JP5332739B2 - Photoelectric conversion element and solar cell - Google Patents
Photoelectric conversion element and solar cell Download PDFInfo
- Publication number
- JP5332739B2 JP5332739B2 JP2009051826A JP2009051826A JP5332739B2 JP 5332739 B2 JP5332739 B2 JP 5332739B2 JP 2009051826 A JP2009051826 A JP 2009051826A JP 2009051826 A JP2009051826 A JP 2009051826A JP 5332739 B2 JP5332739 B2 JP 5332739B2
- Authority
- JP
- Japan
- Prior art keywords
- photoelectric conversion
- film
- conversion element
- semiconductor
- sensitizing dye
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/542—Dye sensitized solar cells
Landscapes
- Photovoltaic Devices (AREA)
- Hybrid Cells (AREA)
Abstract
Description
本発明は、色素増感型の光電変換素子及び該光電変換素子を用いた太陽電池に関する。 The present invention relates to a dye-sensitized photoelectric conversion element and a solar cell using the photoelectric conversion element.
近年、無限で有害物質を発生しない太陽光の利用が精力的に検討されている。このクリーンエネルギー源である太陽光利用として現在実用化されているものは、住宅用の単結晶シリコン、多結晶シリコン、アモルファスシリコン及びテルル化カドミウムやセレン化インジウム銅等の無機系太陽電池が挙げられる。 In recent years, the use of sunlight, which is infinite and does not generate harmful substances, has been energetically studied. What is currently put into practical use as solar energy, which is a clean energy source, includes residential single crystal silicon, polycrystalline silicon, amorphous silicon, and inorganic solar cells such as cadmium telluride and indium copper selenide. .
しかしながら、これらの無機系太陽電池の欠点としては、例えば、シリコン系では非常に純度の高いものが要求され、当然精製の工程は複雑でプロセス数が多く、製造コストが高いことが挙げられる。 However, the disadvantages of these inorganic solar cells are that, for example, silicon-based solar cells are required to have a very high purity. Naturally, the purification process is complicated, the number of processes is large, and the production cost is high.
その一方で、有機材料を使う太陽電池も多く提案されている。有機太陽電池としては、p型有機半導体と仕事関数の小さい金属を接合させるショットキー型光電変換素子、p型有機半導体とn型無機半導体、あるいはp型有機半導体と電子受容性有機化合物を接合させるヘテロ接合型光電変換素子等があり、利用される有機半導体は、クロロフィル、ペリレン等の合成色素や顔料、ポリアセチレン等の導電性高分子材料またはそれらの複合材料等である。これらを真空蒸着法、キャスト法またはディッピング法等により、薄膜化し電池材料が構成されている。有機材料は低コスト、大面積化が容易等の長所もあるが、変換効率は1%以下と低いものが多く、また耐久性も悪いという問題もあった。 On the other hand, many solar cells using organic materials have been proposed. As an organic solar cell, a Schottky photoelectric conversion element that joins a p-type organic semiconductor and a metal having a low work function, a p-type organic semiconductor and an n-type inorganic semiconductor, or a p-type organic semiconductor and an electron-accepting organic compound are joined. There are heterojunction photoelectric conversion elements and the like, and organic semiconductors used are synthetic dyes and pigments such as chlorophyll and perylene, conductive polymer materials such as polyacetylene, or composite materials thereof. These are thinned by a vacuum deposition method, a casting method, a dipping method or the like to form a battery material. Although organic materials have advantages such as low cost and easy area enlargement, there are many problems that the conversion efficiency is as low as 1% or less and the durability is poor.
こうした状況の中で、良好な特性を示す太陽電池がスイスのグレッツェル博士らによって報告された(非特許文献1参照)。提案された電池は色素増感型太陽電池であり、ルテニウム錯体で分光増感された酸化チタン多孔質薄膜を作用電極とする湿式太陽電池である。この方式の利点として、酸化チタン等の安価な金属半導体を高純度まで精製する必要なく利用できることが挙げられ、従って低コストで太陽電池を製造することができる。また、色素の分光増感作用により、可視光成分の多い太陽光を有効に電気へ変換できることである。 Under such circumstances, a solar cell exhibiting good characteristics has been reported by Dr. Gretzell of Switzerland (see Non-Patent Document 1). The proposed battery is a dye-sensitized solar cell, which is a wet solar cell using a titanium oxide porous thin film spectrally sensitized with a ruthenium complex as a working electrode. An advantage of this method is that an inexpensive metal semiconductor such as titanium oxide can be used without the need to purify it to a high purity, and thus a solar cell can be produced at a low cost. In addition, the spectral sensitization effect of the dye can effectively convert sunlight with many visible light components into electricity.
上記の色素増感型太陽電池は、一般にガラス基板を用いて作製している。しかし、ガラス基板は重量がかさむことや割れやすいといった問題を抱えている。これらの欠点を補うものとして、樹脂基板を用いた色素増感太陽電池が報告された(例えば、特許文献1参照)。樹脂基板を用いると、可撓性を付与することもできるので、設置形態や用途の自由度が上がることが見込まれる。しかし、樹脂基板はガラス基板に比べ耐熱性に劣るため、酸化チタン膜の高温焼結(500℃前後)を行うことができず、酸化チタン粒子間ならびに酸化チタンと導電性基板間の接着性が悪くなって、光電変換効率もガラス基板を用いたセルに比べ大きく下がっている。また、色素増感型太陽電池の劣化機構として電解質層中への水分の混入が指摘されているが、樹脂基板は一般にガスバリア性(水蒸気透過度)が悪いので長期間の使用により電解液中への水分の混入を招く問題がある。 The dye-sensitized solar cell is generally manufactured using a glass substrate. However, the glass substrate has a problem that it is heavy and easily broken. To compensate for these drawbacks, a dye-sensitized solar cell using a resin substrate has been reported (for example, see Patent Document 1). When a resin substrate is used, flexibility can be imparted, so that the degree of freedom of installation form and application is expected to increase. However, since the resin substrate is inferior in heat resistance to the glass substrate, the titanium oxide film cannot be sintered at a high temperature (around 500 ° C.), and the adhesion between the titanium oxide particles and between the titanium oxide and the conductive substrate is low. It becomes worse and the photoelectric conversion efficiency is also greatly reduced compared with the cell using a glass substrate. In addition, it has been pointed out that water is mixed into the electrolyte layer as a deterioration mechanism of the dye-sensitized solar cell. However, since resin substrates generally have poor gas barrier properties (water vapor permeability), they can be used in electrolyte solutions over long periods of use. There is a problem of incurring moisture.
本発明は、上記課題に鑑みなされたものであり、その目的は、高い光電変換効率と優れた耐久性を併せ持ち、かつ可撓性を有する光電変換素子及び該光電変換素子を用いた太陽電池を提供することにある。 This invention is made | formed in view of the said subject, The objective combines the high photoelectric conversion efficiency and the outstanding durability, and also has the flexible photoelectric conversion element, and the solar cell using this photoelectric conversion element. It is to provide.
本発明の上記課題は、以下の構成により達成される。 The above object of the present invention is achieved by the following configurations.
1.対向する1対の可撓性を有するフィルムの間に、膜厚10〜70μmの無機ガラスフィルム、透明導電層、増感色素を担持した半導体層、電解質層、導電層及び膜厚10〜70μmの無機ガラスフィルムがこの順に設置されてなることを特徴とする光電変換素子。 1. Between a pair of opposing flexible films, an inorganic glass film having a thickness of 10 to 70 μm, a transparent conductive layer, a semiconductor layer carrying a sensitizing dye, an electrolyte layer, a conductive layer, and a film having a thickness of 10 to 70 μm A photoelectric conversion element comprising an inorganic glass film disposed in this order.
2.前記無機ガラスフィルムのJIS K 7126−1987に準拠した方法で測定した水蒸気透過度が0.01g/(m2・day)以下であることを特徴とする前記1に記載の光電変換素子。 2. 2. The photoelectric conversion element as described in 1 above, wherein the inorganic glass film has a water vapor permeability measured by a method based on JIS K 7126-1987 of 0.01 g / (m 2 · day) or less.
3.前記半導体層が増感色素を吸着した多孔質酸化チタンからなることを特徴とする前記1または2に記載の光電変換素子。 3. 3. The photoelectric conversion element as described in 1 or 2 above, wherein the semiconductor layer is made of porous titanium oxide adsorbing a sensitizing dye.
4.前記1〜3のいずれか1項に記載の光電変換素子を有することを特徴とする太陽電池。 4). A solar cell comprising the photoelectric conversion element according to any one of 1 to 3 above.
本発明により、高い光電変換効率と優れた耐久性を併せ持ち、かつ可撓性を有する光電変換素子及び該光電変換素子を用いた太陽電池を提供することができた。 According to the present invention, a photoelectric conversion element having high photoelectric conversion efficiency and excellent durability and having flexibility, and a solar cell using the photoelectric conversion element can be provided.
本発明者らは、鋭意検討の結果、色素増感型の光電変換素子において、対向する1対の可撓性を有するフィルムの間に、膜厚10〜70μmの無機ガラスフィルム、透明導電層、増感色素を担持した半導体層、電解質層、導電層及び膜厚10〜70μmの無機ガラスフィルムをこの順に設置することで、高い光電変換効率と優れた耐久性を併せ持ち、かつ可撓性を有する光電変換素子及び該光電変換素子を用いた太陽電池が得られることを見出した。 As a result of intensive studies, the present inventors have determined that, in a dye-sensitized photoelectric conversion element, an inorganic glass film having a thickness of 10 to 70 μm, a transparent conductive layer, between a pair of opposing flexible films, By placing a semiconductor layer carrying a sensitizing dye, an electrolyte layer, a conductive layer, and an inorganic glass film having a thickness of 10 to 70 μm in this order, it has both high photoelectric conversion efficiency and excellent durability, and has flexibility. It discovered that the solar cell using a photoelectric conversion element and this photoelectric conversion element was obtained.
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
図1は、本発明の光電変換素子の一例を示す断面図である。 FIG. 1 is a cross-sectional view showing an example of the photoelectric conversion element of the present invention.
図1に示すように、本発明の光電変換素子は、可撓性を有するフィルム1及び8、膜厚10〜70μmの無機ガラスフィルム2及び7、透明導電層3、増感色素を担持した半導体層4、電解質層5ならびに導電層6から構成されている。 As shown in FIG. 1, the photoelectric conversion element of the present invention includes a flexible film 1 and 8, an inorganic glass film 2 and 7 having a thickness of 10 to 70 μm, a transparent conductive layer 3, and a semiconductor carrying a sensitizing dye. It is composed of a layer 4, an electrolyte layer 5 and a conductive layer 6.
本発明は、可撓性を有する光電変換素子の好ましいフィルム材料に関するものである。 The present invention relates to a preferable film material of a photoelectric conversion element having flexibility.
一般に可撓性基板としてよく用いられるのは樹脂フィルムであるが、樹脂フィルムは耐熱性が低いため高温での熱処理が不可能である。このため、基板上での半導体膜の高温焼結(500℃前後)を行うことができず、半導体粒子間ならびに半導体粒子と導電性基板間の接着性が悪くなり、光電変換効率もガラス基板を用いたセルに比べ大きく低下する。樹脂フィルムの代わりに薄膜の無機ガラスフィルムを光電変換素子の基板として用いると、半導体粒子が強固に焼結した可撓性基板を得ることができ、良好な電子伝達能が発現できることを見出した。 In general, a resin film is often used as a flexible substrate. However, since the resin film has low heat resistance, it cannot be heat-treated at a high temperature. For this reason, high-temperature sintering (around 500 ° C.) of the semiconductor film on the substrate cannot be performed, the adhesiveness between the semiconductor particles and between the semiconductor particles and the conductive substrate is deteriorated, and the photoelectric conversion efficiency is also reduced with that of the glass substrate. Compared to the cell used, it drops significantly. It has been found that when a thin inorganic glass film is used as the substrate of the photoelectric conversion element instead of the resin film, a flexible substrate in which the semiconductor particles are strongly sintered can be obtained, and a good electron transfer capability can be expressed.
以下、可撓性を有するフィルム、無機ガラスフィルム、導電層及び透明導電層、増感色素を担持した半導体層、電解質層ならびに導電層のそれぞれについて説明する。 Hereinafter, each of the flexible film, the inorganic glass film, the conductive layer and the transparent conductive layer, the semiconductor layer carrying the sensitizing dye, the electrolyte layer, and the conductive layer will be described.
(可撓性を有するフィルム)
フィルムが可撓性を有するとは、該フィルムの厚さをx(μm)とした場合、x1/2×10(cm)、好ましくはx1/2×5(cm)、さらに好ましくはx1/2(cm)の直径を有する丸棒に巻き付けても該フィルムに破断及びクラックの発生がないことを意味する。
(Flexible film)
The film having flexibility means that when the thickness of the film is x (μm), x 1/2 × 10 (cm), preferably x 1/2 × 5 (cm), more preferably x It means that the film does not break or crack even when it is wound around a round bar having a diameter of 1/2 (cm).
このようなフィルムとしては、ポリイミドフィルム、ポリエステルフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリアミドフィルム、ポリカーボネートフィルム等を用いることができる。厚さとしては、50〜500μmが好ましい。 As such a film, a polyimide film, a polyester film, a polyethylene terephthalate film, a polyethylene naphthalate film, a polyamide film, a polycarbonate film, or the like can be used. As thickness, 50-500 micrometers is preferable.
(無機ガラスフィルム)
本発明で用いる無機ガラスフィルムの膜厚は10〜70μmである。無機ガラスの膜厚が70μmを超えると可撓性が失われ破断及びクラックが発生する。
(Inorganic glass film)
The film thickness of the inorganic glass film used in the present invention is 10 to 70 μm. When the film thickness of the inorganic glass exceeds 70 μm, flexibility is lost and breakage and cracks occur.
また、無機ガラスフィルムは一般にガスバリア性(水蒸気透過度)に優れているので、高湿環境下での長期間使用においても、電解液中へ水分が混入せず劣化を防ぐことができる。充分なガスバリア性を得るには、前記無機ガラスフィルムのJIS K 7126−1987に準拠した方法で測定した水蒸気透過度が0.01g/(m2・day)以下であることが好ましい。前記の条件を満たす時、一般にガラス膜の厚さは10μm以上である。 In addition, since the inorganic glass film is generally excellent in gas barrier properties (water vapor permeability), even when used for a long period of time in a high humidity environment, moisture is not mixed into the electrolytic solution and deterioration can be prevented. In order to obtain sufficient gas barrier properties, the water vapor permeability of the inorganic glass film measured by a method based on JIS K 7126-1987 is preferably 0.01 g / (m 2 · day) or less. When the above conditions are satisfied, the thickness of the glass film is generally 10 μm or more.
本発明に用いる無機ガラスの製造方法としては、例えば、公知のゾル−ゲル法を用いたSiO2ガラスの作製方法や、これらに樹脂を添加して製膜後、焼成により有機成分をバーンアウトさせて塗膜を形成する方法等が挙げられる。 Examples of the method for producing the inorganic glass used in the present invention include, for example, a method for producing SiO 2 glass using a known sol-gel method, and after adding a resin to these to form a film, the organic components are burned out by firing. And a method of forming a coating film.
本発明で用いる無機ガラスフィルムの製造例を以下に述べる。 Production examples of the inorganic glass film used in the present invention will be described below.
(製造例1)
コロイダルシリカゾルとして、粒子径10〜20nmのシリカ微粒子を分散した水溶媒系を用いた(固体含有率20質量%、pH2.8)。硝酸ジルコニル二水和物1.0gを1.9gの蒸留水に溶解した。得られた硝酸ジルコニル水溶液をコロイダルシリカゾル5.3gに混合した。別に、バインダーとしてポリビニルアルコール(クラレポバールPVA−105、(株)クラレ製)を蒸留水に溶解して、ポリビニルアルコール5質量%溶液を調製した。さらに水1.8gに2−アミノエタノール0.6gを溶解し、そこに酢酸1.8gをゆっくり添加して中和し、アミノエタノール溶液を調製した。ポリビニルアルコール5質量%溶液6gに、界面活性剤0.1gと、アミノエタノール溶液0.2gを添加し、そこに上記調製した硝酸ジルコニル含有シリカゾル4.8gを加えて混合液を調製した。
(Production Example 1)
As the colloidal silica sol, an aqueous solvent system in which silica fine particles having a particle diameter of 10 to 20 nm were dispersed was used (solid content 20% by mass, pH 2.8). 1.0 g of zirconyl nitrate dihydrate was dissolved in 1.9 g of distilled water. The obtained zirconyl nitrate aqueous solution was mixed with 5.3 g of colloidal silica sol. Separately, polyvinyl alcohol (Kuraray Poval PVA-105, manufactured by Kuraray Co., Ltd.) was dissolved in distilled water as a binder to prepare a 5% by weight polyvinyl alcohol solution. Further, 0.6 g of 2-aminoethanol was dissolved in 1.8 g of water, and 1.8 g of acetic acid was slowly added thereto for neutralization to prepare an aminoethanol solution. 0.1 g of a surfactant and 0.2 g of an aminoethanol solution were added to 6 g of a 5% by weight polyvinyl alcohol solution, and 4.8 g of the zirconyl nitrate-containing silica sol prepared above was added thereto to prepare a mixed solution.
その混合液を、ポリエチレンテレフタレート(PET)フィルム上にキャストし、一晩室温下で乾燥した。乾燥した前駆体フィルムをPETフィルムから剥離し、それをアルミナ基板上において電気炉により焼成した。焼成は、室温から500℃までは脱バインダーを目的として3時間かけてゆっくり昇温した。さらに、1時間かけて1200℃まで昇温して、その温度で30分間かけて焼成した。得られたフィルムを0.5g取り、炭素・硫黄分析装置(EMIA−520、堀場製作所製)にて炭素分析を行ったところ、1ppm未満で検出限界以下であった。また、得られた無機ガラスフィルムは厚さ50μmであり、直径7cmの丸棒に巻き付けても破断及びクラックの発生は観測されなかった。 The mixture was cast on a polyethylene terephthalate (PET) film and dried overnight at room temperature. The dried precursor film was peeled off from the PET film and baked with an electric furnace on an alumina substrate. Firing was slowly heated from room temperature to 500 ° C. over 3 hours for the purpose of debinding. Furthermore, it heated up to 1200 degreeC over 1 hour, and baked over 30 minutes at the temperature. 0.5 g of the obtained film was taken and subjected to carbon analysis with a carbon / sulfur analyzer (EMIA-520, manufactured by Horiba Seisakusho). The result was less than 1 ppm and below the detection limit. Further, the obtained inorganic glass film had a thickness of 50 μm, and no breakage or cracking was observed even when it was wound around a round bar having a diameter of 7 cm.
(製造例2)
ジメチルジメトキシシラン13.8ml、フェニルトリメトキシシラン9.3ml、テトラエトキシシラン5.7ml、トリメトキシボラン0.57mlをテトラヒドキシフラン(THF)50mlに溶解し、撹拝しながら水12.5mlと塩酸1.25mlを加え3時間還流した。3時間後、オイルバスの温度を徐々に上げて、200℃に達してからさらに2時間反応させ、非常に粘度の高い水飴状の物質を得た。この重合体7gをTHF3mlに溶かし、トリエチルアミン0.53mlを添加して、フッ素樹脂フィルム上にキャストした。初めは120℃のオーブン中で乾燥し、徐々に温度を上げて、最終的に200℃で30分乾燥した。フッ素樹脂フィルムからフィルムを剥がして枠に固定し、300℃で30分、400℃で30分の熱処理を行った。得られたフィルムを0.5g取り、炭素・硫黄分析装置(EMIA−520、堀場製作所製)にて炭素分析を行ったところ、1ppm未満で検出限界以下であった。また、得られた無機ガラスフィルムは厚さ20μmであり、直径7cmの丸棒に巻き付けても破断及びクラックの発生は観測されなかった。
(Production Example 2)
Dissolve 13.8 ml of dimethyldimethoxysilane, 9.3 ml of phenyltrimethoxysilane, 5.7 ml of tetraethoxysilane, and 0.57 ml of trimethoxyborane in 50 ml of tetrahydroxyfuran (THF). 1.25 ml of hydrochloric acid was added and refluxed for 3 hours. After 3 hours, the temperature of the oil bath was gradually raised, and after reaching 200 ° C., the reaction was continued for another 2 hours to obtain a very viscous syrupy substance. 7 g of this polymer was dissolved in 3 ml of THF, 0.53 ml of triethylamine was added, and the mixture was cast on a fluororesin film. Initially, it was dried in an oven at 120 ° C., gradually raised in temperature, and finally dried at 200 ° C. for 30 minutes. The film was peeled off from the fluororesin film and fixed to the frame, and heat treatment was performed at 300 ° C. for 30 minutes and at 400 ° C. for 30 minutes. 0.5 g of the obtained film was taken and subjected to carbon analysis with a carbon / sulfur analyzer (EMIA-520, manufactured by Horiba Seisakusho). The result was less than 1 ppm and below the detection limit. The obtained inorganic glass film had a thickness of 20 μm, and no breakage or cracking was observed even when it was wound around a round bar having a diameter of 7 cm.
また、松浪硝子工業(株)より市販の極薄板ガラスを用いることができる。 Moreover, a commercially available ultra-thin plate glass from Matsunami Glass Industry Co., Ltd. can be used.
(導電層及び透明導電層)
導電層に用いられる材料の例としては、金属(例えば、白金、金、銀、銅、アルミニウム、ロジウム、インジウム、チタン)あるいは導電性金属酸化物(例えば、インジウム、スズ、亜鉛、ガリウム等の酸化物、及びこれらの元素の複合酸化物)や炭素を挙げることができる。酸化スズを用いる時はフッ素ドーピングをしたものを用いるのが好ましい。導電層は表面抵抗が50Ω/cm2以下であることが好ましく、10Ω/cm2以下であることがさらに好ましい。
(Conductive layer and transparent conductive layer)
Examples of materials used for the conductive layer include metals (eg, platinum, gold, silver, copper, aluminum, rhodium, indium, titanium) or conductive metal oxides (eg, indium, tin, zinc, gallium, etc.) And composite oxides of these elements) and carbon. When tin oxide is used, it is preferable to use fluorine-doped one. The conductive layer preferably has a surface resistance of 50 Ω / cm 2 or less, and more preferably 10 Ω / cm 2 or less.
透明導電層とは、前記の導電層のうち実質的に透明であるものを指し、実質的に透明であるとは光の透過率が10%以上であることを意味し、50%以上であることがさらに好ましく、80%以上であることが最も好ましい。 The transparent conductive layer refers to a layer that is substantially transparent among the conductive layers, and substantially transparent means that the light transmittance is 10% or more, and is 50% or more. Is more preferable, and 80% or more is most preferable.
導電層は、I3 −イオン等の酸化や他のレドックスイオンの還元反応を十分な速さで行わせる触媒能を持った物質であることが好ましい。このようなものとしては、白金電極、導電材料表面に白金メッキや白金蒸着を施したもの、ロジウム金属、ルテニウム金属、カーボン、ポリピロール等が挙げられる。 The conductive layer, I 3 - is preferably the reduction reaction of oxidation and other redox ions such as ions is a substance having a catalytic ability to perform fast enough. Examples of such a material include a platinum electrode, a conductive material surface subjected to platinum plating or platinum deposition, rhodium metal, ruthenium metal, carbon, polypyrrole, and the like.
(増感色素を担持した半導体層)
本発明に係る半導体層(図1の4)の作製方法について説明する。
(Semiconductor layer carrying sensitizing dye)
A method for manufacturing a semiconductor layer (4 in FIG. 1) according to the present invention will be described.
本発明に係る半導体を焼成により作製する場合には、増感色素を用いた半導体の増感処理(吸着、多孔質への入り込み等)は、半導体の焼成後に実施することが好ましい。焼成後、半導体に水が吸着する前に素早く増感色素の吸着処理を実施することが特に好ましい。 When the semiconductor according to the present invention is produced by firing, it is preferable that the semiconductor sensitization treatment (adsorption, penetration into the porous body, etc.) using the sensitizing dye is performed after the semiconductor is fired. It is particularly preferable to perform the sensitizing dye adsorption treatment quickly after the firing and before the water is adsorbed to the semiconductor.
本発明に係る半導体が粒子状の場合には、半導体を導電層に塗布あるいは吹きつけて作製するのがよい。また、半導体が膜状であって、導電層上に保持されていない場合には、半導体を導電層上に貼合して作製することが好ましい。 When the semiconductor according to the present invention is in the form of particles, the semiconductor is preferably manufactured by applying or spraying the semiconductor on the conductive layer. In the case where the semiconductor is in a film form and is not held on the conductive layer, the semiconductor is preferably bonded to the conductive layer.
本発明の光電変換素子において、半導体としては、周期表(元素周期表ともいう)の第3族〜第5族、第13族〜第15族系の元素を有する化合物、金属のカルコゲニド(例えば、酸化物、硫化物、セレン化物等)、金属窒化物等を使用することができる。 In the photoelectric conversion element of the present invention, as the semiconductor, a compound having a Group 3 to Group 5, Group 13 to Group 15 element of a periodic table (also referred to as an element periodic table), a metal chalcogenide (for example, Oxides, sulfides, selenides, etc.), metal nitrides, etc. can be used.
好ましい金属のカルコゲニドとして、チタン、スズ、亜鉛、鉄、タングステン、ジルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、バナジウム、ニオブ、またはタンタルの酸化物、カドミウム、亜鉛、鉛、銀、アンチモンまたはビスマスの硫化物、カドミウムまたは鉛のセレン化物、カドミウムのテルル化物等が挙げられる。他の半導体としては、亜鉛、ガリウム、インジウム、カドミウム等のリン化物、ガリウム−ヒ素または銅−インジウムのセレン化物、銅−インジウムの硫化物、チタンの窒化物等が挙げられる。 Preferred metal chalcogenides include titanium, tin, zinc, iron, tungsten, zirconium, hafnium, strontium, indium, cerium, yttrium, lanthanum, vanadium, niobium or tantalum oxides, cadmium, zinc, lead, silver, antimony or Bismuth sulfide, cadmium or lead selenide, cadmium telluride and the like. Examples of other semiconductors include phosphides such as zinc, gallium, indium, and cadmium, gallium-arsenic or copper-indium selenides, copper-indium sulfides, and titanium nitrides.
具体例としては、TiO2、ZrO2、SnO2、Fe2O3、WO3、ZnO、Nb2O5、Ta2O5、CdS、ZnS、PbS、Bi2S3、CdSe、CdTe、GaP、InP、GaAs、CuInS2、CuInSe2、Ti3N4等が挙げられるが、好ましく用いられるのは、TiO2、ZnO、SnO2、Fe2O3、WO3、Nb2O5、CdS、PbSであり、より好ましく用いられるのは、TiO2またはSnO2であるが、中でも特に好ましく用いられるのはTiO2である。 Specific examples include TiO 2 , ZrO 2 , SnO 2 , Fe 2 O 3 , WO 3 , ZnO, Nb 2 O 5 , Ta 2 O 5 , CdS, ZnS, PbS, Bi 2 S 3 , CdSe, CdTe, GaP. , InP, GaAs, CuInS 2 , CuInSe 2 , Ti 3 N 4 and the like, but TiO 2 , ZnO, SnO 2 , Fe 2 O 3 , WO 3 , Nb 2 O 5 , CdS, etc. are preferably used. PbS is more preferably used, and TiO 2 or SnO 2 is used. Of these, TiO 2 is particularly preferably used.
光電極に用いる半導体は、上述した複数の半導体を併用して用いてもよい。例えば、上述した金属酸化物もしくは金属硫化物の数種類を併用することもでき、また酸化チタン半導体に20質量%の窒化チタン(Ti3N4)を混合して使用してもよい。また、J.Chem.Soc.Chem.Commun.,15(1999)記載の酸化亜鉛/酸化錫複合としてもよい。この時、半導体として金属酸化物もしくは金属硫化物以外に成分を加える場合、追加成分の金属酸化物もしくは金属硫化物半導体に対する質量比は30%以下であることが好ましい。 As the semiconductor used for the photoelectrode, a plurality of the above-described semiconductors may be used in combination. For example, several kinds of the above-described metal oxides or metal sulfides can be used in combination, and a titanium oxide semiconductor may be used by mixing 20% by mass of titanium nitride (Ti 3 N 4 ). In addition, J.H. Chem. Soc. Chem. Commun. 15 (1999). At this time, when a component is added as a semiconductor in addition to the metal oxide or metal sulfide, the mass ratio of the additional component to the metal oxide or metal sulfide semiconductor is preferably 30% or less.
(半導体微粉末含有塗布液の調製)
まず、半導体の微粉末を含む塗布液を調製する。この半導体微粉末はその1次粒子径が微細な程好ましく、その1次粒子径は1〜5000nmが好ましく、さらに好ましくは2〜50nmである。半導体微粉末を含む塗布液は、半導体微粉末を溶媒中に分散することによって調製することができる。溶媒中に分散された半導体微粉末は、その1次粒子状で分散する。溶媒としては半導体微粉末を分散し得るものであればよく、特に制約されない。
(Preparation of coating liquid containing semiconductor fine powder)
First, a coating solution containing fine semiconductor powder is prepared. The finer the primary particle diameter of the semiconductor fine powder, the better. The primary particle diameter is preferably 1 to 5000 nm, and more preferably 2 to 50 nm. The coating liquid containing the semiconductor fine powder can be prepared by dispersing the semiconductor fine powder in a solvent. The semiconductor fine powder dispersed in the solvent is dispersed in the form of primary particles. The solvent is not particularly limited as long as it can disperse the semiconductor fine powder.
前記溶媒としては、水、有機溶媒、水と有機溶媒との混合液が含まれる。有機溶媒としては、メタノールやエタノール等のアルコール、メチルエチルケトン、アセトン、アセチルアセトン等のケトン、ヘキサン、シクロヘキサン等の炭化水素等が用いられる。塗布液中には、必要に応じ界面活性剤や粘度調節剤(ポリエチレングリコール等の多価アルコール等)を加えることができる。溶媒中の半導体微粉末濃度の範囲は0.1〜70質量%が好ましく、さらに好ましくは0.1〜30質量%である。 Examples of the solvent include water, an organic solvent, and a mixed solution of water and an organic solvent. As the organic solvent, alcohols such as methanol and ethanol, ketones such as methyl ethyl ketone, acetone and acetyl acetone, hydrocarbons such as hexane and cyclohexane, and the like are used. A surfactant and a viscosity modifier (polyhydric alcohol such as polyethylene glycol) can be added to the coating solution as necessary. The range of the semiconductor fine powder concentration in the solvent is preferably 0.1 to 70% by mass, and more preferably 0.1 to 30% by mass.
(半導体微粉末含有塗布液の塗布と形成された半導体層の焼成処理)
上記のようにして得られた半導体微粉末含有塗布液を、導電性支持体上に塗布または吹きつけ、乾燥等を行った後、空気中または不活性ガス中で焼成して、導電性支持体上に半導体層(半導体膜)が形成される。
(Application of coating solution containing fine semiconductor powder and baking treatment of the formed semiconductor layer)
The semiconductor fine powder-containing coating solution obtained as described above is applied or sprayed onto a conductive support, dried, etc., and then baked in air or an inert gas to provide a conductive support. A semiconductor layer (semiconductor film) is formed thereon.
導電性支持体上に塗布液を塗布、乾燥して得られる皮膜は、半導体微粒子の集合体からなるもので、その微粒子の粒径は使用した半導体微粉末の1次粒子径に対応するものである。 The film obtained by applying and drying the coating liquid on the conductive support is composed of an aggregate of semiconductor fine particles, and the particle size of the fine particles corresponds to the primary particle size of the semiconductor fine powder used. is there.
このようにして導電性支持体等の基板上に形成された半導体微粒子集合体膜は、導電性支持体との結合力や微粒子相互の結合力が弱く、機械的強度の弱いものであることから、機械的強度を高め、基板に強く固着した焼成物膜とするため、前記半導体微粒子集合体膜の焼成処理が好ましく行われる。 Since the semiconductor fine particle aggregate film formed on the substrate such as the conductive support in this way has a low bonding strength with the conductive support or between the fine particles and a low mechanical strength. In order to increase the mechanical strength and to obtain a fired product film firmly adhered to the substrate, the semiconductor fine particle aggregate film is preferably subjected to a firing treatment.
本発明においては、この焼成処理で得られる焼成物膜はどのような構造を有していてもよいが、多孔質構造膜(空隙を有する、ポーラスな層ともいう)であることが好ましい。 In the present invention, the fired product film obtained by this firing treatment may have any structure, but is preferably a porous structure film (also referred to as a porous layer having voids).
ここで、本発明に係る半導体薄膜の空隙率は10体積%以下が好ましく、さらに好ましくは8体積%以下であり、特に好ましくは0.01〜5体積%以下である。なお、半導体薄膜の空隙率は誘電体の厚み方向に貫通性のある空隙率を意味し、水銀ポロシメーター(島津ポアライザー9220型)等の市販の装置を用いて測定することができる。 Here, the porosity of the semiconductor thin film according to the present invention is preferably 10% by volume or less, more preferably 8% by volume or less, and particularly preferably 0.01 to 5% by volume or less. The porosity of the semiconductor thin film means a porosity that is penetrable in the thickness direction of the dielectric, and can be measured using a commercially available apparatus such as a mercury porosimeter (Shimadzu Polarizer 9220 type).
多孔質構造を有する焼成物膜になった半導体層の膜厚は、10nm以上が好ましく、さらに好ましくは100〜10000nmである。 As for the film thickness of the semiconductor layer used as the baked material film | membrane which has a porous structure, 10 nm or more is preferable, More preferably, it is 100-10000 nm.
焼成処理時、焼成物膜の実表面積を適切に調製し、上記の空隙率を有する焼成物膜を得る観点から、焼成温度は1000℃より低いことが好ましく、さらに好ましくは200〜800℃の範囲であり、特に好ましくは300〜800℃の範囲である。 From the viewpoint of appropriately preparing the actual surface area of the fired product film during the firing treatment and obtaining a fired product film having the above porosity, the firing temperature is preferably lower than 1000 ° C, more preferably in the range of 200 to 800 ° C. Especially preferably, it is the range of 300-800 degreeC.
また、見かけ表面積に対する実表面積の比は、半導体微粒子の粒径及び比表面積や焼成温度等によりコントロールすることができる。また、加熱処理後、半導体粒子の表面積を増大させたり、半導体粒子近傍の純度を高め、増感色素から半導体粒子への電子注入効率を高めたりする目的で、例えば、四塩化チタン水溶液を用いた化学メッキや三塩化チタン水溶液を用いた電気化学的メッキ処理を行ってもよい。 The ratio of the actual surface area to the apparent surface area can be controlled by the particle size, specific surface area, firing temperature, etc. of the semiconductor fine particles. In addition, for example, an aqueous titanium tetrachloride solution is used for the purpose of increasing the surface area of the semiconductor particles after the heat treatment, increasing the purity in the vicinity of the semiconductor particles, and increasing the efficiency of electron injection from the sensitizing dye to the semiconductor particles. Chemical plating or electrochemical plating using a titanium trichloride aqueous solution may be performed.
(増感色素)
本発明では、半導体層に増感色素を担持させている。電荷の半導体薄膜への効率的な注入の観点から、上記増感色素はカルボキシル基を有することが好ましい。以下に、増感色素の具体例を示すが、本発明はこれらに限定されるものではない。
(Sensitizing dye)
In the present invention, a sensitizing dye is supported on the semiconductor layer. From the viewpoint of efficient injection of charges into the semiconductor thin film, the sensitizing dye preferably has a carboxyl group. Although the specific example of a sensitizing dye is shown below, this invention is not limited to these.
(半導体の増感処理)
半導体の増感処理は上記のように増感色素を適切な溶媒に溶解し、その溶液に前記半導体を焼成して固着した基板を浸漬することによって行われる。その際には、半導体層(半導体膜ともいう)を焼成により形成し、基板を予め減圧処理や加熱処理して膜中の気泡を除去し、増感色素が半導体層(半導体膜)内部深くに進入できるようにしておくことが好ましく、半導体層(半導体膜)が多孔質構造膜である場合には特に好ましい。
(Semiconductor sensitization treatment)
The semiconductor sensitization treatment is performed by dissolving the sensitizing dye in an appropriate solvent as described above, and immersing the substrate on which the semiconductor is baked and fixed in the solution. In that case, a semiconductor layer (also referred to as a semiconductor film) is formed by baking, the substrate is preliminarily decompressed or heated to remove bubbles in the film, and the sensitizing dye is deep inside the semiconductor layer (semiconductor film). It is preferable to allow entry, and it is particularly preferable when the semiconductor layer (semiconductor film) is a porous structure film.
増感色素を溶解するのに用いる溶媒は、溶解することができ、かつ半導体を溶解したり半導体と反応したりすることのないものであれば格別の制限はないが、溶媒に溶解している水分及び気体が半導体膜に進入して、前記増感色素の吸着等の増感処理を妨げることを防ぐために、予め脱気及び蒸留精製しておくことが好ましい。 The solvent used for dissolving the sensitizing dye is not particularly limited as long as it can dissolve and does not dissolve the semiconductor or react with the semiconductor, but is dissolved in the solvent. In order to prevent moisture and gas from entering the semiconductor film and hindering the sensitizing treatment such as adsorption of the sensitizing dye, it is preferable to degas and purify in advance.
好ましく用いられる溶媒は、メタノール、エタノール、n−プロパノール、t−ブチルアルコール等のアルコール系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、1,4−ジオキサン等のエーテル系溶媒、アセトニトリル、プロピオニトリル等のニトリル系溶媒、塩化メチレン、1,1,2−トリクロロエタン等のハロゲン化炭化水素溶媒であり、混合溶媒を用いてもよい。特に好ましくはエタノール、t−ブチルアルコール、アセトニトリルである。 Solvents preferably used include alcohol solvents such as methanol, ethanol, n-propanol, and t-butyl alcohol, ketone solvents such as acetone and methyl ethyl ketone, and ether solvents such as diethyl ether, diisopropyl ether, tetrahydrofuran, and 1,4-dioxane. Solvents, nitrile solvents such as acetonitrile and propionitrile, halogenated hydrocarbon solvents such as methylene chloride and 1,1,2-trichloroethane, and mixed solvents may be used. Particularly preferred are ethanol, t-butyl alcohol and acetonitrile.
半導体を焼成した基板を、増感色素を含む溶液に浸漬する時間は、半導体層(半導体膜)に前記増感色素が深く進入して吸着等を十分に進行させ、半導体を十分に増感させ、かつ溶液中で前記増感色素の分解等により生成した分解物が増感色素の吸着を妨害することを抑制する観点から、25℃では1〜48時間が好ましく、さらに好ましくは3〜24時間である。この温度、時間は、特に半導体膜が多孔質構造膜である場合に好ましい。ただし、浸漬時間については25℃での値であり、温度条件を変化させて場合にはこの限りではない。 The time for immersing the substrate on which the semiconductor has been baked in the solution containing the sensitizing dye is sufficient to cause the sensitizing dye to enter the semiconductor layer (semiconductor film) deeply so that the adsorption proceeds sufficiently and the semiconductor is sufficiently sensitized. In addition, from the viewpoint of suppressing degradation products generated by decomposition of the sensitizing dye in the solution from interfering with the adsorption of the sensitizing dye, 1 to 48 hours are preferable at 25 ° C., more preferably 3 to 24 hours. It is. This temperature and time are particularly preferred when the semiconductor film is a porous structure film. However, the immersion time is a value at 25 ° C., and this is not the case when the temperature condition is changed.
浸漬しておくに当たり、増感色素を含む溶液は、増感色素が分解しない限り、沸騰しない温度にまで加熱して用いてもよい。好ましい温度範囲は10〜100℃であり、さらに好ましくは25〜80℃であるが、前記の通り溶媒が前記温度範囲で沸騰する場合はこの限りでない。 In soaking, the solution containing the sensitizing dye may be heated to a temperature that does not boil as long as the sensitizing dye does not decompose. A preferable temperature range is 10 to 100 ° C., more preferably 25 to 80 ° C., but this is not the case when the solvent boils in the temperature range as described above.
増感色素を用いて増感処理を行う場合、増感色素を単独で用いてもよいし、複数を併用することもできる。 When the sensitizing treatment is performed using a sensitizing dye, the sensitizing dye may be used alone or a plurality thereof may be used in combination.
また、本発明に好ましいカルボキシル基を有する増感色素と他の増感色素を併用して用いることもできる。併用して用いることのできる増感色素としては、本発明に係る半導体層を分光増感しうるものならばいずれの増感色素も用いることができる。光電変換の波長域をできるだけ広くし、かつ光電変換効率を上げるため2種類以上の増感色素を混合することが好ましい。また、目的とする光源の波長域と強度分布に合わせるように混合する増感色素とその割合を選ぶことができる。 Moreover, the sensitizing dye which has a carboxyl group preferable for the present invention and other sensitizing dyes can be used in combination. As the sensitizing dye that can be used in combination, any sensitizing dye that can spectrally sensitize the semiconductor layer according to the present invention can be used. It is preferable to mix two or more types of sensitizing dyes in order to make the wavelength range of photoelectric conversion as wide as possible and increase the photoelectric conversion efficiency. Further, it is possible to select the sensitizing dye to be mixed and its ratio so as to match the wavelength range and intensity distribution of the target light source.
特に、本発明の光電変換素子の用途が後述する太陽電池である場合には、光電変換の波長域をできるだけ広くして太陽光を有効に利用できるように、吸収波長の異なる二種類以上の増感色素を混合して用いることが好ましい。 In particular, when the use of the photoelectric conversion element of the present invention is a solar cell to be described later, two or more types of absorption having different absorption wavelengths are used so that the wavelength range of photoelectric conversion can be made as wide as possible to effectively use sunlight. It is preferable to use a mixture of dyes.
併用して用いる増感色素の中では、光電子移動反応活性、光耐久性、光化学的安定性等の総合的な観点から、金属錯体色素、フタロシアニン系色素、ポルフィリン系色素、ポリメチン系色素が好ましく用いられる。 Among the sensitizing dyes used in combination, metal complex dyes, phthalocyanine dyes, porphyrin dyes, and polymethine dyes are preferably used from the comprehensive viewpoints such as photoelectron transfer reaction activity, light durability, and photochemical stability. It is done.
本発明に好ましいカルボキシル基を有する増感色素と併用して用いることのできる増感色素としては、例えば、米国特許第4,684,537号明細書、同4,927,721号明細書、同5,084,365号明細書、同5,350,644号明細書、同5,463,057号明細書、同5,525,440号明細書、特開平7−249790号公報、特開2000−150007号公報等に記載の増感色素を挙げることができる。 Examples of the sensitizing dye that can be used in combination with the sensitizing dye having a carboxyl group preferable in the present invention include, for example, U.S. Pat. Nos. 4,684,537 and 4,927,721. 5,084,365, 5,350,644, 5,463,057, 5,525,440, JP-A-7-249790, JP2000 And sensitizing dyes described in JP-A-15-150007.
半導体層に増感色素を含ませるには、前記増感色素を適切な溶媒(エタノール等)に溶解し、その溶液中によく乾燥した半導体を長時間浸漬する方法が一般的である。 In order to include a sensitizing dye in the semiconductor layer, a method in which the sensitizing dye is dissolved in an appropriate solvent (ethanol or the like) and a well-dried semiconductor is immersed in the solution for a long time is generally used.
増感色素を複数種類併用したり、本発明に好ましいカルボキシル基を有する増感色素以外の他の増感色素を併用したりして増感処理する際には、各々の増感色素の混合溶液を調製して用いてもよいし、それぞれの増感色素について溶液を用意して、各溶液に順に浸漬して作製することもできる。各増感色素について別々の溶液を用意し、各溶液に順に浸漬して作製する場合は、半導体層に前記増感色素を含ませる順序がどのようであっても、本発明に記載の効果を得ることができる。また、増感色素を単独で吸着させた半導体微粒子を混合する等により作製してもよい。 When a sensitizing dye is used in combination with a plurality of sensitizing dyes or in combination with a sensitizing dye other than the sensitizing dye having a carboxyl group preferable for the present invention, a mixed solution of each sensitizing dye May be prepared and used, or a solution may be prepared for each sensitizing dye and immersed in each solution in order. When preparing a separate solution for each sensitizing dye and immersing in each solution in order, the effects described in the present invention can be obtained regardless of the order in which the sensitizing dye is included in the semiconductor layer. Can be obtained. Alternatively, it may be produced by mixing semiconductor fine particles on which a sensitizing dye is adsorbed alone.
吸着処理は、半導体層が粒子状の時に行ってもよいし、支持体上に膜を形成した後に行ってもよい。吸着処理に用いる化合物を溶解した溶液はそれを常温で用いてもよいし、該化合物が分解せず溶液が沸騰しない温度範囲で加熱して用いてもよい。また、後述する光電変換素子の製造のように、半導体微粒子の塗布後に前記増感色素の吸着を実施してもよい。また、半導体微粒子と増感色素とを同時に塗布することにより、増感色素の吸着を実施してもよい。また、未吸着の増感色素は洗浄によって除去することができる。 The adsorption treatment may be performed when the semiconductor layer is in the form of particles, or may be performed after the film is formed on the support. A solution in which the compound used for the adsorption treatment is dissolved may be used at room temperature, or may be used by heating in a temperature range in which the compound does not decompose and the solution does not boil. Moreover, you may implement the said sensitizing dye adsorption | suction after application | coating of semiconductor fine particle like manufacture of the photoelectric conversion element mentioned later. Alternatively, the sensitizing dye may be adsorbed by simultaneously applying the semiconductor fine particles and the sensitizing dye. Unadsorbed sensitizing dye can be removed by washing.
また、本発明に係る半導体層の増感処理については、半導体が増感色素を含むことにより増感処理が行われるが、増感処理の詳細については、後述する光電変換素子のところで具体的に説明する。 Further, the sensitization treatment of the semiconductor layer according to the present invention is performed by the semiconductor containing the sensitizing dye. The details of the sensitization treatment are specifically described in the photoelectric conversion element described later. explain.
また、空隙率の高い半導体薄膜を有する半導体層の場合には、空隙に水分、水蒸気等により水が半導体薄膜上、及び半導体薄膜内部の空隙に吸着する前に、前記増感色素の吸着処理(半導体層の増感処理)を完了することが好ましい。 In the case of a semiconductor layer having a semiconductor thin film with a high porosity, before the water is adsorbed on the semiconductor thin film and in the voids inside the semiconductor thin film by moisture, water vapor, etc., the sensitizing dye adsorption treatment ( It is preferable to complete the sensitization treatment of the semiconductor layer.
(電解質層)
本発明に用いられる電解質層(電荷移動層ともいう)について説明する。
(Electrolyte layer)
The electrolyte layer (also referred to as charge transfer layer) used in the present invention will be described.
電解質層にはレドックス電解質が好ましく用いられる。ここで、レドックス電解質としては、I−/I3 −系や、Br−/Br3 −系、キノン/ハイドロキノン系等が挙げられる。このようなレドックス電解質は従来公知の方法によって得ることができ、例えば、I−/I3 −系の電解質はヨウ素のアンモニウム塩とヨウ素を混合することによって得ることができる。電解質層はこれらレドックス電解質の分散物で構成され、それら分散物は溶液である場合に液体電解質、常温において固体である高分子中に分散させた場合に固体高分子電解質、ゲル状物質に分散された場合にゲル電解質と呼ばれる。電解質層として液体電解質が用いられる場合、その溶媒としては電気化学的に不活性なものが用いられ、例えば、アセトニトリル、炭酸プロピレン、エチレンカーボネート等が用いられる。固体高分子電解質の例としては、特開2001−160427号公報記載の電解質が、ゲル電解質の例としては「表面科学」21巻、第5号288〜293頁に記載の電解質が挙げられる。 A redox electrolyte is preferably used for the electrolyte layer. Here, examples of the redox electrolyte include I − / I 3 − system, Br − / Br 3 − system, and quinone / hydroquinone system. Such redox electrolyte can be obtained by a conventionally known method, for example, I - / I 3 - system electrolyte can be obtained by mixing an ammonium salt of iodine and iodine. The electrolyte layer is composed of dispersions of these redox electrolytes. These dispersions are dispersed in liquid electrolytes when they are solutions, solid polymer electrolytes and gel substances when dispersed in polymers that are solid at room temperature. It is called a gel electrolyte. When a liquid electrolyte is used as the electrolyte layer, an electrochemically inert solvent is used as the solvent, for example, acetonitrile, propylene carbonate, ethylene carbonate, or the like is used. Examples of the solid polymer electrolyte include those described in JP-A No. 2001-160427, and examples of the gel electrolyte include those described in “Surface Science” Vol. 21, No. 5, pages 288 to 293.
(太陽電池)
本発明の太陽電池について説明する。
(Solar cell)
The solar cell of the present invention will be described.
本発明の太陽電池は、本発明の光電変換素子の一態様として太陽光に最適の設計並びに回路設計が行われ、太陽光を光源として用いた時に最適な光電変換が行われるような構造を有する。即ち、色素増感された半導体に太陽光が照射されうる構造となっている。 The solar cell of the present invention has a structure in which the optimum design and circuit design for sunlight are performed as one aspect of the photoelectric conversion element of the present invention, and the optimum photoelectric conversion is performed when sunlight is used as a light source. . That is, the semiconductor is dye-sensitized and can be irradiated with sunlight.
本発明の太陽電池に、太陽光または太陽光と同等の電磁波を照射すると、半導体に吸着された増感色素は、照射された光もしくは電磁波を吸収して励起する。励起によって発生した電子は半導体に移動し、次いで導電性支持体を経由して対向電極に移動して、電荷移動層のレドックス電解質を還元する。一方、半導体に電子を移動させた増感色素は酸化体となっているが、対向電極から電荷移動層のレドックス電解質を経由して電子が供給されることにより、還元されて元の状態に戻り、同時に電荷移動層のレドックス電解質は酸化されて、再び対向電極から供給される電子により還元されうる状態に戻る。このようにして電子が流れ、本発明の光電変換素子を用いた太陽電池を構成することができる。 When the solar cell of the present invention is irradiated with sunlight or an electromagnetic wave equivalent to sunlight, the sensitizing dye adsorbed on the semiconductor is excited by absorbing the irradiated light or electromagnetic wave. Electrons generated by excitation move to the semiconductor, and then move to the counter electrode via the conductive support to reduce the redox electrolyte in the charge transfer layer. On the other hand, the sensitizing dye that has moved electrons to the semiconductor is an oxidant, but is reduced to the original state by supplying electrons from the counter electrode via the redox electrolyte of the charge transfer layer. At the same time, the redox electrolyte of the charge transfer layer is oxidized and returns to a state where it can be reduced again by electrons supplied from the counter electrode. In this way, electrons flow, and a solar cell using the photoelectric conversion element of the present invention can be configured.
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。 EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented.
実施例
(光電変換素子1の作製)
無機ガラスフィルムとして厚さ30μmの製造例1の無機ガラスフィルムを用いた。この無機ガラスフィルムの片面にスプレー熱分解法によりFTO(フッ素ドープされた酸化スズ)薄膜を設け、シート抵抗10Ω/□の透明導電膜を得て透明導電層とした。この無機ガラスフィルムは、直径5cmの丸棒に巻き付けても破断及びクラックの発生は観測されず、水蒸気透過度は0.01g/m2/day以下であった。このFTO薄膜上に、市販の低温焼成用酸化チタンペースト(粒径18nmの酸化チタン粒子を有機溶媒に分散したもの)を、スクリーン印刷法(塗布面積5×5mm2)により塗布した。120℃で3分間乾燥させた後、200℃で10分間ならびに500℃で15分間焼成を行い、厚さ2.5μmの酸化チタン薄膜を得た。この薄膜上に重ねて、市販の酸化チタンペースト(粒径400nm)を同様の方法で塗布し厚さ2.5μmの酸化チタン薄膜を重ね塗りした後、同様の焼成処理を行い、半導体層を得た。
Example (Production of Photoelectric Conversion Element 1)
The inorganic glass film of Production Example 1 having a thickness of 30 μm was used as the inorganic glass film. An FTO (fluorine-doped tin oxide) thin film was provided on one surface of this inorganic glass film by a spray pyrolysis method to obtain a transparent conductive film having a sheet resistance of 10Ω / □ to be a transparent conductive layer. Even when this inorganic glass film was wound around a round bar having a diameter of 5 cm, no breakage or cracks were observed, and the water vapor permeability was 0.01 g / m 2 / day or less. On this FTO thin film, a commercially available titanium oxide paste for low-temperature firing (a dispersion of titanium oxide particles having a particle diameter of 18 nm in an organic solvent) was applied by a screen printing method (application area 5 × 5 mm 2 ). After drying at 120 ° C. for 3 minutes, baking was carried out at 200 ° C. for 10 minutes and at 500 ° C. for 15 minutes to obtain a titanium oxide thin film having a thickness of 2.5 μm. Overlaid on this thin film, a commercially available titanium oxide paste (particle size 400 nm) was applied in the same manner and a titanium oxide thin film having a thickness of 2.5 μm was overcoated, followed by the same baking treatment to obtain a semiconductor layer. It was.
下記増感色素(1)及び増感色素に対して2当量のケノデオキシコール酸をアセトニトリル:t−ブチルアルコール=1:1の混合溶媒に溶解し、増感色素濃度5×10−4モル/lの溶液を調製した。前記の半導体層を担持した無機ガラスフィルム基板を、この溶液に室温で3時間浸漬して、増感色素の吸着処理を行い、増感色素を担持した半導体層を得た。 The following sensitizing dye (1) and 2 equivalents of chenodeoxycholic acid with respect to the sensitizing dye are dissolved in a mixed solvent of acetonitrile: t-butyl alcohol = 1: 1, and the sensitizing dye concentration is 5 × 10 −4 mol / l. A solution was prepared. The inorganic glass film substrate carrying the semiconductor layer was immersed in this solution at room temperature for 3 hours, and the sensitizing dye was adsorbed to obtain a semiconductor layer carrying the sensitizing dye.
電解質層に用いる電解液として、ヨウ化1−ブチル−3−メチルイミダゾリウム0.6モル/l、ヨウ化リチウム0.1モル/l、ヨウ素0.05モル/l、4−(t−ブチル)ピリジン0.05モル/lを含む3−メトキシプロピオニトリル溶液を用いた。 As an electrolytic solution used in the electrolyte layer, 1-butyl-3-methylimidazolium iodide 0.6 mol / l, lithium iodide 0.1 mol / l, iodine 0.05 mol / l, 4- (t-butyl) ) A 3-methoxypropionitrile solution containing 0.05 mol / l of pyridine was used.
FTO薄膜を設けた無機ガラスフィルム基板を別に用意し、この導電面側に白金薄膜(厚さ40nm)をスパッタリングにより付着させた。これらの2枚の無機ガラスフィルム基板をそれぞれ導電面側が内側になるように対向させて、シリカ/アルミナ系無機接着剤を用いて貼り合わせた。接着剤の間隙から前記電解液を注入した後、100℃で30分間熱硬化することにより2枚の無機ガラスフィルム基板を接着した。両面セパレータで挟持された厚み20μmのアクリル系透明粘着剤の一方のセパレータを剥離し、露出した粘着剤面を、厚さ40μmのポリエチレンテレフタレートフィルムの片面にゴムローラを用いて貼着した。この片面粘着フィルムを2つ用意し、先に作製した素子の両面にゴムローラを用いて貼着することにより光電変換素子1を作製した。 Separately, an inorganic glass film substrate provided with an FTO thin film was prepared, and a platinum thin film (thickness 40 nm) was deposited on the conductive surface side by sputtering. These two inorganic glass film substrates were opposed to each other so that the conductive surface side was inside, and were bonded together using a silica / alumina inorganic adhesive. After injecting the electrolytic solution from the gap between the adhesives, the two inorganic glass film substrates were bonded by thermosetting at 100 ° C. for 30 minutes. One separator of the acrylic transparent adhesive having a thickness of 20 μm sandwiched between the double-sided separators was peeled off, and the exposed adhesive surface was adhered to one side of a polyethylene terephthalate film having a thickness of 40 μm using a rubber roller. Two single-sided adhesive films were prepared, and the photoelectric conversion element 1 was produced by sticking on both surfaces of the element produced previously using the rubber roller.
(光電変換素子2、3の作製)
無機ガラスフィルムを厚さ70μm及び10μmに変更した他は、光電変換素子1と同様にして、それぞれ光電変換素子2及び3を作製した。
(Preparation of photoelectric conversion elements 2 and 3)
Photoelectric conversion elements 2 and 3 were produced in the same manner as the photoelectric conversion element 1 except that the thickness of the inorganic glass film was changed to 70 μm and 10 μm.
(光電変換素子4の作製)
市販の低温焼成用酸化チタンペースト(粒径18nmの酸化チタン粒子を有機溶媒に分散したもの)を、酸化インジウムスズ(ITO)導電性膜でコーティングしたポリエチレンテレフタレート(PET)樹脂フィルム基板へスキージ法(塗布面積5×5mm2)により塗布した。150℃で5分間加熱乾燥を行い、厚さ2.5μmの酸化チタン薄膜を得た。このフィルム基板を70℃の0.1モル/l四塩化チタン水溶液中で30分浸漬し、充分に水洗後、再度150℃で5分間加熱乾燥を行った。この樹脂フィルム基板に対して光電変換素子1と同様に増感色素吸着処理を行った。この樹脂フィルム基板に対して光電変換素子1と同様に白金スパッタリング処理を行った。
(Preparation of photoelectric conversion element 4)
A commercially available titanium oxide paste for low-temperature firing (dispersion of titanium oxide particles with a particle size of 18 nm in an organic solvent) is applied to a polyethylene terephthalate (PET) resin film substrate coated with an indium tin oxide (ITO) conductive film ( The coating area was 5 × 5 mm 2 ). Heat drying was performed at 150 ° C. for 5 minutes to obtain a titanium oxide thin film having a thickness of 2.5 μm. This film substrate was immersed in a 0.1 mol / l titanium tetrachloride aqueous solution at 70 ° C. for 30 minutes, sufficiently washed with water, and then again dried by heating at 150 ° C. for 5 minutes. The resin film substrate was subjected to sensitizing dye adsorption treatment in the same manner as the photoelectric conversion element 1. A platinum sputtering treatment was performed on the resin film substrate in the same manner as the photoelectric conversion element 1.
光電変換素子1と同様の方法で電解液の作製及び注入を行い、先に作製した2枚の樹脂フィルム基板を紫外線硬化樹脂フィルムで貼り合わせることにより、光電変換素子4を作製した。 The photoelectric conversion element 4 was produced by producing and injecting an electrolytic solution in the same manner as the photoelectric conversion element 1 and bonding the two resin film substrates produced previously with an ultraviolet curable resin film.
(光電変換素子5の作製)
無機ガラスフィルムの代わりに市販のFTO導電膜付きガラス板(シート抵抗10Ω/□、厚さ1.1mm)を用いた他は、光電変換素子1と同様にして光電変換素子5を作製した。
(Preparation of photoelectric conversion element 5)
A photoelectric conversion element 5 was produced in the same manner as the photoelectric conversion element 1 except that a commercially available glass plate with an FTO conductive film (sheet resistance 10 Ω / □, thickness 1.1 mm) was used instead of the inorganic glass film.
(光電変換素子6の作製)
無機ガラスフィルムの片側(半導体層と反対側、図1の7)をITO導電性膜でコーティングしたPET樹脂フィルム基板で置き換えた他は光電変換素子1と同様にして光電変換素子6を作製した。
(Preparation of photoelectric conversion element 6)
A photoelectric conversion element 6 was produced in the same manner as the photoelectric conversion element 1 except that one side of the inorganic glass film (the side opposite to the semiconductor layer, 7 in FIG. 1) was replaced with a PET resin film substrate coated with an ITO conductive film.
(光電変換素子7の作製)
無機ガラスフィルムを厚さ5μmに変更した他は、光電変換素子1と同様にして光電変換素子7を作製した。
(Preparation of photoelectric conversion element 7)
A photoelectric conversion element 7 was produced in the same manner as the photoelectric conversion element 1 except that the inorganic glass film was changed to a thickness of 5 μm.
(光電変換素子の評価)
得られた各光電変換素子について下記の評価を行った。
(Evaluation of photoelectric conversion element)
The following evaluation was performed about each obtained photoelectric conversion element.
作製した光電変換素子を、ソーラーシミュレータ(英弘精機製)を用い、AMフィルター(AM−1.5)を通したキセノンランプから100mW/cm2の擬似太陽光を照射することにより行った。半導体層上に5×5mm2のマスクをかけた条件下で光電変換特性の測定を行った。即ち、I−Vテスターを用いて室温にて電流−電圧特性を測定し、短絡電流(Jsc)、開放電圧(Voc)、及び形状因子(FF)を求め、これらから光電変換効率(η(%))を求めた。なお、光電変換素子の光電変換効率(η(%))は下記式(A)に基づいて算出した。 The produced photoelectric conversion element was irradiated by irradiating 100 mW / cm 2 of pseudo-sunlight from a xenon lamp through an AM filter (AM-1.5) using a solar simulator (manufactured by Eiko Seiki). Photoelectric conversion characteristics were measured under conditions where a 5 × 5 mm 2 mask was put on the semiconductor layer. That is, current-voltage characteristics are measured at room temperature using an IV tester to determine a short circuit current (Jsc), an open circuit voltage (Voc), and a form factor (FF), and from these, the photoelectric conversion efficiency (η (% )). The photoelectric conversion efficiency (η (%)) of the photoelectric conversion element was calculated based on the following formula (A).
式(A) η=100×(Voc×Jsc×FF)/P
ここで、Pは入射光強度[mW・cm−2]、Vocは開放電圧[V]、Jscは短絡電流密度[mA・cm−2]、FFは形状因子を示す。
Formula (A) η = 100 × (Voc × Jsc × FF) / P
Here, P is an incident light intensity [mW · cm −2 ], Voc is an open circuit voltage [V], Jsc is a short circuit current density [mA · cm −2 ], and FF is a form factor.
光電変換素子作製直後の初期光電変換効率に加え、各光電変換素子を直径7cmの丸棒に10分間巻き付けた後、あるいは素子作製後に温度30℃湿度90%の条件下で10日間静置した後での光電変換効率を測定し比較した。各フィルムの水蒸気透過度はJIS K 7126−1987に準拠した方法で測定した。 In addition to the initial photoelectric conversion efficiency immediately after production of the photoelectric conversion element, after each photoelectric conversion element is wound on a round bar having a diameter of 7 cm for 10 minutes, or after standing for 10 days under conditions of a temperature of 30 ° C. and a humidity of 90%. The photoelectric conversion efficiency was measured and compared. The water vapor permeability of each film was measured by a method based on JIS K 7126-1987.
評価の結果を表1に示す。 The evaluation results are shown in Table 1.
表より、耐熱性のある無機ガラスフィルムからなる可撓性基板を用いた本発明の光電変換素子1〜3の光電変換効率は、可撓性はあるものの耐熱性のない樹脂フィルム基板を用いた比較の光電変換素子4に比べて高く、可撓性のないガラス基板を用いた比較の光電変換素子5と同程度の光電変換効率を示した。比較の光電変換素子4ではPET樹脂フィルム基板の耐熱性が低いため150℃での熱処理しかできず、酸化チタン微粒子間及び酸化チタン微粒子と透明導電層間の接着性が不十分であったのに対し、本発明の光電変換素子1〜3では500℃で焼成処理をすることができ、前述の接着性が大きく向上したことで説明できる。 From the table, the photoelectric conversion efficiency of the photoelectric conversion elements 1 to 3 of the present invention using a flexible substrate made of a heat-resistant inorganic glass film was a resin film substrate having flexibility but not heat resistance. It was higher than the comparative photoelectric conversion element 4 and showed a photoelectric conversion efficiency comparable to that of the comparative photoelectric conversion element 5 using a non-flexible glass substrate. In the comparative photoelectric conversion element 4, since the heat resistance of the PET resin film substrate was low, only heat treatment at 150 ° C. was possible, whereas the adhesion between the titanium oxide fine particles and between the titanium oxide fine particles and the transparent conductive layer was insufficient. In the photoelectric conversion elements 1 to 3 of the present invention, the baking treatment can be performed at 500 ° C., which can be explained by the fact that the above-described adhesiveness is greatly improved.
また、高湿度条件(90%)における10日間静置後での光電変換効率を比較した時、本発明の光電変換素子1〜3は、比較の光電変換素子4及び6より光電変換効率の減少度合いが小さく、無機ガラス基板のガスバリア性が樹脂基板に比べて優れていることを反映している。一方、無機ガラスフィルムの膜厚が5μmと薄い比較の光電変換素子7では、充分なガスバリア性は得られなかった。 Moreover, when comparing the photoelectric conversion efficiency after standing for 10 days in a high humidity condition (90%), the photoelectric conversion elements 1 to 3 of the present invention have a lower photoelectric conversion efficiency than the comparative photoelectric conversion elements 4 and 6. The degree is small, which reflects that the gas barrier property of the inorganic glass substrate is superior to that of the resin substrate. On the other hand, in the comparative photoelectric conversion element 7 having a thin film thickness of the inorganic glass film of 5 μm, sufficient gas barrier properties were not obtained.
本発明の光電変換素子により、高い光電変換効率と優れた耐久性を併せ持ち、かつ可撓性を有する太陽電池を提供することができた。 The photoelectric conversion element of the present invention can provide a flexible solar cell having both high photoelectric conversion efficiency and excellent durability.
1、8 可撓性を有するフィルム
2、7 膜厚10〜70μmの無機ガラスフィルム
3 透明導電層
4 増感色素を担持した半導体層
5 電解質層
6 導電層
DESCRIPTION OF SYMBOLS 1, 8 Film which has flexibility 2, 7 Inorganic glass film with a film thickness of 10-70 micrometers 3 Transparent conductive layer 4 Semiconductor layer which carried the sensitizing dye 5 Electrolyte layer 6 Conductive layer
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009051826A JP5332739B2 (en) | 2009-03-05 | 2009-03-05 | Photoelectric conversion element and solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009051826A JP5332739B2 (en) | 2009-03-05 | 2009-03-05 | Photoelectric conversion element and solar cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010205646A JP2010205646A (en) | 2010-09-16 |
JP5332739B2 true JP5332739B2 (en) | 2013-11-06 |
Family
ID=42966927
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009051826A Expired - Fee Related JP5332739B2 (en) | 2009-03-05 | 2009-03-05 | Photoelectric conversion element and solar cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5332739B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5625410B2 (en) * | 2010-03-17 | 2014-11-19 | 日本電気硝子株式会社 | Window board |
JP6539081B2 (en) * | 2015-03-24 | 2019-07-03 | 株式会社フジクラ | Photoelectric conversion element |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070028961A1 (en) * | 2005-08-04 | 2007-02-08 | General Electric Company | Organic dye compositions and use thereof in photovoltaic cells |
JP5110850B2 (en) * | 2006-10-31 | 2012-12-26 | 株式会社オハラ | Lithium ion conductive solid electrolyte and method for producing the same |
JP5325005B2 (en) * | 2008-04-24 | 2013-10-23 | 日東電工株式会社 | Transparent substrate |
-
2009
- 2009-03-05 JP JP2009051826A patent/JP5332739B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010205646A (en) | 2010-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhu et al. | CdS/CdSe-cosensitized TiO2 photoanode for quantum-dot-sensitized solar cells by a microwave-assisted chemical bath deposition method | |
Magne et al. | Effects of ZnO film growth route and nanostructure on electron transport and recombination in dye-sensitized solar cells | |
JP5285062B2 (en) | Photosensitizer and solar cell using the same | |
JP5237664B2 (en) | Photoelectric conversion element | |
JP4637523B2 (en) | Photoelectric conversion device and photovoltaic device using the same | |
JP5275346B2 (en) | Dye-sensitized solar cell | |
KR20130086943A (en) | Photoelectric conversion element, photoelectrochemical battery, dye for photoelectric conversion element, and dye solution for photoelectric conversion element | |
JP2012248537A (en) | Photo-electrode structure and manufacturing method for the same | |
JP2008186752A (en) | Photoelectric conversion element and solar cell | |
JP2012084300A (en) | Photoelectric conversion element and solar cell | |
KR101635758B1 (en) | Sensitizing dye solution, working electrode prepared thereby, and dye-sensitized solar cell comprising the same | |
JP2003163360A (en) | Photoelectric converter device | |
Li et al. | TiO2 nanorod arrays modified with SnO2-Sb2O3 nanoparticles and application in perovskite solar cell | |
JP2004247104A (en) | Titanium oxide fine particles, manufacturing method for photoelectric conversion element, and photoelectric conversion element | |
JP4716636B2 (en) | Compound semiconductor | |
JP2005064493A (en) | Photoelectric converter and photovoltaic device using the same | |
JP5332739B2 (en) | Photoelectric conversion element and solar cell | |
JP4925605B2 (en) | Photoelectric conversion device and photovoltaic device using the same | |
JP4969046B2 (en) | Photoelectric conversion device and photovoltaic device using the same | |
JP5332114B2 (en) | Photoelectric conversion element and solar cell | |
JP2010282780A (en) | Photoelectric conversion element and solar cell | |
JP2012064440A (en) | Photoelectric conversion element and solar cell | |
JP4537693B2 (en) | Dye-sensitized solar cell | |
JP5609403B2 (en) | Photoelectric conversion element and solar cell | |
JP5211679B2 (en) | Photoelectric conversion element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110921 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120214 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20130417 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130702 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130715 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |