JP5273950B2 - Flowmeter - Google Patents

Flowmeter Download PDF

Info

Publication number
JP5273950B2
JP5273950B2 JP2007153126A JP2007153126A JP5273950B2 JP 5273950 B2 JP5273950 B2 JP 5273950B2 JP 2007153126 A JP2007153126 A JP 2007153126A JP 2007153126 A JP2007153126 A JP 2007153126A JP 5273950 B2 JP5273950 B2 JP 5273950B2
Authority
JP
Japan
Prior art keywords
flow path
fluid
flow
measured
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007153126A
Other languages
Japanese (ja)
Other versions
JP2008304394A (en
Inventor
正憲 安西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2007153126A priority Critical patent/JP5273950B2/en
Priority to CN200880017957XA priority patent/CN101680789B/en
Priority to US12/663,196 priority patent/US8181513B2/en
Priority to EP08751763A priority patent/EP2157411A1/en
Priority to PCT/JP2008/001245 priority patent/WO2008152769A1/en
Publication of JP2008304394A publication Critical patent/JP2008304394A/en
Application granted granted Critical
Publication of JP5273950B2 publication Critical patent/JP5273950B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flowmeter allowing a fluid measurement part to be detached without breaking a sensor by protecting a sensor part, in a flowmeter allowing a fluid measurement part to be detached. <P>SOLUTION: This flowmeter is provided with a sensor unit 9 having a flow sensor 6 detecting a measurement object fluid, and measuring a flow rate of the measurement object fluid based on the detection result of a flow velocity sensor 6 and is also provided with a body part 9a forming a main passage 9b for running the measurement object fluid therethrough, and having diversion passages 9d and 9e diverging the measurement object fluid, and a plate-like passage structure part 3 arranged between the body part 9a and the sensor unit 9, covering the flow sensor 6, and communicating with the diversion passages 9d and 9e. The passage structure part 3 and the sensor unit 9 are constituted detachably from the body part 9a. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

この発明は、気体流量を計測する流量計に関し、特に工場等において配管内の気体流量を測定する際に使用される流量計に関するものである。   The present invention relates to a flow meter for measuring a gas flow rate, and more particularly to a flow meter used for measuring a gas flow rate in a pipe in a factory or the like.

図8に示すように、従来の流量計に用いられる流路構造体は、主流管91の外周面に副流路を形成する副流路ブロック92を一体形成したベース90と、中央部に測定孔93を有し副流路ブロック92の開口部をシールするシール板94と、測定孔93に挿入される流量検出素子を下面に有しシール板94に積み重ねられる回路基板95と、副流路ブロック92の開口部を被覆するカバー96とから構成されている。なお、シール板94と回路基板95とはネジを介して副流路ブロック92に固定される(例えば、特許文献1参照)。   As shown in FIG. 8, the flow channel structure used in the conventional flowmeter is measured at the center portion with a base 90 integrally formed with a sub flow channel block 92 that forms a sub flow channel on the outer peripheral surface of the main flow pipe 91. A seal plate 94 which has a hole 93 and seals the opening of the sub-flow channel block 92; a circuit board 95 which has a flow rate detecting element inserted into the measurement hole 93 on the lower surface and is stacked on the seal plate 94; The cover 96 covers the opening of the block 92. The seal plate 94 and the circuit board 95 are fixed to the auxiliary flow path block 92 via screws (see, for example, Patent Document 1).

特開2006−308518号公報JP 2006-308518 A

しかしながら、上述した特許文献1に開示された流量計では、センサである流量検出素子が露出しており、メンテナンスや異常時にセンサ部分を副流路ブロックから取外して調整を行う際に、センサを傷つけたり破損させてしまうという課題があった。   However, in the flow meter disclosed in Patent Document 1 described above, the flow rate detection element that is a sensor is exposed, and the sensor is damaged when the sensor part is removed from the sub-flow path block for adjustment during maintenance or abnormality. There was a problem of damage.

この発明は、上記のような課題を解決するためになされたもので、流体計測部が取外し可能な流量計において、センサ部分を保護してセンサを破損させることなく流体計測部の取外しができる流量計を提供することを目的とする。   The present invention has been made to solve the above-described problems, and in a flow meter that can be removed by the fluid measurement unit, the flow rate that can remove the fluid measurement unit without damaging the sensor by protecting the sensor portion. The purpose is to provide a total.

この発明に係る流量計は、測定流体を検出するセンサを有し、前記センサの検出結果に基づいて被測定流体の流量を計測する流体計測部と、被測定流体が流れる主流路を形成し、被測定流体を分流させる第1の分流路と第2の分流路を備えるボディ部と、前記ボディ部と前記流体計測部の間に設けた板状部材からなり、前記第1の分流路を通じて分流された被測定流体が流入する前記ボディ部側の面に形成した第1の流路と、前記流体計測部側の面に形成された第2の流路と、前記第1の流路と前記第2の流路を連通する第1の連通孔部と、前記第2の分流路を通じて被測定流体が前記主流路へ流出する前記ボディ部側の面に形成した第3の流路と、前記第2の流路と前記第3の流路を連通する第2の連通孔部と、前記ボディ部側の面を第1の流路と第3の流路に分割する仕切り部材を有する流路構造部とを備え、前記センサは前記第2の流路に面して配置され、前記第1の流路と前記第3の流路は被測定流体の流れを整える整流子を備え、前記第2の流路は、被測定流体の流速ベクトルを均一化するベクトル調整部材とを備え、前記ボディ部に対して前記流路構造部及び前記流体計測部が着脱自在である。 The flowmeter according to the present invention includes a sensor that detects a measurement fluid, forms a fluid measurement unit that measures a flow rate of the fluid to be measured based on a detection result of the sensor, and a main channel through which the fluid to be measured flows, A body portion including a first branch channel and a second branch channel for branching a fluid to be measured, and a plate-like member provided between the body unit and the fluid measurement unit, and is divided through the first branch channel. A first flow path formed on the surface of the body portion side into which the measured fluid to be measured flows, a second flow path formed on the surface of the fluid measurement section side, the first flow path, and the A first communication hole portion communicating with the second flow channel, a third flow channel formed on a surface of the body portion side through which the fluid to be measured flows out to the main flow channel through the second branch flow channel, A second communication hole portion that communicates the second flow path and the third flow path, and the surface on the body portion side is the first. A flow path structure portion having a partition member that is divided into a flow path and a third flow path, wherein the sensor is disposed to face the second flow path, and the first flow path and the third flow path The flow path includes a commutator that adjusts the flow of the fluid to be measured, and the second flow path includes a vector adjustment member that equalizes a flow velocity vector of the fluid to be measured, and the flow path structure with respect to the body portion And the fluid measuring unit are detachable .

この発明によれば、被測定流体を検出するセンサの検出結果に基づいて被測定流体の流量を計測する流体計測部と、被測定流体が流れる主流路を形成し、被測定流体を分流させる第1の分流路と第2の分流路を備えるボディ部とを備え、第1の分流路を通じて分流された被測定流体が流入する前記ボディ部側の面に形成した第1の流路と、流体計測部側の面に形成された第2の流路と、第1の流路と第2の流路を連通する第1の連通孔部と、第2の分流路を通じて被測定流体が主流路へ流出するボディ部側の面に形成した第3の流路と、第2の流路と第3の流路を連通する第2の連通孔部とを有する流路構造部をボディ部と流体計測部の間に設け、センサを第2の流路に面して配置し、ボディ部に対して流路構造部及び流体計測部を着脱自在に構成したので、流体計測部をボディ部から取り外した場合でも、流路構造部がセンサに対して蓋体として機能し、センサが露出して傷ついたり破損することを防止できる。また、第1の流路、第2の流路、第3の流路、第1の連通孔及び第2の連通孔を設けて流路を折り返し、被測定流体が流通する流路を長く設けるように構成したので、被測定流体の整流を十分に行うことができ、正確な流量測定が実現でき、さらに流体計測部を小型化することができる。   According to the present invention, the fluid measuring unit that measures the flow rate of the fluid to be measured based on the detection result of the sensor that detects the fluid to be measured, and the main flow path through which the fluid to be measured flows are formed, and the first fluid is divided A first flow path formed on a surface of the body section side into which the fluid to be measured flows, which is flown through the first branch flow path, and a body section including a first flow path and a second flow path. The fluid to be measured passes through the second flow channel formed on the surface on the measurement unit side, the first communication hole that communicates the first flow channel and the second flow channel, and the second flow channel. A flow channel structure having a third flow channel formed on the surface of the body portion flowing out to the surface, a second flow channel, and a second communication hole communicating the third flow channel. Provided between the measurement units, the sensor is placed facing the second flow channel, and the flow channel structure unit and fluid measurement unit can be attached to and detached from the body unit. Since it is configured, even if you remove the fluid measuring portion from the body portion, and functions as a lid channel structure unit to the sensor, the sensor can be prevented from being damaged or scratched exposed. Also, the first flow path, the second flow path, the third flow path, the first communication hole, and the second communication hole are provided, the flow path is folded back, and the flow path through which the fluid to be measured flows is provided long. With this configuration, the fluid to be measured can be sufficiently rectified, accurate flow measurement can be realized, and the fluid measuring unit can be further downsized.

この発明によれば、流路構造部のボディ部側の面に第1の流路と第3の流路に分割する仕切り部材を備え、第1の流路と第3の流路それぞれに被測定流体の流れを整える整流子を備えるように構成したので、第1の流路で整流した被測定流体が第3の流路に流出する順流及び、第3の流路で整流した被測定流体が第1の流路に流出する逆流において整流効果を得ることができ、被測定流体の流量測定を精度良く実施することが可能となる。   According to this invention, the partition member that divides the flow path structure portion into the first flow path and the third flow path is provided on the surface on the body portion side, and the first flow path and the third flow path are respectively covered. Since the commutator for adjusting the flow of the measurement fluid is provided, the measured fluid rectified in the first flow path flows out into the third flow path, and the measured fluid rectified in the third flow path However, it is possible to obtain a rectification effect in the backflow that flows out to the first flow path, and to accurately measure the flow rate of the fluid to be measured.

実施の形態1.
図1は、この発明の実施の形態1に係る流量計の分解斜視図である。図1に示すように流量計1は、フィルタ2、流路構造部3、金網4、破断面が楕円のゴムパッキン5、流量センサ6と計測部7と支持板7a,7bと表示部8を備えたセンサユニット(流体計測部)9から構成されている。
フィルタ2は、流路構造部3に着脱可能に取り付けられ、後述するボディ部から導入される被測定流体のダスト(異物)を除去する。なお、必要に応じてフィルタを設けずに構成してもよい。流路構造部3は、支持板7aに両面テープや接着剤などにより固定され、ボディ部から導入される被測定流体の流速を下げると共に、被測定流体の偏流や乱れを整流して流量センサ6に導入する楕円に形成された調節体である。また、流路構造部3を設けることにより、センサユニット9をボディ部から取外した際に流量センサ6を覆う蓋体として機能し、センサユニット9の流量センサ6部分が露出して破損するのを防止することができる。なお、流路構造部3は、支持板7aに両面テープや接着剤により取り付けられる以外にも、その他の方法により容易に支持板7aから脱落しないように取り付けても良い。
Embodiment 1 FIG.
1 is an exploded perspective view of a flow meter according to Embodiment 1 of the present invention. As shown in FIG. 1, the flow meter 1 includes a filter 2, a flow path structure portion 3, a metal mesh 4, a rubber packing 5 having an elliptical fracture surface, a flow rate sensor 6, a measurement portion 7, support plates 7 a and 7 b, and a display portion 8. The sensor unit (fluid measuring unit) 9 is provided.
The filter 2 is detachably attached to the flow path structure portion 3 and removes dust (foreign matter) of the fluid to be measured introduced from the body portion described later. In addition, you may comprise without providing a filter as needed. The flow path structure portion 3 is fixed to the support plate 7a with a double-sided tape, an adhesive, or the like, reduces the flow velocity of the fluid to be measured introduced from the body portion, and rectifies the drift or turbulence of the fluid to be measured, thereby controlling the flow rate sensor 6. It is the adjustment body formed in the ellipse to introduce into. In addition, by providing the flow path structure portion 3, it functions as a lid that covers the flow rate sensor 6 when the sensor unit 9 is removed from the body portion, and the flow rate sensor 6 portion of the sensor unit 9 is exposed and damaged. Can be prevented. In addition to being attached to the support plate 7a with a double-sided tape or an adhesive, the flow path structure unit 3 may be attached so as not to easily fall off the support plate 7a by other methods.

金網4は、流量センサ6に導入される前の被測定流体の偏流や乱れを整流するための整流素子であり、複数枚が一定間隔に流量センサ6の上流側に配置されている。流量センサに供給する被測定流体の流速等を考慮して、配置する金網4の枚数、目の粗さ、または配置間隔を変更してもよい。ゴムパッキン5は弾性体であり、流路構造部3と同様に楕円で形成されている。センサユニット9の支持板7aの中央部には流量センサ6が配置されており、支持板7bには流路構造部3及びゴムパッキン5と同様の楕円状の孔部が形成されている。流路構造部3及びセンサユニット9はボディ部対して着脱可能であるが、流路構造部3はセンサユニット9の支持板7aに両面テープなどにより固定されているため、容易に外れない。流量センサ6は、金網4で整流された被測定流体の流量を検出し、検出信号をリード線(図示せず)などから計測部7に出力する。   The metal mesh 4 is a rectifying element for rectifying the drift or turbulence of the fluid to be measured before being introduced into the flow sensor 6, and a plurality of pieces are arranged on the upstream side of the flow sensor 6 at regular intervals. In consideration of the flow velocity of the fluid to be measured supplied to the flow sensor, the number of wire meshes 4 to be arranged, the roughness of the meshes, or the arrangement interval may be changed. The rubber packing 5 is an elastic body and is formed in an ellipse like the flow path structure 3. The flow rate sensor 6 is disposed at the center of the support plate 7a of the sensor unit 9, and the support plate 7b is formed with an elliptical hole similar to the flow path structure 3 and the rubber packing 5. Although the flow path structure 3 and the sensor unit 9 can be attached to and detached from the body part, the flow path structure 3 is not easily removed because it is fixed to the support plate 7a of the sensor unit 9 with a double-sided tape or the like. The flow sensor 6 detects the flow rate of the fluid to be measured rectified by the wire mesh 4 and outputs a detection signal to the measuring unit 7 from a lead wire (not shown) or the like.

図2は、この発明の実施の形態1に係る流量計のセンサユニットの正面図である。
計測部7は、外部装置と接続するネットワークケーブル等を挿入するコネクタ71を有している。また支持板7a,7bには、センサユニット9とボディ部9aとを接続する際に固定するネジ72が設けられている。センサユニット9とボディ部9aをネジ72によりネジ止めすることにより、ゴムパッキン5が支持板7aとボディ部9aの取り付け面に当接して気密性が保たれる。表示部8は、設定入力を行う設定スイッチと81と、設定スイッチ81による設定内容などを表示する表示器82とを備えている。図2の例では、センサユニット9に表示部8を装備した場合を示したが、表示部を有さない構成であっても構わない。
FIG. 2 is a front view of the sensor unit of the flowmeter according to Embodiment 1 of the present invention.
The measuring unit 7 has a connector 71 for inserting a network cable or the like for connecting to an external device. The support plates 7a and 7b are provided with screws 72 that are fixed when the sensor unit 9 and the body portion 9a are connected. By screwing the sensor unit 9 and the body portion 9a with the screw 72, the rubber packing 5 comes into contact with the mounting surfaces of the support plate 7a and the body portion 9a to maintain airtightness. The display unit 8 includes a setting switch 81 that performs setting input, and a display 82 that displays the setting content of the setting switch 81 and the like. In the example of FIG. 2, the case where the sensor unit 9 is equipped with the display unit 8 is shown, but a configuration without the display unit may be used.

図3は、この発明の実施の形態1に係るセンサユニットのボディ部への取り付けを示す図である。ボディ部9aは、主流路9b、オリフィス9c、分流路(第1の分流路)9d及び分流路(第2の分流路)9eから構成されている。また、主流路9b内に記載した矢印は、主流路9bを流れる被測定流体の流速ベクトルを示している。分流路9d,9eは、オリフィス9cの前後に主流路9bに連通するように形成されている。また、分流路9d,9eは、図3中に矢印で示した被測定流体の流速ベクトルと平行となる位置に形成されている。オリフィス9cで生じた差圧によって分流路9dを介して被測定流体が流路構造部3へ分流され、流路構造部3を通った被測定流体が分流路9eを介して主流路9bへ流出する。なお、以下では分流路9dから流路構造部3に向かう被測定流体の流れを順流、分流路9eから流路構造部3に向かう被測定流体の流れを逆流と称する。   FIG. 3 is a diagram showing attachment of the sensor unit according to Embodiment 1 of the present invention to the body portion. The body portion 9a is composed of a main channel 9b, an orifice 9c, a branch channel (first branch channel) 9d, and a branch channel (second branch channel) 9e. Moreover, the arrow described in the main flow path 9b has shown the flow velocity vector of the to-be-measured fluid which flows through the main flow path 9b. The branch channels 9d and 9e are formed so as to communicate with the main channel 9b before and after the orifice 9c. Further, the diversion channels 9d and 9e are formed at positions parallel to the flow velocity vector of the fluid to be measured indicated by arrows in FIG. The fluid to be measured is diverted to the flow channel structure 3 through the flow dividing channel 9d by the differential pressure generated in the orifice 9c, and the fluid to be measured that has passed through the flow channel structural unit 3 flows out to the main flow channel 9b through the flow dividing channel 9e. To do. In the following description, the flow of the fluid to be measured traveling from the branch channel 9d toward the flow channel structure 3 is referred to as forward flow, and the flow of the fluid to be measured from the flow channel 9e toward the flow channel structure 3 is referred to as reverse flow.

図4は、この発明の実施の形態1に係る流量計の流路構造部の斜視図であり、図4(a)はボディ部側面の構成、図4(b)は計測部側面の構成、図4(c)は流路構造部を支持板の孔部に取り付けた図を示している。
流路構造部3は、樹脂等を用いて型抜き成形され、図4(a)に示すようにはボディ部側面3aの中央部分には、略S字形の仕切り壁(仕切り部材)10が設けられ、この仕切り壁10により仕切られた上流側流路(第1の流路)11、下流側流路(第3の流路)12及びバッファ用凹部13,14で構成されている。また、ボディ部側面3aの外周部分には、仕切り壁10と連設されるように外周壁15が構成されており、センサユニット9をボディ部9aに取り付けた際に導入された被測定流体が漏出するのを防ぐ。
4 is a perspective view of a flow path structure portion of the flowmeter according to the first embodiment of the present invention, FIG. 4 (a) is a configuration of a body portion side surface, FIG. 4 (b) is a configuration of a measurement portion side surface, FIG. 4C shows a view in which the channel structure is attached to the hole of the support plate.
The flow path structure 3 is die-cut using resin or the like, and as shown in FIG. 4A, a substantially S-shaped partition wall (partition member) 10 is provided at the center of the body side surface 3a. The upstream channel (first channel) 11, the downstream channel (third channel) 12, and the buffer recesses 13 and 14 partitioned by the partition wall 10. An outer peripheral wall 15 is formed on the outer peripheral portion of the body side surface 3a so as to be connected to the partition wall 10, and the fluid to be measured introduced when the sensor unit 9 is attached to the body portion 9a. Prevent leakage.

また、図4(a)に示すように下流側流路12の面積は上流側流路11よりも小さくなるように構成してもよいし、上流側流路11の面積と下流側流路12の面積が均等になるように構成してもよい。図4(a)に示した構成は、逆流の被測定流体を測定する場合に、導入された被測定流体は下流側流路12において整流された後流量センサ6に導入されるが、下流側流路12に導入される被測定流体が順流方向の測定と比較して少量であるため、下流側流路12の面積を上流側流路11よりも小さくしている。なお、必要に応じて、下流側流路12の面積を上流側流路11の面積よりも小さくせずとも良い。   4A, the area of the downstream flow path 12 may be configured to be smaller than that of the upstream flow path 11, or the area of the upstream flow path 11 and the downstream flow path 12 may be configured. You may comprise so that the area of may become equal. In the configuration shown in FIG. 4A, when measuring a fluid to be measured in a reverse flow, the introduced fluid to be measured is rectified in the downstream flow path 12 and then introduced into the flow sensor 6. Since the fluid to be measured introduced into the flow path 12 is a small amount compared to the measurement in the forward flow direction, the area of the downstream flow path 12 is made smaller than that of the upstream flow path 11. If necessary, the area of the downstream channel 12 need not be smaller than the area of the upstream channel 11.

上流側流路11には、長さの異なる3本の整流片(整流子)11a、11b及び11cと被測定流体をボディ部側面3aから計測部側面(第2の流路)3bに導入する流路折り曲げ孔(第1の連通孔部)11dが形成されている。整流片11aは外周壁15に連設されており、バッファ用凹部13によるバッファ効果を高めるために整流片11b及び11cよりも片の高さが高くなるように構成されている。また、各整流片11a,11b,11c間で被測定流体が連通可能なように、各整流片の長さは11a<11b<11cとなるように構成されている。整流片11aの長さを最も短くすることで、バッファ用凹部13から流路折り曲げ孔11bへ向かう流路の入口が広がり、上流側流路11に形成された整流片11a、11b及び11cで仕切られた3本の流路それぞれに被測定流体を極力均一に流すことができ、整流効果を得られる。   In the upstream flow path 11, three rectifying pieces (commutators) 11 a, 11 b and 11 c having different lengths and a fluid to be measured are introduced from the body side surface 3 a to the measurement unit side surface (second flow path) 3 b. A channel bending hole (first communication hole) 11d is formed. The rectifying piece 11 a is connected to the outer peripheral wall 15, and is configured such that the height of the rectifying pieces 11 b and 11 c is higher than the rectifying pieces 11 b and 11 c in order to enhance the buffer effect by the buffer recess 13. In addition, the length of each rectifying piece is configured to satisfy 11a <11b <11c so that the fluid to be measured can communicate between the respective rectifying pieces 11a, 11b, and 11c. By making the length of the rectifying piece 11a the shortest, the inlet of the flow path from the buffer recess 13 toward the flow path bending hole 11b widens, and the rectifying pieces 11a, 11b, and 11c formed in the upstream flow path 11 are partitioned. The fluid to be measured can be made to flow as uniformly as possible through each of the three flow paths, and a rectifying effect can be obtained.

下流側流路12も同様に、長さの異なる3本の整流片(整流子)12a,12b及び12cと被測定流体を計測部側面3bからボディ部側面3aに導入する流路折り曲げ孔(第2の連通孔部)12dが形成されている。整流片12aは、外周壁15に連設されており、バッファ用凹部14によるバッファ効果を高めるために整流片12b及び12cよりも片の高さが高くなるように構成されている。また、各整流片12a,12b,12c間で被測定流体が連通可能なように、各整流片の長さは、12a<12b<12cとなるように構成されている。整流片12aの長さを最も短くすることで、バッファ用凹部14から流路折り曲げ孔12bへ向かう流路の入口が広がり、下流側流路12に形成された整流片12a、12b及び12cで仕切られた3本の流路それぞれに被測定流体を極力均一に流すことができ、整流効果を得られる。   Similarly, the downstream flow path 12 has three flow straightening pieces (commutators) 12a, 12b and 12c having different lengths and flow path bending holes (first flow paths) for introducing the fluid to be measured from the measurement unit side surface 3b to the body side surface 3a. 2 communication holes) 12d. The rectifying piece 12 a is connected to the outer peripheral wall 15, and is configured such that the height of the rectifying pieces 12 b and 12 c is higher than that of the rectifying pieces 12 b and 12 c in order to enhance the buffer effect by the buffer recess 14. Further, the length of each rectifying piece is configured to satisfy 12a <12b <12c so that the fluid to be measured can communicate between the respective rectifying pieces 12a, 12b, and 12c. By making the length of the rectifying piece 12a the shortest, the inlet of the flow path extending from the buffer recess 14 toward the flow path bending hole 12b widens, and the rectifying pieces 12a, 12b and 12c formed in the downstream flow path 12 are partitioned. The fluid to be measured can be made to flow as uniformly as possible through each of the three flow paths, and a rectifying effect can be obtained.

下流側流路12が上流側流路11と異なる点は、整流片12b及び12cが流路折り曲げ孔12dを跨ぐように形成され、流路折り曲げ孔12dが3つに分割されている点である。流路折り曲げ孔は整流片により分割されない方がより被測定流体の整流効果を向上させることができるが、順流方向の被測定流体の流量測定に影響の少ない下流側流路12の流路折り曲げ孔12dを跨ぐように整流片12b及び12cを形成してもよい。   The downstream channel 12 is different from the upstream channel 11 in that the rectifying pieces 12b and 12c are formed so as to straddle the channel folding hole 12d, and the channel folding hole 12d is divided into three. . The flow path bending hole can improve the flow straightening effect of the fluid to be measured more if it is not divided by the flow straightening piece, but the flow path bending hole of the downstream flow path 12 has little influence on the flow rate measurement of the fluid to be measured in the forward flow direction. The rectifying pieces 12b and 12c may be formed so as to straddle 12d.

分流路9d,9eからバッファ用凹部13,14に流入した被測定流体は、バッファ用凹部13,14に一旦溜め込まれる(バッファされる)。これにより、被測定流体の流速が下がるため、フィルタ2に取り込まれるダスト量が増加する。つまり、バッファ用凹部13,14で被測定流体の流速を落とすことで、被測定流体の流速を維持した場合と比較してフィルタ2の防塵効果を向上させている。   The fluid to be measured that has flowed into the buffer recesses 13 and 14 from the branch channels 9d and 9e is temporarily stored (buffered) in the buffer recesses 13 and 14. Thereby, since the flow velocity of the fluid to be measured is lowered, the amount of dust taken into the filter 2 is increased. That is, by reducing the flow rate of the fluid to be measured at the buffer recesses 13 and 14, the dustproof effect of the filter 2 is improved as compared with the case where the flow rate of the fluid to be measured is maintained.

次に計測部側面3bの構成について、図4(b)を用いて説明する。計測部側面3bの両端には、図4(a)の説明において示した流路折り曲げ孔11d,12dが形成されている。また、計測部側面3bの中央部には、金網4を係止する4つの金網係止片16、2つの壁部(ベクトル調整部材)17a,17b及び2つの敷居片(ベクトル調整部材)18a,18bが設けられている。なお、本実施例では、順流の流体計測の計測範囲は、順流の流体計測の計測範囲に比べて広いので、更に整流効果を得るべく、前記金網を流路に設けた。   Next, the structure of the measurement part side surface 3b is demonstrated using FIG.4 (b). Flow path bending holes 11d and 12d shown in the description of FIG. 4A are formed at both ends of the measurement unit side surface 3b. In addition, at the center of the measurement unit side surface 3b, four wire mesh locking pieces 16, 2 wall portions (vector adjustment members) 17a, 17b, and two sill pieces (vector adjustment members) 18a, 18b is provided. In the present embodiment, the measurement range of the forward flow fluid measurement is wider than the measurement range of the forward flow fluid measurement, and thus the wire mesh is provided in the flow path in order to obtain a further rectifying effect.

金網4を敷居片18a,18bの流路折り曲げ孔11d側の端部と4つの金網係止片16との間に差し込むことで、図4(c)に示すように流量センサ6の上流側に複数枚の金網4が一定間隔で配置される。壁部17a,17b及び敷居片18a,18bは流量センサ6部分に導入された被測定流体の流速ベクトルを均一に調整することができ、整流効果を得ることができる。敷居片18a,18bは流路折り曲げ孔12dを跨ぐように形成されている。なお、流量センサ6と流量センサ6に対向する流路壁面との距離は、本実施例においては1mm程度であり、被測定流体が流れる流路幅を狭めることにより整流効果を得ることができるので、更に精度良く流体計測することができる。
[参考文献1]
特開2007−121036号公報
By inserting the wire mesh 4 between the ends of the sill pieces 18a and 18b on the flow path bending hole 11d side and the four wire mesh locking pieces 16, as shown in FIG. A plurality of wire meshes 4 are arranged at regular intervals. The walls 17a and 17b and the sill pieces 18a and 18b can uniformly adjust the flow velocity vector of the fluid to be measured introduced into the flow sensor 6 and can obtain a rectifying effect. The sill pieces 18a, 18b are formed so as to straddle the flow path bending hole 12d. The distance between the flow sensor 6 and the flow path wall facing the flow sensor 6 is about 1 mm in this embodiment, and a rectifying effect can be obtained by narrowing the flow path width through which the fluid to be measured flows. In addition, the fluid can be measured with higher accuracy.
[Reference 1]
JP 2007-121036 A

次に、流量センサ6について説明する。流量センサ6は、例えば本願出願人が特願平3−106528号に係る明細書等において開示した半導体ダイヤフラム構成のものを使用することができる。図5は、この発明の実施の形態1に係る流量計の流量センサの構成を示す図であり、図5(a)は流量センサの斜視図、図5(b)は図5(a)のA−A断面図である。流量センサ6は、一辺が1.7mm、厚さ0.5mmのシリコンチップなどの基材からなる基台60の表面に、ヒータ61、上流側温度センサ62、下流側温度センサ63、周囲温度センサ64を、白金などのパターンを用いて薄膜形成し、絶縁膜層65で覆ったものである。白金薄膜は温度に応じて抵抗値が変化し、測温抵抗体として機能する。   Next, the flow sensor 6 will be described. As the flow sensor 6, for example, the one having a semiconductor diaphragm configuration disclosed by the applicant of the present application in the specification of Japanese Patent Application No. 3-106528 can be used. FIG. 5 is a diagram showing the configuration of the flow sensor of the flow meter according to the first embodiment of the present invention. FIG. 5 (a) is a perspective view of the flow sensor, and FIG. 5 (b) is a diagram of FIG. 5 (a). It is AA sectional drawing. The flow sensor 6 has a heater 61, an upstream temperature sensor 62, a downstream temperature sensor 63, an ambient temperature sensor on the surface of a base 60 made of a base material such as a silicon chip having a side of 1.7 mm and a thickness of 0.5 mm. 64 is formed as a thin film using a pattern such as platinum and covered with an insulating film layer 65. The resistance value of the platinum thin film changes depending on the temperature and functions as a resistance temperature detector.

ヒータ61は基台60の中央に配置され、その流体の流れ方向に対してヒータ61の上流側に上流側温度センサ62が配置され、反対側の下流側に下流側温度センサ63が配置されている。また、周囲温度センサ64は、基台60の上流側周辺部に配置されている。基台60の中央部は、異方性エッチングなどの工程により基材の一部が除去されてキャビティー(凹部空間)66が形成されており、ヒータ61、上流側温度センサ62、下流側温度センサ63は基台60から熱的に遮断されたダイヤフラム67上に形成されている。   The heater 61 is disposed at the center of the base 60, an upstream temperature sensor 62 is disposed upstream of the heater 61 with respect to the fluid flow direction, and a downstream temperature sensor 63 is disposed downstream of the opposite side. Yes. In addition, the ambient temperature sensor 64 is disposed in the upstream peripheral portion of the base 60. In the central portion of the base 60, a part of the base material is removed by a process such as anisotropic etching to form a cavity (recessed space) 66, and a heater 61, an upstream temperature sensor 62, and a downstream temperature are formed. The sensor 63 is formed on a diaphragm 67 that is thermally insulated from the base 60.

流量センサ6の動作原理は、周囲温度センサ64で計測された流体温度より一定温度、例えば数10℃だけ高くなるようにヒータ61で流体を熱して所定の温度分布を発生させ、その温度分布を上流側温度センサ62および下流側温度センサ63で計測することにより、流体流量を計測するものである。流体が静止している場合、上流側温度センサ62および下流側温度センサ63で得られる温度分布は対称となるが、流体が流れている場合、その対称性が崩れ、上流側温度センサ62に比べて下流側温度センサ63で得られる温度が高くなる。この温度差をブリッジ回路で検出することにより、流体の熱伝導率などの物性値に基づき流体流量が得られる。   The operation principle of the flow sensor 6 is that the fluid is heated by the heater 61 so as to be higher than the fluid temperature measured by the ambient temperature sensor 64 by a certain temperature, for example, several tens of degrees centigrade, and a predetermined temperature distribution is generated. By measuring with the upstream temperature sensor 62 and the downstream temperature sensor 63, the fluid flow rate is measured. When the fluid is stationary, the temperature distribution obtained by the upstream temperature sensor 62 and the downstream temperature sensor 63 is symmetric. However, when the fluid is flowing, the symmetry is lost and compared with the upstream temperature sensor 62. Thus, the temperature obtained by the downstream temperature sensor 63 increases. By detecting this temperature difference with a bridge circuit, a fluid flow rate can be obtained based on physical properties such as the thermal conductivity of the fluid.

流量センサ6はサイズが小さいだけでなく、熱絶縁された極めて薄いダイヤフラム構造を採用しているため、高感度分析、高速応答及び低消費電力という特長を備えている。また、ヒータ61を挟んだ上流側温度センサ62と下流側温度センサ63の配置が左右対称になっているため、順流だけではなく逆流の測定も可能となる。   The flow sensor 6 is not only small in size but also has the features of high sensitivity analysis, high speed response and low power consumption because it employs an extremely thin diaphragm structure that is thermally insulated. Moreover, since the arrangement of the upstream temperature sensor 62 and the downstream temperature sensor 63 with the heater 61 interposed therebetween is symmetrical, not only forward flow but also reverse flow can be measured.

図6は、この発明の実施の形態1に係る流量計の動作を示す図である。図6(a)は被測定流体の順流の流れを示した流路構造部のボディ部側面の正面図であり、図6(b)は被測定流体の順流の流れを示した流路構造部の計測部側面の正面図である。図6において、実線矢印は流量測定前の被測定流体の流れを示し、破線矢印は流量測定後の被測定流体の流れを示す。
まず、図6(a)の実線矢印で示す分流路9dからバッファ用凹部13に導入された被測定流体は、一定角度の広がりを持ち、上流側流路11に導入される。導入される被測定流体は、仕切り壁10と整流片11aとの間隔が広く構成していることから流速が抑えられ、一定角度の広がりを持って導入される。導入された被測定流体は仕切り壁10によって流れの向きが変えられ、各整流片11a,11b及び11cの間を通過して整流される。整流された被測定流体は、流路折り曲げ孔11dにおいて流れの向きが変えられ、計測部側面3bに導入される。
FIG. 6 is a diagram showing the operation of the flow meter according to Embodiment 1 of the present invention. FIG. 6A is a front view of the side surface of the body portion of the flow path structure portion showing the forward flow of the fluid to be measured, and FIG. 6B is a flow path structure portion showing the forward flow of the fluid to be measured. It is a front view of the measurement part side. In FIG. 6, the solid line arrows indicate the flow of the fluid to be measured before the flow rate measurement, and the broken line arrows indicate the flow of the fluid to be measured after the flow rate measurement.
First, the fluid to be measured introduced from the branch channel 9d indicated by the solid line arrow in FIG. 6A to the buffer recess 13 has a certain angle spread and is introduced into the upstream channel 11. The fluid to be measured to be introduced is introduced with a constant angle spread because the gap between the partition wall 10 and the rectifying piece 11a is wide, so that the flow velocity is suppressed. The introduced fluid to be measured has its flow direction changed by the partition wall 10 and passes between the rectifying pieces 11a, 11b and 11c to be rectified. The flow of the rectified fluid to be measured is changed in the flow path bending hole 11d and introduced into the measurement unit side surface 3b.

図6(b)の実線矢印で示すように、ボディ部側面3aから導入された被測定流体は、金網4によって整流された後、壁部17a,17bによって流入する面積が決定され、敷居片18a,18bにより流量センサ6部分に流入される被測定流体の流速ベクトルが均一化され、流量センサ6によって流量を検出される。流量センサ6で検出された検出信号は計測部7へ出力される。その後、被測定流体は再び流路折り曲げ孔12dで流れの向きが変えられ、ボディ部側面3aに導入される。図6(a)の点線矢印で示すように、計測部側面3bから導入された被測定流体は、各整流片12a,12b及び12cの間を通過して整流される。整流された被測定流体は、バッファ用凹部14及びフィルタ2を経由して分流路9eから主流路9bの気体流に合流する。   As shown by the solid line arrow in FIG. 6 (b), the fluid to be measured introduced from the body side surface 3a is rectified by the wire mesh 4, and then the flow-in area is determined by the walls 17a and 17b. 18b, the flow velocity vector of the fluid to be measured flowing into the flow sensor 6 is made uniform, and the flow rate is detected by the flow sensor 6. A detection signal detected by the flow sensor 6 is output to the measurement unit 7. Thereafter, the direction of the flow of the fluid to be measured is changed again in the flow path bending hole 12d and introduced into the body side surface 3a. As shown by the dotted arrows in FIG. 6A, the fluid to be measured introduced from the measurement unit side surface 3b passes between the rectifying pieces 12a, 12b and 12c and is rectified. The rectified fluid to be measured joins the gas flow from the branch flow path 9e to the main flow path 9b via the buffer recess 14 and the filter 2.

次に、逆流方向の被測定流体の流量を測定する流量計の動作を説明する。
図7は、この発明の実施の形態1に係る流量計の動作を示す図である。図7(a)は被測定流体の逆流の流れを示した流路構造部のボディ部側面の斜視図であり、図7(b)は被測定流体の逆流の流れを示した流路構造部の計測部側面の斜視図である。図7において、実線矢印は流量測定前の被測定流体の流れを示し、破線矢印は流量測定後の被測定流体の流れを示す。
Next, the operation of the flow meter that measures the flow rate of the fluid to be measured in the reverse flow direction will be described.
FIG. 7 is a diagram showing the operation of the flow meter according to the first embodiment of the present invention. FIG. 7A is a perspective view of the side of the body portion of the flow channel structure showing the back flow of the fluid to be measured, and FIG. 7B is the flow path structure showing the back flow of the fluid to be measured. It is a perspective view of the measurement part side surface. In FIG. 7, the solid line arrows indicate the flow of the fluid to be measured before the flow rate measurement, and the broken line arrows indicate the flow of the fluid to be measured after the flow rate measurement.

まず、図7(a)の実線矢印で示す分流路9eからバッファ用凹部14に導入された被測定流体は、一定角度の広がりを持ち、下流側流路12に導入される。導入された被測定流体は、仕切り壁10と整流片12aとの間隔を広く構成していることから流速が抑えられ、一定角度の広がりを持って導入される。導入された被測定流体は仕切り壁10によって流れの向きが変えられ、各整流片12a,12b及び12cの間を通過して整流される。整流された被測定流体は、流路折り曲げ孔12dにおいて流れの向きが変えられ、計測部側面3bに導入される。   First, the fluid to be measured introduced into the buffer recess 14 from the branch channel 9e indicated by the solid line arrow in FIG. 7A has a certain angle spread and is introduced into the downstream channel 12. Since the introduced fluid to be measured has a wide space between the partition wall 10 and the rectifying piece 12a, the flow velocity is suppressed and the fluid to be measured is introduced with a certain angular spread. The introduced fluid to be measured has its flow direction changed by the partition wall 10 and passes between the rectifying pieces 12a, 12b and 12c to be rectified. The flow of the rectified fluid to be measured is changed in the flow path bending hole 12d, and is introduced into the measurement unit side surface 3b.

図7(b)の実線矢印で示すように、ボディ部側面3aから導入された被測定流体は、壁部17a,17b及び敷居片18a,18bにより流量センサ6部分に流入される被測定流体の流速ベクトルが均一化され、流量センサ6によって流量を検出される。流量センサ6で検出された検出信号は計測部7へ出力される。その後、被測定流体は金網4によって整流された後、再び流路折り曲げ孔11dで流れの向きが変えられ、ボディ部側面3aに導入される。図6(a)の点線矢印で示すように、計測部側面3bから導入された被測定流体は、各整流片11a,11b及び11cの間を通過し、整流される。整流された被測定流体は、バッファ用凹部13及びフィルタ2を経由して分流路9dから主流路9bの気体流に合流する。   As shown by the solid line arrow in FIG. 7B, the fluid to be measured introduced from the body side surface 3a is the fluid to be measured that flows into the flow sensor 6 through the walls 17a and 17b and the sill pieces 18a and 18b. The flow velocity vector is made uniform, and the flow rate is detected by the flow rate sensor 6. A detection signal detected by the flow sensor 6 is output to the measurement unit 7. After that, the fluid to be measured is rectified by the wire mesh 4, and then the flow direction is changed again at the flow path bending hole 11d and introduced into the body side surface 3a. As shown by the dotted arrows in FIG. 6A, the fluid to be measured introduced from the measurement unit side surface 3b passes between the rectifying pieces 11a, 11b, and 11c and is rectified. The rectified fluid to be measured joins the gas flow in the main channel 9b from the branch channel 9d via the buffer recess 13 and the filter 2.

以上のように、実施の形態1によれば、流量センサを覆う位置に流路構造部を設け、流路構造部及びセンサユニットはボディ部に対して着脱可能であるが、流路構造部はセンサユニットから容易には外れないように構成したので、センサユニットをボディ部から取り外した場合でも、流路構造部が流量センサに対して蓋体として機能し、流量センサが露出して傷ついたり破損することを防止できる。   As described above, according to the first embodiment, the flow path structure portion is provided at a position covering the flow sensor, and the flow path structure portion and the sensor unit can be attached to and detached from the body portion. Since it is configured so that it does not easily come off from the sensor unit, the flow path structure functions as a lid for the flow sensor even when the sensor unit is removed from the body, and the flow sensor is exposed and damaged or damaged. Can be prevented.

さらに、実施の形態1によれば、流路構造部のボディ部側面に複数の整流片を設け、ボディ部の分流路から導入された被測定流体の流速を下げた後、さらに各整流片により被測定流体の流れを整流するように構成したので、安定した被測定流体の流量測定を行うことが可能となる。   Furthermore, according to the first embodiment, a plurality of rectifying pieces are provided on the side surface of the body portion of the flow path structure portion, and after reducing the flow velocity of the fluid to be measured introduced from the branch flow path of the body portion, Since the flow of the fluid to be measured is rectified, the flow rate of the fluid to be measured can be stably measured.

さらに、実施の形態1によれば、流路構造部に流路折り曲げ孔を設けて流路を折り返すように構成したので、被測定流体の十分な整流を行う流路を確保できると共に、流量測定部分を小型化することができる。   Furthermore, according to the first embodiment, the flow path structure portion is provided with the flow path folding hole so that the flow path is folded back, so that a flow path for sufficient rectification of the fluid to be measured can be secured and the flow rate measurement can be performed. A part can be reduced in size.

また、実施の形態1によれば、流路構造部のボディ部側面の下流側流路に複数の整流片及び流路折り曲げ孔を設け、さらに左右対称構造である流量センサを設けるように構成したので、下流側流路から流量センサに向かう被測定流体の流れである逆流の流量も精度良く測定することができる。   Further, according to the first embodiment, a plurality of rectifying pieces and a flow path bending hole are provided in the downstream flow path on the side surface of the body portion of the flow path structure section, and a flow sensor having a bilaterally symmetric structure is provided. Therefore, it is possible to accurately measure the flow rate of the reverse flow that is the flow of the fluid to be measured from the downstream channel toward the flow rate sensor.

なお、上記実施の形態1では、流路構造部、ゴムパッキン及び支持板の孔部を楕円状に形成する例を示したが、楕円状に限定されるものではなく被測定流体を導入するボディ部の分流路の形状に合わせて構成してよい。   In the first embodiment, an example in which the flow path structure portion, the rubber packing, and the hole portions of the support plate are formed in an elliptical shape is shown. However, the shape is not limited to the elliptical shape, and the body into which the fluid to be measured is introduced You may comprise according to the shape of the partial flow path of a part.

なお、上記実施の形態1では、流路折り曲げ孔11d付近に金網を設ける構成を示したが、流路折り曲げ孔12dの直後にもさらに金網を設け、下流側流路12から導入された逆流の被測定流体を該金網で整流した後に流量センサ6に供給するように構成してもよい。   In the first embodiment, a configuration is shown in which a wire mesh is provided in the vicinity of the flow path folding hole 11d. However, a wire mesh is also provided immediately after the flow path bending hole 12d, so that a reverse flow introduced from the downstream flow path 12 is prevented. The fluid to be measured may be supplied to the flow sensor 6 after being rectified by the wire mesh.

この発明の実施の形態1に係る流量計の分解斜視図である。It is a disassembled perspective view of the flowmeter which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る流量計のセンサユニットの正面図である。It is a front view of the sensor unit of the flowmeter which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るセンサユニットのボディ部への取り付けを示す図である。It is a figure which shows the attachment to the body part of the sensor unit which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る流量計の流路構造部の斜視図である。It is a perspective view of the flow-path structure part of the flowmeter which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る流量計の流量センサの構成を示す図である。It is a figure which shows the structure of the flow sensor of the flowmeter which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る流量計の動作を示す図である。It is a figure which shows operation | movement of the flowmeter which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る流量計の動作を示す図である。It is a figure which shows operation | movement of the flowmeter which concerns on Embodiment 1 of this invention. 従来の流量計の分解斜視図である。It is a disassembled perspective view of the conventional flowmeter.

符号の説明Explanation of symbols

1 流量計
2 フィルタ
3 流路構造部
3a ボディ部側面
3b 計測部側面
4 金網
5 ゴムパッキン
6 流量センサ
7 計測部
7a,7b 支持板
8 表示部
9 センサユニット
9a ボディ部
9b 主流路
9c オリフィス
9d,9e 分流路
10 仕切り壁
11 上流側流路
12 下流側流路
11a,11b,11c,12a,12b,12c 整流片
11d,12d 流路折り曲げ孔
13,14 バッファ用凹部
15 外周壁
16a,16b,16c,16d 金網係止片
17a,17b 壁部
18a,18b 敷居片
60 基台
61 ヒータ
62 上流側温度センサ
63 下流側温度センサ
64 周囲温度センサ
65 絶縁膜層
66 キャビティー(凹部空間)
67 ダイヤフラム
71 コネクタ
72 ネジ
81 設定スイッチ
82 表示器
90 ベース
91 主流管
92 副流路ブロック
93 測定孔
94 シール板
95 回路基板
96 カバー
DESCRIPTION OF SYMBOLS 1 Flowmeter 2 Filter 3 Flow path structure part 3a Body part side surface 3b Measurement part side surface 4 Wire mesh 5 Rubber packing 6 Flow sensor 7 Measurement part 7a, 7b Support plate 8 Display part 9 Sensor unit 9a Body part 9b Main flow path 9c Orifice 9d, 9e Dividing channel 10 Partition wall 11 Upstream channel 12 Downstream channel 11a, 11b, 11c, 12a, 12b, 12c , 16d Wire mesh locking piece 17a, 17b Wall 18a, 18b Sill piece 60 Base 61 Heater 62 Upstream temperature sensor 63 Downstream temperature sensor 64 Ambient temperature sensor 65 Insulating film layer 66 Cavity (recessed space)
67 Diaphragm 71 Connector 72 Screw 81 Setting switch 82 Display 90 Base 91 Main flow pipe 92 Subflow block 93 Measurement hole 94 Seal plate 95 Circuit board 96 Cover

Claims (1)

被測定流体を検出するセンサを有し、前記センサの検出結果に基づいて被測定流体の流量を計測する流体計測部と、
被測定流体が流れる主流路を形成し、被測定流体を分流させる第1の分流路と第2の分流路を備えるボディ部と、
前記ボディ部と前記流体計測部の間に設けた板状部材からなり、前記第1の分流路を通じて分流された被測定流体が流入する前記ボディ部側の面に形成した第1の流路と、前記流体計測部側の面に形成された第2の流路と、前記第1の流路と前記第2の流路を連通する第1の連通孔部と、前記第2の分流路を通じて被測定流体が前記主流路へ流出する前記ボディ部側の面に形成した第3の流路と、前記第2の流路と前記第3の流路を連通する第2の連通孔部と、前記ボディ部側の面を第1の流路と第3の流路に分割する仕切り部材を有する流路構造部とを備え、
前記センサは前記第2の流路に面して配置され、
前記第1の流路と前記第3の流路は被測定流体の流れを整える整流子を備え、
前記第2の流路は、被測定流体の流速ベクトルを均一化するベクトル調整部材とを備え、
前記ボディ部に対して前記流路構造部及び前記流体計測部が着脱自在であることを特徴とする流量計。
A fluid measuring unit having a sensor for detecting a fluid to be measured, and measuring a flow rate of the fluid to be measured based on a detection result of the sensor;
Forming a main flow path through which the fluid to be measured flows, and a body portion including a first branch flow path and a second branch flow path for diverting the fluid to be measured;
A first channel formed on a surface of the body portion side into which the fluid to be measured flows, which is made up of a plate-like member provided between the body portion and the fluid measurement unit, and into which the fluid to be measured divided through the first branch channel flows. Through the second flow path formed on the surface of the fluid measuring section, the first communication hole section communicating the first flow path and the second flow path, and the second branch flow path. A third flow path formed on the surface of the body part side through which the fluid to be measured flows out to the main flow path, a second communication hole portion communicating the second flow path and the third flow path, A flow path structure having a partition member that divides the body side surface into a first flow path and a third flow path ;
The sensor is disposed facing the second flow path;
The first flow path and the third flow path include a commutator for adjusting the flow of the fluid to be measured,
The second flow path includes a vector adjustment member that equalizes the flow velocity vector of the fluid to be measured,
The flowmeter, wherein the flow path structure section and the fluid measurement section are detachable with respect to the body section.
JP2007153126A 2007-06-08 2007-06-08 Flowmeter Active JP5273950B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007153126A JP5273950B2 (en) 2007-06-08 2007-06-08 Flowmeter
CN200880017957XA CN101680789B (en) 2007-06-08 2008-05-19 Flow rate meter
US12/663,196 US8181513B2 (en) 2007-06-08 2008-05-19 Flow meter
EP08751763A EP2157411A1 (en) 2007-06-08 2008-05-19 Flow rate meter
PCT/JP2008/001245 WO2008152769A1 (en) 2007-06-08 2008-05-19 Flow rate meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007153126A JP5273950B2 (en) 2007-06-08 2007-06-08 Flowmeter

Publications (2)

Publication Number Publication Date
JP2008304394A JP2008304394A (en) 2008-12-18
JP5273950B2 true JP5273950B2 (en) 2013-08-28

Family

ID=40233240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007153126A Active JP5273950B2 (en) 2007-06-08 2007-06-08 Flowmeter

Country Status (1)

Country Link
JP (1) JP5273950B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419268B2 (en) * 1974-05-02 1979-07-13
JPH0466819A (en) * 1990-07-09 1992-03-03 Hitachi Metals Ltd Large flow rate mass flow meter
US6655207B1 (en) * 2000-02-16 2003-12-02 Honeywell International Inc. Flow rate module and integrated flow restrictor
JP2002005710A (en) * 2000-06-20 2002-01-09 Ngk Spark Plug Co Ltd Bypass type measuring device for flow and flow velocity in pipe of small diameter
JP3870969B2 (en) * 2005-05-02 2007-01-24 オムロン株式会社 Flow measuring device
JP2007121036A (en) * 2005-10-26 2007-05-17 Yamatake Corp Flowmeter

Also Published As

Publication number Publication date
JP2008304394A (en) 2008-12-18

Similar Documents

Publication Publication Date Title
US8181513B2 (en) Flow meter
EP1879004B1 (en) Flow rate measuring device
JP5652315B2 (en) Flow measuring device
US9696191B2 (en) Thermal, flow measuring device
US20090164163A1 (en) Integrated micromachined thermal mass flow sensor and methods of making the same
KR100419360B1 (en) Thermal flow meter
EP2600116A1 (en) Flow measurement structure and flow measurement device
KR20130135136A (en) Micro flow sensor
JP2005315740A (en) Air flow rate measuring instrument
JP2007333460A (en) Manometer integration type multi-vortex flowmeter
CN102620792A (en) Flow sensor with enhanced flow range capability
JP2006029966A (en) Multi-vortex flowmeter
US9810586B2 (en) Temperature sensor and thermal, flow measuring device
JP2010060287A (en) Flow measuring instrument
JP5273950B2 (en) Flowmeter
JP5019958B2 (en) Flowmeter
JP5477446B2 (en) Air flow measurement device
JP5575359B2 (en) Thermal flow meter
JP2003090750A (en) Flow rate/flow velocity measuring apparatus
JP2021060298A (en) Flow rate measuring device
JP2005172445A (en) Flow sensor
JPH11258020A (en) Flowmeter
JPH1054840A (en) Flow velocity measuring method and flowmeter
JPH08247807A (en) Flowmeter
JP2013072791A (en) Flow sensor and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130514

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5273950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150