of 50 ml / min. For 90 minutes. After completion of the reaction, the reaction mixture was precipitated in a large excess of hydrochloric acid (10 ml) / methanol (700 ml), washed several times with methanol, dissolved in chloroform, and insoluble matter was filtered off. It was reprecipitated again in a large excess of hydrochloric acid / methanol, washed several times with methanol, and then dried in vacuo at 80 ° C./12 hours to obtain a white solid.

(実施例)(共重合体4の合成)
撹拌子を入れた二口フラスコにニトロベンゼン40ml、硫酸マグネシウム2.4g(20mmol)、塩化第一銅0.26g(2.7mmol)、ピリジン21.6ml(0.27mol)を入れ、50ml/分の酸素気流下、25℃で30分撹拌した。ニトロベンゼン25mlに溶解させた2,6−ジメチルフェノール3.9g(32mmol)と2,6−ジフェニルフェノール0.98g(4.0mmol)と2−アリル−6−メチルフェノール0.59ml(4.0mmol)を反応器に加え、引き続き50ml/分の酸素気流下、25℃で90分間撹拌した。反応終了後、大過剰の塩酸(10ml)/メタノール(700ml)に沈殿させ、メタノールで数回洗浄後、クロロホルムに溶解させ、不溶物を濾別した。再び大過剰の塩酸/メタノールに再沈殿させ、メタノールで数回洗浄後、80℃/12時間真空乾燥して白色の固形物を得た。
(Example 1 ) (Synthesis of Copolymer 4)
Nitrobenzene 40 ml, magnesium sulfate 2.4 g (20 mmol), cuprous chloride 0.26 g (2.7 mmol), pyridine 21.6 ml (0.27 mol) were placed in a two-necked flask containing a stir bar, and 50 ml / min. The mixture was stirred at 25 ° C. for 30 minutes under an oxygen stream. 3.9 g (32 mmol) of 2,6-dimethylphenol, 0.98 g (4.0 mmol) of 2,6-diphenylphenol and 0.59 ml (4.0 mmol) of 2-allyl-6-methylphenol dissolved in 25 ml of nitrobenzene Was then stirred for 90 minutes at 25 ° C. under an oxygen stream of 50 ml / min. After completion of the reaction, the reaction mixture was precipitated in a large excess of hydrochloric acid (10 ml) / methanol (700 ml), washed several times with methanol, dissolved in chloroform, and insoluble matter was filtered off. It was reprecipitated again in a large excess of hydrochloric acid / methanol, washed several times with methanol, and then dried in vacuo at 80 ° C./12 hours to obtain a white solid.

(実施例)(共重合体5の合成)
撹拌子を入れた二口フラスコにニトロベンゼン40ml、硫酸マグネシウム2.4g(20mmol)、塩化第一銅0.26g(2.7mmol)、ピリジン21.6ml(0.27mol)を入れ、50ml/分の酸素気流下、25℃で30分撹拌した。ニトロベンゼン25mlに溶解させた2,6−ジメチルフェノール3.9g(32mmol)と2−メチル−6−(3−メチル−2−ブテニル)フェノール0.648g(4.0mmol)と2−アリル−6−メチルフェノール0.59ml(4.0mmol)を反応器に加え、引き続き50ml/分の酸素気流下、25℃で90分間撹拌した。反応終了後、大過剰の塩酸(10ml)/メタノール(700ml)に沈殿させ、メタノールで数回洗浄後、クロロホルムに溶解させ、不溶物を濾別した。再び大過剰の塩酸/メタノールに再沈殿させ、メタノールで数回洗浄後、80℃/12時間真空乾燥して白色の固形物を得た。
(Example 2 ) (Synthesis of Copolymer 5)
Nitrobenzene 40 ml, magnesium sulfate 2.4 g (20 mmol), cuprous chloride 0.26 g (2.7 mmol), pyridine 21.6 ml (0.27 mol) were placed in a two-necked flask containing a stir bar, and 50 ml / min. The mixture was stirred at 25 ° C. for 30 minutes under an oxygen stream. 3.9 g (32 mmol) of 2,6-dimethylphenol, 0.648 g (4.0 mmol) of 2-methyl-6- (3-methyl-2-butenyl) phenol and 2-allyl-6-6 dissolved in 25 ml of nitrobenzene 0.59 ml (4.0 mmol) of methylphenol was added to the reactor, followed by stirring at 25 ° C. for 90 minutes under an oxygen stream of 50 ml / min. After completion of the reaction, the reaction mixture was precipitated in a large excess of hydrochloric acid (10 ml) / methanol (700 ml), washed several times with methanol, dissolved in chloroform, and insoluble matter was filtered off. It was reprecipitated again in a large excess of hydrochloric acid / methanol, washed several times with methanol, and then dried in vacuo at 80 ° C./12 hours to obtain a white solid.

参考例1〜3、実施例1,2に関してそれぞれ、上記共重合体100gを表1に示す溶剤に溶解して、固形分量40重量%のワニスを作製した。さらに架橋反応促進剤として、2,5−ジメチル−2,5―(t−ブチルパーオキシ)ヘキシン−3(日本油脂製、パーヘキシン25B)を0.05重量%添加した。 In each of Reference Examples 1 to 3 and Examples 1 and 2 , 100 g of the copolymer was dissolved in the solvent shown in Table 1 to prepare a varnish having a solid content of 40% by weight. Furthermore, 0.05% by weight of 2,5-dimethyl-2,5- (t-butylperoxy) hexyne-3 (manufactured by NOF Corporation, perhexine 25B) was added as a crosslinking reaction accelerator.

硬化物特性は上記ワニスをポリエステルのフィルムに塗り、120℃、10分で溶剤を除去して、架橋前の樹脂粉体を得た。得られた粉体を厚さ1mmのスペーサを用いて、プレスで加圧、加熱成形することにより樹脂板硬化物を得た。成形条件は2MPaの圧力で
130℃/30分、さらに昇温して、180℃/60分加熱した。
The cured product was characterized by applying the varnish to a polyester film and removing the solvent at 120 ° C. for 10 minutes to obtain a resin powder before crosslinking. The obtained powder was pressed and thermoformed with a press using a spacer having a thickness of 1 mm to obtain a cured resin plate. The molding conditions were a pressure of 2 MPa, 130 ° C./30 minutes, a further temperature increase, and heating at 180 ° C./60 minutes.

基板特性は上記ワニスをEガラスクロス(日東紡、厚さ50μm)に含浸塗工し、120℃、10分で溶剤を除去して、プリプレグを得た。得られたプリプレグを3枚重ね、その上下に銅箔(日本電解、厚さ18μm)を置き、プレスで加圧、加熱成形することにより銅張積層板を得た。成形条件は2MPaの圧力で130℃/30分、さらに昇温して、180℃/60分加熱した。   Substrate characteristics were obtained by impregnating the above varnish into E glass cloth (Nittobo, thickness 50 μm) and removing the solvent at 120 ° C. for 10 minutes to obtain a prepreg. Three obtained prepregs were stacked, copper foil (Nihon Electrolysis, thickness 18 μm) was placed on the top and bottom of the prepreg, and pressed and thermoformed with a press to obtain a copper clad laminate. The molding conditions were a pressure of 2 MPa, 130 ° C./30 minutes, a further temperature increase, and heating at 180 ° C./60 minutes.

参考例1〜3、実施例1,2及び比較例の樹脂組成及び硬化物及び基板の特性を表1に示す。 Table 1 shows the resin compositions, cured products, and substrate characteristics of Reference Examples 1 to 3, Examples 1 and 2, and Comparative Example.

(比較例)
2,6−ジメチル−1,4−フェニレンエーテルの重合体として、アルドリッチ社製の市販品を用いた。
(比誘電率及び誘電正接の測定)
空洞共振法(アジレントテクノロジー社製8722ES型ネットワークアナライザー、関東電子応用開発製空洞共振器)によって10GHzで測定した。
(ガラス転移温度)
粘弾性測定装置(アイティー計測制御製DVA−200)を用いてtanδのピーク位置を転移温度とした。測定昇温速度は5℃/分とした。
(はんだ耐熱性)
JIS規格C6481に順じ、25x25mm角の両面銅張積層板を260℃のはんだ浴に120秒間浮かべ、取り出した試料の膨れ、はがれ、変形、反りなどを調べた。
(Comparative example)
As a polymer of 2,6-dimethyl-1,4-phenylene ether, a commercial product manufactured by Aldrich was used.
(Measurement of relative dielectric constant and dielectric loss tangent)
The measurement was performed at 10 GHz by a cavity resonance method (Agilent Technology's 8722ES network analyzer, Kanto Electronics Application Development cavity resonator).
(Glass-transition temperature)
The peak position of tan δ was defined as the transition temperature using a viscoelasticity measuring device (DVA-200 manufactured by IT Measurement Control). The measurement heating rate was 5 ° C./min.
(Solder heat resistance)
In accordance with JIS standard C6481, a 25 × 25 mm square double-sided copper-clad laminate was floated in a 260 ° C. solder bath for 120 seconds, and the sample taken out was examined for swelling, peeling, deformation, warping, and the like.

(実施例
撹拌子を入れた二口フラスコにニトロベンゼン40ml、硫酸マグネシウム2.4g(20mmol)、塩化第一銅0.26g(2.7mmol)、ピリジン21.6ml(0.27mol)を入れ、50ml/分の酸素気流下、25℃で30分撹拌した。ニトロベンゼン25mlに溶解させた2,6−ジメチルフェノール3.9g(32mmol)と2,6−ジフェニルフェノール0.98g(4.0mmol) と2,6−ビス(3−メチル−2−ブテニル)メチルフェノール0.9g(4.0mmol)を反応器に加え、引き続き50ml/分の酸素気流下、25℃で90分間撹拌した。
(Example 3 )
Nitrobenzene 40 ml, magnesium sulfate 2.4 g (20 mmol), cuprous chloride 0.26 g (2.7 mmol), pyridine 21.6 ml (0.27 mol) were placed in a two-necked flask containing a stir bar, and 50 ml / min. The mixture was stirred at 25 ° C. for 30 minutes under an oxygen stream. 3.9 g (32 mmol) of 2,6-dimethylphenol, 0.98 g (4.0 mmol) of 2,6-diphenylphenol and 2,6-bis (3-methyl-2-butenyl) methylphenol dissolved in 25 ml of nitrobenzene 0.9 g (4.0 mmol) was added to the reactor, followed by stirring for 90 minutes at 25 ° C. under an oxygen stream of 50 ml / min.

反応終了後、大過剰の塩酸(10ml)/メタノール(700ml)に沈殿させ、メタノールで数回洗浄後、クロロホルムに溶解させ、不溶物を濾別した。再び大過剰の塩酸/メタノールに再沈殿させ、メタノールで数回洗浄後、80℃/12時間真空乾燥して白色の固形物、(2,6−ジメチルフェニルエーテル)と(2,6−ジイソペンテニルフェニルエーテル)と(2,6−ジフェニルフェニルエーテル)の共重合体を得た。   After completion of the reaction, the reaction mixture was precipitated in a large excess of hydrochloric acid (10 ml) / methanol (700 ml), washed several times with methanol, dissolved in chloroform, and insoluble matter was filtered off. Again, reprecipitate in a large excess of hydrochloric acid / methanol, wash several times with methanol, and vacuum dry at 80 ° C./12 hours to obtain a white solid, (2,6-dimethylphenyl ether) and (2,6-diiso A copolymer of (pentenylphenyl ether) and (2,6-diphenylphenyl ether) was obtained.

上記共重合体80gとスチレン−ブタジエン成分20g(分子量4万、スチレン含量40%、日本ゼオン社製)をメチルエチルケトンに溶解して、固形分量40重量%のワニスを作製した。さらに架橋反応促進剤として、2,5−ジメチル−2,5―(t−ブチルパーオキシ)ヘキシン−3(日本油脂製、パーヘキシン25B)を0.05重量%添加した。   80 g of the copolymer and 20 g of a styrene-butadiene component (molecular weight 40,000, styrene content 40%, manufactured by Nippon Zeon Co., Ltd.) were dissolved in methyl ethyl ketone to prepare a varnish having a solid content of 40% by weight. Furthermore, 0.05% by weight of 2,5-dimethyl-2,5- (t-butylperoxy) hexyne-3 (manufactured by NOF Corporation, perhexine 25B) was added as a crosslinking reaction accelerator.

硬化物特性は上記ワニスをポリエステルのフィルムに塗り、120℃、10分で溶剤を除去して、架橋前の樹脂粉体を得た。得られた粉体を厚さ1mmのスペーサを用いて、プレスで加圧、加熱成形することにより樹脂板硬化物を得た。成形条件は2MPaの圧力で130℃/30分、さらに昇温して、180℃/60分加熱した。   The cured product was characterized by applying the varnish to a polyester film and removing the solvent at 120 ° C. for 10 minutes to obtain a resin powder before crosslinking. The obtained powder was pressed and thermoformed with a press using a spacer having a thickness of 1 mm to obtain a cured resin plate. The molding conditions were a pressure of 2 MPa, 130 ° C./30 minutes, a further temperature increase, and heating at 180 ° C./60 minutes.

基板特性は上記ワニスをEガラスクロス(日東紡、厚さ50μm)に含浸塗工し、120℃、10分で溶剤を除去して、プリプレグを得た。得られたプリプレグを3枚重ね、その上下に銅箔(日本電解、厚さ18μm)を置き、プレスで加圧、加熱成形することにより銅張積層板を得た。成形条件は2MPaの圧力で130℃/30分、さらに昇温して、
180℃/60分加熱した。
Substrate characteristics were obtained by impregnating the above varnish into E glass cloth (Nittobo, thickness 50 μm) and removing the solvent at 120 ° C. for 10 minutes to obtain a prepreg. Three obtained prepregs were stacked, copper foil (Nihon Electrolysis, thickness 18 μm) was placed on the top and bottom of the prepreg, and pressed and thermoformed with a press to obtain a copper clad laminate. The molding conditions were a pressure of 2 MPa, 130 ° C./30 minutes, and a further temperature increase,
Heated at 180 ° C./60 minutes.

第二成分として、スチレン−ブタジエン成分を添加することにより、得られた銅張積層板の銅ピール強度は1.5kN/mと非常に高い値を示した。これは第二成分としてゴム成分をブレンドすることによりフィルム形成能,柔軟性及び接着性を付与できた効果によるものである。   By adding a styrene-butadiene component as the second component, the copper peel strength of the obtained copper-clad laminate showed a very high value of 1.5 kN / m. This is due to the effect that film forming ability, flexibility and adhesiveness can be imparted by blending a rubber component as the second component.

測定法;(銅ピール強度)JIS規格C6481に準じて、90度引き剥がし強度を測定した。   Measurement method: (copper peel strength) The 90-degree peel strength was measured according to JIS standard C6481.

Figure 0005339318
Figure 0005339318

以下、各電子部品に要求される要求特性に基づいて本発明の電子部品について説明する。
(1)半導体装置
従来、高周波用半導体素子は、高周波動作の障害となる配線間静電容量を低減するために、図1に記載のように、基材1によって形成された空間内に搭載された半導体チップ3をシール材5とカバー4とにより密封された、空気層を絶縁層とするハーメチックシール型の気密パッケージにて製造されてきた。基材1の側面からワイヤー配線7に接続され半導体チップの端子6を露出させる。
Hereinafter, the electronic component of the present invention will be described based on required characteristics required for each electronic component.
(1) Semiconductor Device Conventionally, a high-frequency semiconductor element is mounted in a space formed by a base material 1 as shown in FIG. 1 in order to reduce the inter-wiring capacitance that hinders high-frequency operation. The semiconductor chip 3 is sealed by a sealing material 5 and a cover 4 and is manufactured in a hermetic seal type hermetic package having an air layer as an insulating layer. The terminal 6 of the semiconductor chip that is connected to the wire wiring 7 from the side surface of the substrate 1 is exposed.

本発明では所定の配合比とした架橋成分,低誘電率絶縁体粒子,必要により高分子量体,難燃剤及び第二の架橋成分,離型剤,着色剤等を含有する低誘電率かつ低誘電正接な樹脂組成物を有機溶媒中あるいは無溶剤状態で混合分散する。そして、該低誘電率、低誘電正接樹脂組成物で半導体チップを被覆し、必要により乾燥し、硬化することによって、低誘電率,低誘電正接樹脂層で絶縁,保護された半導体装置を作製する。該低誘電率,低誘電正接樹脂組成物の硬化は120℃〜240℃の加熱で行うことができる。   In the present invention, a low dielectric constant and low dielectric constant containing a crosslinking component having a predetermined blending ratio, low dielectric constant insulator particles, and optionally containing a high molecular weight material, a flame retardant and a second crosslinking component, a release agent, a colorant and the like. The tangent resin composition is mixed and dispersed in an organic solvent or without a solvent. Then, the semiconductor chip is coated with the low dielectric constant and low dielectric loss tangent resin composition, and if necessary dried and cured, thereby producing a semiconductor device insulated and protected by the low dielectric constant and low dielectric loss tangent resin layer. . The low dielectric constant and low dielectric loss tangent resin composition can be cured by heating at 120 ° C to 240 ° C.

図2に本発明の高周波用半導体装置の一例を示すが、その形状は特に限定されるものではない。図2において、半導体チップ3はワイヤー配線7によってリードフレーム9に電気的に接続される。半導体チップ3、ワイヤー配線7および半導体チップ3を搭載したリードフレーム9の部分は、低誘電損失樹脂8により封止される。   FIG. 2 shows an example of the high-frequency semiconductor device of the present invention, but the shape is not particularly limited. In FIG. 2, the semiconductor chip 3 is electrically connected to the lead frame 9 by wire wiring 7. The portion of the lead frame 9 on which the semiconductor chip 3, the wire wiring 7 and the semiconductor chip 3 are mounted is sealed with a low dielectric loss resin 8.

本発明によれば安価なモールド成型法より、伝送速度が高く、誘電損失が小さい高効率な高周波用半導体装置を作製することができる。本発明の低誘電率,低誘電正接な絶縁層の形成方法としては、トランスファープレス,ポッティング等があり、半導体装置の形状に応じて適宜選択される。半導体装置の形態は特に限定されないが例えば、テープキャリア型パッケージ,半導体チップが配線基板上にベアチップ実装された半導体装置などを例として挙げることができる。
(2)多層基板
従来の熱硬化性樹脂組成物に比べて誘電正接が低い。従って本架橋成分を絶縁層に使用した配線基板は誘電損失が少ない高周波特性の優れた配線基板となる。以下、多層配線基板の作成方法について説明する。
According to the present invention, a high-efficiency high-frequency semiconductor device having a high transmission rate and a small dielectric loss can be manufactured by an inexpensive molding method. As a method for forming a low dielectric constant and low dielectric loss tangent insulating layer according to the present invention, there are transfer press, potting and the like, which are appropriately selected according to the shape of the semiconductor device. Although the form of the semiconductor device is not particularly limited, for example, a tape carrier type package, a semiconductor device in which a semiconductor chip is mounted on a wiring substrate on a bare chip, and the like can be given as examples.
(2) Multilayer substrate A dielectric loss tangent is low compared with the conventional thermosetting resin composition. Therefore, a wiring board using this cross-linking component as an insulating layer is a wiring board with low dielectric loss and excellent high frequency characteristics. Hereinafter, a method for producing a multilayer wiring board will be described.

本発明において、多層配線基板の出発材となるプリプレグ或いは絶縁層付導体箔は、以下のようにして作成する。まず、所定の配合比とした架橋成分、高分子量体、必要により低誘電率絶縁体粒子又は高誘電率絶縁体粒子、難燃剤及び第二の架橋成分、着色剤等を配合した低誘電正接樹脂組成物を溶剤中で混練してスラリー化する。その後、ガラスクロス、不織布,導体箔等の基材に塗布、乾燥して作成する。プリプレグは積層板のコア材、積層板と積層板或いは導体箔との接着層兼絶縁層として使用できる。   In the present invention, the prepreg or conductive foil with an insulating layer, which is a starting material for the multilayer wiring board, is prepared as follows. First, a low dielectric loss tangent resin containing a cross-linking component, a high molecular weight material, a low dielectric constant insulator particle or a high dielectric constant insulator particle, a flame retardant and a second cross-linking component, a colorant, etc. The composition is kneaded in a solvent to form a slurry. Thereafter, it is prepared by applying to a substrate such as glass cloth, non-woven fabric, or conductive foil and drying. The prepreg can be used as a core material of a laminated plate, an adhesive layer / insulating layer between the laminated plate and the laminated plate or conductor foil.

一方、絶縁層付導体箔はラミネート、プレスによってコア材表面に導体層を形成する際に使用される。本発明のコア材とは、絶縁層付導体箔を担持し、補強する基材であり、ガラスクロス、不織布、フィルム材、セラミック基板、ガラス基板、エポキシ等の汎用樹脂板,汎用積層板等を例としてあげることができる。スラリー化に使用する溶剤は、配合する架橋成分、高分子量体、難燃剤等の溶媒であることが好ましく、その例としてはジメチルホルムアミド、メチルエチルケトン、メチルイソブチルケトン、ジオキサン、テトラヒドロフラン、トルエン、クロロホルム等を上げることができる。プリプレグ、絶縁層付導体箔の乾燥条件(Bステージ化)は用いた溶媒、塗布した樹脂層の厚さによって調整する。例えばトルエンを用いて、乾燥膜厚約50μmの絶縁層を形成する場合には80〜130℃で30〜90分乾燥するとよい。必要に応じて好ましい絶縁層の厚さは50〜300μmであり、その用途や要求特性(配線パターンサイズ,直流抵抗)によって調整する。   On the other hand, the conductor foil with an insulating layer is used when a conductor layer is formed on the surface of the core material by laminating or pressing. The core material of the present invention is a base material that supports and reinforces a conductive foil with an insulating layer, such as glass cloth, nonwoven fabric, film material, ceramic substrate, glass substrate, epoxy general-purpose resin plate, general-purpose laminated plate, etc. As an example. The solvent used for slurrying is preferably a solvent such as a cross-linking component, a high molecular weight body, a flame retardant, etc., such as dimethylformamide, methyl ethyl ketone, methyl isobutyl ketone, dioxane, tetrahydrofuran, toluene, chloroform, Can be raised. The drying conditions (B stage) of the prepreg and the conductor foil with insulating layer are adjusted according to the solvent used and the thickness of the applied resin layer. For example, when an insulating layer having a dry film thickness of about 50 μm is formed using toluene, the insulating layer may be dried at 80 to 130 ° C. for 30 to 90 minutes. The thickness of a preferable insulating layer is 50-300 micrometers as needed, and it adjusts with the use and required characteristics (wiring pattern size, direct current resistance).

以下、多層配線基板の作成例を示す。図3に第一の例を示す。図3(A);所定の厚さのプリプレグ10と導体箔11を重ねる。使用する導体箔は金,銀,銅,アルミニウム等導電率の良好な物の中から任意に選択する。その表面形状はプリプレグとの接着力を高くする必要がある場合には凹凸の大きな箔を用い、高周波特性を一層向上する必要がある場合には比較的平滑は表面を有する箔を用いる。導体箔の厚さは9〜35μm程度のものがエッチング加工性の観点から好ましい。図3(B);プリプレグと導体箔を圧着しながら加熱するプレス加工によって接着,硬化し、表面に導体層を有する積層板13が得られる。加熱条件は120〜240℃、1.0〜10MPa、1〜3時間とすることが好ましい。また、プレス加工の温度、圧力は上記範囲内で多段階としてもよい。本発明で得られる積層板は絶縁層の誘電正接が非常に低いことに起因して優れた高周波伝送特性を示す。   Hereinafter, an example of producing a multilayer wiring board will be shown. FIG. 3 shows a first example. FIG. 3A: A prepreg 10 having a predetermined thickness and a conductor foil 11 are stacked. The conductor foil to be used is arbitrarily selected from materials having good conductivity such as gold, silver, copper, and aluminum. As for the surface shape, a foil with large irregularities is used when it is necessary to increase the adhesive strength with the prepreg, and a foil having a relatively smooth surface is used when it is necessary to further improve the high frequency characteristics. The thickness of the conductor foil is preferably about 9 to 35 μm from the viewpoint of etching processability. FIG. 3B: A laminated plate 13 having a conductor layer on its surface is obtained by bonding and curing by pressing that heats the prepreg and the conductor foil while pressing them. The heating conditions are preferably 120 to 240 ° C., 1.0 to 10 MPa, and 1 to 3 hours. Further, the temperature and pressure of the press working may be multistage within the above range. The laminate obtained by the present invention exhibits excellent high-frequency transmission characteristics due to the very low dielectric loss tangent of the insulating layer.

次いで両面配線基板の作成例を説明する。図3(C);先に作成した積層板の所定の位置にドリル加工によってスルーホール14を形成する。図3(D);めっきによってスルーホール内にめっき膜15を形成して、表裏の導体箔を電気的に接続する。図3(E);両面の導体箔をパターンニングして導体配線16を形成する。   Next, an example of creating a double-sided wiring board will be described. FIG. 3C: A through hole 14 is formed by drilling at a predetermined position of the previously produced laminate. FIG. 3D: A plating film 15 is formed in the through hole by plating, and the front and back conductor foils are electrically connected. FIG. 3E: Conductor wiring 16 is formed by patterning the conductive foils on both sides.

次いで多層配線基板の作成例を説明する。図4(A);所定の厚さのプリプレグと導体箔を用いて積層板13を作成する。図4(B);積層板の両面に導体配線16を形成する。図4(C);パターン形成後の積層板に所定の厚さのプリプレグ10と導体箔11を重ね合わせる。図4(D);加熱加圧して外層に導体箔を形成する。図4(E);所定の位置にドリル加工によってスルーホール14を形成する。図4(F);スルーホール内にめっき膜15を形成し、層間を電気的に接続する。図4(G);外層の導体箔にパターンニングを施し、導体配線16を形成する。   Next, an example of creating a multilayer wiring board will be described. FIG. 4A: A laminate 13 is prepared using a prepreg having a predetermined thickness and a conductive foil. FIG. 4B: Conductor wiring 16 is formed on both sides of the laminate. FIG. 4C: A prepreg 10 and a conductor foil 11 having a predetermined thickness are superimposed on the laminated board after pattern formation. FIG. 4D: Heating and pressing are performed to form a conductor foil on the outer layer. FIG. 4E; a through hole 14 is formed by drilling at a predetermined position. FIG. 4F; a plating film 15 is formed in the through hole, and the layers are electrically connected. FIG. 4G: Patterning is performed on the outer layer conductor foil to form the conductor wiring 16.

次いで絶縁層付銅箔を用いた多層配線基板の作成例を示す。図5(A);導体箔11に本発明の樹脂組成物のワニスを塗布,乾燥して未硬化の絶縁層17を有する絶縁層付導体箔18を作成する。図5(B);リード端子19と絶縁層付導体箔18を重ねる。図5(C);プレス加工によってリード端子19と絶縁層付導体箔18を接着し、積層板13を形成する。予めコア材の表面をカップリング処理或いは粗化処理することによってコア材と絶縁層の接着性を向上させることができる。図5(D);積層板13の導体箔18をパターンニングして導体配線16を形成する。図5(E);配線形成された積層板13に絶縁層付導体箔を重ねる。図5(F);プレス加工によって積層板13と絶縁層付導体箔を接着する。図5(G);所定の位置にスルーホール14を形成する。図5(H);スルーホール14にめっき膜15を形成する。図5(I);外層の導体箔11をパターンニングして導体配線16を形成する。   Next, an example of creating a multilayer wiring board using a copper foil with an insulating layer is shown. FIG. 5A: A conductive foil 18 with an insulating layer having an uncured insulating layer 17 is formed by applying a varnish of the resin composition of the present invention to the conductive foil 11 and drying it. FIG. 5B: The lead terminal 19 and the conductor foil 18 with an insulating layer are stacked. FIG. 5C; the lead terminal 19 and the insulating layer-attached conductor foil 18 are bonded together by press working to form the laminated plate 13. The adhesion between the core material and the insulating layer can be improved by previously coupling or roughening the surface of the core material. FIG. 5D: Conductive wiring 16 is formed by patterning the conductive foil 18 of the laminate 13. FIG. 5E: Conductor foil with an insulating layer is stacked on the laminated board 13 on which wiring is formed. FIG. 5F: The laminated plate 13 and the conductor foil with an insulating layer are bonded by press working. FIG. 5G: A through hole 14 is formed at a predetermined position. FIG. 5H: a plating film 15 is formed in the through hole 14. FIG. 5I: Conductor wiring 16 is formed by patterning the outer layer conductor foil 11.

次いでスクリーン印刷による多層基板の作成例を示す。図6(A);積層板13の導体箔をパターンニングし、導体配線16する。図6(B);本発明の樹脂組成物のワニスをスクリーン印刷によって塗布,乾燥して絶縁層17を形成する。このとき、スクリーン印刷によって部分的に誘電率の異なる樹脂組成物を塗布し、異なる誘電率を有する絶縁層を絶縁層17と同一面内に形成することができる。図6(C);絶縁層17に導体箔11を重ね合わせ、プレス加工によって接着する。図6(D);所定の位置にスルーホール14を形成する。図6(E);スルーホール内にめっき膜15を形成する。図6(F);外層の導体箔11をパターンニングして導体配線16を形成する。   Next, an example of producing a multilayer substrate by screen printing is shown. FIG. 6A: The conductor foil of the laminate 13 is patterned to form conductor wiring 16. FIG. 6B: The insulating layer 17 is formed by applying and drying the varnish of the resin composition of the present invention by screen printing. At this time, a resin composition having a partially different dielectric constant can be applied by screen printing, and an insulating layer having a different dielectric constant can be formed in the same plane as the insulating layer 17. FIG. 6C: Conductive foil 11 is superimposed on insulating layer 17 and bonded by pressing. FIG. 6D: a through hole 14 is formed at a predetermined position. FIG. 6E: a plating film 15 is formed in the through hole. FIG. 6F: Conductor wiring 16 is formed by patterning the outer layer conductive foil 11.

本発明では、前述の例に限らず、種々の配線基板を形成することができる。例えば、配線形成を施した複数の積層板を、プリプレグを介して一括積層し、高多層化したり、レーザー加工またはドライエッチング加工によって形成されるブラインドビアホールによって層間を電気的に接続してビルドアップ多層配線基板を作成したりすることもできる。多層配線基板の作製にあたっては、各絶縁層の誘電率,誘電正接は任意に選択でき、異なる特性の絶縁層を混載して、低誘電損失、高速伝送、小型化、低価格化等の目的に応じて組み合わせることができる。   The present invention is not limited to the above example, and various wiring boards can be formed. For example, a plurality of laminates with wiring formed can be laminated at once via prepreg to increase the number of layers, or the layers can be electrically connected by blind via holes formed by laser processing or dry etching processing to build up multilayers A wiring board can also be created. In the production of multilayer wiring boards, the dielectric constant and dielectric loss tangent of each insulating layer can be selected arbitrarily. For the purpose of low dielectric loss, high-speed transmission, miniaturization, cost reduction, etc. by mixing insulating layers with different characteristics. You can combine them accordingly.

本発明の低誘電正接樹脂組成物を絶縁層として用いることによって誘電損失が小さく高周波特性に優れた高周波用電子部品を得ることができる。更に前述のような多層配線基板の作成方法により導体配線内に素子パターンを組み込むことによって種々の機能を有する高性能な高周波用電気部品が得られる。一例としては、キャパシタ、インダクタ、アンテナの少なくとも一つの機能を有する多層配線基板が作製できる。   By using the low dielectric loss tangent resin composition of the present invention as an insulating layer, a high frequency electronic component having a small dielectric loss and excellent high frequency characteristics can be obtained. Furthermore, high-performance high-frequency electrical components having various functions can be obtained by incorporating element patterns in the conductor wiring by the method for producing a multilayer wiring board as described above. As an example, a multilayer wiring board having at least one function of a capacitor, an inductor, and an antenna can be manufactured.

以下、本発明と他の電子部品用材料を組み合わせた電子部品の実施例を示す。表2に本発明に用いた樹脂組成物の組成及びその特性を示す。表中の組成比は重量比を表す。以下に実施例で使用した試薬の名称、ワニスの調製方法及び樹脂の電子材料として必要な性能の評価方法を説明する。なお、高分子量体として、参考例1,実施例の条件で合成した共重合ポリマーを例に挙げたが、これによって本特許の範囲が限定されるものではない。
(難燃剤)
ヒシガード:日本化学工業製,赤燐粒子(ヒシガードTP−A10),平均粒径20μm
(低誘電率絶縁体)
Z−36:東海工業製,硼珪酸ガラスバルーン(平均粒径56μm)
(高誘電率絶縁体)
Ba−Ti系:1GHzにおける誘電率が70、密度=5.5g/cm、平均粒子1.5μmのチタン酸バリウム系の無機フィラー
(ワニスの調製方法)
所定量の組成とした樹脂組成物をトルエンで混合,分散することによって樹脂組成物のワニスを作製した。
(比誘電率及び誘電正接の測定)
空洞共振法(アジレントテクノロジー製8722ES型ネットワークアナライザー、関東電子応用開発製空洞共振器)によって10GHzで測定した。
(難燃性)
難燃性はサンプルサイズ70×3×1.5mm3の試料を用いてUL−94規格に従って評価した。
参考例4,実施例
参考例4,実施例参考例1,実施例に難燃剤として赤燐粒子を添加した樹脂組成物の例である。難燃剤を添加することによって樹脂組成物が難燃化でき、電気部品の安全性が向上する。
参考例5、実施例
参考例5,6,実施例参考例1,実施例に低誘電率絶縁体としてガラスバルーン(Z36)を添加した例である。Z36の添加量の増加に伴い誘電率は2.8から2.0に低下した。本樹脂組成物を絶縁層に用いた電気部品は誘電損失が小さく、高速伝送性が高くなる。
(実施例6,7
実施例6、7は実施例に高誘電率絶縁体としてセラミック粒子(Ba−Ti系)を添加した例である。Ba−Ti系の含有率が増すにつれて誘電率は2.8〜12.1に増加した。本樹脂組成物を絶縁層に用いた電気部品は誘電損失が小さく、小型の高周波用電気部品となる。
Examples of electronic components obtained by combining the present invention with other electronic component materials will be described below. Table 2 shows the composition and characteristics of the resin composition used in the present invention. The composition ratio in the table represents the weight ratio. The name of the reagent used in the examples, the method for preparing the varnish, and the method for evaluating the performance necessary as an electronic material for the resin are described below. In addition, although the copolymer polymer synthesize | combined on the conditions of the reference example 1 and Example 1 was mentioned as an example as a high molecular weight body, the range of this patent is not limited by this.
(Flame retardants)
Hishiguard: Nippon Chemical Industry, red phosphorus particles (Hishiguard TP-A10), average particle size 20 μm
(Low dielectric constant insulator)
Z-36: manufactured by Tokai Kogyo, borosilicate glass balloon (average particle size 56 μm)
(High dielectric constant insulator)
Ba-Ti-based: Barium titanate-based inorganic filler having a dielectric constant of 70 at 1 GHz, density = 5.5 g / cm 3 , and average particle size of 1.5 μm (preparation method of varnish)
A resin composition varnish was prepared by mixing and dispersing a predetermined amount of the resin composition in toluene.
(Measurement of relative dielectric constant and dielectric loss tangent)
It measured at 10 GHz by the cavity resonance method (Agilent Technology 8722ES type network analyzer, Kanto Electronics application development cavity resonator).
(Flame retardance)
The flame retardancy was evaluated according to the UL-94 standard using a sample size of 70 × 3 × 1.5 mm 3.
( Reference Example 4 , Example 4 )
Reference Example 4 and Example 4 are examples of resin compositions obtained by adding red phosphorus particles as a flame retardant to Reference Example 1 and Example 1 . By adding a flame retardant, the resin composition can be made flame retardant, and the safety of electrical components is improved.
( Reference Examples 5 and 6 , Example 5 )
Reference Examples 5 , 6 and Example 5 are examples in which a glass balloon (Z36) was added to Reference Examples 1 and 1 as a low dielectric constant insulator. The dielectric constant decreased from 2.8 to 2.0 with increasing amount of Z36 added. An electrical component using the resin composition for an insulating layer has a small dielectric loss and a high speed transmission property.
(Examples 6 and 7 )
Examples 6 and 7 are examples in which ceramic particles (Ba-Ti system) are added to Example 1 as a high dielectric constant insulator. The dielectric constant increased from 2.8 to 12.1 with increasing Ba-Ti content. An electrical component using the present resin composition for the insulating layer has a small dielectric loss and is a small-sized high-frequency electrical component.

Figure 0005339318
Figure 0005339318

従来の高周波用半導体装置の構造例を示す断面図である。It is sectional drawing which shows the structural example of the conventional high frequency semiconductor device. 本発明の高周波用半導体装置の構造例を示す断面図である。It is sectional drawing which shows the structural example of the high frequency semiconductor device of this invention. 本発明の多層配線基板の作成例を示すフロー図である。It is a flowchart which shows the example of preparation of the multilayer wiring board of this invention. 本発明による多層配線基板の他の作成例を示すフロー図である。It is a flowchart which shows the other example of preparation of the multilayer wiring board by this invention. 本発明の多層配線基板の更に他の作成例を示すフロー図である。It is a flowchart which shows the other example of preparation of the multilayer wiring board of this invention. 本発明による多層配線基板の別の作成例を示すフロー図である。It is a flowchart which shows another preparation example of the multilayer wiring board by this invention.

符号の説明Explanation of symbols

1…基材、2…凹部、3…半導体チップ、4…カバー、5…シール材、6…端子、7…ワイヤー配線、8…低誘電率絶縁層、9…リードフレーム、10…プリプレグ、11…導体箔、13…積層板、14…スルーホール、15…めっき膜、16…導体配線、17…絶縁層。   DESCRIPTION OF SYMBOLS 1 ... Base material, 2 ... Recessed part, 3 ... Semiconductor chip, 4 ... Cover, 5 ... Sealing material, 6 ... Terminal, 7 ... Wire wiring, 8 ... Low dielectric constant insulating layer, 9 ... Lead frame, 10 ... Prepreg, 11 DESCRIPTION OF SYMBOLS ... Conductive foil, 13 ... Laminated board, 14 ... Through hole, 15 ... Plating film, 16 ... Conductor wiring, 17 ... Insulating layer.

Claims (12)

式(1)の繰り返し単位からなる共重合体である多層配線基板用低誘電損失樹脂。
Figure 0005339318
ここで、Xは式(3)の繰り返し単位であり、R、Rがメチル基であり、R〜Rは炭素数2から9の炭化水素基であって、n、m、r、sは重合度を表す1以上の整数である。R〜Rの少なくとも1つは重合性不飽和結合を持っており、RとRを有する単位,RとRを有する単位及びRとRを有する単位は互いに異なる。
Figure 0005339318
A low dielectric loss resin for multilayer wiring boards, which is a copolymer composed of repeating units of the formula (1).
Figure 0005339318
Here, X is a repeating unit of the formula (3), R 1 and R 2 are methyl groups, R 5 to R 8 are hydrocarbon groups having 2 to 9 carbon atoms, and n, m, r , S is an integer of 1 or more representing the degree of polymerization. At least one of R 5 to R 8 has a polymerizable unsaturated bond, and the units having R 1 and R 2 , the units having R 5 and R 6, and the units having R 7 and R 8 are different from each other.
Figure 0005339318
上記共重合体の分子量が5,000から30,000である請求項1に記載の多層配線基板用低誘電損失樹脂。   The low dielectric loss resin for multilayer wiring boards according to claim 1, wherein the copolymer has a molecular weight of 5,000 to 30,000. 上記共重合体が、沸点が150℃以下の非ハロゲン系有機溶剤に20重量%以上可溶であることを特徴とする請求項1に記載の多層配線基板用低誘電損失樹脂。   2. The low dielectric loss resin for a multilayer wiring board according to claim 1, wherein the copolymer is soluble in a non-halogen organic solvent having a boiling point of 150 [deg.] C. or less in an amount of 20% by weight or more. 上記共重合体のガラス転移点が220℃以上である請求項1に記載の多層配線基板用低誘電損失樹脂。   The low dielectric loss resin for multilayer wiring boards according to claim 1, wherein the copolymer has a glass transition point of 220 ° C. or higher. 沸点150℃以下の非ハロゲン系有機溶剤と、該有機溶剤に溶解した請求項1〜4のいずれかに記載の低誘電損失樹脂を含む多層配線基板用低誘電損失樹脂組成物。   A low dielectric loss resin composition for multilayer wiring boards, comprising a non-halogen organic solvent having a boiling point of 150 ° C. or lower and the low dielectric loss resin according to claim 1 dissolved in the organic solvent. 更にゴム成分を含有する請求項5に記載の多層配線基板用低誘電損失樹脂組成物。   Furthermore, the low dielectric loss resin composition for multilayer wiring boards of Claim 5 containing a rubber component. 架橋促進剤として過酸化物を0.01〜1wt%含有する請求項5または請求項6に記載の低誘電損失樹脂を含む多層配線基板用低誘電損失樹脂組成物。 The low dielectric loss resin composition for multilayer wiring boards containing the low dielectric loss resin of Claim 5 or Claim 6 containing 0.01-1 wt% of peroxide as a crosslinking accelerator. 絶縁層に難燃剤を含有している請求項1〜7のいずれかに記載の低誘電損失樹脂を含む多層配線基板用低誘電損失樹脂組成物。   The low dielectric loss resin composition for multilayer wiring boards containing the low dielectric loss resin in any one of Claims 1-7 which contains the flame retardant in an insulating layer. 請求項5〜8のいずれかに記載の多層配線基板用樹脂組成物の絶縁層が、平均粒径0.1〜100μmの低誘電率樹脂粒子、中空樹脂粒子、中空ガラスバルーンおよび空隙から選ばれる少なくとも1種類の低誘電率相を含有していることを特徴とする多層配線基板用低誘電損失樹脂組成物。   The insulating layer of the resin composition for multilayer wiring boards according to any one of claims 5 to 8 is selected from low dielectric constant resin particles having an average particle diameter of 0.1 to 100 µm, hollow resin particles, hollow glass balloons, and voids. A low dielectric loss resin composition for multilayer wiring boards, comprising at least one kind of low dielectric constant phase. 請求項5〜9のいずれかに記載の多層配線基板用樹脂組成物が、高誘電率絶縁体としてセラミック粒子を添加した絶縁層を有することを特徴とする多層配線基板用低誘電損失樹脂組成物。   The resin composition for a multilayer wiring board according to any one of claims 5 to 9, comprising an insulating layer to which ceramic particles are added as a high dielectric constant insulator. . 請求項5又は6記載の低誘電損失樹脂組成物を用いて製造された多層配線基板用プリプレグ。   A prepreg for a multilayer wiring board produced using the low dielectric loss resin composition according to claim 5 or 6. 請求項11記載の多層配線基板用プリプレグを用いて製造された多層配線基板。   The multilayer wiring board manufactured using the prepreg for multilayer wiring boards of Claim 11.
JP2005246041A 2004-08-27 2005-08-26 Low dielectric loss resin for multilayer wiring board, resin composition, prepreg, and multilayer wiring board Expired - Fee Related JP5339318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005246041A JP5339318B2 (en) 2004-08-27 2005-08-26 Low dielectric loss resin for multilayer wiring board, resin composition, prepreg, and multilayer wiring board

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004248180 2004-08-27
JP2004248180 2004-08-27
JP2005246041A JP5339318B2 (en) 2004-08-27 2005-08-26 Low dielectric loss resin for multilayer wiring board, resin composition, prepreg, and multilayer wiring board

Publications (2)

Publication Number Publication Date
JP2006093690A JP2006093690A (en) 2006-04-06
JP5339318B2 true JP5339318B2 (en) 2013-11-13

Family

ID=36234314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005246041A Expired - Fee Related JP5339318B2 (en) 2004-08-27 2005-08-26 Low dielectric loss resin for multilayer wiring board, resin composition, prepreg, and multilayer wiring board

Country Status (1)

Country Link
JP (1) JP5339318B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4909846B2 (en) * 2007-09-13 2012-04-04 株式会社日立製作所 Resin composition and electronic component
US9051465B1 (en) 2012-02-21 2015-06-09 Park Electrochemical Corporation Thermosetting resin composition containing a polyphenylene ether and a brominated fire retardant compound
US9243164B1 (en) 2012-02-21 2016-01-26 Park Electrochemical Corporation Thermosetting resin composition containing a polyphenylene ether and a brominated fire retardant compound
CN113444274B (en) * 2021-07-16 2023-04-04 宁夏清研高分子新材料有限公司 Low dielectric liquid crystal polymer resin and preparation method and application thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56120729A (en) * 1980-02-27 1981-09-22 Mitsubishi Chem Ind Ltd Polyphenylene ether having allyl group at side chain
JPS5827719A (en) * 1981-08-11 1983-02-18 Mitsubishi Chem Ind Ltd Polyphenylene ether having allyl group at side chain
JPH04183707A (en) * 1990-11-19 1992-06-30 Mitsubishi Petrochem Co Ltd Production of polyphenylene ether crosslinked molded product
JPH07247416A (en) * 1994-03-10 1995-09-26 Asahi Chem Ind Co Ltd Curable polyphenylene ether resin composition having flame retardancy
JPH11322920A (en) * 1998-05-19 1999-11-26 Asahi Chem Ind Co Ltd Highly adhesive polyarylene ether
JP3985633B2 (en) * 2002-08-26 2007-10-03 株式会社日立製作所 High frequency electronic components using low dielectric loss tangent insulation materials

Also Published As

Publication number Publication date
JP2006093690A (en) 2006-04-06

Similar Documents

Publication Publication Date Title
JP3985633B2 (en) High frequency electronic components using low dielectric loss tangent insulation materials
JP4325337B2 (en) Resin composition, prepreg, laminate and multilayer printed wiring board using the same
CN109912958B (en) Thermosetting resin composition, prepreg, laminate, and printed circuit board
JP2008115280A (en) Low dielectric-loss resin composition, its cured product and electronic part obtained using the same
JP4909846B2 (en) Resin composition and electronic component
TWI803529B (en) Polyphenylene ether resin composition, and prepreg using it, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board
JP4988218B2 (en) Manufacturing method of low dielectric loss resin
TWI494370B (en) Epoxy group-modified polyphenylene ether resin, resin composition and application thereof
JP2005105061A (en) Resin composition, conductive foil with resin, prepreg, sheet, sheet with conductive foil, laminated plate and printed wiring board
JP4300905B2 (en) Polyphenylene ether resin composition, prepreg, laminate
JP5475214B2 (en) Process for producing poly (phenylene ether) and poly (phenylene ether)
JP5339318B2 (en) Low dielectric loss resin for multilayer wiring board, resin composition, prepreg, and multilayer wiring board
JP2005105062A (en) Resin composition, conductive foil with resin, prepreg, sheet, sheet with conductive foil, laminated plate and printed wiring board
JP2006059999A (en) Printed-wiring board and electronic component
JP2004083681A (en) Composite film between resin composition having low dielectric dissipation factor and liquid-crystal polymer and flexible circuit board using the same
JP2006291125A (en) New copolymer, resin composition, cured material of the same and electronic part
JP2002338806A (en) Modified cyanate ester resin composition, resin film and multilayer printed circuit board using the same, and their production method
JP4134835B2 (en) High dielectric constant, low dielectric loss tangent composite material composition, curable film, cured product and process for producing the same
JP7519587B2 (en) Resin composition, prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board
JP6767709B2 (en) Resin composition for printed wiring board, prepreg, metal-clad laminate and printed wiring board
JP7195372B2 (en) Epoxy resin-containing varnish, epoxy resin composition-containing varnish, prepreg, resin sheet, printed wiring board, semiconductor device
JP3261073B2 (en) Resin composition for printed wiring board, varnish, prepreg and laminated board for printed wiring board using the same
JP2019070121A (en) Epoxy resin-containing varnish, epoxy resin composition-containing varnish, prepreg, resin sheet, printed circuit board, semiconductor device
JP4232594B2 (en) Curable resin composition, curing method and cured product
JP2000239419A (en) Printed-wiring board prepreg and printed-wiring board using same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050907

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070312

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130731

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees