JP5316219B2 - Dynamic characteristic measuring device that supplies a precise voltage to measure a specimen - Google Patents
Dynamic characteristic measuring device that supplies a precise voltage to measure a specimen Download PDFInfo
- Publication number
- JP5316219B2 JP5316219B2 JP2009123426A JP2009123426A JP5316219B2 JP 5316219 B2 JP5316219 B2 JP 5316219B2 JP 2009123426 A JP2009123426 A JP 2009123426A JP 2009123426 A JP2009123426 A JP 2009123426A JP 5316219 B2 JP5316219 B2 JP 5316219B2
- Authority
- JP
- Japan
- Prior art keywords
- power supply
- specimen
- voltage
- terminals
- precision
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 claims description 36
- 238000005259 measurement Methods 0.000 claims description 11
- 238000001514 detection method Methods 0.000 claims description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- 230000003068 static effect Effects 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 2
- 238000005219 brazing Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Images
Landscapes
- Measuring Fluid Pressure (AREA)
Description
本発明は、複数の供試体に精密電圧を供給して計測する動的特性計測装置に関する。 The present invention relates to a dynamic characteristic measuring apparatus for measuring a plurality of specimens by supplying a precise voltage.
ブリッジ回路に組み込まれた歪みゲージを利用したセンサは、荷重、圧力、トルク、又は、加速度などの力学的物理量を電気的に測定する場合に広く用いられている。
このような変換器の一例としては、特許文献1のような、半導体基板の一面側に形成された圧力検出用のダイヤフラムと、このダイヤフラム上に配置されピエゾ抵抗効果により抵抗値が変化する複数のゲージ抵抗とを備える半導体圧力センサが知られている。
A sensor using a strain gauge incorporated in a bridge circuit is widely used when mechanically measuring a physical physical quantity such as a load, pressure, torque, or acceleration.
As an example of such a converter, as disclosed in
その他、特許文献2のように、金属基板と、基板上に形成された圧力出力特性が互いに異なる二対の歪みゲージと、これら歪みゲージを結んで、圧力出力特性が同一の各歪みゲージをそれぞれ対向辺に配したブリッジ回路を構成する配線部とを具備する面圧センサが知られている。これら、特許文献1、2のセンサに限らず、ブリッジ回路に組み込まれた歪みゲージを利用したセンサは数多く知られている。
このようなセンサを、出荷前などに供試体(計測対象を試験に供する場合の呼称)として1個の製品を、1台の精密電源と1台の精密電圧測定器で計測する。多数の供試体を計測しようとする場合、多数の精密電源と多数の精密電圧測定器が必要となり、莫大な設備費がかかり問題となっていた。
In addition, as in Patent Document 2, a metal substrate, two pairs of strain gauges having different pressure output characteristics formed on the substrate, and each strain gauge having the same pressure output characteristics are connected by connecting these strain gauges. 2. Description of the Related Art A surface pressure sensor is known that includes a wiring portion that forms a bridge circuit disposed on opposite sides. These sensors are not limited to those disclosed in
Such a sensor is measured as a specimen (a name when a measurement object is used for a test) before shipment, and one product is measured by one precision power source and one precision voltage measuring instrument. When measuring a large number of specimens, a large number of precision power supplies and a large number of precision voltage measuring instruments are required, which entails huge equipment costs.
また、特許文献3に見られるように、ひずみゲージをブリッジ回路に組み込むためのリード線の抵抗値の影響を排除してひずみ測定を行う処理を簡単な構成で自動的に効率よく行うことができる1ゲージ3線法によるひずみ測定システムにおいて、スイッチ回路を備えて回路構成を簡略にしたものが知られている。しかしながら、スイッチ回路を使用すれば、切り替え時に大きく電圧が変動する可能性があって、精密電源と精密電圧測定器で、供試体に正確な電圧を供給して計測する場合には不適当であった。
Further, as can be seen in
本発明は、上記問題に鑑み、複数の供試体に精密電圧を供給して計測する動的特性計測装置を提供するものである。 In view of the above problems, the present invention provides a dynamic characteristic measuring apparatus that supplies and measures a precise voltage to a plurality of specimens.
上記課題を解決するために、請求項1の発明は、一定電圧(E)を供給する精密電源(10)と、歪ゲージとブリッジ回路とを含む供試体(1)の出力電圧(V)を測定する測定器(20)とを具備し、前記供試体(1)に対して、前記精密電源による一定電圧(E)を前記ブリッジ回路の電源電圧端子(X1、X2)に供給し、歪ゲージに与える外力を連続的に変化させながらブリッジ回路の出力電圧を動的に計測する動的特性計測装置において、
前記精密電源(10)の出力端子(−、+)と前記供試体(1)の電源電圧端子(X1、X2)とを接続する配線を、途中で分岐させ、前記配線を、同一抵抗を持つ電線とすることにより、1つの前記精密電源(10)が、複数の前記供試体(1)の電源電圧端子(X1、X2)に対して、一定電圧(E)を供給することが出来るようにし、
前記精密電源(10)の検出端子(−S、+S)を、複数の前記供試体(1)の1つの前記供試体(1)の電源電圧端子(X1、X2)に、さらに接続した4端子法による動的特性計測装置である。
In order to solve the above-mentioned problems, the invention of
The wiring connecting the output terminals (−, +) of the precision power supply (10) and the power supply voltage terminals (X1, X2) of the specimen (1) is branched in the middle, and the wirings have the same resistance. the wire and be Rukoto, one of the precision power supply (10) is, with respect to the supply voltage terminals of the plurality of the specimen (1) (X1, X2), so that it is possible to supply a constant voltage (E) to,
4 terminals further connecting the detection terminals (-S, + S) of the precision power supply (10) to the power supply voltage terminals (X1, X2) of one of the specimens (1) of the plurality of specimens (1) It is a dynamic characteristic measuring device by the method .
これにより、供試体の動的特性を計測する場合、単一の精密電源で、多数個の供試体を効率よく計測することが出来る。また、設備コスト低減を狙いとした、多数個の製品を一度に検査することにより、高速化(マシンタイムの短縮)が実現し、大幅に検査設備のコストダウンが可能となる。 Thereby, when measuring the dynamic characteristics of a specimen, a large number of specimens can be efficiently measured with a single precision power source. In addition, by inspecting a large number of products at the same time with the aim of reducing equipment costs, speeding up (reducing machine time) can be realized, and the cost of inspection equipment can be greatly reduced.
また、負荷抵抗変動によって生じる電圧変動を、検出して、電源側が、電圧補正する事により、正確な電源を供給できる。 In addition, the voltage fluctuation caused by the load resistance fluctuation is detected, and the power supply side corrects the voltage, whereby an accurate power supply can be supplied.
請求項2の発明は、請求項1に記載の発明において、前記供試体(1)が吸気圧センサであって、複数の該吸気圧センサを圧力チェンバー(30)内に配置して、前記圧力チェンバー(30)内の圧力を連続的に変化させながら、前記吸気圧センサのブリッジ回路の出力電圧を動的に計測することを特徴とする。
The invention of claim 2 is the invention of
請求項3の発明は、請求項1または2に記載の発明において、前記供試体(1)の前記ブリッジ回路が、4ゲージ法の歪ゲージにより構成されていることを特徴とする。 A third aspect of the invention is characterized in that, in the invention of the first or second aspect , the bridge circuit of the specimen (1) is constituted by a strain gauge of a 4-gauge method.
なお、上記に付した符号は、後述する実施形態に記載の具体的実施態様との対応関係を示す一例である。 In addition, the code | symbol attached | subjected above is an example which shows a corresponding relationship with the specific embodiment as described in embodiment mentioned later.
以下、図面を参照して、本発明の一実施形態を説明する。各実施態様について、同一構成の部分には、同一の符号を付してその説明を省略する。本発明の各実施形態が、本発明の基礎となった比較技術に対しても同一構成の部分には同一の符号を付してその説明を省略する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. About each embodiment, the same code | symbol is attached | subjected to the part of the same structure, and the description is abbreviate | omitted. In each embodiment of the present invention, parts having the same configuration are denoted by the same reference numerals with respect to the comparative technique on which the present invention is based, and the description thereof is omitted.
ブリッジ回路に組み込まれた歪みゲージを利用したセンサは、荷重、圧力、トルク、又は、加速度などの力学的物理量(外力)を電気的に測定する場合に広く用いられており、一例として、吸気圧センサなどの圧力センサ(半導体圧力センサ等)のブリッジ回路について簡単に述べる。
図1は、供試体とブリッジ電圧の関係を示す説明図であり、(a)は歪ゲージに無圧力時の状態を示し、(b)は圧力印加時の状態を示す。ブリッジ回路に歪みゲージを挿入する仕方には、1ゲージ法、2ゲージ法、4ゲージ法等あるが、ここでは、例示として4ゲージ法で説明する。歪ゲージG1〜G4の歪による抵抗値変化は極めて微小であり、これを、ホイートストーンブリッジ回路(ブリッジ回路)を利用して電圧変化として取出すものである。歪ゲージの組み方(各ゲージ法)で出力電圧を倍増して取出すことができる。
Sensors using strain gauges built into the bridge circuit are widely used to electrically measure mechanical physical quantities (external forces) such as load, pressure, torque, or acceleration. A bridge circuit of a pressure sensor such as a sensor (semiconductor pressure sensor or the like) will be briefly described.
1A and 1B are explanatory views showing the relationship between the specimen and the bridge voltage. FIG. 1A shows a state when no pressure is applied to the strain gauge, and FIG. 1B shows a state when pressure is applied. There are a 1 gauge method, a 2 gauge method, a 4 gauge method, and the like as a method of inserting a strain gauge into the bridge circuit. Here, a 4-gauge method will be described as an example. The resistance value change due to the strain of the strain gauges G1 to G4 is extremely small, and this is taken out as a voltage change using a Wheatstone bridge circuit (bridge circuit). The output voltage can be doubled by taking out the strain gauge (each gauge method).
図1において、Rは、歪ゲージG1〜G4のブリッジ抵抗、ΔRは、圧力印加時のブリッジ抵抗変化分(歪ゲージG1、G3と、歪ゲージG2、G4とは、反対符号の歪を受けるように取り付けてある)、Eは、端子X1−X2間のブリッジ電源電圧(所定の一定電圧)、Vは、計測すべき端子Y1−Y2間の出力電圧である。
この場合に、出力電圧Vは、次の式で表される。
In FIG. 1, R is a bridge resistance of the strain gauges G1 to G4, and ΔR is a bridge resistance change amount when a pressure is applied (the strain gauges G1 and G3 and the strain gauges G2 and G4 are subjected to strains having opposite signs). E) is a bridge power supply voltage (predetermined constant voltage) between the terminals X1 and X2, and V is an output voltage between the terminals Y1 and Y2 to be measured.
In this case, the output voltage V is expressed by the following equation.
V=(ΔR/R)*E V = (ΔR / R) * E
この式に示すように、ブリッジ電源電圧Eの誤差が、計測すべき出力電圧Vの誤差となることがわかる。これは、4ゲージ法に限らず、他のゲージ法においても同様である。したがって、供試体としてのセンサの精度を検査するためには、ブリッジ電源電圧Eに、精密電源で正確な電圧を供給する必要がある。 As shown in this equation, it can be seen that the error of the bridge power supply voltage E becomes the error of the output voltage V to be measured. This is not limited to the 4-gauge method, and the same applies to other gauge methods. Therefore, in order to inspect the accuracy of the sensor as the specimen, it is necessary to supply an accurate voltage to the bridge power supply voltage E with a precision power supply.
ここで、精密電源10とは、特に方式を限定したものではなく、周知のローコスト電源に比較して、精度が1桁〜2桁精度が高いという意味での精密電源である。想定している精度は、6桁半程度の分解能を有する電源が好ましく、例えば、10Vレンジで、10μV程度の精度で電圧を供給できる電源を指している。一例として、出力電圧をネガティブフィードバックして、電圧設定値に正確に制御する方式の定電圧電源が、精密電源の対象として挙げられる。ドロッパーレギュレーション方式のアナログ定電圧電源、シリーズレギュレーション方式のアナログ定電圧電源、PWM方式のデジタル定電圧電源等が好ましい。 Here, the precision power supply 10 is not particularly limited, and is a precision power supply in the sense that the precision is higher by one to two digits than a known low-cost power supply. The assumed accuracy is preferably a power supply having a resolution of about six and a half digits. For example, it indicates a power supply capable of supplying a voltage with an accuracy of about 10 μV in the 10 V range. As an example, a constant voltage power source that negatively feeds back the output voltage and accurately controls the voltage setting value can be cited as an object of the precision power source. A dropper regulation type analog constant voltage power source, a series regulation type analog constant voltage power source, a PWM type digital constant voltage power source and the like are preferable.
図2は、本発明の基礎となった第1の比較技術の計測方法を説明する説明図である。図3は、比較技術の供試体と精密電源との接続方法を示す図である。図4は、第1の比較技術の静的特性を計測する場合の圧力制御器の設定圧力の変動を示す図である。
供試体1は、例えば吸気圧センサであり、圧力チェンバー30内に計測のため多数個配置されている。圧力チェンバー30内は、導管31を通じて圧力制御器32(図示せず)により所定の設定圧力にすることができる。
FIG. 2 is an explanatory diagram for explaining the measurement method of the first comparative technique that is the basis of the present invention. FIG. 3 is a diagram showing a method for connecting a specimen of a comparative technique and a precision power source. FIG. 4 is a diagram illustrating fluctuations in the set pressure of the pressure controller when the static characteristics of the first comparative technique are measured.
The
図3に示すように、精密な電圧を供給する場合、4端子法(図3の出力端子−、+、検出端子−S、+Sの4端子)による方式が有効である。2端子接続法の場合だと、電源との接続経路と測定器の接続経路を共有する。この共通接続経路に、電源の電流が流れると、電圧降下が発生して、測定誤差になる。これを避けるために、4端子法が考案されている。4端子法では、負荷抵抗変動によって生じる電圧変動を、図3の検出端子−S、+S端子で検出して、電源側が、電圧補正することにより、正確な電源が供給できるのである。図2に示す第1の比較技術では、4端子を構成するように、供試体1個につき、精密電源1個用い、それぞれ1個の製品を、1台の精密電源と1台の精密電圧測定器で計測していた。このため、製品の生産量がn倍となると、n台の精密電源10(11、12、・・・)とn台の精密電圧測定器20(21、22、・・・)が必要となり莫大な設備費が必要となってしまうことになった。 As shown in FIG. 3, when a precise voltage is supplied, a method using a four-terminal method (four terminals of output terminal-, +, detection terminal -S, + S in FIG. 3) is effective. In the case of the two-terminal connection method, the connection path to the power source and the connection path of the measuring instrument are shared. When a power source current flows through this common connection path, a voltage drop occurs, resulting in a measurement error. In order to avoid this, a four-terminal method has been devised. In the four-terminal method, voltage fluctuations caused by load resistance fluctuations are detected at the detection terminals -S and + S terminals in FIG. 3, and the power supply side corrects the voltage, whereby accurate power can be supplied. In the first comparative technique shown in FIG. 2, one precision power supply is used for each specimen so that four terminals are configured, and one product is used for each precision power supply and one precision voltage measurement. I was measuring with the instrument. For this reason, when the production volume of the product becomes n times, n precision power supplies 10 (11, 12,...) And n precision voltage measuring instruments 20 (21, 22,. The equipment cost became necessary.
圧力チェンバー30内をいくつかの所定設定圧力(図4の検査I〜III)に保って、供試体1を検査する静的特性計測の場合、圧力制御器の設定圧力での圧力変動が、図4に示されている。所定の設定圧力に安定するまでに相当時間がかかっている。n個の製品に対し、リレー等で構成される切り替え器を使って、1台の精密電源と1台の精密電圧測定器で多数個の静的特性を計測することも考えられるが、切り替え後の安定時間を必要とするため、効率よく計測することが出来なかった。
In the case of static characteristic measurement in which the inside of the
これに対して、第2の比較技術として、動的特性計測方式が考えられている。図5は、第2の比較技術の動的特性計測方式を説明する説明図である。圧力チェンバー30内を高圧から低圧に向けて変動させ、いくつかの所定設定圧力を通過するときの出力電圧Vを計測(図5の検査I〜III)して、供試体1を検査する。
この方式によれば、高速計測が出来るばかりでなく、高精度の圧力制御器が不要となる。しかしながら、以下の述べる理由により、単一の供試体1にしかこの方式を適用することが出来ない。
On the other hand, as a second comparative technique, a dynamic characteristic measurement method is considered. FIG. 5 is an explanatory diagram for explaining the dynamic characteristic measurement method of the second comparative technique. The inside of the
According to this method, not only high-speed measurement can be performed, but also a highly accurate pressure controller is not required. However, this method can be applied only to a
供試体1の動的特性を計測する場合、精密電源及び精密電源測定器を電気的に接続する必要がある。この際、単一の精密電源及び精密電源測定器で、多数個の供試体1を計測する場合、リレー等で構成される切り替え器を挿入しようとしても、切り替え時に発生する外乱が誤差となり正確な計測ができない。特に、精密電源は、精密さを実現する為に、外乱による電圧変動を修正する時間が長くなっている。
When measuring the dynamic characteristics of the
すなわち、切り替え時には、供試体からみた抵抗が、接続機器(電源、測定器)特有の抵抗値から、非接続状態(数10〜数100MΩ)へ変化する。この変化により、供試体に信号外乱が加わることになる。電源の場合、機器特有の出力抵抗は数Ωと小さいが、測定器の場合、入力抵抗は数百MΩと大きいので、電源の場合、大きな抵抗値変化が発生するが、測定器の場合は、抵抗値変化が少ない事になる。つまり、電源のほうが、大きな影響を受ける事になる。更に、要求される安定度は、電源の精密さが増せば増すほど、長い安定時間が必要になって、ますます切り替え器を挿入することは動的計測には不向きとなってしまう。 That is, at the time of switching, the resistance viewed from the specimen changes from a resistance value unique to the connected device (power supply, measuring instrument) to a disconnected state (several tens to several hundreds MΩ). This change causes a signal disturbance to the specimen. In the case of a power supply, the output resistance peculiar to equipment is as small as several Ω, but in the case of a measuring instrument, the input resistance is as large as several hundred MΩ, so in the case of a power supply, a large resistance change occurs. There will be little resistance value change. In other words, the power supply is greatly affected. Furthermore, the required stability increases as the precision of the power supply increases, so that a longer stabilization time is required, and insertion of a switching device becomes increasingly unsuitable for dynamic measurement.
本発明の一実施形態では、このような問題を解決するために次のような構成が採用されている。
図6は、本発明の一実施形態において、精密電源を電気的に接続する説明図である。供試体1(1−1、1−2)が2個の場合について説明する。供試体1としては、吸気圧センサなどの半導体圧力センサである。この供試体1のブリッジ回路に電源電圧Eを供給するために、精密電源11に結線して、供試体1の動的特性を計測する。
まず、同一抵抗を持つ電線を2組、線A−C、線A−E、及び、線B−D、線B−Fの計4本用意する。4本の電線は、供試体1−1、1−2への配線が可能な範囲で最短に製作しておく。線A−C間抵抗=線A−E間抵抗、線B−D間抵抗=線B−F間抵抗となるようにする。各線の抵抗値の差はあったとしても、せいぜい約1mΩ程度に収まるようにすると良い。
In one embodiment of the present invention, the following configuration is adopted to solve such a problem.
FIG. 6 is an explanatory diagram for electrically connecting a precision power supply in an embodiment of the present invention. A case where there are two specimens 1 (1-1, 1-2) will be described. The
First, two sets of electric wires having the same resistance, a total of four lines, a line AC, a line AE, a line BD, and a line BF, are prepared. The four electric wires are manufactured in the shortest range as long as wiring to the specimens 1-1 and 1-2 is possible. The resistance between the lines A and C = the resistance between the lines A and E, and the resistance between the lines B and D = the resistance between the lines BF. Even if there is a difference in resistance value between the lines, it is preferable that the resistance value is within about 1 mΩ.
この4本の電線を使用して、共通電位点A(−)、B(+)を形成する。共通電位点A、Bで各線はロウ付けや接続金具で接合される。線A−C、線A−Eは、供試体1−1、1−2のマイナス端子C、E(X2)に結線する。線B−D、線B−Fは、供試体1−1、1−2のプラス端子D、F(X1)に結線する。次に、共通電位点A、Bと、精密電源11の電圧出力端子−、+とをそれぞれ結線する。最後に、精密電源の検出端子G(−S)を供試体1−1のマイナス端子Cと接続し、精密電源の検出端子H(+S)を供試体1−1のプラス端子Dと接続し、4端子を構成する。精密電源11は、検出端子G(−S)、H(+S)端子で供給電圧を検出するので、電源側が電圧補正することにより、正確な電源が供給することができる。供試体1−1、1−2の計測すべき出力電圧を計測する測定器21、22は、それぞれ個別に接続されている。 Using these four electric wires, the common potential points A (−) and B (+) are formed. At the common potential points A and B, the lines are joined by brazing or connecting metal fittings. The line A-C and the line A-E are connected to the negative terminals C and E (X2) of the specimens 1-1 and 1-2. The lines BD and BF are connected to the plus terminals D and F (X1) of the specimens 1-1 and 1-2. Next, the common potential points A and B and the voltage output terminals − and + of the precision power supply 11 are respectively connected. Finally, the detection terminal G (-S) of the precision power supply is connected to the minus terminal C of the specimen 1-1, the detection terminal H (+ S) of the precision power supply is connected to the plus terminal D of the specimen 1-1, Configure 4 terminals. Since the precision power supply 11 detects the supply voltage at the detection terminals G (−S) and H (+ S) terminals, accurate power supply can be supplied by correcting the voltage on the power supply side. Measuring instruments 21 and 22 for measuring output voltages to be measured of the specimens 1-1 and 1-2 are individually connected.
分岐する電線の抵抗は、要求される精度に対応する抵抗値(低抵抗)である必要がある。(高い抵抗であると、温度、周辺環境の影響を受けやすくなる。)周辺部からの影響を受けにくく配線するためには、例えば、低抵抗ケーブルやシールドケーブルを用いると良い。図6の一実施形態においては、供試体が2個(分岐線が2組)で説明したが、供試体1は2個以上の複数n(分岐線もn組)であってよい。この場合には、低抵抗の金具等で接続する等の配慮が必要となる。端子台で分岐してもよいが、端子台数多くなり、一定の配線抵抗にするのが困難になる。n個の供試体(1−1、1−2、・・・、1−n)の計測すべき出力電圧を計測する測定器20(21、22、・・・)は、それぞれ個別に接続されている。測定器20は、精密電源に比べ応答性がよいので、場合により切り替え器を設けることも可能である。本実施形態では、動的特性を計測する場合において説明してきたが、静的特性計測の場合でも本実施形態の結線のやり方が適用できる。
また、単一の精密電源と多数個の供試体1の系が複数組存在するようにして計測しても良い。
The resistance of the branching electric wire needs to have a resistance value (low resistance) corresponding to the required accuracy. (High resistance is likely to be affected by temperature and the surrounding environment.) For example, a low resistance cable or a shielded cable may be used for wiring that is less susceptible to influence from the peripheral portion. In the embodiment of FIG. 6, two specimens (two sets of branch lines) have been described, but the
Alternatively, measurement may be performed so that a plurality of systems of a single precision power source and a large number of
以上のように結線して、供試体1(1−1、1−2、・・・、1−n)の動的特性を計測する場合、単一の精密電源で、多数個の供試体1(1−1、1−2、・・・、1−n)を効率よく計測することが出来る。
When connecting as described above and measuring the dynamic characteristics of the specimen 1 (1-1, 1-2,..., 1-n), a large number of
圧力センサを例示して供試体1の動的特性を計測する場合について、説明してきたが、本発明の別の実施態様として、ブリッジ回路に組み込まれた歪みゲージを利用したセンサなら、荷重、圧力、トルク、又は、加速度などの力学的物理量を電気的に測定する場合が挙げられる。精密電源10は直流で説明したが、交流の場合でも本発明が適用できる。
The case where the dynamic characteristics of the
1(1−1、1−2、・・・、1−5) 供試体
10(11、12、・・・、15) 精密電源
20(21、22、・・・、25) 測定器
30 圧力チェンバー
31 導管
1 (1-1, 1-2, ..., 1-5) Specimen 10 (11, 12, ..., 15) Precision power supply 20 (21, 22, ..., 25) Measuring
Claims (3)
前記精密電源(10)の出力端子(−、+)と前記供試体(1)の電源電圧端子(X1、X2)とを接続する配線を、途中で分岐させ、前記配線を、同一抵抗を持つ電線とすることにより、1つの前記精密電源(10)が、複数の前記供試体(1)の電源電圧端子(X1、X2)に対して、一定電圧(E)を供給することが出来るようにし、
前記精密電源(10)の検出端子(−S、+S)を、複数の前記供試体(1)の1つの前記供試体(1)の電源電圧端子(X1、X2)に、さらに接続した4端子法による動的特性計測装置。 A precision power supply (10) for supplying a constant voltage (E), and a measuring instrument (20) for measuring an output voltage (V) of the specimen (1) including a strain gauge and a bridge circuit, the specimen In contrast to (1), the constant voltage (E) from the precision power supply is supplied to the power supply voltage terminals (X1, X2) of the bridge circuit, and the external voltage applied to the strain gauge is continuously changed while the output voltage of the bridge circuit is changed. In the dynamic characteristic measurement device that measures
The wiring connecting the output terminals (−, +) of the precision power supply (10) and the power supply voltage terminals (X1, X2) of the specimen (1) is branched in the middle, and the wirings have the same resistance. the wire and be Rukoto, one of the precision power supply (10) is, with respect to the supply voltage terminals of the plurality of the specimen (1) (X1, X2), so that it is possible to supply a constant voltage (E) to,
4 terminals further connecting the detection terminals (-S, + S) of the precision power supply (10) to the power supply voltage terminals (X1, X2) of one of the specimens (1) of the plurality of specimens (1) Dynamic characteristic measuring device by the method .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009123426A JP5316219B2 (en) | 2009-05-21 | 2009-05-21 | Dynamic characteristic measuring device that supplies a precise voltage to measure a specimen |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009123426A JP5316219B2 (en) | 2009-05-21 | 2009-05-21 | Dynamic characteristic measuring device that supplies a precise voltage to measure a specimen |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010271191A JP2010271191A (en) | 2010-12-02 |
JP5316219B2 true JP5316219B2 (en) | 2013-10-16 |
Family
ID=43419331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009123426A Expired - Fee Related JP5316219B2 (en) | 2009-05-21 | 2009-05-21 | Dynamic characteristic measuring device that supplies a precise voltage to measure a specimen |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5316219B2 (en) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56164933A (en) * | 1980-05-23 | 1981-12-18 | Mitsubishi Heavy Ind Ltd | Liquid vibrating pressure generator |
JPH0293732U (en) * | 1989-01-12 | 1990-07-25 | ||
JPH11148881A (en) * | 1997-11-18 | 1999-06-02 | Mitsubishi Heavy Ind Ltd | Calibration apparatus for pressure converter |
JP4379993B2 (en) * | 1999-12-24 | 2009-12-09 | 株式会社デンソー | Pressure sensor |
JP2002286576A (en) * | 2001-03-26 | 2002-10-03 | Mitsubishi Heavy Ind Ltd | Pressure-calibrating apparatus |
JP2003057082A (en) * | 2001-08-16 | 2003-02-26 | Tamagawa Seiki Co Ltd | Inspection device for rotation detector |
JP2008216037A (en) * | 2007-03-05 | 2008-09-18 | Denso Corp | Pressure sensor evaluation device |
-
2009
- 2009-05-21 JP JP2009123426A patent/JP5316219B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010271191A (en) | 2010-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102482611B1 (en) | Split bridge circuit force sensor | |
EP2871488A1 (en) | Hall electromotive force correction device and hall electromotive force correction method | |
CN103335699B (en) | The elastomer structure of multirange LOAD CELLS | |
JP6665744B2 (en) | Pressure sensor | |
US11500020B2 (en) | Sensor defect diagnostic circuit | |
CN101629970B (en) | Error-correction method and error-correction device for an acceleration sensor | |
CN102368086A (en) | Wheatstone bridge compensation resistance test method | |
CN105628269B (en) | A kind of micro- power and micro-displacement amplify sensor | |
CN113720524B (en) | Pressure detection method and pressure detection system | |
JP2010014695A (en) | Multiaxial sensor | |
JP5316219B2 (en) | Dynamic characteristic measuring device that supplies a precise voltage to measure a specimen | |
KR20160022707A (en) | Load measuring device capable of output characteristic compensation | |
KR100375026B1 (en) | Detection apparatus which measures and detects physical quantity of structure by transformational detector applied from strain gauge | |
CN109443503B (en) | Detection device | |
RU2379695C2 (en) | Converter of signals from single resistance strain gauges (versions) | |
JP6245183B2 (en) | Analog signal processing circuit, physical quantity measuring device and material testing machine | |
CN106706085B (en) | Four half-bridge sensors establish ties four corners and measure electronic scale circuit | |
JP2008224406A (en) | Physical quantity sensor | |
US10073122B2 (en) | Measuring transducer for converting an analogue electrical input signal into an analog electrical output signal | |
CN114935390B (en) | Weighing force transducer for offset load error compensation | |
RU2335776C1 (en) | Resistance strain gauge signal converter | |
RU2327174C1 (en) | Resistance strain gauge signal transducers | |
US20040166601A1 (en) | Semiconductor dynamic quantity sensor | |
JP6908749B2 (en) | Physical quantity measuring device | |
JP2016136107A (en) | Pressure sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110926 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121204 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121205 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130124 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130611 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130624 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5316219 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |