JP5305165B2 - Method for producing purified hydrogen peroxide water - Google Patents
Method for producing purified hydrogen peroxide water Download PDFInfo
- Publication number
- JP5305165B2 JP5305165B2 JP2009222881A JP2009222881A JP5305165B2 JP 5305165 B2 JP5305165 B2 JP 5305165B2 JP 2009222881 A JP2009222881 A JP 2009222881A JP 2009222881 A JP2009222881 A JP 2009222881A JP 5305165 B2 JP5305165 B2 JP 5305165B2
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen peroxide
- carbon dioxide
- peroxide solution
- hydrophobic
- exchange resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- QOSATHPSBFQAML-UHFFFAOYSA-N hydrogen peroxide;hydrate Chemical compound O.OO QOSATHPSBFQAML-UHFFFAOYSA-N 0.000 title claims description 36
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 188
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 159
- 239000000126 substance Substances 0.000 claims description 95
- 239000001569 carbon dioxide Substances 0.000 claims description 94
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 94
- 230000002209 hydrophobic effect Effects 0.000 claims description 94
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 55
- 239000003456 ion exchange resin Substances 0.000 claims description 50
- 229920003303 ion-exchange polymer Polymers 0.000 claims description 50
- 239000007788 liquid Substances 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 32
- 239000012535 impurity Substances 0.000 claims description 31
- 239000000919 ceramic Substances 0.000 claims description 27
- 238000002156 mixing Methods 0.000 claims description 27
- 150000002736 metal compounds Chemical class 0.000 claims description 26
- 238000000746 purification Methods 0.000 claims description 23
- 239000012530 fluid Substances 0.000 claims description 20
- 239000002738 chelating agent Substances 0.000 claims description 17
- 239000002994 raw material Substances 0.000 claims description 17
- 238000001914 filtration Methods 0.000 claims description 16
- 238000000926 separation method Methods 0.000 claims description 15
- 238000000605 extraction Methods 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 239000000284 extract Substances 0.000 claims description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 6
- 150000001450 anions Chemical class 0.000 claims description 6
- 150000001768 cations Chemical class 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 6
- 239000007789 gas Substances 0.000 claims description 4
- 238000005502 peroxidation Methods 0.000 claims description 4
- 238000007781 pre-processing Methods 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 3
- 239000000084 colloidal system Substances 0.000 description 17
- 235000012431 wafers Nutrition 0.000 description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 12
- 239000012528 membrane Substances 0.000 description 12
- 239000005416 organic matter Substances 0.000 description 12
- 230000005484 gravity Effects 0.000 description 10
- 239000004809 Teflon Substances 0.000 description 9
- 229920006362 Teflon® Polymers 0.000 description 9
- 150000003839 salts Chemical class 0.000 description 8
- 238000011282 treatment Methods 0.000 description 8
- 238000004140 cleaning Methods 0.000 description 7
- 238000005342 ion exchange Methods 0.000 description 7
- 239000003957 anion exchange resin Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 5
- 239000003729 cation exchange resin Substances 0.000 description 5
- -1 pulp bleaching Substances 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- 150000004056 anthraquinones Chemical class 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000007872 degassing Methods 0.000 description 4
- 229910001410 inorganic ion Inorganic materials 0.000 description 4
- 229910010272 inorganic material Inorganic materials 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 3
- 239000003463 adsorbent Substances 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000005411 Van der Waals force Methods 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 230000000274 adsorptive effect Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000012459 cleaning agent Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000012510 hollow fiber Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 238000002203 pretreatment Methods 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- MOMKYJPSVWEWPM-UHFFFAOYSA-N 4-(chloromethyl)-2-(4-methylphenyl)-1,3-thiazole Chemical compound C1=CC(C)=CC=C1C1=NC(CCl)=CS1 MOMKYJPSVWEWPM-UHFFFAOYSA-N 0.000 description 1
- PCFMUWBCZZUMRX-UHFFFAOYSA-N 9,10-Dihydroxyanthracene Chemical compound C1=CC=C2C(O)=C(C=CC=C3)C3=C(O)C2=C1 PCFMUWBCZZUMRX-UHFFFAOYSA-N 0.000 description 1
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229920002449 FKM Polymers 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-N Metaphosphoric acid Chemical compound OP(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-N 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- YDONNITUKPKTIG-UHFFFAOYSA-N [Nitrilotris(methylene)]trisphosphonic acid Chemical compound OP(O)(=O)CN(CP(O)(O)=O)CP(O)(O)=O YDONNITUKPKTIG-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000000113 cyclohexyl group Chemical class [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- DUYCTCQXNHFCSJ-UHFFFAOYSA-N dtpmp Chemical compound OP(=O)(O)CN(CP(O)(O)=O)CCN(CP(O)(=O)O)CCN(CP(O)(O)=O)CP(O)(O)=O DUYCTCQXNHFCSJ-UHFFFAOYSA-N 0.000 description 1
- NFDRPXJGHKJRLJ-UHFFFAOYSA-N edtmp Chemical compound OP(O)(=O)CN(CP(O)(O)=O)CCN(CP(O)(O)=O)CP(O)(O)=O NFDRPXJGHKJRLJ-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 125000001165 hydrophobic group Chemical class 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 235000014593 oils and fats Nutrition 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 229920000137 polyphosphoric acid Polymers 0.000 description 1
- 238000004076 pulp bleaching Methods 0.000 description 1
- 229940005657 pyrophosphoric acid Drugs 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 235000019983 sodium metaphosphate Nutrition 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 239000003799 water insoluble solvent Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/54—Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Extraction Or Liquid Replacement (AREA)
Description
本発明は精製過酸化水素水の製造方法に関し、詳しくは、過酸化水素水に含まれる疎水性物質、すなわち疎水性有機物および疎水性のコロイド金属化合物を再現性よく除去することが可能な高純度過酸化水素水の製造方法、ならびにそのための精製過酸化水素水の製造装置に関する。 The present invention relates to a method for producing purified hydrogen peroxide solution, and more specifically, high purity capable of reproducibly removing hydrophobic substances contained in hydrogen peroxide solution, that is, hydrophobic organic substances and hydrophobic colloidal metal compounds. The present invention relates to a method for producing hydrogen peroxide water and an apparatus for producing purified hydrogen peroxide water therefor.
過酸化水素水は、紙、パルプの漂白、化学研磨液等の多くの分野で広く利用されているが、近年、シリコンウエハの洗浄剤や半導体工程の洗浄剤などの電子工業分野における利用が増大し、これにともない、過酸化水素水中の種々の不純物を極力低減した高純度な品質が要求されている。 Hydrogen peroxide solution is widely used in many fields such as paper, pulp bleaching, chemical polishing liquid, etc., but in recent years, its use in the electronics industry such as silicon wafer cleaning agents and semiconductor process cleaning agents has increased. In connection with this, high-purity quality in which various impurities in hydrogen peroxide water are reduced as much as possible is required.
ところで一般に、過酸化水素は、現在では、主にアントラキノン法により製造されている。その製造方法は、まず、2−アルキルアントラキノンなどのアントラキノン誘導体を、水不溶性の溶媒中で水素化触媒の存在下で水素化してアントラヒドロキノンとし、触媒を除去した後、空気により酸化することによって2−アルキルアントラキノンを再生するとともに、このとき生成する過酸化水素を水で抽出することによって過酸化水素含有水溶液を得る方法である。この方法をアントラキノン自動酸化法(AO法)という。 In general, hydrogen peroxide is currently produced mainly by the anthraquinone method. The production method is as follows. First, an anthraquinone derivative such as 2-alkylanthraquinone is hydrogenated in the presence of a hydrogenation catalyst in a water-insoluble solvent to form anthrahydroquinone, and after removing the catalyst, it is oxidized by air. -This is a method for regenerating alkyl anthraquinone and extracting the hydrogen peroxide produced at this time with water to obtain a hydrogen peroxide-containing aqueous solution. This method is called anthraquinone auto-oxidation method (AO method).
この方法によって製造された過酸化水素水中には、装置材質などに起因するAl、Fe、Crなどの無機イオン・化合物不純物の他、製造方法などに起因する有機不純物が含まれている。このため、過酸化水素水は、使用される品質要求に応じて、これらの不純物を除去して、より高純度に精製する操作が行われている。 The hydrogen peroxide water produced by this method contains organic impurities caused by the production method in addition to inorganic ions and compound impurities such as Al, Fe, and Cr caused by the material of the apparatus. For this reason, the operation of purifying the hydrogen peroxide solution to a higher purity by removing these impurities according to the quality requirements to be used.
過酸化水素水を高純度に精製する技術は既にいくつか実用化されているが、その中で最も優れており、かつ安価なものはイオン交換樹脂法であり、今後も広く使用されることが期待されている。 Several technologies for purifying hydrogen peroxide water with high purity have already been put into practical use, but the most excellent and inexpensive one is the ion exchange resin method, which will be widely used in the future. Expected.
しかしながら、このイオン交換樹脂法は汚染に極めて弱い。そのためイオン交換樹脂の性能劣化やライフの短命化がしばしば見られる。従ってイオン交換樹脂の能力を最大限に引き出すためには、イオン交換樹脂にダメージを与える要因である汚染不純物を、イオン交換樹脂で処理する前の工程で取り除く必要がある。このことが、さらには最終のウェハ洗浄にも貢献できることになる。 However, this ion exchange resin method is extremely vulnerable to contamination. Therefore, the performance deterioration of ion exchange resin and the shortening of life are often seen. Therefore, in order to maximize the capability of the ion exchange resin, it is necessary to remove the contaminant impurities that cause damage to the ion exchange resin in a step before the treatment with the ion exchange resin. This can also contribute to the final wafer cleaning.
過酸化水素水中に含まれている汚染でかつイオン交換樹脂を汚染する汚染不純物は疎水性物質すなわち疎水性有機物と疎水性のコロイド金属化合物である。過酸化水素水中の疎水性有機物と疎水性のコロイド金属化合物は非常に吸着しやすく、また、イオン交換樹脂に徐々に化学吸着し、イオン交換基を塞いで、イオン交換樹脂の交換能力を阻害し、かつイオン交換樹脂のライフも短くしていき、イオン交換樹脂の劣化要因になっている。また半導体ウェハの洗浄においても疎水性物質は、ウェハ表面に吸着し易く、ウェハ表面に付着した有機物は、結晶欠陥による酸化膜耐圧の劣化やリーク電流の増加やシリコン酸化膜の絶縁耐圧の劣化などを引き起こす原因にもなっている。 Contaminating impurities contained in hydrogen peroxide water and contaminating the ion exchange resin are hydrophobic substances, that is, hydrophobic organic substances and hydrophobic colloidal metal compounds. Hydrophobic organic substances and hydrophobic colloidal metal compounds in hydrogen peroxide water are very easy to adsorb, and gradually adsorb on the ion exchange resin, blocking the ion exchange groups and hindering the exchange capacity of the ion exchange resin. In addition, the life of the ion exchange resin is shortened, which is a cause of deterioration of the ion exchange resin. In cleaning semiconductor wafers, hydrophobic substances are easily adsorbed on the wafer surface, and organic substances adhering to the wafer surface cause degradation of oxide breakdown voltage due to crystal defects, increase in leakage current, degradation of dielectric breakdown voltage of silicon oxide film, etc. It is also a cause of causing.
従って、過酸化水素水にもウェハ表面に付着するような疎水性物質を低減することが求められている。なお、疎水性物質と比較して親水性物質は吸着性が低く、超純水リンスによって洗い流せるのでウェハ上には残らない。 Therefore, it is required to reduce the hydrophobic substance that adheres to the wafer surface even in the hydrogen peroxide solution. It should be noted that a hydrophilic substance has a lower adsorptivity than a hydrophobic substance and can be washed away with ultrapure water rinse, so that it does not remain on the wafer.
過酸化水素水中の疎水性物質には大きく分けて2つあり、一つは疎水性有機物であり、一つはコロイド金属化合物である。
過酸化水素水中の疎水性物質のうち疎水性有機物除去方法として、合成吸着剤で処理する方法や逆浸透膜(RO膜)で処理する方法などが提案されている(特許文献1〜8)。また、吸着樹脂の表面で有機物をvan der Waals力で物理吸着させて除去させることも提案されている(特許文献9〜11)。また、吸着材として、活性炭を使用したり(特許文献12)、ゼオライトを使用する(特許文献13)ものも提案されている。
There are roughly two types of hydrophobic substances in hydrogen peroxide water, one is a hydrophobic organic substance, and the other is a colloidal metal compound.
Among hydrophobic substances in hydrogen peroxide water, as a method for removing hydrophobic organic substances, a method of treating with a synthetic adsorbent or a method of treating with a reverse osmosis membrane (RO membrane) has been proposed (Patent Documents 1 to 8). In addition, it has also been proposed to physically adsorb organic substances on the surface of the adsorbing resin with a van der Waals force (Patent Documents 9 to 11). In addition, an adsorbent that uses activated carbon (Patent Document 12) or zeolite (Patent Document 13) has also been proposed.
また、過酸化水素水精製の前処理として、工業用過酸化水素水にオゾンを作用させて有機物を酸化分解させた後に残った低分子有機物を蒸留して除去することは、特許文献14および15に提案されている。 Further, as a pretreatment for purifying the hydrogen peroxide solution, the low molecular organic substances remaining after the organic substances are oxidatively decomposed by causing ozone to act on the industrial hydrogen peroxide solution are distilled and removed. Has been proposed.
また、有機不純物を含む過酸化水素水に下方より空気又は不活性ガスを吹き込むと上昇する気泡が有機物を付着上昇させ、下方から有機物が低減した過酸化水素が取り出せ、これによって、過酸化水素水を精製することも知られている(特許文献16)。さらに、テフロン(登録商標)部材で構成した減圧蒸留装置で工業用過酸化水素水を蒸留する方法も提案されている(特許文献17)。 In addition, when air or inert gas is blown into the hydrogen peroxide solution containing organic impurities from below, the bubbles that rise will cause the organic matter to adhere and rise, and hydrogen peroxide with reduced organic matter can be taken out from below, thereby removing the hydrogen peroxide solution. It is also known to purify (Patent Document 16). Furthermore, a method of distilling industrial hydrogen peroxide using a vacuum distillation apparatus composed of Teflon (registered trademark) members has also been proposed (Patent Document 17).
さらに、特許文献18には、工業用過酸化水素水中の有機物を超臨界二酸化炭素で抽出すると低減できることが開示され、特許文献18によれば、TOCが145ppmから80ppmに低減すると開示されている。 Furthermore, Patent Document 18 discloses that organic substances in industrial hydrogen peroxide water can be reduced by extraction with supercritical carbon dioxide, and Patent Document 18 discloses that TOC is reduced from 145 ppm to 80 ppm.
過酸化水素水のもう一つの疎水性物質であるコロイド金属化合物の除去については従来技術がない。 There is no prior art for removing colloidal metal compounds, which are another hydrophobic substance of hydrogen peroxide.
特許文献1〜8のRO膜では膜表面に無機物や有機物が捕捉堆積していく。その表面を1〜数MPaの高圧で押し出していくので膜表面に積層している堆積物は少しずつ透過してくる。このため経過時間とともにRO膜を透過した過酸化水素水中の無機物や有機物量も徐々に多くなる。特許文献9〜11の吸着性樹脂や特許文献12の活性炭、特許文献13のゼオライトを使用する方法では、表面では有機物の大部分がvan der Waals力で物理吸着されるが、その吸着力は弱く、表面では絶えず有機物の吸着、脱着が繰り返えされているために充分に除去し切れない。また、処理した過酸化水素水中の有機物量は経過時間とともに多くなる。 In the RO membranes of Patent Documents 1 to 8, inorganic substances and organic substances are captured and deposited on the film surface. Since the surface is extruded at a high pressure of 1 to several MPa, the deposits laminated on the film surface permeate little by little. For this reason, the amount of inorganic substances and organic substances in the hydrogen peroxide solution that has passed through the RO membrane gradually increases with time. In the method using the adsorptive resin of Patent Documents 9 to 11, the activated carbon of Patent Document 12, and the zeolite of Patent Document 13, most of the organic substances are physically adsorbed by the van der Waals force on the surface, but the adsorptive power is weak. On the surface, the adsorption and desorption of organic substances are constantly repeated, so that they cannot be removed sufficiently. In addition, the amount of organic matter in the treated hydrogen peroxide water increases with time.
特許文献14および15のように、有機物をオゾンで酸化し低分子化させ吸着やイオン交換で除去するものでは、過酸化水素水中でオゾンは過酸化水素によって分解されてしまい、充分に有機物を酸化する反応は起こりにくい。 As in Patent Documents 14 and 15, when organic substances are oxidized with ozone to reduce the molecular weight and removed by adsorption or ion exchange, ozone is decomposed by hydrogen peroxide in hydrogen peroxide water, and the organic substances are sufficiently oxidized. This reaction is unlikely to occur.
特許文献16および17の処理では、過酸化水素と共沸してくる有機物が多くそれほど低減できず、また、テフロン(登録商標)部材で減圧部をつくることは難しく実用的ではない。
特許文献18に記載の方法では、有機物全体を除去することを着目しているが、この抽出方法は効率が悪い。また、特開2004−67402号公報には、イオン交換樹脂の処理の前段として、平均孔径5μm以下の多孔質セラミックフィルターにより過酸化水素水を処理することが開示されているが、疎水性物質であるコロイド金属化合物の除去について何ら記載もなく、また、かかる方法で疎水性物質を除去しようとしても、膜の阻止率が低く、早い時間にリークが大きくなる。
In the treatments of Patent Documents 16 and 17, a large amount of organic substances azeotroped with hydrogen peroxide cannot be reduced so much, and it is difficult and impractical to make a decompression section with a Teflon (registered trademark) member.
The method described in Patent Document 18 focuses on removing the entire organic matter, but this extraction method is inefficient. Japanese Patent Application Laid-Open No. 2004-67402 discloses that hydrogen peroxide water is treated with a porous ceramic filter having an average pore diameter of 5 μm or less as a pre-stage of the treatment of the ion exchange resin. There is no description about the removal of a certain colloidal metal compound, and even if an attempt is made to remove a hydrophobic substance by such a method, the blocking rate of the film is low, and the leak increases at an early time.
そして、本発明者らは過酸化水素水中の疎水性物質除去を鋭意検討の結果、次のような見解を見いだした。すなわち、過酸化水素水中に含有される疎水性物質がイオン交換樹脂のイオン交換基に付着して過酸化水素水の精製不良やライフを短くしているとか、ウェハ洗浄ではウェハ表面に付着してウェハの特性不良を起こしたりしていることがわかった。 As a result of intensive studies on removing hydrophobic substances from hydrogen peroxide water, the present inventors have found the following views. That is, the hydrophobic substance contained in the hydrogen peroxide solution adheres to the ion exchange groups of the ion exchange resin, shortening the purification failure and life of the hydrogen peroxide solution, or adhering to the wafer surface in wafer cleaning. It has been found that the wafer has poor characteristics.
これまでの特許文献に開示された方法では、疎水性物質が一部リークし、さらにはイオン交換樹脂も通過し最終の高純度過酸化水素水にも入っていく危険性があった。また、合成吸着樹脂では再生において多量の有機溶媒を使用することにより環境に負荷を与えることになる。またRO膜では有機物等の汚染が膜の細孔を塞ぎ、有機物を除去できなくなり、高価な高分子膜を頻繁に交換しなければならないなど環境に負荷を与えることになる。このようにいずれも問題点もある。 In the methods disclosed in the patent documents so far, there is a risk that a part of the hydrophobic substance leaks, and further, the ion exchange resin also passes through and enters the final high-purity hydrogen peroxide solution. In addition, the synthetic adsorption resin imposes a burden on the environment by using a large amount of organic solvent in the regeneration. In RO membranes, contamination of organic matter, etc., clogs the pores of the membrane, making it impossible to remove the organic matter, which places a burden on the environment, such as having to replace expensive polymer membranes frequently. As described above, both have problems.
そこで、このような情況のもと、イオン交換樹脂の精製処理の前処理として、過酸化水素水中の疎水性物質を除去することを見い出した。
従来は有機物を除去することは検討されていたが、ウェハ洗浄などに影響が大きいものは、有機物質の中でも、分子量の大きい疎水性の有機物質である。また、かかる疎水性有機物とともに、アルミナ、水酸化アルミに由来する疎水性の金属コロイドの影響も大きく、これらを両方とも除去するという発想は、従来技術にはなかった。
Under such circumstances, the present inventors have found that a hydrophobic substance in hydrogen peroxide water is removed as a pretreatment for the purification treatment of the ion exchange resin.
Conventionally, removal of organic substances has been studied. However, organic substances having a large influence on wafer cleaning and the like are hydrophobic organic substances having a large molecular weight. In addition to such hydrophobic organic substances, the influence of hydrophobic metal colloids derived from alumina and aluminum hydroxide is also great, and the idea of removing both of these has not been found in the prior art.
本発明者ら、このようなイオン交換処理の前処理として、過酸化水素中に含まれる疎水性物質を液体、亜臨界または超臨界状態にある二酸化炭素と接触させるか、セラミック膜でろ過して処理することを考えた。 As a pretreatment of such an ion exchange treatment, the present inventors contact a hydrophobic substance contained in hydrogen peroxide with liquid, subcritical or supercritical carbon dioxide, or filter it with a ceramic membrane. I thought about processing.
液体、亜臨界もしくは超臨界二酸化炭素は疎水性有機物質を溶解する溶媒として働き、疎水性有機物質のみを効率よく除去できる。その結果、液体、亜臨界もしくは超臨界二酸化炭素法では常に疎水性有機物質のみの抽出が行われ、時間経過とは関係なく疎水性有機物質だけを除去した過酸化水素水を得ることができることを見出した。 Liquid, subcritical or supercritical carbon dioxide acts as a solvent for dissolving the hydrophobic organic substance, and can efficiently remove only the hydrophobic organic substance. As a result, the liquid, subcritical or supercritical carbon dioxide method always extracts only the hydrophobic organic substance, and it is possible to obtain hydrogen peroxide solution from which only the hydrophobic organic substance is removed regardless of the passage of time. I found it.
加えて過酸化水素水中にキレート化剤を添加したのちにセラミック膜でろ過して、疎水性物質であるコロイド性金属化合物を除去すれば、上記した課題をいずれも解決した過酸化水素水が得られることを見出した。 In addition, by adding a chelating agent to the hydrogen peroxide solution and filtering through a ceramic membrane to remove the colloidal metal compound that is a hydrophobic substance, a hydrogen peroxide solution that solves all of the above problems can be obtained. I found out that
これら疎水性有機物とコロイド金属化合物の両方を除去することにより、従来、継続的に除去が困難であり、精製効率や環境などの点で問題となっていた、原料過酸化水素水中の疎水性物質をすべて除去できることを見い出した。 By removing both of these hydrophobic organic substances and colloidal metal compounds, it has been difficult to remove continuously, and the hydrophobic substances in the raw hydrogen peroxide solution have been problematic in terms of purification efficiency and environment. It was found that all of these can be removed.
そして、前処理として疎水性有機物とコロイド金属化合物の両疎水性物質を除去した過酸化水素水を、イオン交換樹脂処理と組み合わせることで、イオン交換樹脂の寿命も延び、従来に比べ、より効率的に、長期間安定して金属不純物等を除去できることを見出し、本発明を完成するに至った。 By combining hydrogen peroxide water, from which both hydrophobic organic substances and colloidal metal compounds have been removed as a pretreatment, with the ion exchange resin treatment, the life of the ion exchange resin is extended, making it more efficient than before. In addition, the inventors have found that metal impurities and the like can be stably removed for a long period of time, and have completed the present invention.
本発明の構成は以下の通りである。
[1]不純物として、疎水性物質を含む原料過酸化水素水を、イオン交換樹脂が充填された精製塔を使用して精製する方法において、
精製処理の前処理として、
(i)液体、亜臨界または超臨界状態にある二酸化炭素流体と接触させて、疎水性有機物質を二酸化炭素に溶解抽出させ、過酸化水素水に含まれる疎水性物質のうち疎水性有機物を除去するする精製過酸化水素水の製造方法。
[2]不純物として、疎水性物質を含む原料過酸化水素水を、イオン交換樹脂が充填された精製塔を使用して精製する方法において、
精製処理の前処理として、
(ii)過酸化水素水にキレート化剤を添加し、セラミックフィルターでろ過し、過酸化水素水に含まれる疎水性物質のうち疎水性のコロイド金属化合物を除去する精製過酸化水素水の製造方法。
[3]不純物として、疎水性物質を含む原料過酸化水素水を、イオン交換樹脂が充填された精製塔を使用して精製する方法において、
精製処理の前処理として、
(i)液体、亜臨界または超臨界状態にある二酸化炭素流体と接触させて、疎水性有機物質を二酸化炭素に溶解抽出させ、過酸化水素水に含まれる疎水性物質のうち疎水性有機物を除去し、および、
(ii)過酸化水素水にキレート化剤を添加し、セラミックフィルターでろ過し、過酸化水素水に含まれる疎水性物質のうち疎水性のコロイド金属化合物を除去することを特徴とする精製過酸化水素水の製造方法。
[4]得られた過酸化水素水をさらに、カチオンイオン交換樹脂および/またはアニオンイオン交換樹脂により、過酸化水素水に含まれる不純物を除去する[1]〜[3]いずれかの精製過酸化水素水の製造方法。
[5]不純物として、疎水性物質を含む原料過酸化水素水を、カチオンイオン交換樹脂および/またはアニオンイオン交換樹脂が充填された精製塔を使用して、過酸化水素水を精製する精製過酸化水素水の精製装置であって、
前処理手段として、
(i)二酸化炭素を加熱及び加圧する手段とともに、
(ii)二酸化炭素流体と過酸化水素水とを混合させて疎水性有機不純物を二酸化炭素流体に抽出する抽出手段、 (iii)二酸化炭素流体から、二酸化炭素を気体にして、疎水性有機不純物を分別する気液分離手段からなる疎水性有機物除去手段、および/または、
原料過酸化水素水に、キレート化剤を添加し、セラミックフィルターでろ過するコロイド金属化合物除去手段を具備してなる精製装置。
The configuration of the present invention is as follows.
[1] In a method for purifying a raw material hydrogen peroxide solution containing a hydrophobic substance as an impurity using a purification tower packed with an ion exchange resin,
As a pretreatment for the purification process,
(I) Contact with a liquid, subcritical or supercritical carbon dioxide fluid to dissolve and extract hydrophobic organic substances in carbon dioxide, and remove hydrophobic organic substances from the hydrophobic substances contained in hydrogen peroxide water To produce purified hydrogen peroxide solution.
[2] In a method of purifying a raw material hydrogen peroxide solution containing a hydrophobic substance as an impurity using a purification tower packed with an ion exchange resin,
As a pretreatment for the purification process,
(Ii) A method for producing purified hydrogen peroxide solution in which a chelating agent is added to hydrogen peroxide solution and filtered through a ceramic filter to remove a hydrophobic colloidal metal compound from hydrophobic substances contained in the hydrogen peroxide solution. .
[3] In a method of purifying a raw material hydrogen peroxide solution containing a hydrophobic substance as an impurity using a purification tower packed with an ion exchange resin,
As a pretreatment for the purification process,
(I) Contact with a liquid, subcritical or supercritical carbon dioxide fluid to dissolve and extract hydrophobic organic substances in carbon dioxide, and remove hydrophobic organic substances from the hydrophobic substances contained in hydrogen peroxide water And
(Ii) Purifying peroxidation characterized by adding a chelating agent to hydrogen peroxide solution and filtering with a ceramic filter to remove hydrophobic colloidal metal compounds from hydrophobic substances contained in hydrogen peroxide solution A method for producing hydrogen water.
[4] The purified hydrogen peroxide solution according to any one of [1] to [3], wherein impurities obtained in the hydrogen peroxide solution are further removed from the obtained hydrogen peroxide solution by a cation ion exchange resin and / or an anion ion exchange resin. A method for producing hydrogen water.
[5] Purified peroxidation that purifies hydrogen peroxide solution using a purification tower filled with cation ion exchange resin and / or anion ion exchange resin as raw material hydrogen peroxide solution containing hydrophobic substance A hydrogen water purifier,
As pre-processing means,
(i) together with means for heating and pressurizing carbon dioxide,
(ii) an extraction means for mixing the carbon dioxide fluid and hydrogen peroxide solution to extract the hydrophobic organic impurities into the carbon dioxide fluid; (iii) from the carbon dioxide fluid, converting the carbon dioxide into a gas and removing the hydrophobic organic impurities. Hydrophobic organic substance removing means comprising gas-liquid separating means for separation, and / or
A refining apparatus comprising a colloidal metal compound removing means for adding a chelating agent to a raw material hydrogen peroxide solution and filtering it with a ceramic filter.
無機イオン・化合物不純物を除去するためのイオン交換樹脂に接触する過酸化水素水中に疎水性物質が含まれていると、疎水性物質はイオン交換樹脂に徐々に化学吸着し、イオン交換樹脂のイオン交換機基を塞いで、イオン交換樹脂の交換能力を阻害しかつイオン交換樹脂のライフも短くし、イオン交換樹脂の劣化要因になっている。また半導体ウェハの洗浄においても疎水性物質は吸着し易く、シリコン酸化膜の絶縁耐圧の劣化などを引き起こす原因にもなっている。 If a hydrophobic substance is contained in the hydrogen peroxide solution that comes into contact with the ion exchange resin to remove inorganic ions and compound impurities, the hydrophobic substance gradually chemisorbs on the ion exchange resin, and the ions of the ion exchange resin It clogs the exchange base, impedes the exchange capacity of the ion exchange resin, shortens the life of the ion exchange resin, and causes deterioration of the ion exchange resin. In addition, hydrophobic substances are easily adsorbed even in the cleaning of semiconductor wafers, which causes the breakdown voltage of the silicon oxide film to deteriorate.
本発明によれば、これらの問題点が解消され、無機イオン・化合物不純物除去のためのイオン交換樹脂のイオン交換能力を阻害することなく、かつイオン交換樹脂のライフを長期に保つことができる。また疎水性物質のない過酸化水素水は半導体洗浄のウェハ特性の不良低減にも貢献できる。さらに本発明では、吸着剤再生の再生溶剤を出さず、かつイオン交換樹脂の廃棄が少なくできるなど環境に優しい技術でもある。 According to the present invention, these problems are solved, and the life of the ion exchange resin can be maintained for a long time without impairing the ion exchange ability of the ion exchange resin for removing inorganic ions and compound impurities. In addition, hydrogen peroxide solution without a hydrophobic substance can contribute to the reduction of defects in semiconductor cleaning wafer characteristics. Furthermore, the present invention is also an environmentally friendly technology that does not generate a regenerated solvent for adsorbent regeneration and can reduce the disposal of ion exchange resin.
以下、本発明に係る精製過酸化水素水の製造方法について具体的に説明する。なお、本明細書中において、ppm、ppbおよびpptは、いずれも重量ppm、重量ppbおよび重量pptを示す。 Hereinafter, the method for producing purified hydrogen peroxide solution according to the present invention will be described in detail. In the present specification, ppm, ppb and ppt all indicate ppm by weight, weight ppb and weight ppt.
[精製過酸化水素水の製造方法]
原料過酸化水素水
本発明で使用される原料過酸化水素水としては、アントラキノン自動酸化法、水素と酸素を直接反応させる直接合成法など、公知の製造法によって製造されたものが使用される。通常、原料過酸化水素水中の過酸化水素濃度は70%以下であれば特に制限されない。通常、原料過酸化水素水には既に安定剤が添加されているので更なる添加剤は特に必要ではない。
[Production method of purified hydrogen peroxide]
Raw material hydrogen peroxide solution As the raw material hydrogen peroxide solution used in the present invention, one produced by a known production method such as an anthraquinone auto-oxidation method or a direct synthesis method in which hydrogen and oxygen are directly reacted is used. Usually, the hydrogen peroxide concentration in the raw hydrogen peroxide solution is not particularly limited as long as it is 70% or less. Usually, since the stabilizer is already added to the raw hydrogen peroxide solution, no additional additive is particularly required.
この過酸化水素水中には、通常、不純物として、疎水性物質が数ppbから数十ppmのオーダーで含まれている。この疎水性物質は、たとえば製造時(抽出、蒸留、希釈)に使用される有機物、触媒、有機溶剤、水、空気などに起因する有機成分、あるいは製造設備の材質に由来する。 This hydrogen peroxide solution usually contains a hydrophobic substance as an impurity in the order of several ppb to several tens of ppm. This hydrophobic substance is derived, for example, from organic components, catalysts, organic solvents, water, air, or other organic components used during production (extraction, distillation, dilution), or production equipment materials.
このような疎水性不純物としては、疎水性有機物と疎水性のコロイド金属化合物であり、疎水性有機物としては、芳香族炭化水素およびその疎水性基を含む誘導体、アントラキノン誘導体、シクロヘキサン誘導体、芳香族ナフサ、カルボン酸エステルなどである。これらは、比較的に、高分子である。また、疎水性のコロイド金属化合物としては、アルミニウム、鉄、カルシウム、マグネシウム、スズ、亜鉛、ニッケル、クロム、鉛、シリコンなど金属またはその水酸化物、酸化物などのコロイドが挙げられる。なお、低分子の有機物は通常、親水性であり、イオン交換樹脂処理やウェハ洗浄における問題となることは少ない。 Examples of such hydrophobic impurities include hydrophobic organic substances and hydrophobic colloidal metal compounds. Examples of hydrophobic organic substances include aromatic hydrocarbons and derivatives containing the hydrophobic groups, anthraquinone derivatives, cyclohexane derivatives, and aromatic naphtha. Carboxylic acid esters and the like. These are relatively high polymers. Examples of the hydrophobic colloidal metal compound include colloids such as metals such as aluminum, iron, calcium, magnesium, tin, zinc, nickel, chromium, lead, and silicon, and their hydroxides and oxides. Note that low-molecular organic substances are usually hydrophilic and rarely cause problems in ion exchange resin processing and wafer cleaning.
本発明にかかる精製方法では、
前処理(i)として、上記原料過酸化水素水を、液体、亜臨界または超臨界状態にある二酸化炭素流体と接触させて、疎水性有機物質を二酸化炭素に溶解抽出させるか、あるいは
前処理(ii)として、過酸化水素水にキレート化剤を添加し、セラミックフィルターでろ過し、過酸化水素水に含まれる疎水性物質のうち疎水性のコロイド金属化合物を除去する。
In the purification method according to the present invention,
As the pretreatment (i), the raw hydrogen peroxide solution is brought into contact with a liquid, subcritical or supercritical carbon dioxide fluid to dissolve and extract the hydrophobic organic substance in carbon dioxide, or pretreatment ( As ii), a chelating agent is added to the hydrogen peroxide solution and filtered through a ceramic filter to remove the hydrophobic colloidal metal compound among the hydrophobic substances contained in the hydrogen peroxide solution.
[前処理(i)]
二酸化炭素流体
本発明においては、二酸化炭素流体として、液体、亜臨界または超臨界二酸化炭素が使用される。超臨界二酸化炭素は、温度31.17℃以上で圧力7.386MPa以上の状態で得られる。この超臨界流体の密度は液体に近く、拡散係数は液体に比べて著しく高く、無極性、弱極性油脂を溶解する作用を有し、その溶解力は温度及び又は圧力を変えることで変化する。
また二酸化炭素は圧力条件のみで気化、除去及び液化、再利用が可能であり、これらの循環プロセスを容易に構築することが可能となる。
[Pretreatment (i)]
Carbon dioxide fluid In the present invention, liquid, subcritical or supercritical carbon dioxide is used as the carbon dioxide fluid. Supercritical carbon dioxide is obtained at a temperature of 31.17 ° C. or higher and a pressure of 7.386 MPa or higher. The density of this supercritical fluid is close to that of a liquid, the diffusion coefficient is significantly higher than that of a liquid, and has the effect of dissolving nonpolar, weakly polar oils and fats, and the dissolving power changes by changing temperature and / or pressure.
Carbon dioxide can be vaporized, removed, liquefied and reused only under pressure conditions, and it is possible to easily construct these circulation processes.
疎水性有機物質の除去
二酸化炭素の有機物溶解度は抽出条件で変化するが、安全性や装置設計、経済性の観点から実用上好ましい運転条件は、温度10〜50℃で圧力は30MPa以下であり、過剰な高温、高圧条件は好ましくない。抽出操作を行う上で、二酸化炭素の密度は800〜900kg/m3が適当であり、例えば温度が35℃の超臨界二酸化炭素流体の場合、14MPa〜30MPaでこの条件を達成できる。
Removal of hydrophobic organic substances The organic matter solubility of carbon dioxide varies depending on the extraction conditions, but practically preferred operating conditions from the viewpoint of safety, device design, and economy are a temperature of 10 to 50 ° C. and a pressure of 30 MPa or less, Excessive high temperature and high pressure conditions are not preferred. In performing the extraction operation, the density of carbon dioxide is suitably 800 to 900 kg / m 3. For example, in the case of a supercritical carbon dioxide fluid having a temperature of 35 ° C., this condition can be achieved at 14 MPa to 30 MPa.
また抽出効率は、二酸化炭素と過酸化水素水の混合方法及び、混合状態での滞留時間、過酸化水素水と二酸化炭素の混合比に依存する。混合方法は過酸化水素水と二酸化炭素の接液面積がより多くなるように、混合効率の良い高圧マイクロミキサーや二液混合ミキサー、乱流混合、縮流混合が効果的である。本発明では過酸化水素水に飽和溶解する二酸化炭素量以上の過剰の二酸化炭素を供給することにより、過酸化水素水中に含まれる有機物を抽出除去する。 The extraction efficiency depends on the mixing method of carbon dioxide and hydrogen peroxide solution, the residence time in the mixed state, and the mixing ratio of hydrogen peroxide solution and carbon dioxide. As the mixing method, high-pressure micromixer, two-component mixing mixer, turbulent mixing, and contraction mixing with good mixing efficiency are effective so that the wetted area of hydrogen peroxide solution and carbon dioxide is increased. In the present invention, organic substances contained in the hydrogen peroxide solution are extracted and removed by supplying an excess of carbon dioxide that exceeds the amount of carbon dioxide that is saturated and dissolved in the hydrogen peroxide solution.
通常、飽和溶解している二酸化炭素以外の二酸化炭素と過酸化水素水は、混合後直ちに分離してしまう。そこで、二酸化炭素に有機物が完全に溶解しないまま分離してしまうことを避けるため、本発明では、混合後に二液が混在したまま滞留できるように二液混在滞留域を設けることが望ましい。 Usually, carbon dioxide and hydrogen peroxide other than carbon dioxide that is dissolved in saturation are separated immediately after mixing. Therefore, in order to avoid separation of organic substances in carbon dioxide without completely dissolving, in the present invention, it is desirable to provide a two-liquid mixed retention area so that the two liquids can remain mixed after mixing.
具体的には、スワール型ミキサー、スタティクミキサー、乱流混合型ミキサー、多段式縮流ミキサー等を設置する。
本発明にかかる精製方法では過酸化水素水供給量に対して飽和溶解度以上の二酸化炭素を供給すればよい。二酸化炭素を過剰量供給することで抽出量が増大するものの、二酸化炭素の使用量増加、循環量増加はランニングコストが増加するため、大過剰量の二酸化炭素を供給することは経済的な観点から好ましくなく、実用的には過酸化水素水供給量と同量から4倍程度の二酸化炭素供給量が好ましい。
Specifically, a swirl mixer, a static mixer, a turbulent mixing mixer, a multistage reduced flow mixer, and the like are installed.
In the purification method according to the present invention, carbon dioxide having a saturation solubility or higher with respect to the hydrogen peroxide solution supply amount may be supplied. Although the amount of extraction increases by supplying an excess amount of carbon dioxide, increasing the amount of carbon dioxide used and increasing the amount of circulation increase the running cost, so supplying a large excess amount of carbon dioxide from an economic point of view Practically, a carbon dioxide supply amount that is about the same as the hydrogen peroxide solution supply amount to about four times is preferable.
過酸化水素水と二酸化炭素を混合させる混合装置はスワール型ミキサー、スタティクミキサー、乱流混合型ミキサー、多段式縮流ミキサー等である。過酸化水素水中の有機物が二酸化炭素へ溶解できるように過酸化水素水と二酸化炭素を長く接触させる。 The mixing device for mixing the hydrogen peroxide solution and carbon dioxide is a swirl mixer, a static mixer, a turbulent mixing mixer, a multistage reduced flow mixer, or the like. The hydrogen peroxide solution and carbon dioxide are kept in contact for a long time so that the organic matter in the hydrogen peroxide solution can be dissolved in the carbon dioxide.
次にこの混合液から過酸化水素水と二酸化炭素を分離する。過酸化水素水中の有機物を抽出した後の二酸化炭素と過酸化水素は各溶媒の比重差で分離される。通常、二酸化炭素の密度は800〜900kg/m3、過酸化水素水の密度は35〜60% 1120〜1250 kg/m3であり、二酸化炭素は上層、過酸化水素水は下層と分離する。 Next, hydrogen peroxide solution and carbon dioxide are separated from the mixed solution. Carbon dioxide and hydrogen peroxide after extraction of organic substances in hydrogen peroxide water are separated by the difference in specific gravity of each solvent. Usually, the density of carbon dioxide 800~900kg / m 3, the density of the hydrogen peroxide solution is 35~60% 1120~1250 kg / m 3, carbon dioxide top layer, the hydrogen peroxide water is separated from the lower layer.
分離した二酸化炭素は背圧弁で減圧され、分離タンクで気体二酸化炭素と有機物液体(過酸化水素水から抽出された疎水性有機物質)に分離される。分離された気体二酸化炭素は凝縮器で冷却され、液化し再度循環使用される。分離された抽出物は分離タンクより系外に排出される。 The separated carbon dioxide is depressurized by a back pressure valve and separated into gaseous carbon dioxide and an organic liquid (hydrophobic organic substance extracted from hydrogen peroxide solution) by a separation tank. The separated gaseous carbon dioxide is cooled in a condenser, liquefied, and recycled again. The separated extract is discharged out of the system from the separation tank.
一方、比重差分離により分離された過酸化水素水は背圧弁及び脱気装置を経て、CO2を脱気した後、過酸化水素水回収タンクに回収される。脱気装置は中空糸の内側に過酸化水素水を通し、その外側を減圧し溶存するガスを排出する中空糸膜脱気等が有効である。
装置全体は耐圧の材料で構成される。また過酸化水素水と接触する材質は、できるだけテフロン(登録商標)ライニングとすることが望ましい。
また本発明では、前処理(ii)として、上記原料過酸化水素水にキレート化剤を添加し、セラミックフィルターでろ過し、疎水性のコロイド金属化合物(コロイド)を除去する。
On the other hand, the hydrogen peroxide solution separated by the specific gravity difference separation passes through the back pressure valve and the deaeration device, and after degassing CO 2 , is recovered in the hydrogen peroxide solution recovery tank. As the degassing device, hollow fiber membrane degassing or the like is effective in which hydrogen peroxide solution is passed through the inside of the hollow fiber, the outside is decompressed, and dissolved gas is discharged.
The entire device is made of a pressure resistant material. The material that comes into contact with the hydrogen peroxide solution is preferably a Teflon (registered trademark) lining as much as possible.
In the present invention, as pretreatment (ii), a chelating agent is added to the raw hydrogen peroxide solution, and the mixture is filtered through a ceramic filter to remove the hydrophobic colloidal metal compound (colloid).
[前処理(ii)]
疎水性のコロイド金属化合物の除去
本発明では、上記原料過酸化水素水に予めキレート化剤を添加し、セラミックフィルターで限外ろ過し、疎水性のコロイド金属化合物(コロイド)を除去する。
[Pretreatment (ii)]
Removal of Hydrophobic Colloidal Metal Compound In the present invention, a chelating agent is added in advance to the raw material hydrogen peroxide solution, and ultrafiltration is performed with a ceramic filter to remove the hydrophobic colloidal metal compound (colloid).
使用される過酸化水素水中の過酸化水素濃度は70%重量以下であれば特に制限されない。濃度が高すぎると、フィルターや装置の耐久性が低下することがある。
キレート化剤は、高分子量のものが好適で、その分子構造内にコロイドを封鎖して、コロイドの分子量を巨大にして、物理的にろ過膜を通過させないために添加されるものである。過酸化水素水中に添加された高分子量のキレート化剤はコロイドを取り込み、20nm以下のセラミックフィルターを通過しない。
The hydrogen peroxide concentration in the hydrogen peroxide water used is not particularly limited as long as it is 70% by weight or less. If the concentration is too high, the durability of the filter or device may be reduced.
The chelating agent preferably has a high molecular weight, and is added in order to block the colloid in its molecular structure and increase the molecular weight of the colloid so that it does not physically pass through the filtration membrane. The high molecular weight chelating agent added to the hydrogen peroxide solution takes in the colloid and does not pass through the ceramic filter of 20 nm or less.
キレート化剤には通常リン化合物が使用される。リン系化合物としてはアミノトリ(メチレンホスホン酸)及びその塩、1−ヒドロキシエチリデンー1,1―ジホスホン及びその塩、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)及びその塩、ニトリロメチレンホスホン酸及びその塩、1,2―プロピレンジアミンテトラ(メチレンホスホン酸)及びその塩、メタリン酸及びその塩、ポリリン酸及びその塩、ピロリン酸及びその塩などからなる群から選ばれる少なくとも一種のリン系化合物が好適に使用される。このうち分子量が数千〜百万の高分子量のものが最も好適に使用される。 As the chelating agent, a phosphorus compound is usually used. Examples of phosphorus compounds include aminotri (methylenephosphonic acid) and salts thereof, 1-hydroxyethylidene-1,1-diphosphone and salts thereof, ethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid) and salts thereof, nitrilomethylene At least one phosphorus selected from the group consisting of phosphonic acid and its salt, 1,2-propylenediaminetetra (methylenephosphonic acid) and its salt, metaphosphoric acid and its salt, polyphosphoric acid and its salt, pyrophosphoric acid and its salt, etc. System compounds are preferably used. Of these, those having a molecular weight of several thousands to one million are most preferably used.
過酸化水素水中のコロイドの大部分はAlのコロイドである。過酸化水素水中のAlコロイド量に対し、このようなリン系化合物を15〜30倍量(Pとして)好ましくは18〜25倍となるように添加されることが望ましい。 Most of the colloids in hydrogen peroxide water are Al colloids. It is desirable to add such a phosphorus compound in an amount of 15 to 30 times (as P), preferably 18 to 25 times the amount of Al colloid in the hydrogen peroxide solution.
このキレート化剤によって封鎖されたコロイドを含む過酸化水素水をセラミックフィルターで限外ろ過する。フィルターはアルミナ、酸化ジルコニウム、酸化チタンなどの無機物を素材とする公知の多孔質セラミックフィルターを使用することができる。孔径は20nm以下、好ましくは20〜4nm以下が望ましい。ろ過方式としては、中空型の多孔質セラミックフィルターを使用しクロスフロー方式(膜内面に対して平行に液を流し、その流液圧により、ろ過する)にして使用することが望ましい。クロスフローにするとフィルター状に堆積したコロイドを液で洗い流しながらろ過するため、長時間にわたって透過ろ過流速を維持できる。 Hydrogen peroxide containing colloid blocked with this chelating agent is ultrafiltered with a ceramic filter. As the filter, a known porous ceramic filter made of an inorganic material such as alumina, zirconium oxide or titanium oxide can be used. The pore diameter is 20 nm or less, preferably 20 to 4 nm or less. As a filtration method, it is desirable to use a hollow type porous ceramic filter and use a cross flow method (flowing liquid parallel to the inner surface of the membrane and filtering with the flow pressure). When the cross flow is used, the colloid deposited in a filter is filtered while being washed away with the liquid, so that the permeation filtration flow rate can be maintained for a long time.
フィルターろ過圧力((入口圧力+出口圧力)/2)は0.2MPa以下、好ましくは0.16MPa以下が望ましい。このろ過圧であれば、効率的にコロイドをろ過できる。
キレート化剤を添加した過酸化水素水をセラミックフィルターで限外ろ過すると、過酸化水素水中のコロイド不純物が99%除去できる。なお、濃縮タンク内にはコロイドが濃縮していくので、コロイド過多の過酸化水素水を定期的に抜いて使用すると、原料過酸化水素水中のコロイド除去を効率よく行うことが可能となる。
The filter filtration pressure ((inlet pressure + outlet pressure) / 2) is 0.2 MPa or less, preferably 0.16 MPa or less. With this filtration pressure, the colloid can be efficiently filtered.
When the hydrogen peroxide solution added with the chelating agent is ultrafiltered with a ceramic filter, 99% of colloidal impurities in the hydrogen peroxide solution can be removed. Since the colloid concentrates in the concentration tank, the colloid removal from the raw hydrogen peroxide solution can be efficiently performed by removing and using the colloid-rich hydrogen peroxide solution periodically.
本発明では、上記前処理(i)または(ii)のいずれかを行う。また、前処理(i)および(ii)を組合わせてもよい。なお、これらの前処理(i)および(ii)の順番は特に制限されない。
本発明では、以上のような前処理によって精製された過酸化水素水をイオン交換樹脂と接触させて、無機イオンなどの不純物を除去する。
In the present invention, either the pretreatment (i) or (ii) is performed. Further, the pretreatments (i) and (ii) may be combined. The order of these pretreatments (i) and (ii) is not particularly limited.
In the present invention, the hydrogen peroxide solution purified by the pretreatment as described above is brought into contact with the ion exchange resin to remove impurities such as inorganic ions.
通常単床あるいは混床のイオン交換樹脂塔に通液して、過酸化水素水をさらに精製する。
イオン交換樹脂には再生可能な一般的なもので、カチオンイオン交換樹脂、アニオンイオン交換樹脂が使用される。カチオンイオン交換樹脂はH+型カチオン交換樹脂に、アニオンイオン交換樹脂はF-型アニオン交換樹脂、HCO3 -型アニオン交換樹脂、CO3 2-型アニオン交換樹脂に処理されて使用される。
Usually, the hydrogen peroxide solution is further purified by passing through a single bed or mixed bed ion exchange resin tower.
The ion exchange resin is generally recyclable, and a cation ion exchange resin or an anion ion exchange resin is used. The cation ion exchange resin is used as an H + type cation exchange resin, and the anion ion exchange resin is used as an F − type anion exchange resin, an HCO 3 − type anion exchange resin, or a CO 3 2− type anion exchange resin.
イオン交換処理として、特許3895540号に記載のイオン交換樹脂を組み合わせても良い。
前処理後の過酸化水素水を、H+型カチオン交換樹脂と接触させた後、炭酸イオン(CO3 2-)型または炭酸水素イオン(HCO3 -)型アニオン交換樹脂と接触させ、次いで、H+型カチオン交換樹脂と接触させる。または、前処理後の過酸化水素水を、H+型カチオン交換樹脂と接触させた後、フッ化物イオン(F-)型アニオン交換樹脂と接触させ、次いで、炭酸イオン(CO3 2-)型または炭酸水素イオン(HCO3 -)型アニオン交換樹脂と接触させ、さらに、H+型カチオン交換樹脂と接触させる。
As the ion exchange treatment, an ion exchange resin described in Japanese Patent No. 3895540 may be combined.
The hydrogen peroxide solution after the pretreatment is brought into contact with an H + type cation exchange resin, and then brought into contact with a carbonate ion (CO 3 2− ) type or hydrogen carbonate ion (HCO 3 − ) type anion exchange resin, Contact with H + type cation exchange resin. Alternatively, the hydrogen peroxide solution after the pretreatment is brought into contact with an H + type cation exchange resin, then brought into contact with a fluoride ion (F − ) type anion exchange resin, and then carbonate ion (CO 3 2− ) type. Alternatively, it is brought into contact with a bicarbonate ion (HCO 3 − ) type anion exchange resin, and further brought into contact with an H + type cation exchange resin.
このように不純物として原料過酸化水素水中に含まれる疎水性物質を除去する前処理手段として、二酸化炭素流体を使用して、原料過酸化水素水中の疎水性有機物質を除去したのち、さらにセラミック膜でろ過して疎水性のコロイド金属化合物を除去した過酸化水素水は、後段の3段階または4段階のイオン交換樹脂で処理することによって、金属イオン不純物等が極力除去された高純度な過酸化水素水を安定して製造することができる。また、イオン交換樹脂のイオン交換能力や寿命も従来に比べて長く延命できる。 As a pretreatment means for removing the hydrophobic substance contained in the raw material hydrogen peroxide solution as an impurity in this way, after removing the hydrophobic organic substance in the raw material hydrogen peroxide solution using a carbon dioxide fluid, the ceramic film is further removed. Hydrogen peroxide water from which hydrophobic colloidal metal compounds have been removed by filtration with a high-purity peroxidation from which metal ion impurities, etc. have been removed as much as possible by treating with a subsequent 3-stage or 4-stage ion exchange resin Hydrogen water can be produced stably. In addition, the ion exchange capacity and life of the ion exchange resin can be extended longer than before.
[過酸化水素水の精製装置]
本発明に係る過酸化水素水の精製方法には、前処理手段として、
(1)亜臨界または超臨界二酸化炭素、及び/又は液体二酸化炭素を分離溶媒として用いて、過酸化水素水中の疎水性有機物質を溶解除去する手段、および/または、
(2)過酸化水素水中にキレート化剤を添加し、セラミックフィルターでろ過し、過酸化水素水中のコロイド金属化合物を除去する手段を具備している。
[Hydrogen peroxide water purification equipment]
In the method for purifying hydrogen peroxide solution according to the present invention, as a pretreatment means,
(1) Means for dissolving and removing hydrophobic organic substances in hydrogen peroxide water using subcritical or supercritical carbon dioxide and / or liquid carbon dioxide as a separation solvent, and / or
(2) A means for removing a colloidal metal compound in hydrogen peroxide solution by adding a chelating agent to the hydrogen peroxide solution and filtering with a ceramic filter is provided.
前処理手段(1)
前処理手段(1)は、
(i)二酸化炭素を加熱及び加圧する手段、
(ii)二酸化炭素流体と過酸化水素水とを混合させて疎水性有機不純物を二酸化炭素流体に抽出する抽出手段、
(iii)二酸化炭素流体から、二酸化炭素を気体にして、疎水性有機不純物を分別する気液分離手段からなる疎水性有機物除去手段である。
Pretreatment means (1)
Pre-processing means (1)
(i) means for heating and pressurizing carbon dioxide,
(ii) an extraction means for mixing a carbon dioxide fluid and hydrogen peroxide water to extract hydrophobic organic impurities into the carbon dioxide fluid;
(iii) Hydrophobic organic substance removing means comprising gas-liquid separating means for separating carbon dioxide from a carbon dioxide fluid into gas and separating hydrophobic organic impurities.
図1に、本実施例の一例を示すフロー図を示す。
本発明で使用される疎水性有機物除去装置は、混合部8に二酸化炭素供給ラインと原料過酸化水素水供給ラインとその2液の混合部8を備え、また混合部8の下に、混合液を分離する比重差分離タンク9、さらには比重差分離タンク9の下から分離された過酸化水素水を回収する過酸化水素回収タンク12、比重差分離タンク9の上からは、原料過酸化水素から抽出した有機物を含む二酸化炭素を回収する二酸化炭素回収ラインを備える。
FIG. 1 is a flowchart showing an example of this embodiment.
In the hydrophobic organic substance removing apparatus used in the present invention, the mixing unit 8 includes a carbon dioxide supply line, a raw material hydrogen peroxide supply line, and a two-part mixing unit 8, and the mixed solution is provided below the mixing unit 8. The specific gravity difference separation tank 9 that separates the hydrogen peroxide, the hydrogen peroxide recovery tank 12 that collects the hydrogen peroxide solution separated from the bottom of the specific gravity difference separation tank 9, and the raw material hydrogen peroxide from the specific gravity difference separation tank 9 A carbon dioxide recovery line is provided for recovering carbon dioxide containing organic matter extracted from.
二酸化炭素回収ラインは凝縮器3で分離器I23及び分離器II24から分離回収される気体の二酸化炭素及び補充用液化炭酸ガスボンベ1から補給する液体二酸化炭素を冷却装置2で冷却し、貯槽する。さらに凝縮器3には液面レベル計と温度計、圧力計が装備され、常に一定量の液体二酸化炭素を貯槽することが可能である。 The carbon dioxide recovery line cools and stores the gaseous carbon dioxide separated and recovered from the separator I23 and the separator II24 by the condenser 3 and the liquid carbon dioxide replenished from the replenishing liquefied carbon dioxide cylinder 1 by the cooling device 2. Furthermore, the condenser 3 is equipped with a liquid level meter, a thermometer, and a pressure gauge, and can always store a certain amount of liquid carbon dioxide.
二酸化炭素供給ラインは凝縮器3に貯蔵した液体二酸化炭素を冷却器4で冷却し、高圧ポンプ5で液体二酸化炭素を移送する。流量計6を経由し、加熱器7で加熱され、逆止弁14を経由し連続的に混合部8に供給される。 The carbon dioxide supply line cools the liquid carbon dioxide stored in the condenser 3 with the cooler 4, and transfers the liquid carbon dioxide with the high-pressure pump 5. It is heated by the heater 7 via the flow meter 6, and continuously supplied to the mixing unit 8 via the check valve 14.
同時に過酸化水素水供給ラインから原料過酸化水素水が高圧ポンプ17で、加熱器16、逆止弁15を経由し、混合部8に供給される。
混合部8には高圧マイクロミキサーが使用され、ミキサーの形状にはスワール型ミキサー、スタティクミキサー、乱流混合型ミキサー、多段式縮流ミキサー等を用いて、過酸化水素水と二酸化炭素が瞬時に、かつ効率良く混合する。混合後過酸化水素水に溶解していない二酸化炭素は比重差により瞬時に分離してしまうため、過酸化水素水と二酸化炭素の接触面積を多く、接触時間を長くするために、混合後の流体を再度、分割し高圧マイクロミキサーで混合する。この操作を繰り返した後、二酸化炭素と過酸化水素水は、連続的に比重差分離タンク9へ移送される。比重差分離タンク9下部からは過酸化水素水を液面制御弁10を経由し、脱気装置11で溶存している二酸化炭素を除去し、過酸化水素水タンク12へ過酸化水素水を回収する。
比重差分離タンク9上部からは、有機物を溶解している二酸化炭素が圧力制御弁19、ラインヒーター20を経由し、分離器I23に移送される。
At the same time, the raw hydrogen peroxide solution is supplied from the hydrogen peroxide solution supply line to the mixing unit 8 via the heater 16 and the check valve 15 by the high-pressure pump 17.
A high-pressure micromixer is used for the mixing section 8, and the shape of the mixer is a swirl mixer, a static mixer, a turbulent mixing mixer, a multistage reduced flow mixer, etc., and hydrogen peroxide water and carbon dioxide are instantly used. And mix efficiently. After mixing, carbon dioxide not dissolved in the hydrogen peroxide solution is instantly separated due to the difference in specific gravity, so the contact area between the hydrogen peroxide solution and carbon dioxide is increased, and the mixed fluid is used to increase the contact time. Is again divided and mixed with a high-pressure micromixer. After repeating this operation, carbon dioxide and hydrogen peroxide are continuously transferred to the specific gravity difference separation tank 9. From the lower part of the specific gravity difference separation tank 9, the hydrogen peroxide solution is removed via the liquid level control valve 10, the carbon dioxide dissolved in the degassing device 11 is removed, and the hydrogen peroxide solution is recovered in the hydrogen peroxide solution tank 12. To do.
From the upper part of the specific gravity difference separation tank 9, carbon dioxide dissolving organic matter is transferred to the separator I 23 via the pressure control valve 19 and the line heater 20.
分離タンクI23に移送された有機物を溶解した二酸化炭素は、加熱器25で再度加熱され、気体二酸化炭素と有機物液体に分離する。気体二酸化炭素は活性炭30に移送され凝縮器3に捕集される。有機物液体はバルブ27を経由し、分離器II24に移送され、バルブ29より系外に排出される。 The carbon dioxide dissolved in the organic matter transferred to the separation tank I23 is heated again by the heater 25 and separated into gaseous carbon dioxide and organic matter liquid. The gaseous carbon dioxide is transferred to the activated carbon 30 and collected in the condenser 3. The organic liquid is transferred to the separator II 24 via the valve 27 and discharged out of the system through the valve 29.
また、分離器II24に捕集された有機物液体はバルブ27,バルブ28,バルブ29を操作し、連続運転中に取り出すことも可能である。
分離器I23及び分離器II24から移送された気体二酸化炭素は、活性炭30で気体二酸化炭素とともに蒸気となり移送された有機物液体を捕集し、気体二酸化炭素だけを後段の凝縮器3に移送する。また脱気装置11を出た気体二酸化炭素はブースターポンプ31を経由して凝縮器3に移送される。
Further, the organic liquid collected in the separator II 24 can be taken out during continuous operation by operating the valve 27, valve 28, and valve 29.
The gaseous carbon dioxide transferred from the separator I23 and the separator II24 is vaporized together with the gaseous carbon dioxide by the activated carbon 30 to collect the transferred organic liquid, and only the gaseous carbon dioxide is transferred to the subsequent condenser 3. Further, the gaseous carbon dioxide exiting the deaerator 11 is transferred to the condenser 3 via the booster pump 31.
超臨界二酸化炭素供給部から供給された二酸化炭素と原料過酸化水素水を混合部で2液を混合し、過酸化水素水中の有機物、特に疎水性有機物質を二酸化炭素に抽出移行させる。 Two liquids are mixed in the mixing section of carbon dioxide supplied from the supercritical carbon dioxide supply section and the raw material hydrogen peroxide water, and organic substances, particularly hydrophobic organic substances in the hydrogen peroxide water are extracted and transferred to carbon dioxide.
前処理手段(2)
前処理手段(2)は、
疎水性の金属コロイドを含む原料過酸化水素水に、キレート化剤を添加し、セラミックフィルターでろ過し、過酸化水素水中のコロイド金属化合物を除去する手段である。
Pretreatment means (2)
Pre-processing means (2)
This is a means for adding a chelating agent to a raw material hydrogen peroxide solution containing a hydrophobic metal colloid and filtering it with a ceramic filter to remove the colloidal metal compound in the hydrogen peroxide solution.
図2に、本実施例の一例を示すフロー図を示す。
図2のフロー図は、循環タンク31、循環ポンプ32、セラミックフィルター33、循環ライン34を備えてなる。
FIG. 2 is a flowchart showing an example of this embodiment.
2 includes a circulation tank 31, a circulation pump 32, a ceramic filter 33, and a circulation line 34.
原料過酸化水素水およびキレート化剤は循環槽31からポンプ32によってセラミックフィルター33に送られる。なお、キレート化剤は、図示しない混合槽で原料過酸化水素水と予め混合されてもよく、循環槽31で混合されてもよい。過酸化水素水は循環するものと透過するものに分かれる。大部分の過酸化水素水はセラミックフィルターの中空部を通り循環タンクに戻る。同時に一部の過酸化水素はセラミックフィルターを透過しコロイドのない過酸化水素水となり排出される。 The raw hydrogen peroxide solution and the chelating agent are sent from the circulation tank 31 to the ceramic filter 33 by the pump 32. The chelating agent may be previously mixed with the raw hydrogen peroxide solution in a mixing tank (not shown) or may be mixed in the circulation tank 31. Hydrogen peroxide is divided into circulating and permeating water. Most of the hydrogen peroxide solution returns to the circulation tank through the hollow part of the ceramic filter. At the same time, some hydrogen peroxide passes through the ceramic filter and is discharged as colloid-free hydrogen peroxide.
また循環タンク31ではコロイド金属化合物が徐々に濃縮されてくるので、濃縮タンクの20倍量ぐらいの透過過酸化水素水が得られる毎に、セラミック膜の処理を停止し、循環タンク31内のコロイド金属化合物が大量に濃縮された濃縮過酸化水素水を定期的に抜き出すことも、コロイド金属化合物が透過液にリークすることもなく安定にろ過できることに寄与している。 In addition, since the colloidal metal compound is gradually concentrated in the circulation tank 31, the processing of the ceramic membrane is stopped each time about 20 times as much permeated hydrogen peroxide solution as the concentration tank is obtained. Regular extraction of concentrated hydrogen peroxide containing a large amount of metal compound also contributes to stable filtration without colloidal metal compound leaking into the permeate.
セラミックフィルターの濾過圧は、フィルター孔径とポンプ回転数と入口圧力・出口圧力を調整して決定される。タンク材質、配管材質は、腐食したり不純物の混入のないものが望ましく、通常、テフロン(登録商標)コーティングしたステンレスあるいはテフロン(登録商標)ライニングしたステンレスが使用される。圧力を調整するバルブはテフロン(登録商標)素材のものが好適である。 The filtration pressure of the ceramic filter is determined by adjusting the filter hole diameter, pump rotational speed, inlet pressure and outlet pressure. The tank material and the piping material are preferably those that do not corrode or have impurities mixed therein. Typically, Teflon (registered trademark) coated stainless steel or Teflon (registered trademark) lined stainless steel is used. The valve for adjusting the pressure is preferably made of Teflon (registered trademark).
また、フィルターは前記したように多孔質セラミック(中空型)からなり、ハウジングはテフロン(登録商標)コーティングしたステンレスあるいはテフロン(登録商標)ライニングしたステンレスからなるものが使用される。本発明の装置のおけるパッキンはテフロン(登録商標)あるいはバイトンからなるものが好適である。 The filter is made of porous ceramic (hollow type) as described above, and the housing is made of stainless steel coated with Teflon (registered trademark) or stainless steel coated with Teflon (registered trademark). The packing in the apparatus of the present invention is preferably made of Teflon (registered trademark) or Viton.
このような本発明の精製方法および精製装置によって、精製された過酸化水素水中の疎水性有機物資およびコロイド金属化合物が処理前に比べて、1/1000〜1/10000程度低減される。
前処理手段(1)および(2)はいずれか一方を有していれば良く、好ましくは双方を有するものである。
By such a purification method and a purification apparatus of the present invention, the hydrophobic organic substance and colloidal metal compound in the purified hydrogen peroxide water are reduced by about 1/1000 to 1/10000 compared to before the treatment.
The pretreatment means (1) and (2) need only have either one, and preferably have both.
[実施例]
以下、本発明を実施例によりさらに説明するが、本発明はこれらの実施例に何ら限定されるものではない。
[Example]
EXAMPLES Hereinafter, although an Example demonstrates this invention further, this invention is not limited to these Examples at all.
[実施例1]
全有機炭素濃度が37ppm、Al濃度、蒸発残分が106ppmの50%過酸化水素水を、まず抽出容器に入れ、これに圧力25MPa、温度35℃の超臨界二酸化炭素を入れ、過酸化水素水と超臨界二酸化炭素を接触させた。超臨界二酸化炭素を分離し、抽出容器内に残った過酸化水素水中の全有機炭素濃度は8ppmであつた。
[Example 1]
First, put 50% hydrogen peroxide solution with a total organic carbon concentration of 37ppm, Al concentration, and evaporation residue of 106ppm into an extraction vessel, and put supercritical carbon dioxide at a pressure of 25MPa and a temperature of 35 ℃ into the hydrogen peroxide solution. And supercritical carbon dioxide were contacted. Supercritical carbon dioxide was separated, and the total organic carbon concentration in the hydrogen peroxide remaining in the extraction vessel was 8 ppm.
次にこの過酸化水素水を取り出し、これにP濃度としてAl濃度のおよそ22倍のメタリン酸ソーダを添加し、20nmのセラミックフィルター(ノリタケ製 Tl−250L)でクロスフロー式でろ過した。 Next, this hydrogen peroxide solution was taken out, and sodium metaphosphate having an Al concentration of about 22 times as the P concentration was added thereto, followed by filtration with a 20 nm ceramic filter (Tl-250L manufactured by Noritake) in a cross flow manner.
透過した過酸化水素水中のAl濃度は1ppb以下であった。また、蒸発残分は0.2ppm以下であった。 The Al concentration in the permeated hydrogen peroxide solution was 1 ppb or less. The evaporation residue was 0.2 ppm or less.
1・・・補充用液化炭酸ガスボンベ
2・・・冷却装置
3・・・凝縮器
4・・・冷却器
5・・・高圧ポンプ
6・・・流量計
7・・・加熱器
8・・・混合部
9・・・比重差分離タンク
10・・・液面制御弁
11・・・脱気装置
12・・・過酸化水素回収タンク
13、21、22・・・安全弁
14、15・・・逆止弁
16・・・加熱器
17・・・高圧ポンプ
18・・・過酸化水素水タンク
19・・・液面制御弁
23・・・分離器I
24・・・分離器II
20・・・ラインヒーター
25、26・・・加熱器
30・・・活性炭
27、28、29・・・バルブ
31…循環タンク
32…循環ポンプ
33…セラミックフィルター
34…循環ライン
MFM mass flow meters
TC thermal controller
PG pressure gauge
PIC pressure indicated controller
LIC liquid level indicated controller
Tl thermal indicator
Pl pressure indicator
DESCRIPTION OF SYMBOLS 1 ... Liquid carbon dioxide cylinder for replenishment 2 ... Cooling device 3 ... Condenser 4 ... Cooler 5 ... High-pressure pump 6 ... Flow meter 7 ... Heater 8 ... Mixing Part 9: Specific gravity difference separation tank
10 ... Liquid level control valve
11 ... Deaeration device
12 ... Hydrogen peroxide recovery tank
13, 21, 22 ... safety valve
14, 15 ... Check valve
16 ... heater
17 ... High pressure pump
18 ... Hydrogen peroxide tank
19 ... Liquid level control valve
23 ... Separator I
24 ・ ・ ・ Separator II
20 ... Line heater
25, 26 ... Heater
30 ... Activated carbon
27, 28, 29 ... Valve
31 ... circulation tank
32 ... circulation pump
33 ... Ceramic filter
34 ... circulation line
MFM mass flow meters
TC thermal controller
PG pressure gauge
PIC pressure indicated controller
LIC liquid level indicated controller
Tl thermal indicator
Pl pressure indicator
Claims (4)
精製処理の前処理として、
(i)液体、亜臨界または超臨界状態にある二酸化炭素流体と接触させて、疎水性有機物質を二酸化炭素に溶解抽出させ、過酸化水素水に含まれる疎水性物質のうち疎水性有機物を除去することを特徴とする精製過酸化水素水の製造方法。 In a method for purifying a raw material hydrogen peroxide solution containing a hydrophobic substance as an impurity using a purification tower packed with an ion exchange resin,
As a pretreatment for the purification process,
(I) Contact with a liquid, subcritical or supercritical carbon dioxide fluid to dissolve and extract hydrophobic organic substances in carbon dioxide, and remove hydrophobic organic substances from the hydrophobic substances contained in hydrogen peroxide water A method for producing purified hydrogen peroxide water, comprising:
精製処理の前処理として、
(i)液体、亜臨界または超臨界状態にある二酸化炭素流体と接触させて、疎水性有機物質を二酸化炭素に溶解抽出させ、過酸化水素水に含まれる疎水性物質のうち疎水性有機物を除去し、および、
(ii)過酸化水素水にキレート化剤を添加し、セラミックフィルターでろ過し、過酸化水素水に含まれる疎水性物質のうち疎水性のコロイド金属化合物を除去することを特徴とする精製過酸化水素水の製造方法。 In a method for purifying a raw material hydrogen peroxide solution containing a hydrophobic substance as an impurity using a purification tower packed with an ion exchange resin,
As a pretreatment for the purification process,
(I) Contact with a liquid, subcritical or supercritical carbon dioxide fluid to dissolve and extract hydrophobic organic substances in carbon dioxide, and remove hydrophobic organic substances from the hydrophobic substances contained in hydrogen peroxide water And
(Ii) Purifying peroxidation characterized by adding a chelating agent to hydrogen peroxide solution and filtering with a ceramic filter to remove hydrophobic colloidal metal compounds from hydrophobic substances contained in hydrogen peroxide solution A method for producing hydrogen water.
前処理手段として、
(i)二酸化炭素を加熱及び加圧する手段とともに、
(ii)二酸化炭素流体と過酸化水素水とを混合させて疎水性有機不純物を二酸化炭素流体に抽出する抽出手段、
(iii)二酸化炭素流体から、二酸化炭素を気体にして、疎水性有機不純物を分別する気液分離手段からなる疎水性有機物除去手段を具備してなる精製装置。 Purified hydrogen peroxide solution that purifies hydrogen peroxide solution using a purification tower filled with cation ion exchange resin and / or anion ion exchange resin as raw material hydrogen peroxide solution containing a hydrophobic substance as an impurity A purification device,
As pre-processing means,
(i) together with means for heating and pressurizing carbon dioxide,
(ii) an extraction means for mixing a carbon dioxide fluid and hydrogen peroxide water to extract hydrophobic organic impurities into the carbon dioxide fluid;
(iii) from carbon dioxide fluid, the carbon dioxide in the gas, consisting comprises a hydrophobic organic substance removing means comprising a gas-liquid separation means for separating the hydrophobic organic impurities purifier.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009222881A JP5305165B2 (en) | 2009-09-28 | 2009-09-28 | Method for producing purified hydrogen peroxide water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009222881A JP5305165B2 (en) | 2009-09-28 | 2009-09-28 | Method for producing purified hydrogen peroxide water |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011068534A JP2011068534A (en) | 2011-04-07 |
JP5305165B2 true JP5305165B2 (en) | 2013-10-02 |
Family
ID=44014199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009222881A Active JP5305165B2 (en) | 2009-09-28 | 2009-09-28 | Method for producing purified hydrogen peroxide water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5305165B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101814304B1 (en) | 2013-12-26 | 2018-01-04 | 오르가노 코포레이션 | Anion exchanger, mixture of anion exchanger and cation exchanger, mixed bed comprising anion exchanger and cation exchanger, production processes therefor, and method for purifying aqueous hydrogen peroxide solution |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140341800A1 (en) * | 2011-09-30 | 2014-11-20 | Mitsubishi Gas Chemical Company, Inc. | Method for producing aqueous hydrogen peroxide solution |
CN105502735B (en) * | 2015-12-07 | 2018-05-18 | 江苏久吾高科技股份有限公司 | A kind of method and device that drain is returned using ceramic film process oil-gas field fracturing |
KR102605699B1 (en) * | 2016-09-09 | 2023-11-27 | 오씨아이 주식회사 | Purification of hydrogen peroxide |
JP7051088B2 (en) * | 2018-02-23 | 2022-04-11 | 国立研究開発法人産業技術総合研究所 | Liquid-liquid extraction method and equipment using high-pressure carbon dioxide using a micromixer |
CN109908626B (en) * | 2019-04-26 | 2023-10-20 | 北京凯迪森科技有限公司 | Intensified extractor, high-efficiency extraction system comprising same and extraction process |
SI26410A (en) * | 2022-09-26 | 2024-03-29 | Univerza V Mariboru | New hydrogen peroxide purification procedure |
WO2024132899A1 (en) * | 2022-12-21 | 2024-06-27 | Climeworks Ag | Uses of amino sorbents for capturing of co2 from gas streams |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5031334B2 (en) * | 2006-11-17 | 2012-09-19 | 三徳化学工業株式会社 | Method and apparatus for purifying hydrogen peroxide water |
-
2009
- 2009-09-28 JP JP2009222881A patent/JP5305165B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101814304B1 (en) | 2013-12-26 | 2018-01-04 | 오르가노 코포레이션 | Anion exchanger, mixture of anion exchanger and cation exchanger, mixed bed comprising anion exchanger and cation exchanger, production processes therefor, and method for purifying aqueous hydrogen peroxide solution |
Also Published As
Publication number | Publication date |
---|---|
JP2011068534A (en) | 2011-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5305165B2 (en) | Method for producing purified hydrogen peroxide water | |
JP5704979B2 (en) | Method for producing purified hydrogen peroxide water | |
JP5762860B2 (en) | Method and apparatus for purifying alcohol | |
JP5762861B2 (en) | Method and apparatus for purifying alcohol | |
KR20140071943A (en) | Method and device for refining of purification of hydrogen peroxide | |
WO2018096700A1 (en) | System for producing ultrapure water and method for producing ultrapure water | |
JP2019217463A (en) | Method for removing boron in water to be treated, boron removal system, ultrapure water production system, and method for measuring boron concentration | |
JP5461939B2 (en) | Method for producing purified hydrogen peroxide water | |
JP2016123949A (en) | Non-wastewater treatment apparatus and method for treatment water to be hexavalent chromium substitute | |
JP5031334B2 (en) | Method and apparatus for purifying hydrogen peroxide water | |
JP2013215686A (en) | Method and apparatus for treating accompaniment water from winze | |
JP5762863B2 (en) | Method and apparatus for purifying alcohol | |
JP2008006332A (en) | Method for manufacturing specific-gas-dissolved water, and apparatus and method for circulating specific-gas-dissolved water | |
JP5930921B2 (en) | Method and apparatus for purifying alcohol | |
JP3922935B2 (en) | Water treatment system | |
JP2008542002A (en) | Improved method for desalination | |
TWI758411B (en) | Method and system for producing hydrogen peroxide by anthraquinone method | |
JP2000155426A (en) | Apparatus for recovering and reutilizing regenerated developer from used photoresist developer | |
JP2018038943A (en) | Washing machine of non-regeneration type ion exchange resin and ultrapure water production system | |
KR20150089465A (en) | Hydrogen peroxide refined system using reverse osmosis and hydrogen peroxide produced thereof | |
JP2016027938A (en) | Membrane regeneration method, membrane regeneration apparatus, and separation apparatus | |
US7799225B1 (en) | Membrane contactor assisted water extraction system for separating hydrogen peroxide from a working solution, and method thereof | |
JP6209352B2 (en) | Method for reducing oxides in purified alcohol and apparatus for purifying alcohol | |
JP2000302418A (en) | Production of purified hydrogen peroxide aqueous solution | |
JP2010074109A (en) | Cleaning system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120531 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130131 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130326 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130510 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130604 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130613 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5305165 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |