JP5272548B2 - Manufacturing method of high strength cold-rolled steel sheet with low yield strength and small material fluctuation - Google Patents
Manufacturing method of high strength cold-rolled steel sheet with low yield strength and small material fluctuation Download PDFInfo
- Publication number
- JP5272548B2 JP5272548B2 JP2008177468A JP2008177468A JP5272548B2 JP 5272548 B2 JP5272548 B2 JP 5272548B2 JP 2008177468 A JP2008177468 A JP 2008177468A JP 2008177468 A JP2008177468 A JP 2008177468A JP 5272548 B2 JP5272548 B2 JP 5272548B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel sheet
- sec
- steel
- temperature range
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010960 cold rolled steel Substances 0.000 title claims description 18
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 239000000463 material Substances 0.000 title description 16
- 229910000831 Steel Inorganic materials 0.000 claims description 67
- 239000010959 steel Substances 0.000 claims description 67
- 238000000137 annealing Methods 0.000 claims description 48
- 238000001816 cooling Methods 0.000 claims description 42
- 229910052748 manganese Inorganic materials 0.000 claims description 34
- 229910052804 chromium Inorganic materials 0.000 claims description 30
- 238000010438 heat treatment Methods 0.000 claims description 27
- 239000000203 mixture Substances 0.000 claims description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052738 indium Inorganic materials 0.000 claims 1
- 238000005096 rolling process Methods 0.000 description 18
- 230000000694 effects Effects 0.000 description 15
- 239000006104 solid solution Substances 0.000 description 15
- 238000000034 method Methods 0.000 description 12
- 238000005728 strengthening Methods 0.000 description 10
- 229910000859 α-Fe Inorganic materials 0.000 description 8
- 230000032683 aging Effects 0.000 description 7
- 238000005098 hot rolling Methods 0.000 description 7
- 229910001563 bainite Inorganic materials 0.000 description 5
- 229910000734 martensite Inorganic materials 0.000 description 5
- 229910001562 pearlite Inorganic materials 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000001953 recrystallisation Methods 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 2
- 238000005097 cold rolling Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 101100432802 Drosophila melanogaster Ypel gene Proteins 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 230000037311 normal skin Effects 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/185—Hardening; Quenching with or without subsequent tempering from an intercritical temperature
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0447—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
- C21D9/48—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/004—Dispersions; Precipitations
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、自動車、家電等においてプレス成形工程を経て使用されるプレス成形用高強度冷延鋼板の製造方法に関する。 The present invention relates to a method for producing a high-strength cold-rolled steel sheet for press forming that is used through a press forming process in automobiles, home appliances, and the like.
従来、フード、ドア、トランクリッド、バックドア、フェンダーといった耐デント性の要求される自動車外板パネルには、極低炭素鋼をベースにNb、Ti等の炭窒化物形成元素を添加して固溶C量を制御した引張強度TS:340MPaクラスのBH鋼板(焼付け硬化型鋼板、以後、単に340BHと呼ぶ)やTS:270MPaクラスのIF鋼板(Interstitial Free鋼板、以後、単に270IFと呼ぶ)が適用されてきた。近年、車体軽量化ニーズのさらなる高まりから、これらの外板パネルをさらに高強度化して耐デント性を向上させ、鋼板を薄肉化しようとする検討が進められている。また、現状と同板厚で高強度化により耐デント性の向上を図ろうとする検討やBHの付与される焼付け塗装工程の低温、短時間化を図ろうとする検討も進められている。 Conventionally, automotive exterior panels that require dent resistance, such as hoods, doors, trunk lids, back doors, and fenders, are solidified by adding carbonitride-forming elements such as Nb and Ti based on ultra-low carbon steel. Tensile strength with controlled C content TS: 340MPa class BH steel plate (bake hardening type steel plate, hereinafter simply referred to as 340BH) and TS: 270MPa class IF steel plate (Interstitial Free steel plate, hereinafter simply referred to as 270IF) It has been. In recent years, due to further increasing needs for weight reduction of vehicle bodies, studies are being made to increase the strength of these outer panel panels to improve dent resistance and to reduce the thickness of steel sheets. In addition, studies are underway to improve the dent resistance by increasing the strength with the same thickness as the current state, and to reduce the temperature and time of the baking coating process to which BH is applied.
しかしながら、降伏強度YP:230MPaの340BHやYP:180MPaの270IFをベースにさらにMn、P等の固溶強化元素を添加して高強度化し、鋼板を薄肉化しようとすると、面歪の問題が生じる。ここで、面歪とは、YPの増加により生じるプレス成形面の微小なしわ、うねり状の模様であり、この面歪が生じるとドアやトランクリッドなどの意匠性、デザイン性を著しく損なう。このため、このような用途では、プレス成形および焼付け塗装後の降伏応力YPは従来以上に増加させつつも、プレス成形前には極力低いYPを有することが望まれる。 However, if a steel plate is made thinner by adding solid solution strengthening elements such as Mn and P based on 340BH with a yield strength of YP: 230MPa and 270IF of YP: 180MPa, the problem of surface distortion occurs. . Here, the surface distortion is a fine wrinkle or a wavy pattern on the press-molded surface caused by an increase in YP. When this surface distortion occurs, the design and design of doors and trunk lids are significantly impaired. For this reason, in such applications, it is desired that the yield stress YP after press molding and baking coating is increased more than before, but has a YP as low as possible before press molding.
このような背景から、例えば、特許文献1には、C:0.005〜0.15%、Mn:0.3〜2.0%、Cr:0.023〜0.8%を含有する鋼の焼鈍後の冷却速度を適正化し、主としてフェライトとマルテンサイトからなる複合組織を形成させることで、低いYP、高い加工硬化WH、高いBHを兼ね備えた鋼板を得る方法が開示されている。特許文献2には、C:0.01〜0.04%、Mn:0.3〜1.6%、Cr:0.5%以下、Mo:0.5%以下を含有し、1.3≦Mn+1.29Cr+3.29Mo≦2.1%を満足する鋼を焼鈍後、少なくとも550℃以下の温度範囲を100℃/sec以上の冷却速度で冷却し、鋼中の固溶Cを増加させ、高いBHを有する高強度冷延鋼板を製造する方法が開示されている。特許文献3には、C:0.0025%以上0.04%未満、Mn:0.5〜2.5%、Cr:0.05〜2.0%を含有する鋼を焼鈍後、650〜450℃の温度範囲を15〜200℃/secの冷却速度で冷却し、さらに200〜300℃付近の温度範囲を10℃/sec未満の冷却速度で冷却して、フェライトと低温変態相からなるBHが高くプレス成形後の表面品質に優れた高強度冷延鋼板の製造方法が開示されている。
しかしながら、上記特許文献1〜3に記載の製造方法で製造された高強度冷延鋼板には、次のような問題がある。
i) 低YP化が十分でなく、ドアパネルなどにプレス成形すると、340BHと比べて面歪量は依然として大きい。
ii) このような複合組織型の高強度冷延鋼板では、強化のために硬質なマルテンサイトなどの第2相を分散させているので、本質的に材料特性の変動が生じやすい。例えば、第2相の割合は鋼中の数10ppmのC量や20〜50℃の焼鈍温度の変動により顕著な影響を受けるので、従来のMn、Pで固溶強化した340BHや270IFと比べて材質変動が大きい。
However, the high-strength cold-rolled steel sheets manufactured by the manufacturing methods described in Patent Documents 1 to 3 have the following problems.
i) Low YP is not enough, and when it is press-molded on door panels, the amount of surface distortion is still large compared to 340BH.
ii) In such a high-strength cold-rolled steel sheet of the composite structure type, the second phase such as hard martensite is dispersed for strengthening, so that the material characteristics tend to fluctuate essentially. For example, the proportion of the second phase is significantly affected by the amount of C in the steel of several tens of ppm and the fluctuation of the annealing temperature of 20 to 50 ° C. Compared to 340BH and 270IF that are solid solution strengthened with conventional Mn and P Material fluctuation is large.
本発明は、このような事情を鑑みなされたものであり、YPが十分に低く、材質変動の小さい高強度冷延鋼板の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for producing a high-strength cold-rolled steel sheet having a sufficiently low YP and a small material fluctuation.
本発明者らは、複合組織型の高強度冷延鋼板を対象に、従来と同等以上の高いBHを確保しつつ、より一層YPを低減し、同時に材質変動を小さくする方法について鋭意検討を行った結果、以下の知見を見出した。
I) MnとCrの組成範囲を適正に制御し、さらに焼鈍時に所定の温度範囲を徐加熱することで、第2相を粗大かつ均一に分散させて、低YP化が図れるとともに、焼鈍温度に対するYPの変動を小さく抑えられる。
II) また、MnとCrの組成範囲を適正化することで固溶C量の過剰な減少が抑制され、高いBHが得られる。
The present inventors have conducted intensive studies on a method for further reducing YP and simultaneously reducing material fluctuations while securing a high BH equivalent to or higher than that of conventional steel for composite-structured high-strength cold-rolled steel sheets. As a result, the following findings were found.
I) By appropriately controlling the composition range of Mn and Cr, and further gradually heating the predetermined temperature range during annealing, the second phase can be dispersed coarsely and uniformly, achieving a low YP, and against the annealing temperature. YP fluctuation can be kept small.
II) Further, by optimizing the composition range of Mn and Cr, an excessive decrease in the amount of dissolved C is suppressed, and high BH is obtained.
本発明は、以上の知見に基づきなされたもので、成分組成として、質量%で、C:0.01%超0.08%未満、Si:0.2%以下、Mn:0.8%以上1.7%未満、P:0.03%以下、S:0.02%以下、sol.Al:0.3%以下、N:0.01%以下、Cr:0.4%超2%以下を含有し、さらに1.9<[Mneq]<3および0.34≦[%Cr]/[%Mn]を満足し、残部鉄および不可避不純物からなる鋼を、熱間圧延および冷間圧延した後、680〜740℃の温度範囲を3℃/sec未満の平均加熱速度で加熱し、740℃超820℃未満の焼鈍温度で焼鈍し、前記焼鈍温度から650℃までの温度範囲を2〜30℃/secの平均冷却速度で冷却し、650℃から下記の(1)式で与えられるTc℃までの温度範囲を10℃/sec以上の平均冷却速度で冷却し、前記Tc℃から200℃までの温度範囲を0.2〜10℃/secの平均冷却速度で冷却することを特徴とする高強度冷延鋼板の製造方法を提供する。
Tc=410-40×[%Mn]-30×[%Cr]・・・(1)
ここで、[Mneq]はMn当量であり、[Mneq]=[%Mn]+1.3×[%Cr]を表し、[%Mn]、[%Cr]は、それぞれMn、Crの含有量を表す。
The present invention has been made based on the above knowledge, and as a component composition, by mass%, C: more than 0.01% and less than 0.08%, Si: 0.2% or less, Mn: 0.8% or more and less than 1.7%, P: 0.03% S: 0.02% or less, sol.Al: 0.3% or less, N: 0.01% or less, Cr: more than 0.4% and 2% or less, and further 1.9 <[Mneq] <3 and 0.34 ≦ [% Cr] / After satisfying [% Mn], the steel consisting of the remaining iron and inevitable impurities is hot-rolled and cold-rolled, and then heated at a temperature range of 680 to 740 ° C at an average heating rate of less than 3 ° C / sec. Tc given by the following formula (1) from 650 ° C by annealing at an annealing temperature of more than 820 ° C and less than 820 ° C, cooling the temperature range from the annealing temperature to 650 ° C at an average cooling rate of 2 to 30 ° C / sec. High strength, characterized in that the temperature range up to ℃ is cooled at an average cooling rate of 10 ℃ / sec or more, and the temperature range from Tc ℃ to 200 ℃ is cooled at an average cooling rate of 0.2 to 10 ℃ / sec A method for producing a cold-rolled steel sheet is provided.
Tc = 410-40 × [% Mn] -30 × [% Cr] ... (1)
Here, [Mneq] is Mn equivalent and represents [Mneq] = [% Mn] + 1.3 × [% Cr], and [% Mn] and [% Cr] represent the contents of Mn and Cr, respectively. .
本発明の高強度冷延鋼板の製造方法では、焼鈍時に、680〜740℃の温度範囲を2℃/sec未満の平均加熱速度で加熱することが好ましい。 In the method for producing a high-strength cold-rolled steel sheet of the present invention, it is preferable to heat a temperature range of 680 to 740 ° C. at an average heating rate of less than 2 ° C./sec during annealing.
また、0.55≦[%Cr]/[%Mn]を満足する鋼を用いたり、さらに、質量%で、B:0.005%以下を含有させることが好ましい。また、質量%で、Mo:0.15%以下およびV:0.2%以下のうちの少なくとも1種を含有させることが好ましい。さらにまた、質量%で、Ti:0.014%未満、Nb:0.01%未満、Ni:0.3%以下およびCu:0.3%以下のうちの少なくとも1種を含有させることが好ましい。 Further, it is preferable to use steel satisfying 0.55 ≦ [% Cr] / [% Mn], or to further contain B: 0.005% or less by mass%. Further, it is preferable to contain at least one of Mo: 0.15% or less and V: 0.2% or less by mass%. Furthermore, it is preferable to contain at least one of Ti: less than 0.014%, Nb: less than 0.01%, Ni: 0.3% or less, and Cu: 0.3% or less in mass%.
本発明によれば、YPが低く、材質変動の小さい高強度冷延鋼板を製造できるようになった。また、本発明の方法で製造される高強度冷延鋼板は、優れた耐面歪性および耐デント性を備えているため、自動車部品の高強度化、薄肉化に好適である。 According to the present invention, a high-strength cold-rolled steel sheet having a low YP and a small material fluctuation can be produced. Moreover, since the high-strength cold-rolled steel sheet produced by the method of the present invention has excellent surface strain resistance and dent resistance, it is suitable for increasing the strength and thinning of automobile parts.
以下に、本発明の詳細を説明する。なお、成分の量を表す%は、特に断らない限り質量%を意味する。 Details of the present invention will be described below. Note that% representing the amount of a component means mass% unless otherwise specified.
1) 成分組成
C:0.01%超0.08%未満
Cは所定量の第2相を確保するために必要な元素である。Cの添加量が少なすぎると十分な量の第2相が確保できなくなり、低いYPが得られなくなる。また、十分に高いBHが確保できなくなると同時に耐時効性も劣化する。十分な量の第2相を確保するためにはCは0.01%を超えて添加する必要がある。一方、C量が0.08%以上となると第2相の割合が大きくなりすぎてYPが増加する。したがって、C量の上限は0.08%未満とする。より低いYPを得るためにはC量は0.06%未満とすることが好ましく、さらに低いYPを得るためにはC量は0.04%未満とすることがより好ましい。
1) Component composition
C: More than 0.01% and less than 0.08%
C is an element necessary for securing a predetermined amount of the second phase. If the amount of C added is too small, a sufficient amount of the second phase cannot be secured, and a low YP cannot be obtained. In addition, a sufficiently high BH cannot be secured, and at the same time, the aging resistance deteriorates. In order to secure a sufficient amount of the second phase, C needs to be added in excess of 0.01%. On the other hand, when the C content is 0.08% or more, the ratio of the second phase becomes too large and YP increases. Therefore, the upper limit of the C content is less than 0.08%. In order to obtain a lower YP, the C amount is preferably less than 0.06%, and in order to obtain a lower YP, the C amount is more preferably less than 0.04%.
Si:0.2%以下
Siは微量添加することで熱間圧延でのスケール生成を遅延させて表面品質を改善する効果、鋼板のミクロ組織をより均一、粗大化する効果、プレス成形時の金型への焼付き(型かじり)を改善する効果等があるので、このような観点から添加することができる。しかしながら、Siは固溶強化能が大きく、YPを増加させる効果が大きいので、Si量はYP上昇の影響の小さい範囲の0.2%以下とする。好ましくは0.1%以下である。
Si: 0.2% or less
Addition of a small amount of Si has the effect of improving the surface quality by delaying the scale formation in hot rolling, the effect of making the microstructure of the steel sheet more uniform and coarse, and seizing on the mold during press forming (die Since there is an effect of improving galling, it can be added from such a viewpoint. However, since Si has a large solid solution strengthening ability and a large effect of increasing YP, the Si amount is set to 0.2% or less of the range where the influence of YP increase is small. Preferably it is 0.1% or less.
Mn:0.8%以上1.7%未満
Mnは焼入れ性を高めるとともに、その量を適正化することにより、固溶C量を所定範囲に低減して低YP化と高BH化を可能する。Mn量が0.8%より少ないと、焼鈍時の冷却過程で固溶C量が多くなりすぎて、400℃未満の温度範囲で過時効処理が施される際に多量の固溶Cがマルテンサイト周囲の歪に析出して十分に低YP化するのが困難になる。また、固溶C量が増加しすぎると耐時効性も劣化する。一方、Mn量が1.7%以上になると固溶C量が少なくなりすぎてBHが低下する。また、Mnの固溶強化の増加に加えて第2相が微細化してYPの上昇や焼鈍温度に対するYPの変動を招く。したがって、Mn量は0.8%以上1.7%未満とする。
Mn: 0.8% or more and less than 1.7%
Mn enhances hardenability, and by optimizing the amount of Mn, the amount of solute C can be reduced to a predetermined range to reduce YP and increase BH. If the amount of Mn is less than 0.8%, the amount of dissolved C will increase too much during the cooling process during annealing, and a large amount of dissolved C will form around martensite when overaging is performed at a temperature range of less than 400 ° C. It becomes difficult to sufficiently reduce the YP by precipitating on the strain of the material. Moreover, when the amount of solute C increases too much, aging resistance will also deteriorate. On the other hand, when the amount of Mn is 1.7% or more, the amount of dissolved C becomes too small and BH decreases. Further, in addition to the increase in solid solution strengthening of Mn, the second phase becomes finer, leading to an increase in YP and fluctuation of YP with respect to the annealing temperature. Therefore, the Mn content is 0.8% or more and less than 1.7%.
P:0.03%以下
Pは固溶強化量が大きく、低YP化の観点からは極力少なくする方がよい。ただし、鋼板のミクロ組織をより粗大化する効果、プレス成形時の金型への焼付きを改善する効果等があるので、YP上昇への悪影響の小さい0.03%以下の範囲で添加することができる。
P: 0.03% or less
P has a large solid solution strengthening amount, and it is better to reduce it as much as possible from the viewpoint of low YP. However, since it has the effect of coarsening the microstructure of the steel sheet and the effect of improving seizure to the mold during press forming, it can be added in a range of 0.03% or less, which has a small adverse effect on YP increase. .
S:0.02%以下
Sは鋼中でMnSとして析出するが、その含有量が多いと鋼板の延性を低下させ、プレス成形性を低下させる。また、スラブを熱間圧延する際に熱間延性を低下させ、表面欠陥を発生させやすくする。このため、S量は0.02%以下とするが、少ないほど好ましい。
S: 0.02% or less
S precipitates as MnS in the steel, but if the content is large, the ductility of the steel sheet is lowered and the press formability is lowered. Moreover, when hot-rolling a slab, hot ductility is reduced and surface defects are easily generated. For this reason, the amount of S is set to 0.02% or less, but the smaller the amount, the better.
sol.Al:0.3%以下
Alは脱酸元素、あるいはNをAlNとして固定して耐時効性を向上させる元素として利用されるが、熱間圧延後の巻き取り時もしくは焼鈍時に微細なAlNを形成してフェライトの粒成長を抑制し、低YP化を阻害する。鋼中の酸化物を低減する、あるいは耐時効性を向上させる観点からは、Alは0.02%以上添加するのが良い。一方、粒成長性を向上させる観点からは、巻取温度を620℃以上にすることでフェライトの粒成長性は向上するが、微細なAlNは少ないほど好ましい。それには、sol.Al量を0.15%以上とし、AlNを巻き取り時に粗大に析出させることが好ましいが、0.3%を超えるとコスト増を招くので、sol.Al量は0.3%以下とする。ただし、sol.Alが0.1%を超えて添加されると、鋳造性を劣化させ、表面品質の劣化原因になるので、表面品質を厳格管理することが求められる外板パネル用途では、sol.Al量は0.1以下とするのが好ましい。
sol.Al: 0.3% or less
Al is used as a deoxidizing element or as an element that improves the aging resistance by fixing N as AlN, but it forms fine AlN during coiling or annealing after hot rolling to increase ferrite grain growth. Suppress and inhibit low YP. From the viewpoint of reducing oxides in steel or improving aging resistance, Al should be added in an amount of 0.02% or more. On the other hand, from the viewpoint of improving the grain growth property, the grain growth property of ferrite is improved by setting the coiling temperature to 620 ° C. or higher. However, the smaller the fine AlN, the better. For this purpose, it is preferable that the amount of sol.Al is 0.15% or more and AlN is coarsely precipitated at the time of winding. However, if it exceeds 0.3%, the cost increases, so the amount of sol.Al is 0.3% or less. However, if sol.Al is added in excess of 0.1%, the castability is deteriorated and the surface quality is deteriorated. For outer panel applications that require strict control of the surface quality, sol.Al The amount is preferably 0.1 or less.
N:0.01%以下
Nは、熱間圧延後の巻き取り時もしくは焼鈍時に析出して微細なAlNを形成し、粒成長性を阻害する。このため、N量は0.01%以下とするが、少ないほど好ましい。また、N量が増加すると耐時効性の劣化を招く。粒成長性の向上ならびに耐時効性の向上の観点からは、N量は0.008%未満とすることが望ましく、さらには0.005%未満とすることがより好ましい。
N: 0.01% or less
N precipitates at the time of winding or annealing after hot rolling to form fine AlN and inhibits grain growth. For this reason, the amount of N is set to 0.01% or less, but the smaller the amount, the better. Moreover, when N content increases, deterioration of aging resistance is caused. From the viewpoint of improving grain growth and aging resistance, the N content is preferably less than 0.008%, and more preferably less than 0.005%.
Cr:0.4%超2%以下
Crは、本発明で最も重要な元素であり、固溶強化量が小さく、かつ第2相であるマルテンサイトを微細化し、焼入れ性を高める効果を有するため、低YP化ならびに材質変動の低減に有効な元素である。こうした効果を発揮させるには、次に説明するMn当量やMnとの組成比を制御する必要があるが、Crは0.4%を超えて添加する必要がある。一方、Cr量が2%を超えるとコスト増やめっき鋼板の表面品質の劣化を招くので、Cr量は2%以下とする。
Cr: More than 0.4% and 2% or less
Cr is the most important element in the present invention, has a small amount of solid solution strengthening, has the effect of refining martensite, which is the second phase, and enhances hardenability, thus reducing YP and reducing material fluctuations. It is an effective element. In order to exert such effects, it is necessary to control the Mn equivalent and the composition ratio with Mn described below, but Cr needs to be added in excess of 0.4%. On the other hand, if the Cr content exceeds 2%, the cost increases and the surface quality of the plated steel sheet deteriorates, so the Cr content should be 2% or less.
1.9<[Mneq]<3
本発明で定義したMn当量、すなわち上記の[Mneq]を、焼鈍時の冷却速度を制御して、1.9超にすることで固溶C量が適正範囲まで低減されるとともに、パーライト、ベイナイトの生成が抑制されて低いYP、高いBHが得られる。さらにYPを低減する観点からは[Mneq]は2.1超とすることが望ましく、2.2超とすることがより望ましい。一方、[Mneq]が増加しすぎるとBHの低下やコスト増を招くので、[Mneq]は3未満とする。
1.9 <[Mneq] <3
The Mn equivalent defined in the present invention, that is, the above-mentioned [Mneq], by controlling the cooling rate during annealing and exceeding 1.9, the amount of solid solution C is reduced to an appropriate range, and pearlite and bainite are generated. Is suppressed and low YP and high BH are obtained. Furthermore, from the viewpoint of reducing YP, [Mneq] is desirably greater than 2.1, and more desirably greater than 2.2. On the other hand, if [Mneq] increases too much, BH decreases and costs increase, so [Mneq] is set to less than 3.
0.34≦[%Cr]/[%Mn]
同一[Mneq]でもCr量とMn量の比、すなわち[%Cr]/[%Mn]を0.34以上とすることで第2相を粗大化し、Mnの固溶強化も低減できるので、YPを低減し、材質変動を小さくできる。さらに低YP化し、材質変動を小さくするには、0.55≦[%Cr]/[%Mn]とすることが好ましい。
0.34 ≦ [% Cr] / [% Mn]
Even with the same [Mneq], the ratio of Cr amount to Mn amount, that is, [% Cr] / [% Mn] should be 0.34 or more to coarsen the second phase and reduce the solid solution strengthening of Mn, thus reducing YP. In addition, material fluctuation can be reduced. In order to further reduce YP and reduce material fluctuation, it is preferable to satisfy 0.55 ≦ [% Cr] / [% Mn].
残部は、鉄および不可避不純物であるが、さらに以下の元素を所定量含有させることもできる。 The balance is iron and inevitable impurities, but may further contain a predetermined amount of the following elements.
B:0.005%以下
Bも、同様に焼入れ性を高める元素であり、また、NをBNとして固定して粒成長性を向上させる作用がある。しかしながら、Bを過剰に添加すると残存する固溶Bの影響で第2相が逆に微細化するので、B量は0.005%以下とすることが好ましい。本発明鋼においては、0.001%超のBを添加することで、フェライトの粒成長性の向上効果も十分に発揮され、極めて低いYPを得ることができる。したがって、Bは0.001%超含有させることが望ましい。
B: 0.005% or less
Similarly, B is an element that enhances hardenability, and also has an effect of improving grain growth by fixing N as BN. However, if B is added excessively, the second phase is reversely refined due to the effect of the remaining solid solution B, so the B content is preferably 0.005% or less. In the steel of the present invention, by adding more than 0.001% B, the effect of improving the grain growth property of ferrite is sufficiently exhibited, and an extremely low YP can be obtained. Therefore, it is desirable to contain B over 0.001%.
Mo:0.1%以下
Moは、Mn、Crと同様に焼入れ性を高める元素であり、焼入れ性を向上させる目的で添加することができる。しかしながら、過剰に添加されると、Mnと同様に第2相を微細化、硬質化してYPを増加させるので、MoはYP上昇への影響が小さい0.1%以下の範囲で添加することが好ましい。YPならびにΔYPを一層低減する観点からは、Mo量は0.02%未満(無添加)とすることが望ましい。
Mo: 0.1% or less
Mo, like Mn and Cr, is an element that enhances hardenability and can be added for the purpose of improving hardenability. However, if added excessively, the second phase is refined and hardened in the same manner as Mn to increase YP. Therefore, it is preferable to add Mo in a range of 0.1% or less that has a small effect on YP increase. From the viewpoint of further reducing YP and ΔYP, the Mo content is preferably less than 0.02% (no addition).
V:0.2%以下
Vは、同様に焼入れ性を高める元素であるが、0.2%を超えて添加すると著しいコスト上昇を招くので、Vは0.2%以下の範囲で添加することが好ましい。
V: 0.2% or less
V is an element that similarly improves the hardenability, but if added over 0.2%, a significant cost increase is caused. Therefore, V is preferably added in a range of 0.2% or less.
Ti:0.014%未満
TiはNを固定して耐時効性を向上させる効果や鋳造性を向上させる効果がある。しかし、鋼中でTiN、TiC、Ti(C,N)等の微細な析出物を形成し粒成長性を阻害するので、低YP化の観点からは、Ti量は0.014%未満とすることが好ましい。
Ti: Less than 0.014%
Ti has the effect of fixing N to improve aging resistance and castability. However, since fine precipitates such as TiN, TiC, and Ti (C, N) are formed in the steel to inhibit grain growth, the Ti content may be less than 0.014% from the viewpoint of low YP. preferable.
Nb:0.01%未満
Nbは熱間圧延での再結晶を遅延させて集合組織を制御し、圧延方向と45度方向のYPを低減する効果を有する。しかし、鋼中で微細なNbC、Nb(C,N)を形成して粒成長性を著しく劣化させてYPを増加させるので、NbはYP上昇の影響の少ない0.01%未満の範囲で含有させることが好ましい。
Nb: less than 0.01%
Nb has the effect of controlling the texture by delaying recrystallization in hot rolling and reducing YP in the rolling direction and the 45 degree direction. However, fine NbC and Nb (C, N) are formed in the steel to significantly deteriorate the grain growth and increase YP. Therefore, Nb should be contained within a range of less than 0.01%, which is less affected by YP increase. Is preferred.
Cu:0.3%以下
Cuはスクラップ等を積極活用するときに混入する元素であり、Cuの混入を許容することでリサイクル資材を原料資材として活用でき、製造コストを削減することができる。鋼板の材質に及ぼすCuの影響は小さいが、過剰に混入すると表面キズの原因となるので、Cu量は0.3%以下とすることが好ましい。
Cu: 0.3% or less
Cu is an element mixed when scrap is actively used. By allowing Cu to be mixed, recycled materials can be used as raw materials, and manufacturing costs can be reduced. The influence of Cu on the material of the steel sheet is small, but if it is mixed excessively, it causes surface scratches, so the Cu content is preferably 0.3% or less.
Ni:0.3%以下
Niも鋼板の材質に及ぼす影響は小さいが、Cuを添加する場合に表面キズを低減する観点から添加することができる。しかしながら、Niは過剰に添加するとスケールの不均一性に起因した表面欠陥を発生させるので、Ni量は0.3%以下とすることが好ましい。
Ni: 0.3% or less
Ni also has little influence on the material of the steel sheet, but Ni can be added from the viewpoint of reducing surface scratches when Cu is added. However, since Ni causes surface defects due to non-uniformity of scale when added in excess, the amount of Ni is preferably 0.3% or less.
2) 製造条件
本発明の製造方法では、上述したように、上記の成分組成を有する鋼スラブを、熱間圧延および冷間圧延した後、680〜740℃の温度範囲を3℃/sec未満の平均加熱速度で加熱し、740℃超820℃未満の焼鈍温度で焼鈍し、前記焼鈍温度から650℃までの温度範囲を2〜30℃/secの平均冷却速度で冷却し、650℃から上記の(1)式で与えられるTc℃までの温度範囲を10℃/sec以上の平均冷却速度で冷却し、前記Tc℃から200℃までの温度範囲を0.2〜10℃/secの平均冷却速度で冷却する。
2) Manufacturing conditions In the manufacturing method of the present invention, as described above, the steel slab having the above component composition is hot-rolled and cold-rolled, and then the temperature range of 680 to 740 ° C is less than 3 ° C / sec. Heat at an average heating rate, anneal at an annealing temperature of more than 740 ° C and less than 820 ° C, cool the temperature range from the annealing temperature to 650 ° C at an average cooling rate of 2 to 30 ° C / sec, from 650 ° C to the above Cool the temperature range up to Tc ° C given by equation (1) at an average cooling rate of 10 ° C / sec or more, and cool the temperature range from Tc ° C to 200 ° C at an average cooling rate of 0.2 to 10 ° C / sec. To do.
熱間圧延
鋼スラブを熱間圧延するには、スラブを加熱後圧延する方法、連続鋳造後のスラブを加熱することなく直接圧延する方法、連続鋳造後のスラブに短時間加熱処理を施して圧延する方法などで行える。熱間圧延は、常法にしたがって実施すればよく、例えば、スラブ加熱温度は1100〜1300℃、仕上圧延温度はAr3変態点以上、仕上圧延後の平均冷却速度は10〜200℃/sec、巻取温度は400〜720℃とすればよい。外板パネル用の美麗なめっき表面品質を得るためには、スラブ加熱温度は1200℃以下、仕上圧延温度は850℃以下とすることが好ましい。また、鋼板表面に生成した1次、2次スケールを除去するためにデスケーリングを十分に行うことが好ましい。YP低減の観点からは、巻取温度は高い方が望ましく、640℃以上とすることが好ましい。特に、680℃以上の巻取温度にすると、熱延板の状態でMnやCrを十分第2相に濃化させることができ、その後の焼鈍工程でのγの安定性を向上させ、低YP化に寄与する。また、鋼板のr値の面内異方性を低減したり、圧延方向と45度の方向のYPを低く抑えるためには、仕上圧延後の冷却速度を40℃/sec以上と大きくすることが好ましい。
Hot rolling To hot-roll steel slabs, a method of rolling the slab after heating, a method of directly rolling the slab after continuous casting without heating, or rolling by subjecting the slab after continuous casting to a short heat treatment It can be done by the method to do. The hot rolling may be performed according to a conventional method, for example, the slab heating temperature is 1100 to 1300 ° C., the finish rolling temperature is not less than the Ar 3 transformation point, the average cooling rate after finish rolling is 10 to 200 ° C./sec, The winding temperature may be 400 to 720 ° C. In order to obtain a beautiful plating surface quality for the outer panel, it is preferable that the slab heating temperature is 1200 ° C. or lower and the finish rolling temperature is 850 ° C. or lower. Further, it is preferable to sufficiently perform descaling in order to remove the primary and secondary scales generated on the steel plate surface. From the viewpoint of reducing YP, it is desirable that the coiling temperature be higher, and it is preferable to set the temperature to 640 ° C or higher. In particular, when the coiling temperature is 680 ° C. or higher, Mn and Cr can be sufficiently concentrated in the second phase in the hot-rolled sheet state, improving the stability of γ in the subsequent annealing process, and reducing the low YP Contributes to Also, in order to reduce the in-plane anisotropy of the r value of the steel sheet and to keep the YP in the rolling direction and 45 degrees low, the cooling rate after finish rolling can be increased to 40 ° C / sec or more. preferable.
冷間圧延
冷間圧延では、圧延率を50〜85%とすればよい。
Cold rolling In cold rolling, the rolling rate may be 50 to 85%.
焼鈍
焼鈍時の平均加熱速度:3℃/sec未満
焼鈍後に粗大な第2相を均一に分散させ、低YP化を図るとともに材質変動を小さくするためには、680℃〜740℃の温度範囲における加熱速度を制御することが効果的である。これは、[Mneq]が1.9を超える成分系では、焼鈍後の第2相が微細化しやすく、これはMnが高いためにAc1変態点が低くなりすぎて再結晶が完了しないうちに未再結晶ままのフェライト粒界面にγ粒が形成されたり、再結晶が完了したとしても再結晶直後の微細なフェライト粒にγ粒が形成されて、鋼板のYPが上昇しやすいためである。
Annealing Average heating rate during annealing: less than 3 ° C / sec In order to uniformly disperse the coarse second phase after annealing, to reduce YP and to reduce material fluctuations, in the temperature range of 680 ° C to 740 ° C It is effective to control the heating rate. This is because, in the component system with [Mneq] exceeding 1.9, the second phase after annealing tends to be refined, and since the Mn is high, the Ac 1 transformation point becomes too low and recrystallization is not completed. This is because even if γ grains are formed at the crystal grain ferrite grain interface or recrystallization is completed, γ grains are formed in fine ferrite grains immediately after recrystallization, and the YP of the steel sheet is likely to increase.
C:0.028%、Si:0.01%、Mn:1.6%、P:0.01%、S:0.01%、sol.Al:0.04%、Cr:0.8%、N:0.003%を含有する鋼を実験室で溶製し、27mm厚のスラブを製造した。このスラブを1250℃に加熱し、仕上圧延温度830℃で2.3mmまで熱間圧延し、620℃で1hrの巻き取り処理を施した。得られた熱延板を0.75mmまで圧延率67%で冷間圧延した。得られた冷延板を焼鈍する際に、680〜740℃の温度範囲の平均加熱速度を0.3〜20℃/secに変化させ、780℃×40secの均熱処理を施し、焼鈍温度から650℃までの温度範囲を平均冷却速度7℃/secで冷却し、650℃から300℃までの温度範囲を25℃/secで冷却して、その後300℃から200℃の温度範囲を0.5℃/secで冷却して、室温まで空冷した。得られた鋼板よりJIS5号引張試験片を採取し、引張試験(JISZ2241に準拠、引張方向は圧延方向と直角方向)、SEMによる組織観察を行った。 Steel containing C: 0.028%, Si: 0.01%, Mn: 1.6%, P: 0.01%, S: 0.01%, sol.Al: 0.04%, Cr: 0.8%, N: 0.003% was melted in the laboratory. To produce a 27 mm thick slab. This slab was heated to 1250 ° C., hot-rolled to 2.3 mm at a finish rolling temperature of 830 ° C., and subjected to a winding process at 620 ° C. for 1 hour. The obtained hot-rolled sheet was cold-rolled at a rolling rate of 67% to 0.75 mm. When annealing the obtained cold-rolled sheet, the average heating rate in the temperature range of 680-740 ° C is changed to 0.3-20 ° C / sec, soaking is performed at 780 ° C x 40 sec, from the annealing temperature to 650 ° C Is cooled at an average cooling rate of 7 ° C / sec, the temperature range from 650 ° C to 300 ° C is cooled at 25 ° C / sec, and then the temperature range from 300 ° C to 200 ° C is cooled at 0.5 ° C / sec. And air cooled to room temperature. A JIS No. 5 tensile specimen was collected from the obtained steel sheet, subjected to a tensile test (based on JIS Z2241, the tensile direction is perpendicular to the rolling direction), and the structure was observed by SEM.
図1に、焼鈍時における680〜740℃の温度範囲の平均加熱速度とYPの関係を示す。平均加熱速度が3℃/sec未満で200MPa以下のYPが得られ、加熱速度が2℃/sec未満で195MPa以下のYPが得られる。また、このとき、第2相がより粗大で均一分散していることがSEMにより確認された。さらに種々の加熱速度で焼鈍した鋼板について材質変動に対する影響を調査した。すなわち、各鋼板について焼鈍温度を760〜810℃で変化させ、焼鈍温度を50℃変動させたときのYPの変動量ΔYPを調査したところ、焼鈍時の680〜740℃における加熱速度が20℃/secのサンプルでは、ΔYPが20MPaであるのに対して、加熱速度が3℃/sec未満の鋼板ではΔYPが15MPa未満に低減されていることが明らかになった。このように、所定の温度範囲の加熱速度を制御することでYPが低く、焼鈍温度に対するΔYPの小さい鋼板が得られる。 FIG. 1 shows the relationship between YP and the average heating rate in the temperature range of 680 to 740 ° C. during annealing. An YP of 200 MPa or less is obtained at an average heating rate of less than 3 ° C / sec, and an YP of 195 MPa or less is obtained at a heating rate of less than 2 ° C / sec. At this time, it was confirmed by SEM that the second phase was coarser and uniformly dispersed. Furthermore, the influence on the material fluctuation was investigated for the steel sheets annealed at various heating rates. That is, for each steel sheet, the annealing temperature was changed from 760 to 810 ° C., and the amount of YP variation ΔYP when the annealing temperature was changed by 50 ° C. was investigated. The heating rate at 680 to 740 ° C. during annealing was 20 ° C. / It was found that ΔYP was 20 MPa for the sec sample, whereas ΔYP was reduced to less than 15 MPa for the steel sheet with a heating rate of less than 3 ° C./sec. Thus, by controlling the heating rate within a predetermined temperature range, a steel sheet having a low YP and a small ΔYP with respect to the annealing temperature can be obtained.
焼鈍温度:740℃超820℃未満
焼鈍温度が740℃以下では炭化物の固溶が不十分となり、安定して第2相を確保できない。820℃以上では焼鈍中のγの割合が多くなりすぎてγへのMn、C等の元素濃化が不十分になり、十分に低いYPが得られない。これは、γへの元素濃化が不十分になることで、マルテンサイトの周囲に十分な歪が付与されなくなるとともに焼鈍後の冷却過程でパーライト、ベイナイト変態が生じやすくなるためと考えられる。均熱時間は通常の連続焼鈍で実施される740℃超の温度範囲で20sec以上とすればよく、40sec以上とすることがより好ましい。
Annealing temperature: More than 740 ° C and less than 820 ° C If the annealing temperature is 740 ° C or less, the solid solution of carbide becomes insufficient and the second phase cannot be secured stably. Above 820 ° C, the proportion of γ during annealing becomes too high, and the concentration of elements such as Mn and C into γ becomes insufficient, and a sufficiently low YP cannot be obtained. This is thought to be because element concentration to γ is insufficient, so that sufficient strain is not imparted around martensite and pearlite and bainite transformations are likely to occur in the cooling process after annealing. The soaking time may be 20 seconds or more in a temperature range exceeding 740 ° C., which is carried out by normal continuous annealing, and more preferably 40 seconds or more.
焼鈍温度から650℃までの温度範囲の平均冷却速度(1次冷却速度):2〜30℃/sec
冷却中のγ粒にMnやCを濃化させ焼入れ性を高めて低YP化を図るため、焼鈍温度から650℃までの温度範囲の平均冷却速度を2〜30℃/secとする必要がある。
Average cooling rate in the temperature range from annealing temperature to 650 ° C (primary cooling rate): 2-30 ° C / sec
It is necessary to increase the average cooling rate in the temperature range from the annealing temperature to 650 ° C to 2-30 ° C / sec in order to condense Mn and C in the γ grains during cooling to improve hardenability and reduce YP. .
650℃から上記の(1)式で与えられるTc℃までの温度範囲の平均冷却速度(2次冷却速度):10℃/sec以上
パーライトおよびベイナイトの生成しやすい650℃からTc℃で表されるMs点近傍の温度範囲を平均冷却速度10℃/sec以上で冷却することにより、パーライトおよびベイナイトの生成が抑制されて、十分に低いYPが得られる。
Average cooling rate (secondary cooling rate) in the temperature range from 650 ° C to Tc ° C given by equation (1) above: 10 ° C / sec or more Expressed from 650 ° C to Tc ° C, where pearlite and bainite are easily generated By cooling the temperature range near the Ms point at an average cooling rate of 10 ° C./sec or more, formation of pearlite and bainite is suppressed, and a sufficiently low YP can be obtained.
Tc℃から200℃までの温度範囲の平均冷却速度(3次冷却速度):0.2〜10℃/sec
Tc℃から200℃までの温度範囲を平均冷却速度0.2〜10℃/secで冷却することにより、フェライト中に過剰に残存する固溶Cを析出させて低YP化および高延性化を図ることができる。
Average cooling rate in the temperature range from Tc ° C to 200 ° C (third cooling rate): 0.2 to 10 ° C / sec
By cooling the temperature range from Tc ° C to 200 ° C at an average cooling rate of 0.2 to 10 ° C / sec, excessive solute C remaining in the ferrite can be precipitated to reduce YP and increase ductility. it can.
本発明の製造方法で製造された高強度冷延鋼板は、焼鈍ままの状態でYPElは0.5%未満であり、YPも十分に低いので、そのままプレス成形用鋼板として使用することができる。しかしながら、表面粗度の調整、板形状の平坦化などプレス成形性を安定化させる観点から通常スキンパス圧延を実施してもよい。その場合は、低YP、高El、高WH化の観点から伸長率は0.3〜0.5%とすることが好ましい。 The high-strength cold-rolled steel sheet produced by the production method of the present invention has an YPEl of less than 0.5% and a sufficiently low YP in the annealed state, and can be used as it is as a press-forming steel sheet. However, normal skin pass rolling may be performed from the viewpoint of stabilizing press formability such as adjustment of surface roughness and flattening of the plate shape. In that case, the elongation is preferably 0.3 to 0.5% from the viewpoint of low YP, high El, and high WH.
表1に示す鋼番A〜BBの鋼を溶製後、230mm厚のスラブに連続鋳造した。このスラブを1180〜1250℃に加熱後、830℃(鋼番A〜D、I、R〜V、X〜BB)、880℃(鋼番E〜H、J〜Q、W)の仕上圧延温度で熱間圧延を施した。その後、20℃/secの平均冷却速度で冷却し、540〜640℃の巻取温度で巻き取った。得られた熱延板は、酸洗後67〜78%の圧延率で冷間圧延し、板厚0.75mmの冷延板とした。得られた冷延板は、表2、3に示す680〜740℃の温度範囲における平均加熱速度、焼鈍温度、焼鈍温度から650℃までの温度範囲の1次平均冷却速度冷却速度、650℃からTc℃までの温度範囲の2次平均冷却速度、Tc℃から200℃までの温度範囲の3次平均冷却速度で焼鈍した。得られた焼鈍ままの、すなわちスキンパス圧延されてない鋼板から、圧延方向と直角方向よりJIS5号試験片を採取して引張試験(JISZ2241に準拠)を実施し、YP、TSを評価した。また、各成分組成の鋼板について焼鈍温度を760〜810℃の範囲で変化させたときのYPの最大値と最小値の差を求め、YPの変動量ΔYPとした。さらに、上記と同一の試験片に2%の予歪を付与し、170℃で20minの熱処理を施した後のYPの増加量であるBHを求めた。 Steels Nos. A to BB shown in Table 1 were melted and continuously cast into 230 mm thick slabs. After heating this slab to 1180-1250 ° C, finish rolling temperature of 830 ° C (steel numbers A to D, I, R to V, X to BB), 880 ° C (steel numbers E to H, J to Q, W) And then hot rolled. Then, it cooled at the average cooling rate of 20 degreeC / sec, and wound up with the coiling temperature of 540-640 degreeC. The obtained hot-rolled sheet was cold-rolled at a rolling rate of 67 to 78% after pickling to obtain a cold-rolled sheet having a thickness of 0.75 mm. The obtained cold-rolled sheet has an average heating rate in the temperature range of 680 to 740 ° C. shown in Tables 2 and 3, an annealing temperature, a primary average cooling rate in the temperature range from the annealing temperature to 650 ° C., from 650 ° C. Annealing was performed at a secondary average cooling rate in the temperature range from Tc ° C to a tertiary average cooling rate in the temperature range from Tc ° C to 200 ° C. From the obtained annealed steel sheet, that is, not subjected to skin pass rolling, a JIS No. 5 test piece was taken from the direction perpendicular to the rolling direction and subjected to a tensile test (based on JIS Z2241) to evaluate YP and TS. Further, the difference between the maximum value and the minimum value of YP when the annealing temperature was changed in the range of 760 to 810 ° C. with respect to the steel sheets having the respective component compositions was determined as the YP fluctuation amount ΔYP. Further, 2% pre-strain was applied to the same test piece as described above, and BH, which was an increase in YP after heat treatment at 170 ° C. for 20 minutes, was obtained.
結果を表2、3に示す。 The results are shown in Tables 2 and 3.
本発明例の鋼板は、同一TSレベルの材料と比較して低いYP、すなわち低いYRを有している。しかも、焼鈍温度に対するΔYPも小さく、YPの安定性に優れている。とりわけ、[Mneq]が2.1超で、かつ[%Cr]/[%Mn]が0.55以上に適正化され、さらに焼鈍時の加熱速度が3℃/sec未満に制御された鋼板では、Mnや固溶Cによる固溶強化が低減されるとともに、第2相が均一に粗大化しているので、YPが低く、ΔYPも小さい。例えば、鋼番Aに対して鋼番B、C、Dの鋼では、[Mneq]が増加しているが、[%Cr]/[%Mn]が0.34〜0.41の範囲なので、[Mneq]の増加にともないパーライト、ベイナイトの生成が抑制されるとともに、固溶Cが低減されるが、第2相が微細化し、加熱速度1.5℃/sec、焼鈍温度780℃の条件では、YPは191〜197MPa、焼鈍温度に対するΔYPは7〜9MPaの範囲にある。これに対して、[Mneq]を2.1超に増加させつつ[%Cr]/[%Mn]を0.55以上に調整した鋼番E、F、G、Hの鋼等では鋼番A、B、C、Dと同じ製造条件では、YPは172〜188MPa、焼鈍温度に対するΔYPは4〜6MPaと非常に低い。また、Cを増加させたときのYPの上昇も非常に小さく、Cを0.058%まで増加させた鋼番Kの鋼は、490MPaのTSに対して208MPaの非常に低いYPを有している。また、Cを0.072%まで増加させた鋼番Lの鋼は、541MPaのTSに対して230MPaの非常に低いYPを有している。つまり、この鋼では、Cを変化させてもΔYPが小さく、YRの低い鋼板が安定して得られる。さらに、MnとCrの組成範囲が適正化されているので、YPが低いにもかかわらず、高いBHを有している。 The steel sheet of the example of the present invention has a low YP, that is, a low YR, as compared with a material having the same TS level. Moreover, ΔYP with respect to the annealing temperature is small, and the stability of YP is excellent. In particular, in steel sheets with [Mneq] exceeding 2.1, [% Cr] / [% Mn] optimized to 0.55 or more, and the heating rate during annealing controlled to less than 3 ° C / sec, Mn and solid Solid solution strengthening due to dissolved C is reduced, and the second phase is uniformly coarsened, so that YP is low and ΔYP is also small. For example, [Mneq] increases in steel numbers B, C, and D with respect to steel number A, but [% Cr] / [% Mn] is in the range of 0.34 to 0.41, so [Mneq] With the increase, the formation of pearlite and bainite is suppressed, and the solid solution C is reduced. The ΔYP with respect to the annealing temperature is in the range of 7 to 9 MPa. On the other hand, steel numbers A, B, C for steel numbers E, F, G, H, etc. with [Mneq] increased to over 2.1 and [% Cr] / [% Mn] adjusted to 0.55 or more Under the same production conditions as D, YP is 172 to 188 MPa, and ΔYP with respect to the annealing temperature is 4 to 6 MPa, which is very low. In addition, the increase in YP when C is increased is very small. Steel No. K with C increased to 0.058% has a very low YP of 208 MPa against TS of 490 MPa. Steel No. L with C increased to 0.072% has a very low YP of 230 MPa against TS of 541 MPa. That is, in this steel, even if C is changed, a steel plate having a small ΔYP and a low YR can be obtained stably. Furthermore, since the composition range of Mn and Cr is optimized, it has a high BH despite a low YP.
これに対して、[Mneq]、焼鈍時の加熱速度や冷却速度が適正化されていない鋼では、同一TSクラスの本発明鋼と比べてYRが高い。[Mneq]が所定範囲にあっても、[%Cr]/[%Mn]が適正化されてない鋼番S、Vの鋼では、第2相が微細でMnの固溶強化量も大きいので、ΔYPとYPの両者が高い。また、BHも低い。Moが添加された鋼番Tの鋼では、第2相が微細化する傾向があり、YPが高く、ΔYPが大きい。C量が所定範囲になく、結果的として第2相の割合が所定範囲にない鋼番Uの鋼では、低いYRが得られない。P、Siの添加量の多い鋼番X、Yの鋼では、第2相は粗大化しているものの固溶強化量が大きくなりすぎ、低いYPが得られない。このように、従来鋼では、低いYP、小さいΔYP、高いBHの全てを兼ね備えた鋼板が得られない。 In contrast, [Mneq], a steel whose heating rate and cooling rate during annealing are not optimized, has a higher YR than the steel of the same TS class. Even if [Mneq] is within the specified range, the steels with steel numbers S and V, where [% Cr] / [% Mn] is not optimized, are fine in the second phase and have a large Mn solid solution strengthening amount. Both ΔYP and YP are high. BH is also low. In steel No. T to which Mo is added, the second phase tends to become finer, YP is high, and ΔYP is large. As a result, low YR cannot be obtained with steel No. U in which the amount of C is not within the predetermined range and, as a result, the ratio of the second phase is not within the predetermined range. In steels Nos. X and Y with a large amount of P and Si added, the second phase is coarsened, but the amount of solid solution strengthening becomes too large, and a low YP cannot be obtained. As described above, the conventional steel cannot obtain a steel plate having all of low YP, small ΔYP, and high BH.
Claims (6)
Tc=410-40×[%Mn]-30×[%Cr]・・・(1)
ここで、[Mneq]はMn当量であり、[Mneq]=[%Mn]+1.3×[%Cr]を表し、[%Mn]、[%Cr]は、それぞれMn、Crの含有量を表す。 As component composition, mass%, C: more than 0.01% and less than 0.08%, Si: 0.2% or less, Mn: 0.8% or more and less than 1.7%, P: 0.03% or less, S: 0.02% or less, sol.Al: 0.3% In the following, N: 0.01% or less, Cr: more than 0.4% and 2% or less, further satisfying 1.9 <[Mneq] <3 and 0.34 ≦ [% Cr] / [% Mn], from the remaining iron and inevitable impurities After the steel to be hot-rolled and cold-rolled, it is heated at an average heating rate of less than 3 ° C / sec in the temperature range of 680 to 740 ° C, and annealed at an annealing temperature of more than 740 ° C and less than 820 ° C. The temperature range from temperature to 650 ° C is cooled at an average cooling rate of 2 to 30 ° C / sec, and the temperature range from 650 ° C to Tc ° C given by the following formula (1) is average cooling of 10 ° C / sec or more. Cooling at a rate, and cooling the temperature range from Tc ° C. to 200 ° C. at an average cooling rate of 0.2 to 10 ° C./sec;
Tc = 410-40 × [% Mn] -30 × [% Cr] ... (1)
Here, [Mneq] is Mn equivalent and represents [Mneq] = [% Mn] + 1.3 × [% Cr], and [% Mn] and [% Cr] represent the contents of Mn and Cr, respectively. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008177468A JP5272548B2 (en) | 2007-07-11 | 2008-07-08 | Manufacturing method of high strength cold-rolled steel sheet with low yield strength and small material fluctuation |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007181947 | 2007-07-11 | ||
JP2007181947 | 2007-07-11 | ||
JP2008177468A JP5272548B2 (en) | 2007-07-11 | 2008-07-08 | Manufacturing method of high strength cold-rolled steel sheet with low yield strength and small material fluctuation |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009035816A JP2009035816A (en) | 2009-02-19 |
JP5272548B2 true JP5272548B2 (en) | 2013-08-28 |
Family
ID=40228711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008177468A Active JP5272548B2 (en) | 2007-07-11 | 2008-07-08 | Manufacturing method of high strength cold-rolled steel sheet with low yield strength and small material fluctuation |
Country Status (7)
Country | Link |
---|---|
US (1) | US20100326572A1 (en) |
EP (1) | EP2169083B1 (en) |
JP (1) | JP5272548B2 (en) |
KR (1) | KR101164471B1 (en) |
CN (1) | CN101688265B (en) |
CA (1) | CA2693787C (en) |
WO (1) | WO2009008548A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4623233B2 (en) | 2009-02-02 | 2011-02-02 | Jfeスチール株式会社 | High-strength hot-dip galvanized steel sheet and manufacturing method thereof |
JP4811528B2 (en) | 2009-07-28 | 2011-11-09 | Jfeスチール株式会社 | High-strength cold-rolled steel sheet and manufacturing method thereof |
PL2500445T3 (en) * | 2009-11-09 | 2020-08-10 | Nippon Steel Corporation | High-strength steel sheet having excellent processability and paint bake hardenability, and method for producing of high-strength steel sheet |
JP5703632B2 (en) * | 2010-08-31 | 2015-04-22 | Jfeスチール株式会社 | Warm press molding material and panel manufacturing method |
CN102409252A (en) * | 2010-09-21 | 2012-04-11 | 鞍钢股份有限公司 | Ultrahigh-strength cold-rolled steel plate and manufacturing method thereof |
CN102011056A (en) * | 2010-09-30 | 2011-04-13 | 广州珠江钢铁有限责任公司 | High-strength cold-rolled steel with yield strength of 550MPa level and preparation method thereof |
CN103469089B (en) * | 2013-09-11 | 2016-01-27 | 马鞍山市安工大工业技术研究院有限公司 | A kind of cheese crystal grain deep-draw dual phase sheet steel and preparation method thereof |
KR101795918B1 (en) | 2015-07-24 | 2017-11-10 | 주식회사 포스코 | Hot dip galvanized and galvannealed steel sheet having higher bake hardening and aging properties, and method for the same |
WO2020121034A1 (en) * | 2018-12-13 | 2020-06-18 | Arcelormittal | Steels for laser cutting |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55122821A (en) | 1979-03-15 | 1980-09-20 | Kawasaki Steel Corp | Manufacture of alloyed zinc-plated high tensile steel sheet with high workability |
JPS5929089B2 (en) * | 1979-07-31 | 1984-07-18 | 住友金属工業株式会社 | Method for manufacturing high-strength cold-rolled steel sheet with good workability |
JPH03277743A (en) * | 1990-03-27 | 1991-12-09 | Kawasaki Steel Corp | Ultrahigh tensile strength cold rolled steel sheet and its manufacture |
ATE353985T1 (en) * | 1998-12-07 | 2007-03-15 | Jfe Steel Corp | HIGH STRENGTH COLD ROLLED STEEL SHEET AND METHOD FOR PRODUCING SAME |
CN1295353C (en) | 2000-04-07 | 2007-01-17 | 川崎制铁株式会社 | Production method of cold-rolled plate and hot-dip galvanized sheet steel with good strain-aged hardening characteristics |
TW200604352A (en) * | 2004-03-31 | 2006-02-01 | Jfe Steel Corp | High-rigidity high-strength thin steel sheet and method for producing same |
JP4639996B2 (en) * | 2004-07-06 | 2011-02-23 | 住友金属工業株式会社 | Manufacturing method of high-tensile cold-rolled steel sheet |
JP4525383B2 (en) | 2005-02-25 | 2010-08-18 | Jfeスチール株式会社 | Low yield ratio high strength steel sheet with excellent bake hardening characteristics and method for producing the same |
-
2008
- 2008-07-08 JP JP2008177468A patent/JP5272548B2/en active Active
- 2008-07-10 CN CN2008800237842A patent/CN101688265B/en active Active
- 2008-07-10 WO PCT/JP2008/062873 patent/WO2009008548A1/en active Application Filing
- 2008-07-10 KR KR1020107000377A patent/KR101164471B1/en active IP Right Grant
- 2008-07-10 CA CA2693787A patent/CA2693787C/en not_active Expired - Fee Related
- 2008-07-10 US US12/668,057 patent/US20100326572A1/en not_active Abandoned
- 2008-07-10 EP EP08778224.9A patent/EP2169083B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
KR20100027209A (en) | 2010-03-10 |
CA2693787C (en) | 2012-02-07 |
EP2169083B1 (en) | 2018-03-14 |
CA2693787A1 (en) | 2009-01-15 |
CN101688265A (en) | 2010-03-31 |
EP2169083A4 (en) | 2015-05-20 |
CN101688265B (en) | 2011-06-22 |
JP2009035816A (en) | 2009-02-19 |
US20100326572A1 (en) | 2010-12-30 |
KR101164471B1 (en) | 2012-07-18 |
WO2009008548A1 (en) | 2009-01-15 |
EP2169083A1 (en) | 2010-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5272547B2 (en) | High-strength hot-dip galvanized steel sheet with low yield strength and small material fluctuation and method for producing the same | |
JP5042232B2 (en) | High-strength cold-rolled steel sheet excellent in formability and plating characteristics, galvanized steel sheet using the same, and method for producing the same | |
JP4811528B2 (en) | High-strength cold-rolled steel sheet and manufacturing method thereof | |
EP2772556B1 (en) | Method for producing high-strength steel sheet having superior workability | |
JP5272548B2 (en) | Manufacturing method of high strength cold-rolled steel sheet with low yield strength and small material fluctuation | |
KR101402365B1 (en) | Cold-rolled steel sheet having excellent slow-aging property and high curability in baking, and method for producing same | |
KR101607041B1 (en) | Method for producing high-strength cold-rolled steel sheet having excellent anti-aging property and bake hardening property | |
WO2013180180A1 (en) | High strength cold-rolled steel plate and manufacturing method therefor | |
WO2013054464A1 (en) | High-strength cold-rolled steel plate having excellent deep drawability and in-coil material uniformity, and method for manufacturing same | |
JP5302840B2 (en) | High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability | |
EP1731626B1 (en) | High-rigidity high-strength thin steel sheet and method for producing same | |
JP5151390B2 (en) | High-tensile cold-rolled steel sheet, high-tensile galvanized steel sheet, and methods for producing them | |
CN115505847B (en) | Cold-rolled ultrahigh-strength steel plate with excellent impact property and preparation method thereof | |
JP5310920B2 (en) | High strength cold-rolled steel sheet with excellent aging resistance and seizure hardening | |
JP2023071938A (en) | High strength steel sheet having excellent ductility and workability, and method for manufacturing the same | |
JP6780804B1 (en) | High-strength steel sheet and its manufacturing method | |
JP5286986B2 (en) | High strength hot-dip galvanized steel sheet with low yield strength and high bake hardenability and method for producing the same | |
JP2002226937A (en) | Cold rolled steel sheet and plated steel sheet capable of increasing strength by heat treatment after forming and method for producing the same | |
CN114763594A (en) | Cold-rolled steel sheet and method for manufacturing cold-rolled steel sheet | |
JP3812248B2 (en) | High-strength cold-rolled steel sheet with excellent surface properties and press formability and method for producing the same | |
KR102556444B1 (en) | Cold rolled steel sheet having excellent dent resistance property, galvanized steel sheet, and method of manufacturing the same | |
KR20240106710A (en) | High Strength cold rolled steel sheet having excellent dent resistance property and method of manufacturing the same | |
KR20230087773A (en) | Steel sheet having excellent strength and ductility, and manufacturing method thereof | |
KR20100117965A (en) | Steel sheet having excellent formability and galvanizing property, and method for producing the same | |
JP2019059963A (en) | Manufacturing method of steel sheet having low yield ratio |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110128 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120321 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120327 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130416 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130429 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5272548 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |