JP5291494B2 - High strength high heat resistance copper alloy sheet - Google Patents
High strength high heat resistance copper alloy sheet Download PDFInfo
- Publication number
- JP5291494B2 JP5291494B2 JP2009042511A JP2009042511A JP5291494B2 JP 5291494 B2 JP5291494 B2 JP 5291494B2 JP 2009042511 A JP2009042511 A JP 2009042511A JP 2009042511 A JP2009042511 A JP 2009042511A JP 5291494 B2 JP5291494 B2 JP 5291494B2
- Authority
- JP
- Japan
- Prior art keywords
- copper alloy
- mass
- particles
- heat resistance
- precipitate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Conductive Materials (AREA)
Abstract
Description
本発明は、電気・電子部品の素材、特に半導体装置用リードフレームの素材、例えばQFPパッケージやQFNパッケージのリードフレーム用素材として好適な銅合金板に関する。 The present invention relates to a copper alloy plate suitable as a material for electrical and electronic components, particularly a lead frame for a semiconductor device, for example, a lead frame for a QFP package or a QFN package.
従来、リードフレーム用素材、特に高強度のリードフレーム用素材には、NiとSiを含有するCu−Ni−Si系銅合金からなる銅合金板が多く用いられている。また、Cu−Ni−Si系銅合金、例えば、Ni:2.2〜4.2質量%、Si:0.25〜1.2質量%、Mg:0.05〜0.30質量%を含有する銅合金(C70250合金)は、強度および耐熱性に優れていることから、汎用合金として多く使用されている。 Conventionally, a copper alloy plate made of a Cu—Ni—Si based copper alloy containing Ni and Si is often used for a lead frame material, particularly a high strength lead frame material. Also, Cu—Ni—Si based copper alloy, for example, Ni: 2.2 to 4.2 mass%, Si: 0.25 to 1.2 mass%, Mg: 0.05 to 0.30 mass% The copper alloy (C70250 alloy) to be used is widely used as a general-purpose alloy because of its excellent strength and heat resistance.
近年、半導体装置の大容量化、小型化及び高機能化に伴い、リードフレームの微細配線化が進んでおり、この微細配線化を容易にするため、リードフレームに用いられる銅合金板の板厚は、ますます薄板化が進められている。これに伴い、これらの半導体装置用リードフレームに用いられる銅合金板には、より一層の高強度化と高耐熱性が求められている。高強度化は、薄板化に伴って低下するハンドリング性の確保や最終的な構成部品としての強度の確保が目的であり、耐熱性は、リードフレームを成型するためのプレス打抜き加工後の歪取り熱処理による軟化防止、および半導体部品の組立工程における熱履歴での軟化防止を目的としている。これらは、リードフレームのみならず、他の電気・電子部品における、コネクタ、端子、スイッチ、リレーなどの導電性部品に用いられる銅合金板にも当てはまる。また、微細配線加工に好適な加工法であるエッチング加工において、スマットの発生がなく、銅合金板のエッチング加工面の平滑性に優れることも重要な因子としてますます求められている。 In recent years, with increasing capacity, miniaturization, and higher functionality of semiconductor devices, lead frames have become finer, and in order to facilitate this miniaturization, the thickness of the copper alloy plate used for the lead frame is increased. Is increasingly being made thinner. Along with this, copper alloy plates used in these lead frames for semiconductor devices are required to have higher strength and higher heat resistance. The purpose of high strength is to secure the handling property that decreases with the thinning of the plate and the strength of the final component, and the heat resistance is to remove the distortion after press punching to form the lead frame. The purpose is to prevent softening by heat treatment and to prevent softening due to thermal history in the assembly process of semiconductor components. These apply not only to lead frames, but also to copper alloy plates used for conductive parts such as connectors, terminals, switches, and relays in other electrical and electronic parts. In addition, in etching, which is a processing method suitable for fine wiring processing, there is an increasing demand as an important factor that no smut is generated and that the smoothness of the etched surface of a copper alloy plate is excellent.
以上のような背景から、前記のCu−Ni−Si系銅合金(C70250合金)からなる銅合金板は、強度と耐熱性には優れるものの、微細配線加工に好適な加工法であるエッチング加工において、スマットが発生し、エッチング加工面の平滑性に劣るという問題を有している。 From the background as described above, the copper alloy plate made of the Cu—Ni—Si based copper alloy (C70250 alloy) is excellent in strength and heat resistance, but is an etching process suitable for fine wiring processing. , Smut is generated, and the etching processing surface is inferior in smoothness.
そこで、このようなエッチング加工面の平滑性の問題が解決された銅合金板として、Cu−Fe−P系銅合金をベースに、Niを添加したCu−Ni−Fe−P系銅合金からなり、その合金組織中にNi−Fe−P化合物を析出させた銅合金板が提案されている(例えば、特許文献1参照)。 Therefore, as a copper alloy plate in which the problem of the smoothness of the etched surface is solved, it is made of a Cu—Ni—Fe—P based copper alloy to which Ni is added based on a Cu—Fe—P based copper alloy. A copper alloy plate in which a Ni—Fe—P compound is precipitated in the alloy structure has been proposed (see, for example, Patent Document 1).
しかしながら、特許文献1に記載されたCu−Ni−Fe−P系銅合金からなる銅合金板では、引張強さ700MPa程度が最大であり、それ以上の高強度を得ることは困難であるという問題がある。また、仕上圧延(最終冷間圧延)を高加工率で行うことにより、無理に高強度化しても、耐熱性の低下を招く結果となり、実用に適さないものとなるという問題がある。 However, in the copper alloy plate made of the Cu—Ni—Fe—P based copper alloy described in Patent Document 1, the tensile strength is about 700 MPa, and it is difficult to obtain high strength beyond that. There is. In addition, there is a problem that by performing finish rolling (final cold rolling) at a high processing rate, even if the strength is forcibly increased, the heat resistance is lowered, which is not suitable for practical use.
本発明はかかる問題を鑑みてなされたもので、引張強さ750MPa以上(硬さHv220以上)の高強度と高耐熱性を両立するとともに、プレス打抜き加工だけでなく、微細配線加工に好適な加工法であるエッチング加工においても、スマットの発生がなく、エッチング加工面の平滑性に優れた銅合金板を提供することを目的とする。 The present invention has been made in view of such a problem. The present invention achieves both high strength and high heat resistance with a tensile strength of 750 MPa or more (hardness Hv220 or more) and is suitable not only for stamping but also for fine wiring processing. It is an object of the present invention to provide a copper alloy plate that is free from smut and is excellent in the smoothness of the etched surface even in the etching process.
前記課題を解決するために、本発明に係る高強度高耐熱性銅合金板は、質量%で、Ni:0.4〜1.0%、FeおよびCoのうちの1種以上:0.03〜0.3%、P:0.05〜0.2%、Sn:0.1〜3%、Zn:0.005〜1.5%、Cr:0.0005〜0.05%を含有し、NiとFeおよびCoのうちの1種以上とPの質量%比の関係が4≦(Ni+Fe+Co)/P≦12、かつ3≦Ni/(Fe+Co)≦12を満足し、残部がCuおよび不可避的不純物からなる銅合金板であって、前記銅合金板の合金組織において、粒径が1nm以上で20nm以下の微細なP化物析出粒子の個数が300個/μm2以上、粒径が100nmを超える粗大な晶・析出物粒子の個数が0.5個/μm2以下であり、前記P化物析出粒子におけるSn含有量が、EDX分析による質量%比:Sn/(Ni+Fe+Co+P+Sn)で0.01以上であることを特徴とする。 In order to solve the above-mentioned problems, the high-strength, high-heat-resistant copper alloy plate according to the present invention is in mass%, Ni: 0.4 to 1.0%, one or more of Fe and Co: 0.03 -0.3%, P: 0.05-0.2%, Sn: 0.1-3%, Zn: 0.005-1.5%, Cr: 0.0005-0.05% The relationship between the mass% ratio of P to one or more of Ni, Fe, and Co satisfies 4 ≦ (Ni + Fe + Co) / P ≦ 12 and 3 ≦ Ni / (Fe + Co) ≦ 12, with the balance being Cu and inevitable The alloy structure of the copper alloy plate, wherein the number of fine P precipitate particles having a particle size of 1 nm or more and 20 nm or less is 300 / μm 2 or more and the particle size is 100 nm. the number of coarse dispersoids greater than is 0.5 pieces / [mu] m 2 or less, wherein P product precipitated grains In Sn content is mass% ratio by EDX analysis, characterized in that at Sn / (Ni + Fe + Co + P + Sn) at 0.01 or more.
前記構成によれば、所定量のNi、FeおよびCoのうちの1種以上の元素、PおよびSnを含有し、かつ、合金組織中に所定粒径のP化物析出粒子が所定個数以上生成され、そのP化物析出粒子のSn含有量が所定値以上であることによって、転位の移動や消滅を抑制するP化物析出粒子のピニング力が高まり、銅合金板の強度および耐熱性が向上する。また、銅合金板のエッチング加工において、P化物析出粒子はスマット発生要因となることが抑制されるため、エッチング加工面の平滑性が向上する。また、所定量のZnを含有することによって、銅合金板の接合に用いるめっきやはんだの熱剥離が抑制され、所定量のCrを含有することによって、銅合金板の製造の際、Crが鋳塊の結晶粒界に濃化し、熱間加工性が向上する。さらに、粒径が100nmを超える粗大な晶・析出物粒子の個数が0.5個/μm2以下であることによって、エッチング加工面の平滑性およびめっき性が向上する。 According to the above-described configuration, a predetermined number or more of P-precipitate precipitated particles having a predetermined particle diameter are generated in the alloy structure, containing one or more elements of P, Sn, and a predetermined amount of Ni, Fe, and Co. When the Sn content of the P compound precipitate particles is a predetermined value or more, the pinning force of the P compound precipitate particles that suppress the movement and disappearance of dislocations is increased, and the strength and heat resistance of the copper alloy plate are improved. Further, in the etching process of the copper alloy plate, the P precipitate precipitate particles are suppressed from causing smut generation, so that the smoothness of the etched surface is improved. In addition, by containing a predetermined amount of Zn, plating used for joining the copper alloy plates and thermal delamination of solder are suppressed, and by containing a predetermined amount of Cr, Cr is cast when the copper alloy plate is manufactured. It concentrates at the crystal grain boundary of the lump and improves hot workability. Furthermore, when the number of coarse crystal / precipitate particles having a particle size exceeding 100 nm is 0.5 / μm 2 or less, the smoothness and plating properties of the etched surface are improved.
ここで、本発明では、前記P化物析出粒子において、Snが検出されることから、前記P化物析出粒子のSn含有量を規定した。Snは、Ni−(FeおよびCoのうちの1種以上)−PからなるP化物に含有される場合、あるいは、前記P化物とマトリックス界面に濃縮している場合等が考えられる。本発明においては、これらの場合をすべて含んだSn含有量を規定する。 Here, in this invention, since Sn was detected in the said P compound precipitation particle | grains, Sn content of the said P compound precipitation particle | grains was prescribed | regulated. The case where Sn is contained in a P compound composed of Ni- (one or more of Fe and Co) -P or the case where Sn is concentrated at the P compound and the matrix interface is considered. In the present invention, the Sn content including all these cases is defined.
また、本発明に係る高強度高耐熱性銅合金板は、前記銅合金板に、さらに、質量%で、AlおよびMnのうちの1種以上:0.0005〜0.05%を含有することを特徴とする。
前記構成によれば、所定量のAlおよびMnのうちの1種以上を含有することによって、銅合金に不可避的不純物として混入されるS量が低減され、銅合金板の熱間加工性が向上する。
Moreover, the high-strength, high heat-resistant copper alloy plate according to the present invention further contains at least one of Al and Mn: 0.0005 to 0.05% by mass% in the copper alloy plate. It is characterized by.
According to the above configuration, the amount of S mixed as an inevitable impurity in the copper alloy is reduced by containing one or more of a predetermined amount of Al and Mn, and the hot workability of the copper alloy plate is improved. To do.
本発明に係る銅合金板によれば、強度(引張強さおよび硬さ)および耐熱性が高くなるとともに、プレス打抜き加工だけでなく、微細配線加工に好適な加工法であるエッチング加工においても、スマットの発生がなく、エッチング加工面の平滑性およびめっき性が優れる。また、本発明に係る銅合金板によれば、銅合金板の接合の際、めっきやはんだの熱剥離が発生しない。さらに、本発明に係る銅合金板によれば、銅合金板の製造の際、熱間加工性がよくなる。これにより、本発明に係る銅合金板は、リードフレーム用素材としての使用に限定されず、他の電気・電子部品用素材として汎用的に使用可能なものとなる。 According to the copper alloy plate according to the present invention, strength (tensile strength and hardness) and heat resistance are increased, and not only in stamping, but also in etching which is a processing method suitable for fine wiring processing, There is no generation of smut, and the smoothness and plating properties of the etched surface are excellent. Moreover, according to the copper alloy plate which concerns on this invention, the thermal peeling of plating and a solder does not generate | occur | produce at the time of joining of a copper alloy plate. Furthermore, according to the copper alloy plate according to the present invention, the hot workability is improved during the production of the copper alloy plate. Thereby, the copper alloy plate according to the present invention is not limited to use as a lead frame material, but can be used as a general material for other electric / electronic parts.
<高強度高耐熱性銅合金板(以下、銅合金板と称す。)>
本発明に係る銅合金板は、質量%で、Ni:0.4〜1.0%、FeおよびCoのうちの1種以上:0.03〜0.3%、P:0.05〜0.2%、Sn:0.1〜3%、Zn:0.005〜1.5%、Cr:0.0005〜0.05%を含有し、NiとFeおよびCoのうちの1種以上とPの質量%比の関係が4≦(Ni+Fe+Co)/P≦12、かつ3≦Ni/(Fe+Co)≦12を満足し、残部がCuおよび不可避的不純物からなり、合金組織において、粒径が1nm以上で20nm以下の微細なP化物析出粒子の個数が300個/μm2以上、粒径が100nmを超える粗大な晶・析出物粒子の個数が0.5個/μm2以下であり、P化物析出粒子におけるSn含有量が、EDX分析による質量%比:Sn/(Ni+Fe+Co+P+Sn)で0.01以上である。
以下に、銅合金板における化学成分組成と、P化物析出粒子の個数およびSn含有量、粗大な晶・析出物粒子の個数の数値限定理由を説明する。
<High-strength, high heat-resistant copper alloy plate (hereinafter referred to as copper alloy plate)>
The copper alloy plate according to the present invention is in mass%, Ni: 0.4 to 1.0%, one or more of Fe and Co: 0.03 to 0.3%, P: 0.05 to 0 0.2%, Sn: 0.1-3%, Zn: 0.005-1.5%, Cr: 0.0005-0.05%, and one or more of Ni, Fe and Co The relationship of mass% ratio of P satisfies 4 ≦ (Ni + Fe + Co) / P ≦ 12 and 3 ≦ Ni / (Fe + Co) ≦ 12, the balance is made of Cu and inevitable impurities, and the grain size is 1 nm in the alloy structure. The number of fine P-compound-precipitated particles of 20 nm or less is 300 / μm 2 or more, and the number of coarse crystal / precipitate particles having a particle diameter of more than 100 nm is 0.5 / μm 2 or less. The Sn content in the precipitated particles is the mass% ratio by EDX analysis: Sn / (Ni + Fe + Co P + Sn) at 0.01 or more.
Below, the chemical component composition in the copper alloy plate, the number and the Sn content of the P compound precipitate particles, and the reasons for limiting the numerical values of the number of coarse crystal / precipitate particles will be described.
(Ni:0.4〜1.0質量%)
Niは、合金組織中に微細でSnを含有するP化物析出粒子を析出させて、銅合金板の強度や耐熱性を向上させるのに必要な元素である。0.4質量%未満の含有では、Snを含有する微細なP化物析出粒子が不足するため、高強度化および高耐熱性化の効果を有効に発揮させるには、0.4質量%以上の含有が必要である。但し、1.0質量%を超えて過剰に含有させると、合金組織中に粗大な晶・析出物粒子が生成し、銅合金板のエッチング加工面の平滑性が低下するとともに、熱間加工性も低下する。したがって、Niの含有量は0.4〜1.0質量%の範囲とする。また、この範囲の中で好ましい範囲は0.5〜0.9質量%である。
(Ni: 0.4-1.0 mass%)
Ni is an element necessary for improving the strength and heat resistance of a copper alloy sheet by precipitating fine P precipitate particles containing Sn in the alloy structure. When the content is less than 0.4% by mass, the fine P-compound precipitated particles containing Sn are insufficient, so that the effect of increasing the strength and increasing the heat resistance can be effectively exhibited by 0.4% by mass or more. Containment is necessary. However, if it is excessively contained in excess of 1.0% by mass, coarse crystal / precipitate particles are generated in the alloy structure, the smoothness of the etched surface of the copper alloy plate is lowered, and hot workability is reduced. Also decreases. Therefore, the Ni content is in the range of 0.4 to 1.0 mass%. Moreover, the preferable range in this range is 0.5-0.9 mass%.
(FeおよびCoのうちの1種以上:0.03〜0.3質量%)
FeおよびCoのうちの1種以上を含有させることによって、特に、銅合金板の耐熱性が向上し、リードフレーム打抜き後の熱処理や半導体組立工程における熱履歴による軟化の抑制に有効である。FeまたはCoはNiと同様に、合金組織中にSnを含有する微細なP化物析出粒子を析出させて、銅合金板の強度や耐熱性を向上させるのに必要な元素である。FeおよびCoのうちの1種以上の含有量が0.03質量%未満ではSnを含有する微細なP化物析出粒子が不足するとともに、P化物析出粒子がNiとPを主体とする析出粒子となり、高強度化および高耐熱性化の効果を有効に発揮させることができないため、0.03質量%以上の含有が必要である。但し、0.3質量%を超えて過剰に含有させると、合金組織中に粗大な晶・析出物粒子が生成し、銅合金板のエッチング加工面の平滑性が低下するとともに、熱間加工性も低下する。したがって、銅合金板は、FeおよびCoのうちの1種以上の含有量を0.03〜0.3質量%の範囲とする。また、この範囲の中で好ましい範囲は0.05〜0.2質量%である。
(One or more of Fe and Co: 0.03 to 0.3% by mass)
By containing one or more of Fe and Co, the heat resistance of the copper alloy plate is improved, and it is effective for suppressing softening due to heat history in the lead frame punching and heat history in the semiconductor assembly process. Like Ni, Fe or Co is an element necessary for precipitating fine P precipitate particles containing Sn in the alloy structure and improving the strength and heat resistance of the copper alloy sheet. When the content of one or more of Fe and Co is less than 0.03% by mass, the fine P precipitate particles containing Sn are insufficient, and the P precipitate particles become precipitate particles mainly composed of Ni and P. In addition, since the effects of increasing the strength and increasing the heat resistance cannot be exhibited effectively, it is necessary to contain 0.03% by mass or more. However, if it is excessively contained in excess of 0.3% by mass, coarse crystal / precipitate particles are generated in the alloy structure, the smoothness of the etched surface of the copper alloy plate is lowered, and hot workability is increased. Also decreases. Accordingly, the copper alloy plate has a content of one or more of Fe and Co in the range of 0.03 to 0.3% by mass. Moreover, the preferable range in this range is 0.05-0.2 mass%.
(P:0.05〜0.2質量%)
Pは、脱酸作用を有する他、NiとFeおよびCoのうちの1種以上と結合して合金組織中にSnを含有する微細なP化物析出粒子を形成して、銅合金板の強度や耐熱性を向上させるのに必要な元素である。0.05質量%未満の含有ではSnを含有する微細なP化物析出粒子が不足するため、高強度化および高耐熱性化の効果を有効に発揮させるには、0.05質量%以上の含有が必要である。但し、0.2質量%を超えて過剰に含有させると、合金組織中に粗大な晶・析出物粒子が生成し、銅合金板のエッチング加工面の平滑性が低下するとともに、熱間加工性も低下する。したがって、Pの含有量は0.05〜0.2質量%の範囲とする。また、この範囲の中で好ましい範囲は0.07〜0.18質量%である。
(P: 0.05 to 0.2% by mass)
In addition to deoxidizing action, P combines with one or more of Ni, Fe and Co to form fine P precipitate particles containing Sn in the alloy structure. It is an element necessary for improving heat resistance. If the content is less than 0.05% by mass, the fine P compound precipitate particles containing Sn are insufficient, so that the effect of increasing the strength and increasing the heat resistance can be effectively exhibited to contain 0.05% by mass or more. is necessary. However, if it is excessively contained in excess of 0.2% by mass, coarse crystal / precipitate particles are generated in the alloy structure, and the smoothness of the etched surface of the copper alloy plate is lowered and hot workability is reduced. Also decreases. Therefore, the P content is in the range of 0.05 to 0.2 mass%. Moreover, a preferable range in this range is 0.07 to 0.18 mass%.
(Sn:0.1〜3質量%)
Snは、固溶状態で銅合金板の強度向上に寄与するが、さらに本発明においては、Ni−(FeおよびCoのうちの1種以上)−Pを主体とする析出粒子においてEDX分析でSnが検出される。Snが析出粒子の部分で検出される理由は明確ではないが、Ni−(FeおよびCoのうちの1種以上)−Pを主体とする析出粒子にSnが含有されて存在して検出される機構、マトリックス中のSnが濃化した部分にNi−(FeおよびCoのうちの1種以上)−P粒子が優先的に析出し、検出される機構等が考えられる。いずれにしても、Snは、Ni−(FeおよびCoのうちの1種以上)−P粒子の析出を促進していることが考えられる。このような機構によって、本発明の銅合金板の強度および耐熱性は、Snの固溶のみの効果に比べて、さらに向上しているものと推定される。0.1質量%未満の含有では、本発明のようにNi−(FeおよびCoのうちの1種以上)−Pを主体とし、かつSnを含有する微細な析出粒子は形成されず、高強度化および高耐熱性化の効果を有効に発揮させるには、0.1質量%以上の含有が必要である。しかし、3質量%を超えて過剰に含有すると、その効果が飽和する一方、銅合金板の製造の際の溶解鋳造時にSnの偏析や粗大な晶・析出物粒子が多量に生成し、熱間加工性も低下する。また、銅合金板の導電性も低下する。したがって、Snの含有量は0.1〜3質量%の範囲とする。また、この範囲の中で好ましい範囲は0.2〜2.5質量%である。
(Sn: 0.1 to 3% by mass)
Sn contributes to improving the strength of the copper alloy sheet in a solid solution state. In the present invention, Sn is further analyzed by Sn analysis by EDX analysis on precipitated particles mainly composed of Ni- (one or more of Fe and Co) -P. Is detected. The reason why Sn is detected in the precipitated particle portion is not clear, but it is detected when Sn is contained in the precipitated particles mainly composed of Ni- (one or more of Fe and Co) -P. A mechanism such as a mechanism in which Ni- (one or more of Fe and Co) -P particles are preferentially precipitated and detected in a portion where Sn is concentrated in the matrix is conceivable. In any case, it is conceivable that Sn promotes precipitation of Ni— (one or more of Fe and Co) —P particles. By such a mechanism, it is presumed that the strength and heat resistance of the copper alloy plate of the present invention are further improved as compared with the effect of only Sn solid solution. When the content is less than 0.1% by mass, fine precipitated particles mainly containing Ni- (one or more of Fe and Co) -P and containing Sn are not formed as in the present invention, and high strength is obtained. In order to effectively exhibit the effects of increasing the heat resistance and heat resistance, it is necessary to contain 0.1% by mass or more. However, when the content exceeds 3% by mass, the effect is saturated. On the other hand, a large amount of Sn segregation and coarse crystal / precipitate particles are generated during melting and casting in the production of a copper alloy sheet, Workability also decreases. Moreover, the electroconductivity of a copper alloy plate also falls. Therefore, the Sn content is in the range of 0.1 to 3% by mass. Moreover, the preferable range in this range is 0.2-2.5 mass%.
(Zn:0.005〜1.5質量%)
Znは銅合金板の接合に用いる、Snめっきやはんだの熱剥離を抑制し、耐熱剥離性を改善するのに必要な元素である。この様な効果を有効に発揮させるには、0.005質量%以上含有することが必要である。しかし、1.5質量%を超えて過剰に含有すると、却って溶融Snやはんだの濡れ広がり性を劣化させる。したがってZnの含有量は0.005〜1.5質量%の範囲とする。また、この範囲の中で好ましい範囲は0.01〜1.2質量%である。
(Zn: 0.005 to 1.5 mass%)
Zn is an element used for bonding of copper alloy plates to suppress Sn plating and thermal peeling of solder and to improve heat-resistant peeling. In order to exhibit such an effect effectively, it is necessary to contain 0.005 mass% or more. However, when it contains exceeding 1.5 mass% excessively, the wet-spreading property of molten Sn or solder is deteriorated on the contrary. Therefore, the Zn content is in the range of 0.005 to 1.5 mass%. Moreover, a preferable range in this range is 0.01-1.2 mass%.
(Cr:0.0005〜0.05質量%)
Crは、銅合金板の製造の際、鋳塊の熱間加工性を向上させるのに必要な元素である。Crは、鋳塊の結晶粒界に濃化して、熱間加工温度における粒界の強度を向上させ、熱間加工性の改善に寄与するものと推定される。本発明に係る銅合金板では、高強度と高耐熱性を両立するために比較的高濃度のPとSnを含有することから、熱間加工が比較的難しく、前記のような粒界強化効果を有するCrは必要な元素となる。この様な効果を有効に発揮させるには、0.0005質量%以上含有することが必要である。しかし、0.05質量%を超えて過剰に含有すると効果が飽和するばかりでなく、合金組織中に粗大な晶・析出物粒子が生成しやすくなり、銅合金板のエッチング加工面の平滑性が低下する。したがってCrの含有量は0.0005〜0.05質量%の範囲とする。また、この範囲の中で好ましい範囲は0.001〜0.03質量%である。
(Cr: 0.0005 to 0.05 mass%)
Cr is an element necessary for improving the hot workability of an ingot during the production of a copper alloy sheet. It is presumed that Cr is concentrated at the crystal grain boundary of the ingot to improve the strength of the grain boundary at the hot working temperature and contribute to the improvement of hot workability. The copper alloy sheet according to the present invention contains relatively high concentrations of P and Sn in order to achieve both high strength and high heat resistance, so that hot working is relatively difficult and the grain boundary strengthening effect as described above. Cr having an element becomes a necessary element. In order to exhibit such an effect effectively, it is necessary to contain 0.0005 mass% or more. However, if it exceeds 0.05% by mass, not only is the effect saturated, but coarse crystal / precipitate particles are easily generated in the alloy structure, and the smoothness of the etched surface of the copper alloy plate is improved. descend. Therefore, the Cr content is in the range of 0.0005 to 0.05 mass%. Moreover, the preferable range in this range is 0.001-0.03 mass%.
(4≦(Ni+Fe+Co)/P≦12、かつ3≦Ni/(Fe+Co)≦12)
NiとFeおよびCoのうちの1種以上とPの質量%比の関係が4≦(Ni+Fe+Co)/P≦12、かつ3≦Ni/(Fe+Co)≦12を満足することにより、銅合金板の強度と耐熱性は大きく向上する。また、本発明の微細でSnを含有するP化物析出粒子を後述の規定通り析出させるためには、この2式を満足することが不可欠であり、この2式を満足しなければ本発明の目的である高強度化と高耐熱性化の両立はできない。したがって、NiとFeおよびCoのうちの1種以上とPの質量%比の関係は4≦(Ni+Fe+Co)/P≦12、かつ3≦Ni/(Fe+Co)≦12を満足するものとする。また、この範囲の中で好ましい範囲は、5≦(Ni+Fe+Co)/P≦10、かつ4≦Ni/(Fe+Co)≦10である。
(4 ≦ (Ni + Fe + Co) / P ≦ 12 and 3 ≦ Ni / (Fe + Co) ≦ 12)
When the relationship between the mass% ratio of P to one or more of Ni, Fe and Co and P satisfies 4 ≦ (Ni + Fe + Co) / P ≦ 12 and 3 ≦ Ni / (Fe + Co) ≦ 12, Strength and heat resistance are greatly improved. Further, in order to precipitate the fine P-containing precipitate particles containing Sn according to the present invention as described below, it is essential to satisfy these two formulas. If these two formulas are not satisfied, the object of the present invention It is impossible to achieve both high strength and high heat resistance. Therefore, the relationship between the mass% ratio of P to one or more of Ni, Fe, and Co satisfies 4 ≦ (Ni + Fe + Co) / P ≦ 12 and 3 ≦ Ni / (Fe + Co) ≦ 12. In addition, preferable ranges in this range are 5 ≦ (Ni + Fe + Co) / P ≦ 10 and 4 ≦ Ni / (Fe + Co) ≦ 10.
(不可避的不純物)
本発明で言う不可避的不純物は、例えば、Si、Ti、Zr、Be、V、Nb、Mo、W、Mgなどの元素である。これらの元素が含有されると、粗大な晶・析出物粒子が生成し易くなる他、高強度と高耐熱性の両立を阻害する。従って、総量で0.5質量%以下の極力少ない含有量にすることが好ましい。また、銅合金中に微量に含まれているB、C、Na、S、Ca、As、Se、Cd、In、Sb、Pb、Bi、MM(ミッシュメタル)等の元素も不可避的不純物である。これらの元素が含有されると、粗大な晶・析出物粒子が生成し易くなる他、熱間加工性を低下させることから、総量で0.1質量%以下の極力少ない含有量に抑えることが好ましい。
(Inevitable impurities)
The inevitable impurities referred to in the present invention are elements such as Si, Ti, Zr, Be, V, Nb, Mo, W, and Mg, for example. When these elements are contained, coarse crystal / precipitate particles are easily generated, and at the same time, both high strength and high heat resistance are inhibited. Therefore, it is preferable to make the total content as small as possible 0.5% by mass or less. In addition, elements such as B, C, Na, S, Ca, As, Se, Cd, In, Sb, Pb, Bi, and MM (Misch metal) contained in a small amount in the copper alloy are inevitable impurities. . When these elements are contained, coarse crystal / precipitate particles are likely to be generated and hot workability is reduced, so that the total amount can be suppressed to a minimum of 0.1% by mass or less. preferable.
(P化物析出粒子)
本発明に言うP化物析出粒子とは、銅合金組織を10万倍以上の透過型電子顕微鏡で観察した際の、粒径が1nm以上で20nm以下の析出粒子で、その個数は300個/μm2以上である。なお、これらの析出粒子はNi−(FeおよびCoのうちの1種以上)−PからなるP化物を主体とするものであるが、その析出粒子におけるSn含有量が、EDX分析による質量%比:Sn/(Ni+Fe+Co+P+Sn)で0.01以上であることを特徴とする。
(P-deposited particles)
The P-precipitate precipitated particles referred to in the present invention are precipitated particles having a particle diameter of 1 nm or more and 20 nm or less when the copper alloy structure is observed with a transmission electron microscope of 100,000 times or more, and the number thereof is 300 / μm. 2 or more. These precipitated particles are mainly composed of a P compound composed of Ni- (one or more of Fe and Co) -P, but the Sn content in the precipitated particles is a mass% ratio by EDX analysis. : Sn / (Ni + Fe + Co + P + Sn) is 0.01 or more.
本発明において、析出粒子の粒径は、各析出粒子の最大直径(各析出粒子に外接する円の直径)である。同様に、析出粒子の個数は、10万倍以上の透過型電子顕微鏡での観察視野内の析出粒子数(粒径:1nm以上、20nm以下)を測定し、1μm2当たりの測定個数として換算したものが、本発明で言う個数であり、少なくとも任意の3視野を観察し、その測定結果を平均化したものとする。 In the present invention, the particle size of the precipitated particles is the maximum diameter of each precipitated particle (the diameter of a circle circumscribing each precipitated particle). Similarly, the number of precipitated particles was determined by measuring the number of precipitated particles (particle size: 1 nm or more, 20 nm or less) in an observation field with a transmission electron microscope of 100,000 times or more, and converting the number as a measured number per 1 μm 2 . This is the number referred to in the present invention. At least three arbitrary visual fields are observed and the measurement results are averaged.
このようなSnを含有する微細なP化物析出粒子は、銅合金板の製造に際し、例えば、冷間圧延後の焼鈍の際に新たに生成する。即ち、このような微細な析出粒子は、焼鈍によって、母相から微細に析出した化合物相である。したがって、鋳造時や熱間圧延時に生成して銅合金組織に元々存在するような、粗大な晶・析出物粒子ではない。このため、銅合金組織の10万倍以上の透過型電子顕微鏡による観察でなければ、このような微細な析出粒子は観察できない。 Such fine P precipitate particles containing Sn are newly generated during the production of a copper alloy sheet, for example, during annealing after cold rolling. That is, such fine precipitated particles are compound phases that are finely precipitated from the parent phase by annealing. Therefore, it is not a coarse crystal / precipitate particle that is generated during casting or hot rolling and originally exists in the copper alloy structure. For this reason, such fine precipitate particles cannot be observed unless the copper alloy structure is observed with a transmission electron microscope of 100,000 times or more.
本発明では、このようなSnを含有する微細なP化物析出粒子の個数が300個/μm2以上であることと規定する。このようなSnを含有する微細なP化物析出粒子は、転位の移動や消滅を抑制するピニング力が、これよりも粗大な晶・析出物粒子よりも格段に大きい。このため、本発明銅合金において、粒径が20nm以下の微細なNi−(FeおよびCoのうちの1種以上)−P−Sn化合物を主体とする析出粒子をできるだけ多く銅合金組織内に存在させることで、上記ピニングが高まり、高強度化と高耐熱性化が図れる。 In the present invention, it is defined that the number of such fine P precipitate precipitate particles containing Sn is 300 / μm 2 or more. Such fine P-precipitate precipitate particles containing Sn have a pinning force that suppresses the movement and disappearance of dislocations, and are significantly larger than coarse crystal / precipitate particles. Therefore, in the copper alloy of the present invention, as many precipitate particles as possible mainly composed of fine Ni- (one or more of Fe and Co) -P-Sn compounds having a particle size of 20 nm or less exist in the copper alloy structure as much as possible. By doing so, the above-mentioned pinning is increased, and high strength and high heat resistance can be achieved.
更に、このような粒径が20nm以下のSnを含有する微細なP化物析出粒子は、微細配線加工に好適な加工法であるエッチング加工において、スマットの発生要因となることもなく、エッチング加工面の平滑性を低下させることもない。これに対して、粗大な晶・析出物粒子は、高強度化と高耐熱性化への寄与が小さいだけでなく、エッチング加工におけるスマット発生要因や、エッチング加工面の平滑性を低下させる要因にもなり得る。 Furthermore, such fine P-precipitate-deposited particles containing Sn having a particle size of 20 nm or less do not become a cause of smut in the etching process, which is a suitable processing method for fine wiring processing, and the etched surface. It does not reduce the smoothness. On the other hand, coarse crystal / precipitate particles not only have a small contribution to high strength and high heat resistance, but also cause smut generation in etching processing and factors that reduce the smoothness of the etched surface. Can also be.
析出粒子の粒径が20nmを超える粗大な晶・析出物粒子は、上記した通り、ピンニング力が弱まる。したがって、本発明ではSnを含有する微細なP化物析出粒子の平均粒径の上限を20nmとする。一方、粒径が1nm未満の微細な析出物粒子は10万倍以上の透過型電子顕微鏡でも、検出、測定が困難であって、かつ、前記ピニングが逆に弱まる。したがって本発明では、規定する析出粒子の下限を1nmとする。 As described above, the coarse crystal / precipitate particles having a particle diameter of more than 20 nm have a weak pinning force. Therefore, in this invention, the upper limit of the average particle diameter of the fine P compound precipitation particle | grains containing Sn shall be 20 nm. On the other hand, fine precipitate particles having a particle diameter of less than 1 nm are difficult to detect and measure even with a transmission electron microscope of 100,000 times or more, and the pinning is weakened. Therefore, in the present invention, the lower limit of the defined precipitated particles is 1 nm.
このようなSnを含有する微細なP化物析出粒子の個数が300個/μm2未満では、効果を発揮すべき粒子の数が不足し、引張強さ750MPa(硬さHv220)以上の高強度が得られないとともに、耐熱性も低下する。 If the number of such fine P precipitate precipitate particles containing Sn is less than 300 / μm 2 , the number of particles to exhibit the effect is insufficient, and the tensile strength is 750 MPa (hardness Hv220) or higher. It cannot be obtained and the heat resistance is also reduced.
また、微細でSnを含有するP化物析出粒子のSn含有量が質量%比で0.01未満では、引張強さ750MPa(硬さHv220)以上の高強度が得られないとともに、耐熱性も低下する。なお、析出粒子の組成分析(Sn含有量)はEDX分析にて行っており、各成分(Ni,Fe,Co,P,Sn)のピーク強度から質量%を算出する。各質量%はNi+Fe+Co+P+Snを100%として算出し、Snの質量%比は、この質量%からSn/(Ni+Fe+Co+P+Sn)の式で算出する。また、観察視野内の1nm以上、20nm以下の析出粒子のうち、少なくとも5個以上を分析し、その測定結果を平均化する。また、P化物析出粒子の代表的な組成は、EDX分析による質量%で、Ni:30〜70%、FeおよびCoのうちの1種以上:5〜60%、P:5〜35%、Sn:1〜30%程度の範囲からなるものである。 In addition, if the Sn content of the fine P-precipitate precipitate particles containing Sn is less than 0.01 in terms of mass%, a high strength of not less than 750 MPa (hardness Hv220) cannot be obtained, and the heat resistance also decreases. To do. The composition analysis (Sn content) of the precipitated particles is performed by EDX analysis, and the mass% is calculated from the peak intensity of each component (Ni, Fe, Co, P, Sn). Each mass% is calculated by assuming Ni + Fe + Co + P + Sn as 100%, and the mass% ratio of Sn is calculated from this mass% by the formula of Sn / (Ni + Fe + Co + P + Sn). Moreover, at least 5 or more of the deposited particles of 1 nm or more and 20 nm or less in the observation visual field are analyzed, and the measurement results are averaged. Moreover, the typical composition of P compound precipitation particle | grains is the mass% by EDX analysis, Ni: 30-70%, 1 or more types in Fe and Co: 5-60%, P: 5-35%, Sn : It consists of about 1 to 30% of range.
(粗大な晶・析出物粒子)
本発明においては、粒径が1nm以上で20nm以下のSnを含有する微細なP化物析出粒子の量を規定しているが、この規定を満足すれば、本発明の目的を阻害しない範囲で、晶・析出物粒子の粒径が20nmを超える粗大な晶・析出物粒子が適宜の量、銅合金組織中に存在することは許容する。しかしながら、銅合金組織を1万倍以上の走査型電子顕微鏡で観察した際に粒径が100nmを超える晶・析出物粒子は、その個数が0.5個/μm2以下である。粒径が100nmを超える粗大な晶・析出物粒子の個数が0.5個/μm2を超えると、エッチング加工時のスマットの発生要因となるとともに、エッチング加工面の平滑性の低下、およびめっき性の低下(突起の発生)等の問題を引き起こす要因となる。また、前記した微細なSnを含有するP化物析出粒子の生成も阻害される。
(Coarse crystals / precipitate particles)
In the present invention, the amount of fine P-precipitate precipitated particles containing Sn having a particle size of 1 nm or more and 20 nm or less is specified, but if this specification is satisfied, the object of the present invention is not impaired. It is permissible that coarse crystal / precipitate particles having a crystal grain / precipitate particle diameter exceeding 20 nm are present in an appropriate amount in the copper alloy structure. However, when the copper alloy structure is observed with a scanning electron microscope of 10,000 times or more, the number of crystal / precipitate particles having a particle diameter exceeding 100 nm is 0.5 / μm 2 or less. If the number of coarse crystal / precipitate particles having a particle size exceeding 100 nm exceeds 0.5 / μm 2, it may cause smut during etching processing, decrease in smoothness of the etched surface, and plating. It becomes a factor causing problems such as deterioration of the property (generation of protrusions). Moreover, the production | generation of the P compound precipitation particle | grains containing the above-mentioned fine Sn is also inhibited.
粒径が100nmを超える粗大な晶・析出物粒子は、銅合金板の製造に際し、鋳造時や熱間圧延時に生成する。ここで、晶・析出物粒子とは、銅合金組織中に結晶相として分離する晶出物粒子、明瞭な結晶相を形成しない固体相として分離する析出物粒子、または、これらの混合物をいう。なお、これらの粒径が100nmを超える粗大な晶・析出物粒子としては、P化物系(Ni−Fe−P系,Ni−Co−P系,Ni−P系など)やNi−Sn系のものが存在する。 Coarse crystal / precipitate particles having a particle size exceeding 100 nm are produced during casting or hot rolling during the production of a copper alloy sheet. Here, the crystal / precipitate particles refer to crystal particles that separate as a crystal phase in a copper alloy structure, precipitate particles that separate as a solid phase that does not form a clear crystal phase, or a mixture thereof. The coarse crystal / precipitate particles having a particle diameter exceeding 100 nm include P-based (Ni—Fe—P, Ni—Co—P, Ni—P) and Ni—Sn. Things exist.
本発明において、粗大な晶・析出物粒子の粒径は、各晶・析出物粒子の最大直径(各晶・析出物粒子に外接する円の直径)である。同様に、粗大な晶・析出物粒子の個数は、1万倍以上の走査型電子顕微鏡での観察視野内の晶・析出物粒子数(粒径:100nmを超える)を測定し、1μm2当たりの測定個数として換算したものが、本発明で言う個数であり、少なくとも任意の3視野を観察し、その測定結果を平均化したものとする。なお、観察は透過型電子顕微鏡でも可能であるが、粒径が大きいため走査型電子顕微鏡の方が容易であり、適する。 In the present invention, the particle size of coarse crystal / precipitate particles is the maximum diameter of each crystal / precipitate particle (the diameter of a circle circumscribing each crystal / precipitate particle). Similarly, the number of coarse dispersoids is 10,000 times or more dispersoids number in the observation field of view with a scanning electron microscope (particle size: greater than 100 nm) was measured, 1 [mu] m 2 per The number measured in the above is the number referred to in the present invention, and at least three arbitrary visual fields are observed and the measurement results are averaged. Although observation is possible with a transmission electron microscope, the scanning electron microscope is easier and suitable because of its large particle size.
本発明に係る銅合金板は、さらに、質量%で、AlおよびMnのうちの1種以上:0.0005〜0.05%を含有することができる。
(AlおよびMnのうちの1種以上:0.0005〜0.05質量%)
AlまたはMnは、銅合金中に不可避不純物として混入し熱間加工性を低下させるS量を低減するのに有効な元素である。この様な効果を有効に発揮させるには、AlおよびMnのうちの1種以上の含有量が0.0005質量%以上であることが必要である。しかし、0.05質量%を超えて過剰に含有すると効果が飽和するばかりでなく、粗大な晶・析出物粒子が生成しやすくなり、銅合金板のエッチング加工面の平滑性が低下する。したがって、銅合金板は、AlおよびMnのうちの1種以上の含有量を0.0005〜0.05質量%の範囲とする。また、この範囲の中で好ましい範囲は0.001〜0.03質量%である。
The copper alloy plate according to the present invention can further contain one or more of Al and Mn: 0.0005 to 0.05% by mass%.
(One or more of Al and Mn: 0.0005 to 0.05 mass%)
Al or Mn is an element effective for reducing the amount of S that is mixed as an inevitable impurity in the copper alloy and decreases the hot workability. In order to effectively exhibit such an effect, the content of one or more of Al and Mn needs to be 0.0005% by mass or more. However, if it exceeds 0.05% by mass, the effect is not only saturated, but coarse crystal / precipitate particles are easily generated, and the smoothness of the etched surface of the copper alloy plate is lowered. Therefore, a copper alloy plate makes content of 1 or more types of Al and Mn into the range of 0.0005-0.05 mass%. Moreover, the preferable range in this range is 0.001-0.03 mass%.
<銅合金板の製造方法>
次に、前記銅合金板の製造方法について説明する。製造される銅合金板の合金組織を前記の規定組織とするために、従来公知の製造工程自体を大きく変えることは不要で、常法と同じ工程で製造できる。即ち、前記成分組成に調整した銅合金溶湯を鋳造する。そして、鋳塊を面削後、加熱または均質化熱処理した後に熱間圧延し、熱延後の板を水冷する。その後、冷間圧延、焼鈍、洗浄を何回か繰り返し、更に仕上げ(最終)冷間圧延を行って製品板厚の銅合金板とする。
<Method for producing copper alloy plate>
Next, the manufacturing method of the said copper alloy plate is demonstrated. In order to make the alloy structure of the copper alloy plate to be manufactured have the above-mentioned specified structure, it is not necessary to change the manufacturing process known per se greatly, and it can be manufactured in the same process as a conventional method. That is, a molten copper alloy adjusted to the above component composition is cast. Then, after chamfering the ingot, it is heated or homogenized and then hot-rolled, and the hot-rolled plate is water-cooled. Then, cold rolling, annealing, and washing are repeated several times, and finish (final) cold rolling is performed to obtain a copper alloy plate having a product plate thickness.
なお、最終冷間圧延の後には歪取り焼鈍を行うことが好ましい。半導体装置の小型化・高集積化によるリードフレームの微細配線化に伴い、板のフラットネスと内部応力低減に関する品質要求は益々高くなっており、歪取り焼鈍はこれらの品質向上に有効である。歪取り焼鈍は200〜500℃程度の温度範囲と1〜300秒程度の時間範囲で行えばよい。 In addition, it is preferable to perform strain relief annealing after the final cold rolling. With the miniaturization and high integration of semiconductor devices, the demand for quality regarding the flatness of the plate and the reduction of internal stress is increasing, and the strain relief annealing is effective in improving these quality. The strain relief annealing may be performed in a temperature range of about 200 to 500 ° C. and a time range of about 1 to 300 seconds.
ここにおいて、前記した、粒径が1nm以上で20nm以下のSnを含有するP化物析出粒子の個数が300個/μm2以上である析出形態となるよう制御するには、製造にあたって下記の条件で焼鈍を行うことが有効である。なお、P化物析出粒子のSn含有量をEDX分析による質量%比で0.01以上となるように制御するには、銅合金におけるNi、FeおよびCoのうちの1種以上、P、Sn含有量の調整によって行うことが有効である。 Here, in order to control the precipitation form in which the number of P-oxide precipitation particles containing Sn having a particle diameter of 1 nm or more and 20 nm or less is 300 particles / μm 2 or more, the following conditions are used in the production. It is effective to perform annealing. In addition, in order to control the Sn content of the P precipitate particles so that the mass% ratio by EDX analysis is 0.01 or more, one or more of Ni, Fe and Co in the copper alloy, P and Sn content It is effective to adjust the amount.
即ち、前記した通り、本発明における微細でSnを含有するP化物析出粒子は、焼鈍によって新たに母相から微細に析出した化合物相である。このような微細でSnを含有するP化物析出粒子を析出させるために、前記の銅合金板の製造工程において、冷間圧延後に焼鈍を行う。 That is, as described above, the fine and fine Sn-containing P precipitates in the present invention are compound phases that are newly finely precipitated from the parent phase by annealing. In order to precipitate such fine P oxide precipitate particles containing Sn, annealing is performed after cold rolling in the manufacturing process of the copper alloy sheet.
但し、1回の焼鈍だけで、このような微細でSnを含有するP化物析出粒子を多数析出することは難しく、焼鈍温度を高くすると、析出粒子の数の増加に伴って、析出粒子の成長、粗大化を招く。そこで、焼鈍を複数回に分けて行うとともに、1回当たりの焼鈍温度を430℃以下に制御し、析出粒子の成長、粗大化を抑制し、上記の微細析出形態となるよう制御することが好ましい。焼鈍時間は5分〜20時間程度の範囲で行えばよい。 However, it is difficult to precipitate a large number of such fine P-containing precipitate particles containing Sn by only one annealing. When the annealing temperature is increased, the number of precipitated particles increases as the number of precipitated particles increases. , Leading to coarsening. Therefore, it is preferable to perform the annealing in a plurality of times and to control the annealing temperature per time to 430 ° C. or less, to suppress the growth and coarsening of the precipitated particles, and to control the above fine precipitation form. . The annealing time may be in the range of about 5 minutes to 20 hours.
更に、これら焼鈍と焼鈍との間に冷間圧延すると、冷間圧延によって格子欠陥が増加して、後の焼鈍での析出核となるため、上記した微細析出形態が得られやすい。 Furthermore, when cold rolling is performed between these annealings, lattice defects are increased by cold rolling and precipitate nuclei are formed in the subsequent annealing, so that the above-described fine precipitation form is easily obtained.
したがって、これらの条件を加味すると、前記した銅合金板の製造工程において、熱間圧延後から仕上げ(最終)冷間圧延までに、冷延と焼鈍を2回ずつ繰り返して行なうような工程が、前記した微細でSnを含有するP化物析出粒子の析出形態が得られやすい点で好ましい。また、鋳造条件および熱間圧延条件を制御して、粒径が100nmを超える粗大な晶・析出物粒子の個数を0.5個/μm2以下にすることによって、微細でSnを含有するP化物析出粒子の生成を促進することが好ましい。 Therefore, in consideration of these conditions, in the manufacturing process of the copper alloy plate described above, a process of repeatedly performing cold rolling and annealing twice after hot rolling until finishing (final) cold rolling, This is preferable in that the precipitation form of the fine P precipitate particles containing Sn is easily obtained. Further, by controlling the casting conditions and hot rolling conditions so that the number of coarse crystal / precipitate particles having a particle size exceeding 100 nm is 0.5 particles / μm 2 or less, the fine P containing Sn is contained. It is preferable to promote the formation of the oxide precipitate particles.
粒径が100nmを超える粗大な晶・析出物粒子の個数を0.5個/μm2以下に制御する鋳造条件および熱間圧延条件としては、鋳造時の冷却速度を速くする(粗大な晶出物を抑制するための凝固時の冷却速度、および粗大な析出物を抑制するための凝固後500℃までの冷却速度を、ともに0.1℃/秒以上、好ましくは0.5℃/秒以上とする。例えば水冷)とともに、熱間圧延の加熱温度や終了温度を高くし(加熱温度:850℃以上、終了温度:650℃以上)、熱間圧延後の冷却速度も速くする(熱間圧延終了後300℃までの冷却速度を1℃/秒以上、好ましくは5℃/秒以上とする。例えば水冷)ことが有効である。鋳造時の冷却速度が遅過ぎると粗大な晶・析出物粒子が多数生成する。また、熱間圧延の加熱温度が低い場合には、鋳造時に生成した粗大な晶・析出物粒子が十分に固溶せず、熱間圧延の終了温度も低下するため、粗大な晶・析出物粒子が多数生成する。また、熱間圧延後の冷却速度が遅い場合も粗大な晶・析出物粒子が多数生成する。 As casting conditions and hot rolling conditions for controlling the number of coarse crystals / precipitate particles having a particle size exceeding 100 nm to 0.5 / μm 2 or less, the cooling rate during casting is increased (coarse crystallization). The cooling rate at the time of solidification for suppressing substances and the cooling rate to 500 ° C. after the solidification for suppressing coarse precipitates are both 0.1 ° C./second or more, preferably 0.5 ° C./second or more. For example, with water cooling, the heating temperature and end temperature of hot rolling are increased (heating temperature: 850 ° C. or higher, end temperature: 650 ° C. or higher), and the cooling rate after hot rolling is also increased (hot rolling). After the completion, the cooling rate up to 300 ° C. is 1 ° C./second or more, preferably 5 ° C./second or more (for example, water cooling) is effective. If the cooling rate during casting is too slow, a large number of coarse crystal / precipitate particles are generated. In addition, when the heating temperature of hot rolling is low, the coarse crystals / precipitate particles generated during casting are not sufficiently dissolved, and the end temperature of hot rolling is lowered, so that the coarse crystals / precipitates are reduced. Many particles are formed. In addition, a large number of coarse crystal / precipitate particles are generated even when the cooling rate after hot rolling is slow.
また、微細なSnを含有するP化物析出粒子の個数測定および組成分析、粒径が100nmを超える粗大な晶・析出物粒子の個数測定は、最終冷間圧延前の最終焼鈍後に行うのが望ましい。最終冷間圧延後でも可能ではあるが、転位が微細なSnを含有するP化物析出粒子および粒径が100nmを超える粗大な晶・析出物粒子の観察の妨げとなる場合がある。 In addition, the number measurement and composition analysis of P precipitate particles containing fine Sn and the number measurement of coarse crystal / precipitate particles having a particle size exceeding 100 nm are preferably performed after the final annealing before the final cold rolling. . Although it is possible even after the final cold rolling, there are cases in which observation of P precipitate particles containing Sn with fine dislocations and coarse crystal / precipitate particles having a particle size exceeding 100 nm may be hindered.
次に、本発明の実施例について説明する。
銅合金板の製造方法としては、表1に示す化学成分の銅合金を高周波炉において溶製した後、黒鉛製のブック鋳型、および400℃に加熱した耐火物製のブック鋳型に傾注式で鋳込み、厚さが70mm、幅が200mm、長さが500mmの鋳塊を得た。両鋳型とも、鋳型内で鋳塊が凝固後、700〜800℃の温度より水冷した。なお、黒鉛製鋳型は十分な熱容量と熱伝導率を持っており、デンドライトアームスペーシングの2次枝間隔より求めた凝固時の冷却速度は1℃/秒以上であった。一方、耐火物製鋳型は加熱されており、また熱伝導率が小さいため凝固時の冷却速度は0.1℃/秒未満であった。なお、表1に示す銅合金は、不可避的不純物として、Si、Ti、Zr、Be、V、Nb、Mo、W、Mgなどの元素を総量で0.01質量%以下、B、C、Na、S、Ca、As、Se、Cd、In、Sb、Pb、Bi、MM(ミッシュメタル)等の元素を総量で0.005質量%以下含んでいた。そして、各鋳塊の上部(鋳造終了端に近い部分)より、厚さ70mm、幅80mm、長さ200mmのブロックを切出し、圧延面を面削して加熱し、900℃に到達後0.5〜1時間保持後、厚さが16mmになるまで熱間圧延し、700℃以上の温度で水冷した。なお、一部の例については、熱間圧延条件(加熱温度、終了温度、冷却方法)を変更して行った。この圧延板表面を面削して酸化スケールを除去した後、冷間圧延と焼鈍とを2回繰り返して行い(冷間圧延回数は焼鈍回数と同じ)、その後最終の冷間圧延を行って厚さが0.2mmの銅合金板を得た。表1には、各例とも繰り返しの焼鈍の内、高い方の焼鈍温度を最高焼鈍温度として記載している。そして、最終冷間圧延後、歪取り焼鈍を行った。
Next, examples of the present invention will be described.
As a method for producing a copper alloy plate, a copper alloy having chemical components shown in Table 1 is melted in a high frequency furnace, and then cast into a graphite book mold and a refractory book mold heated to 400 ° C. by tilting. An ingot having a thickness of 70 mm, a width of 200 mm, and a length of 500 mm was obtained. Both molds were water-cooled from 700 to 800 ° C. after the ingot was solidified in the mold. The graphite mold had a sufficient heat capacity and thermal conductivity, and the cooling rate during solidification obtained from the secondary branch spacing of the dendrite arm spacing was 1 ° C./second or more. On the other hand, the refractory mold was heated, and because of its low thermal conductivity, the cooling rate during solidification was less than 0.1 ° C./second. In addition, the copper alloy shown in Table 1 includes elements such as Si, Ti, Zr, Be, V, Nb, Mo, W, and Mg as inevitable impurities in a total amount of 0.01% by mass or less, B, C, Na , S, Ca, As, Se, Cd, In, Sb, Pb, Bi, MM (Misch metal) and the like were included in a total amount of 0.005% by mass or less. Then, a block having a thickness of 70 mm, a width of 80 mm, and a length of 200 mm is cut out from the upper part of each ingot (the part close to the end of casting), the rolled surface is chamfered and heated, and after reaching 900 ° C., 0.5 After holding for ˜1 hour, it was hot-rolled until the thickness reached 16 mm, and water-cooled at a temperature of 700 ° C. or higher. In some cases, the hot rolling conditions (heating temperature, finishing temperature, cooling method) were changed. After chamfering the surface of the rolled sheet to remove the oxide scale, cold rolling and annealing are repeated twice (the number of cold rolling is the same as the number of annealing), and then the final cold rolling is performed to obtain a thickness. A copper alloy plate having a thickness of 0.2 mm was obtained. Table 1 lists the higher annealing temperature as the maximum annealing temperature among the repeated annealing in each example. And after final cold rolling, strain relief annealing was performed.
このようにして得た銅合金板に対して、各例とも、銅合金板から試料を切り出し、組織観察によるSnを含有するP化物析出粒子(以下、微細析出粒子と称す。)の個数測定および組成分析(Sn含有量)、引張試験、硬さ測定、導電率測定、耐熱性測定、エッチング加工性(エッチング性)、はんだ濡れ性、はんだの耐熱剥離性および熱間加工性の評価を行なった。これらの結果を表2、表3に各々示す。なお、一部の例については、粒径が100nmを超える粗大な晶・析出物粒子(以下、粗大晶・析出物粒子と称す。)の個数測定、Agめっき性の評価も行った。その結果を、表4に各々示す。 With respect to the copper alloy plate thus obtained, in each example, a sample was cut out from the copper alloy plate, and the number of P precipitate particles (hereinafter referred to as fine precipitate particles) containing Sn was observed by microstructure observation and Evaluation of composition analysis (Sn content), tensile test, hardness measurement, conductivity measurement, heat resistance measurement, etching processability (etching property), solder wettability, solder heat release property and hot workability . These results are shown in Tables 2 and 3, respectively. For some examples, the number of coarse crystals / precipitate particles having a particle size exceeding 100 nm (hereinafter referred to as coarse crystals / precipitate particles) was measured, and the Ag plating property was also evaluated. The results are shown in Table 4, respectively.
微細析出粒子の観察は、前記した測定方法により、銅合金組織を30万倍の透過型電子顕微鏡で観察した際の、粒径が1nm以上で20nm以下の析出粒子の個数を測定し、個/μm2として算出した。また、微細析出粒子の組成分析(Sn含有量)はEDX分析(ビーム径:1nm)にて質量%(Ni+Fe+Co+P+Sn=100%とする)を測定し、質量%比として算出した。 The observation of the fine precipitated particles was performed by measuring the number of precipitated particles having a particle size of 1 nm or more and 20 nm or less when the copper alloy structure was observed with a transmission electron microscope of 300,000 times by the above-described measurement method. Calculated as μm 2 . The composition analysis (Sn content) of the finely precipitated particles was calculated as a mass% ratio by measuring mass% (Ni + Fe + Co + P + Sn = 100%) by EDX analysis (beam diameter: 1 nm).
引張試験は、圧延方向に平行に切り出したJIS5号試験片を作製して行なった。硬さ試験は、マイクロビッカース硬度計にて、4.9Nの荷重を加えて行なった。引張強さ:750MPa以上、硬さ:220Hv以上で良好とした。 The tensile test was performed by preparing a JIS No. 5 test piece cut out parallel to the rolling direction. The hardness test was carried out by applying a load of 4.9 N with a micro Vickers hardness tester. The tensile strength was 750 MPa or more, and the hardness was 220 Hv or more.
導電率は、ミーリングにより、幅10mm×長さ300mmの短冊状の試験片を加工し、ダブルブリッジ式抵抗測定装置により電気抵抗を測定して平均断面積法により算出した。導電率:25%以上で良好とした。 The electrical conductivity was calculated by an average cross-sectional area method by processing a strip-shaped test piece having a width of 10 mm and a length of 300 mm by milling, measuring the electrical resistance with a double bridge resistance measuring device. Conductivity: good at 25% or more.
耐熱性は、450℃×1分加熱後の硬さを上記硬さ試験で測定し、硬さ保持率(%)=(加熱後の硬さ/加熱前の硬さ)×100で評価した。硬さ保持率:90%以上で良好とした。 For heat resistance, the hardness after heating at 450 ° C. for 1 minute was measured by the above hardness test, and the hardness retention rate (%) = (hardness after heating / hardness before heating) × 100 was evaluated. Hardness retention: good at 90% or more.
エッチング加工性(エッチング性)は、塩化第2鉄水溶液(比重1.5)を用いて、液温:45℃,スプレー圧1.5kgf/mm2でエッチング加工を行い後、エッチング抜き面(エッチング加工面)を走査型電子顕微鏡にて観察し、平滑性を3段階で評価した(A:良好、B:肌荒れ発生、C:肌荒れ大)。 The etching processability (etchability) is determined by performing etching using a ferric chloride aqueous solution (specific gravity 1.5) at a liquid temperature of 45 ° C. and a spray pressure of 1.5 kgf / mm 2 , and then removing the etched surface (etching). The processed surface was observed with a scanning electron microscope, and the smoothness was evaluated in three stages (A: good, B: rough skin generated, C: large rough skin).
はんだ濡れ性は、短冊状の試験片に非活性フラックスを塗布し、245℃に保持したはんだ浴(Sn−40%Pb)に5秒間浸漬後、濡れ面積の比率で評価した(A:全面濡れ、B:ピンホール発生、C:濡れ面積95%未満)。 Solder wettability was evaluated by the ratio of wet area after applying a non-active flux on a strip-shaped test piece, dipping in a solder bath (Sn-40% Pb) maintained at 245 ° C. for 5 seconds (A: whole surface wet) , B: Pinhole generation, C: Less than 95% wetted area).
はんだの耐熱剥離性は、短冊状の試験片に弱活性フラックスを塗布し、245℃に保持したはんだ浴(Sn−40%Pb)に5秒間浸漬後、150℃のオーブンで1000hr加熱した。この試験片に180°曲げ戻し加工を加え、加工部のはんだが剥離するか否かを観察した(A:剥離なし、B:微少剥離、C:全面剥離)。 For the heat-resistant peelability of the solder, a weakly active flux was applied to a strip-shaped test piece, immersed in a solder bath (Sn-40% Pb) maintained at 245 ° C. for 5 seconds, and then heated in an oven at 150 ° C. for 1000 hours. The test piece was subjected to 180 ° bending back processing to observe whether or not the solder in the processed part was peeled off (A: no peeling, B: slight peeling, C: full peeling).
熱間加工性は、実施例の板材を製作する際の熱間圧延工程後の材料の外観にて評価した(A:良好、B:耳割れ発生、C:耳割れ大)。 The hot workability was evaluated by the appearance of the material after the hot rolling process when producing the plate material of the example (A: good, B: generation of ear cracks, C: large ear cracks).
粗大晶・析出物粒子の観察は、前記した測定方法により、銅合金組織を1万倍の走査型電子顕微鏡で観察した際の、粒径が100nmを超える粗大な晶・析出物粒子の個数を測定し、個/μm2として算出した。 Coarse crystal / precipitate particles are observed by measuring the number of coarse crystal / precipitate particles having a particle diameter exceeding 100 nm when the copper alloy structure is observed with a scanning electron microscope of 10,000 times by the above-described measurement method. Measured and calculated as pieces / μm 2 .
Agめっき性は、シアン系Agめっき液から厚さ1μmのAgめっきを行い、突起(局所的にAgめっき厚さが厚くなり、突起状となったもの)の個数を30倍の実体顕微鏡で測定して個/cm2を算出し、3段階で評価した。A:良好(0.5個/cm2未満),B:やや不良(0.5〜5個/cm2),C:不良(5個/cm2以上)。 Ag plating is performed using a cyan-based Ag plating solution with a thickness of 1 μm, and the number of protrusions (locally Ag plating thickness is increased to become protrusions) is measured with a 30-fold stereo microscope. The number of pieces / cm 2 was calculated and evaluated in three stages. A: Good (less than 0.5 pieces / cm 2 ), B: Somewhat bad (0.5 to 5 pieces / cm 2 ), C: Bad (5 pieces / cm 2 or more).
表1〜表4に示す通り、実施例(No.1〜19)は、特許請求の範囲に規定された銅合金組成範囲を有し、AlまたはMnも各々選択的に所定範囲で含んでいる。そして、製造方法における鋳造、熱間圧延および焼鈍も好ましい条件内で製造されている。また、銅合金組織を30万倍の透過型電子顕微鏡で観察した際の、粒径が1nm以上で20nm以下の微細でSnを含有するP化物析出粒子(微細析出粒子)の個数は300個/μm2以上、そのSn含有量(質量%比)も0.01以上であった。さらに、銅合金組織を1万倍の走査型電子顕微鏡で観察した際の、粒径が100nmを超える粗大晶・析出物粒子の個数は0.5個/μm2以下であった。 As shown in Tables 1 to 4, Examples (Nos. 1 to 19) have a copper alloy composition range defined in the claims, and each of them also includes Al or Mn selectively within a predetermined range. . And the casting in the manufacturing method, hot rolling, and annealing are also manufactured within preferable conditions. In addition, when the copper alloy structure was observed with a transmission electron microscope of 300,000 times, the number of fine P precipitate particles (fine precipitate particles) having a particle size of 1 nm or more and 20 nm or less and containing Sn was 300 / μm 2 or more, and its Sn content (ratio by mass%) was 0.01 or more. Further, when the copper alloy structure was observed with a scanning electron microscope of 10,000 times, the number of coarse crystal / precipitate particles having a particle diameter exceeding 100 nm was 0.5 / μm 2 or less.
この結果、実施例(No.1〜19)の銅合金板は、引張強さで750MPa以上、硬さでHv220以上の特性を有しており、導電率は25%IACS以上であった。さらに、耐熱性は硬さ保持率で90%以上であり、高強度と高耐熱性を両立するとともに、エッチング性、はんだ濡れ性、はんだ耐熱剥離性および熱間加工性は良好であった。なお、実施例(No.2)の銅合金板は、Agめっき性についても良好であった。 As a result, the copper alloy sheets of the examples (No. 1 to 19) had characteristics of a tensile strength of 750 MPa or more and a hardness of Hv 220 or more, and the conductivity was 25% IACS or more. Furthermore, the heat resistance was 90% or more in terms of hardness retention, and both high strength and high heat resistance were achieved, and the etching property, solder wettability, solder heat release property and hot workability were good. In addition, the copper alloy plate of Example (No. 2) was also good about Ag plating property.
これに対して、比較例(No.20)は、P量が下限を下回り、(Ni+Fe+Co)/Pが上限を上回っている。よって、焼鈍は好ましい条件内で行なっているものの、微細析出粒子の個数が下限の300個/μm2を下回り、引張強さ、硬さ、耐熱性(硬さ保持率)が低かった。 On the other hand, in the comparative example (No. 20), the amount of P is lower than the lower limit, and (Ni + Fe + Co) / P is higher than the upper limit. Therefore, although annealing was performed within preferable conditions, the number of fine precipitated particles was less than the lower limit of 300 / μm 2 , and the tensile strength, hardness, and heat resistance (hardness retention) were low.
比較例(No.21)は、微細析出粒子の個数は特許請求の範囲を満足し、引張強さ、硬さ、耐熱性ともに良好であるが、P量が上限を上回り、(Ni+Fe+Co)/Pが下限を下回っているため、粗大な晶・析出物粒子が生成し、エッチング性、はんだの耐熱剥離性および熱間加工性が低下した。 In Comparative Example (No. 21), the number of finely precipitated particles satisfies the scope of claims, and the tensile strength, hardness, and heat resistance are good, but the P amount exceeds the upper limit, and (Ni + Fe + Co) / P Is below the lower limit, coarse crystal / precipitate particles were formed, and the etching property, the heat-resistant peelability of the solder and the hot workability were reduced.
比較例(No.22)は、Ni量、(Ni+Fe+Co)/PおよびNi/(Fe+Co)が下限を下回っている。このため、微細析出粒子の個数が下限の300個/μm2を下回り、引張強さ、硬さ、耐熱性(硬さ保持率)が低かった。 In the comparative example (No. 22), the amount of Ni, (Ni + Fe + Co) / P and Ni / (Fe + Co) are below the lower limit. For this reason, the number of fine precipitated particles was below the lower limit of 300 / μm 2 , and the tensile strength, hardness, and heat resistance (hardness retention) were low.
比較例(No.23)は、微細析出粒子の個数は特許請求の範囲を満足し、引張強さ、硬さ、耐熱性ともに良好であるが、Ni量が上限を上回っているため、粗大な晶・析出物粒子が生成し、エッチング性が低下した。 In the comparative example (No. 23), the number of fine precipitated particles satisfies the scope of claims, and the tensile strength, hardness, and heat resistance are good, but the Ni amount exceeds the upper limit, so that it is coarse. Crystalline / precipitate particles were formed, and the etching property was lowered.
比較例(No.24)は、Fe量が0.01%と下限を下回り、Ni/(Fe+Co)が上限を上回っている。このため、微細析出粒子の個数が下限の300個/μm2を下回り、引張強さ、硬さ、耐熱性(硬さ保持率)が低かった。 In the comparative example (No. 24), the Fe amount is 0.01%, which is below the lower limit, and Ni / (Fe + Co) is higher than the upper limit. For this reason, the number of fine precipitated particles was below the lower limit of 300 / μm 2 , and the tensile strength, hardness, and heat resistance (hardness retention) were low.
比較例(No.25)は、微細析出粒子の個数は特許請求の範囲を満足し、引張強さ、硬さは良好であるが、Fe量が上限を上回り、Ni/(Fe+Co)が下限を下回っているため、微細析出粒子の組成が適正な範囲からはずれ、耐熱性(硬さ保持率)が低いとともに、粗大な晶・析出物粒子が生成し、エッチング性、はんだ濡れ性・熱間加工性が低下した。 In Comparative Example (No. 25), the number of finely precipitated particles satisfies the scope of claims, and the tensile strength and hardness are good, but the Fe amount exceeds the upper limit, and Ni / (Fe + Co) has the lower limit. The composition of fine precipitated particles deviates from the proper range, and the heat resistance (hardness retention rate) is low, and coarse crystals / precipitate particles are generated. Etching, solder wettability / hot working Decreased.
比較例(No.26〜29)は、Ni,Fe,P量は本発明範囲を満足し、微細析出粒子の個数も本発明範囲を満足し、引張強さ、硬さは良好であるが、(Ni+Fe+Co)/Pまたは/およびNi/(Fe+Co)が特許請求の範囲からはずれているため、微細析出粒子の組成が適正な範囲からはずれ、耐熱性(硬さ保持率)が低かった。 In Comparative Examples (Nos. 26 to 29), the amounts of Ni, Fe and P satisfy the scope of the present invention, the number of finely precipitated particles also satisfies the scope of the present invention, and the tensile strength and hardness are good. Since (Ni + Fe + Co) / P or / and Ni / (Fe + Co) deviated from the scope of claims, the composition of fine precipitated particles deviated from an appropriate range, and heat resistance (hardness retention) was low.
比較例(No.30)は、Co量が下限を下回り、Ni/(Fe+Co)が上限を上回っている。このため、微細析出粒子の個数が下限の300個/μm2を下回り、引張強さ、硬さ、耐熱性(硬さ保持率)が低かった。 In the comparative example (No. 30), the amount of Co is lower than the lower limit, and Ni / (Fe + Co) is higher than the upper limit. For this reason, the number of fine precipitated particles was below the lower limit of 300 / μm 2 , and the tensile strength, hardness, and heat resistance (hardness retention) were low.
比較例(No.31)は、微細析出粒子の個数は特許請求の範囲を満足し、引張強さ、硬さは良好であるが、Co量が上限を上回り、Ni/(Fe+Co)が下限を下回っているため、微細析出粒子の組成が適正な範囲からはずれ、耐熱性(硬さ保持率)が低いとともに、粗大な晶・析出物粒子が生成し、エッチング性、はんだ濡れ性、熱間加工性が低下した。 In Comparative Example (No. 31), the number of finely precipitated particles satisfies the claims, and the tensile strength and hardness are good, but the Co amount exceeds the upper limit, and Ni / (Fe + Co) has the lower limit. The composition of fine precipitated particles is not within the proper range, resulting in low heat resistance (hardness retention) and coarse crystal / precipitate particles. Etching, solder wettability, hot working Decreased.
比較例(No.32)は、微細析出粒子の個数は特許請求の範囲を満足し、引張強さ、硬さは良好であるが、Fe量とCo量の合計が上限を上回り、Ni/(Fe+Co)が下限を下回っているため、微細析出粒子の組成が適正な範囲からはずれ、耐熱性(硬さ保持率)が低いとともに、粗大な晶・析出物粒子が生成し、エッチング性、はんだ濡れ性、熱間加工性が低下した。 In Comparative Example (No. 32), the number of finely precipitated particles satisfies the scope of claims, and the tensile strength and hardness are good, but the total of Fe amount and Co amount exceeds the upper limit, and Ni / ( Fe + Co) is lower than the lower limit, so the composition of fine precipitate particles is out of the proper range, the heat resistance (hardness retention) is low, and coarse crystal / precipitate particles are generated, etching property, solder wetting And hot workability decreased.
比較例(No.33)は、微細析出粒子の個数は特許請求の範囲を満足しているが、Sn量が下限を下回っているため、引張強さ、硬さが不足していた。なお、微細析出粒子のSn含有量も表3に示す通り、下限を下回っていた。 In the comparative example (No. 33), the number of finely precipitated particles satisfied the scope of the claims, but since the Sn amount was below the lower limit, the tensile strength and hardness were insufficient. In addition, as shown in Table 3, the Sn content of the finely precipitated particles was below the lower limit.
比較例(No.34)は、微細析出粒子の個数は特許請求の範囲を満足し、引張強さ、硬さは良好であるが、Sn量が上限を上回っているため、粗大な晶・析出物粒子が生成して、耐熱性(硬さ保持率)、エッチング性が低下するとともに、導電率、熱間加工性も大きく低下した。 In the comparative example (No. 34), the number of fine precipitated particles satisfies the scope of claims, and the tensile strength and hardness are good, but the Sn amount exceeds the upper limit, so that coarse crystals and precipitates are present. Product particles were generated, and heat resistance (hardness retention) and etching property were lowered, and conductivity and hot workability were also greatly lowered.
比較例(No.35)は、微細析出粒子の個数は特許請求の範囲を満足し、引張強さ、硬さ、耐熱性(硬さ保持率)は良好であるが、Zn量が下限を下回っているため、はんだの耐熱剥離性が低下した。 In Comparative Example (No. 35), the number of finely precipitated particles satisfied the scope of claims, and the tensile strength, hardness, and heat resistance (hardness retention) were good, but the Zn content was below the lower limit. As a result, the heat-resistant peelability of the solder decreased.
比較例(No.36)は、微細析出粒子の個数は特許請求の範囲を満足し、引張強さ、硬さ、耐熱性(硬さ保持率)は良好であるが、Zn量が上限を上回っているため、はんだ濡れ性が低下した。 In Comparative Example (No. 36), the number of finely precipitated particles satisfies the scope of claims, and the tensile strength, hardness, and heat resistance (hardness retention) are good, but the Zn amount exceeds the upper limit. As a result, solder wettability decreased.
比較例(No.37)は、微細析出粒子の個数は特許請求の範囲を満足し、引張強さ、硬さ、耐熱性(硬さ保持率)は良好であるが、Cr量が下限を下回っているため、熱間加工性が低下した。 In Comparative Example (No. 37), the number of finely precipitated particles satisfied the scope of claims, and the tensile strength, hardness, and heat resistance (hardness retention) were good, but the Cr amount was below the lower limit. As a result, hot workability decreased.
比較例(No.38)は、微細析出粒子の個数は特許請求の範囲を満足し、引張強さ、硬さ、耐熱性(硬さ保持率)は良好であるが、Cr量が上限を上回っているため、粗大な晶・析出物粒子が生成してエッチング性が低下した。 In the comparative example (No. 38), the number of finely precipitated particles satisfies the scope of claims, and the tensile strength, hardness, and heat resistance (hardness retention) are good, but the Cr amount exceeds the upper limit. As a result, coarse crystal / precipitate particles were generated and the etching property was lowered.
比較例(No.39)は、銅合金の組成は特許請求の範囲を満足するが、最高焼鈍温度が好ましい上限を超えて高すぎ、微細析出粒子の個数が下限の300個/μm2を下回っていた。このため、引張強さ、硬さ、耐熱性(硬さ保持率)が著しく低かった。 In the comparative example (No. 39), the composition of the copper alloy satisfies the claims, but the maximum annealing temperature is too high exceeding the preferable upper limit, and the number of fine precipitated particles is below the lower limit of 300 / μm 2 . It was. For this reason, tensile strength, hardness, and heat resistance (hardness retention) were remarkably low.
比較例(No.40)は、熱間圧延の加熱温度・終了温度が低いために、粒径が100nmを超える粗大晶・析出物粒子が多数生成し、エッチング性やAgめっき性が低下するとともに、粗大晶・析出物粒子の生成によって、微細析出粒子の個数が300個/μm2を下回ったため、引張強さと耐熱性も低下した。 In the comparative example (No. 40), since the heating temperature / end temperature of hot rolling is low, a large number of coarse crystals / precipitate particles having a particle size exceeding 100 nm are generated, and the etching property and Ag plating property are lowered. Since the number of fine precipitate particles was less than 300 / μm 2 due to the formation of coarse crystal / precipitate particles, the tensile strength and heat resistance were also lowered.
比較例(No.41)は、熱間圧延後の冷却方法が空冷であるため、冷却速度が遅く、粒径が100nmを超える粗大晶・析出物粒子が多数生成し、比較例(No.40)と同様にエッチング性やAgめっき性が低下するとともに、粗大晶・析出物粒子の生成によって、微細析出粒子の個数が300個/μm2を下回ったため、引張強さと耐熱性も低下した。 In the comparative example (No. 41), since the cooling method after hot rolling is air cooling, the cooling rate is slow, and a large number of coarse crystal / precipitate particles having a particle diameter exceeding 100 nm are generated. ), The etching property and the Ag plating property were lowered, and the number of fine precipitate particles was less than 300 / μm 2 due to the formation of coarse crystal / precipitate particles, so the tensile strength and heat resistance were also lowered.
比較例(No.42)は、加熱した耐火物製ブック鋳型に鋳造したため、凝固時の冷却速度が遅く、粗大な晶出物が大量に晶出した。そのため、熱間圧延時の加熱によっても前記晶出物が消失せず、粒径が100nmを超える粗大晶・析出物粒子が多数生成し、比較例(No.40)と同様にエッチング性やAgめっき性が低下するとともに、粗大晶・析出物粒子の生成によって、微細析出粒子の個数が300個/μm2を下回ったため、引張強さと耐熱性も低下した。
Since the comparative example (No. 42) was cast into a heated refractory book mold, the cooling rate during solidification was slow, and a large amount of coarse crystallized material was crystallized. Therefore, the crystallized product does not disappear even by heating at the time of hot rolling, and a large number of coarse crystal / precipitate particles having a particle size exceeding 100 nm are formed, and the etching property and Ag are the same as in the comparative example (No. 40). In addition to a decrease in plating performance, the number of fine precipitate particles was less than 300 / μm 2 due to the formation of coarse crystal / precipitate particles, so the tensile strength and heat resistance also decreased.
Claims (2)
前記銅合金板の合金組織において、粒径が1nm以上で20nm以下の微細なP化物析出粒子の個数が300個/μm2以上、粒径が100nmを超える粗大な晶・析出物粒子の個数が0.5個/μm2以下であり、
前記P化物析出粒子におけるSn含有量が、EDX分析による質量%比:Sn/(Ni+Fe+Co+P+Sn)で0.01以上であることを特徴とする高強度高耐熱性銅合金板。 In mass%, Ni: 0.4-1.0%, one or more of Fe and Co: 0.03-0.3%, P: 0.05-0.2%, Sn: 0.1 -3%, Zn: 0.005-1.5%, Cr: 0.0005-0.05%, and the relationship between one or more of Ni, Fe and Co and the mass% ratio of P is 4 ≦ (Ni + Fe + Co) / P ≦ 12 and 3 ≦ Ni / (Fe + Co) ≦ 12, and the balance is a copper alloy plate made of Cu and inevitable impurities,
In the alloy structure of the copper alloy plate, the number of fine P precipitate particles having a particle size of 1 nm or more and 20 nm or less is 300 particles / μm 2 or more, and the number of coarse crystal / precipitate particles having a particle size of more than 100 nm is 0.5 / μm 2 or less,
A high strength and high heat resistance copper alloy plate, characterized in that the Sn content in the P-compound precipitated particles is 0.01 or more by mass% ratio by SnX (Ni + Fe + Co + P + Sn) by EDX analysis.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009042511A JP5291494B2 (en) | 2008-09-30 | 2009-02-25 | High strength high heat resistance copper alloy sheet |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008255471 | 2008-09-30 | ||
JP2008255471 | 2008-09-30 | ||
JP2009042511A JP5291494B2 (en) | 2008-09-30 | 2009-02-25 | High strength high heat resistance copper alloy sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010106355A JP2010106355A (en) | 2010-05-13 |
JP5291494B2 true JP5291494B2 (en) | 2013-09-18 |
Family
ID=42296086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009042511A Expired - Fee Related JP5291494B2 (en) | 2008-09-30 | 2009-02-25 | High strength high heat resistance copper alloy sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5291494B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011184775A (en) * | 2010-03-10 | 2011-09-22 | Kobe Steel Ltd | High strength and high heat resistant copper alloy material |
US8563945B2 (en) | 2009-05-08 | 2013-10-22 | Ionsense, Inc. | Sampling of confined spaces |
US8754365B2 (en) | 2011-02-05 | 2014-06-17 | Ionsense, Inc. | Apparatus and method for thermal assisted desorption ionization systems |
CN110042274A (en) * | 2019-05-05 | 2019-07-23 | 陶大海 | A kind of high elastic modulus, copper alloy of stress relaxation-resistant and preparation method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6155405B2 (en) * | 2015-04-24 | 2017-06-28 | 古河電気工業株式会社 | Copper alloy material and method for producing the same |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4041803B2 (en) * | 2004-01-23 | 2008-02-06 | 株式会社神戸製鋼所 | High strength and high conductivity copper alloy |
JP3885809B2 (en) * | 2004-06-23 | 2007-02-28 | 日立電線株式会社 | Copper alloy for terminals and connectors |
JP4660735B2 (en) * | 2004-07-01 | 2011-03-30 | Dowaメタルテック株式会社 | Method for producing copper-based alloy sheet |
JP4350049B2 (en) * | 2005-02-07 | 2009-10-21 | 株式会社神戸製鋼所 | Method for producing copper alloy sheet with excellent stress relaxation resistance |
JP4684787B2 (en) * | 2005-07-28 | 2011-05-18 | 株式会社神戸製鋼所 | High strength copper alloy |
JP4680765B2 (en) * | 2005-12-22 | 2011-05-11 | 株式会社神戸製鋼所 | Copper alloy with excellent stress relaxation resistance |
-
2009
- 2009-02-25 JP JP2009042511A patent/JP5291494B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8563945B2 (en) | 2009-05-08 | 2013-10-22 | Ionsense, Inc. | Sampling of confined spaces |
US8729496B2 (en) | 2009-05-08 | 2014-05-20 | Ionsense, Inc. | Sampling of confined spaces |
JP2011184775A (en) * | 2010-03-10 | 2011-09-22 | Kobe Steel Ltd | High strength and high heat resistant copper alloy material |
US8754365B2 (en) | 2011-02-05 | 2014-06-17 | Ionsense, Inc. | Apparatus and method for thermal assisted desorption ionization systems |
US8822949B2 (en) | 2011-02-05 | 2014-09-02 | Ionsense Inc. | Apparatus and method for thermal assisted desorption ionization systems |
CN110042274A (en) * | 2019-05-05 | 2019-07-23 | 陶大海 | A kind of high elastic modulus, copper alloy of stress relaxation-resistant and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2010106355A (en) | 2010-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5312920B2 (en) | Copper alloy plate or strip for electronic materials | |
JP4143662B2 (en) | Cu-Ni-Si alloy | |
JP4677505B1 (en) | Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same | |
JP5468423B2 (en) | High strength and high heat resistance copper alloy material | |
JP4041803B2 (en) | High strength and high conductivity copper alloy | |
JP5506806B2 (en) | Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same | |
WO2009122869A1 (en) | Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING THE SAME | |
JP5225787B2 (en) | Cu-Ni-Si alloy plate or strip for electronic materials | |
JP5451674B2 (en) | Cu-Si-Co based copper alloy for electronic materials and method for producing the same | |
JP6155405B2 (en) | Copper alloy material and method for producing the same | |
TWI429768B (en) | Cu-Co-Si based copper alloy for electronic materials and method for producing the same | |
JP7038823B2 (en) | Cu-Co-Si-Fe-P copper alloy with excellent bending workability and its manufacturing method | |
JP4168077B2 (en) | Copper alloy sheet for electrical and electronic parts with excellent oxide film adhesion | |
JP4157899B2 (en) | High strength copper alloy sheet with excellent bending workability | |
JP4834781B1 (en) | Cu-Co-Si alloy for electronic materials | |
JP5291494B2 (en) | High strength high heat resistance copper alloy sheet | |
JP3962751B2 (en) | Copper alloy sheet for electric and electronic parts with bending workability | |
TWI537401B (en) | Strength and heat resistance and flexographic workability of the Fe-P copper alloy plate | |
JP6210887B2 (en) | Fe-P copper alloy sheet with excellent strength, heat resistance and bending workability | |
JP6730784B2 (en) | Cu-Ni-Co-Si alloy for electronic parts | |
JP2008024995A (en) | Copper alloy plate for electrical/electronic component having excellent heat resistance | |
US10358697B2 (en) | Cu—Co—Ni—Si alloy for electronic components | |
JP2004269962A (en) | High strength copper alloy | |
JP2008248352A (en) | High-strength and high-electric conductivity copper alloy having excellent hot workability | |
JP2006200014A (en) | Copper alloy having high strength and high electric conductivity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110901 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130418 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130528 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130607 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5291494 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |