JP5256509B2 - Method for producing N-acetylglucosamine and use thereof - Google Patents

Method for producing N-acetylglucosamine and use thereof Download PDF

Info

Publication number
JP5256509B2
JP5256509B2 JP2008008898A JP2008008898A JP5256509B2 JP 5256509 B2 JP5256509 B2 JP 5256509B2 JP 2008008898 A JP2008008898 A JP 2008008898A JP 2008008898 A JP2008008898 A JP 2008008898A JP 5256509 B2 JP5256509 B2 JP 5256509B2
Authority
JP
Japan
Prior art keywords
acetylglucosamine
chitin
producing
solution
hydrochloric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008008898A
Other languages
Japanese (ja)
Other versions
JP2009167140A (en
Inventor
公彦 佐藤
太郎 赫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Chemical Co Ltd
Original Assignee
Koyo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Chemical Co Ltd filed Critical Koyo Chemical Co Ltd
Priority to JP2008008898A priority Critical patent/JP5256509B2/en
Publication of JP2009167140A publication Critical patent/JP2009167140A/en
Application granted granted Critical
Publication of JP5256509B2 publication Critical patent/JP5256509B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cosmetics (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)

Description

この発明は、高純度のN−アセチルグルコサミンを容易に得ることのできる、N−アセチルグルコサミンの製造方法、並びにその用途に関する。   The present invention relates to a method for producing N-acetylglucosamine, which can easily obtain high-purity N-acetylglucosamine, and uses thereof.

従来、蟹等の甲殻類から抽出されるキチンを濃塩酸等で加水分解することにより得られるグルコサミンが、単体、若しくは、コラーゲン等と共に錠剤等に成形され、若しくは、食品等に添加され、生体防御、疾病予防、老化制御等を目的とする機能性食品に使用されている。これに対し、N‐アセチルグルコサミンは、グルコサミンと同じくキチンを濃塩酸によって加水分解して得られるが、当該グルコサミンの場合と比較して、これより低い温度で加水分解して得られる。また、食品添加物公定書によれば、食品添加物として使用されるN−アセチルグルコサミンは、キチンを塩酸、及び酵素による加水分解にて得られるN−アセチルグルコサミンと明記されており、この公定書に基づいた生産方法が重要である。そして、N−アセチルグルコサミンはその機能については多くのデータは示されていないが、甘味料として爽やかな甘味を持っており、グルコサミンとは別の用途が期待されている。   Conventionally, glucosamine obtained by hydrolyzing chitin extracted from crustaceans such as salmon with concentrated hydrochloric acid or the like is molded into tablets or the like alone or with collagen, etc., or added to foods, etc. It is used in functional foods for the purpose of disease prevention and aging control. On the other hand, N-acetylglucosamine is obtained by hydrolyzing chitin with concentrated hydrochloric acid like glucosamine, but is obtained by hydrolysis at a temperature lower than that of glucosamine. In addition, according to the Food Additives Official Statement, N-acetylglucosamine used as a food additive is specified as N-acetylglucosamine obtained by hydrolysis of chitin with hydrochloric acid and enzymes. The production method based on is important. N-acetylglucosamine does not show much data on its function, but has a refreshing sweetness as a sweetener and is expected to be used in a different manner from glucosamine.

そして、N−アセチルグルコサミンの製造方法としては、キチンを濃塩酸を用いて加水分解した後、水酸化ナトリウムを用いて中和し、活性炭等を用いて脱色した後、イオン交換樹脂を用いてグルコサミンやヘテロオリゴ糖等を除去する。さらに、逆浸透膜(以下、RO膜)を用いてN−アセチルグルコサミンと、残存しているキチンオリゴ糖とを分配し、凍結乾燥やスプレードライヤーを用いて該N−アセチルグルコサミンを粉末化する方法が考案されている(例えば、特許文献1)。   And as a manufacturing method of N-acetylglucosamine, after hydrolyzing chitin using concentrated hydrochloric acid, neutralizing using sodium hydroxide, decolorizing using activated carbon, etc., and then using glucosamine using ion exchange resin And heterooligosaccharides are removed. Furthermore, N-acetylglucosamine and the remaining chitin oligosaccharide are distributed using a reverse osmosis membrane (hereinafter referred to as RO membrane), and the N-acetylglucosamine is pulverized using lyophilization or a spray dryer. Has been devised (for example, Patent Document 1).

特公平05−33037号公報Japanese Patent Publication No. 05-33037

しかし、食品等の工業用に使用されるN−アセチルグルコサミンを製造する際に、上述のようにRO膜での分配工程を経ることは時間的に大きなロスであり、また、設備投資のための資金も必要である。しかし、RO膜を用いてN−アセチルグルコサミンと残存しているキチンオリゴ糖とを分配しないと、当該N−アセチルグルコサミンの純度が低下すると共に、これらの物質がN−アセチルグルコサミンの結晶化を阻害するという問題が生じる。   However, when producing N-acetylglucosamine used for industrial purposes such as food, passing through the RO membrane distribution process as described above is a significant loss in time, and for capital investment. Funds are also needed. However, if N-acetylglucosamine and the remaining chitin oligosaccharide are not distributed using the RO membrane, the purity of the N-acetylglucosamine decreases and these substances inhibit the crystallization of N-acetylglucosamine. Problem arises.

さらに、N−アセチルグルコサミンの製造に使用されるキチンの初期分子量が高い場合には、これらを加水分解した際に、速やかに加水分解される箇所と、そうでない箇所とで加水分解に時間差が生じる。そのため、初期に加水分解された箇所は、キチンのおよそ全てが加水分解された時点では、既にN−アセチルグルコサミンがさらにグルコサミンに変換され、加水分解後の溶液中に該グルコサミンが多く混在するという問題が生じる。また、グルコサミンの発生を抑制しようとして加水分解時間を短縮した場合には、逆にキチンからN−アセチルグルコサミンへの分解過程で生じるキチンオリゴ糖等が加水分解後の溶液中に多く混在するという問題が生じる。   Furthermore, when the initial molecular weight of chitin used for the production of N-acetylglucosamine is high, when these are hydrolyzed, there is a time difference in hydrolysis between the portion that is rapidly hydrolyzed and the portion that is not. . Therefore, at the point where almost all of chitin is hydrolyzed, the portion hydrolyzed in the early stage has already been converted into N-acetylglucosamine further to glucosamine, and a lot of the glucosamine is mixed in the solution after hydrolysis. Occurs. In addition, when the hydrolysis time is shortened in order to suppress the generation of glucosamine, conversely, a large amount of chitin oligosaccharides and the like produced in the decomposition process from chitin to N-acetylglucosamine are mixed in the solution after hydrolysis. Occurs.

このように、加水分解後の溶液中にN−アセチルグルコサミン以外に、グルコサミンやキチンオリゴ糖等の夾雑物が混在すると、この溶液を濃縮しN−アセチルグルコサミンの結晶を得る際に、結晶性の悪いこれらの夾雑物が該N−アセチルグルコサミンの結晶化を阻害するという問題が生じる。また、グルコサミンやヘテロオリゴ糖等の夾雑物は、N−アセチルグルコサミンの結晶を得る際の加水分解後の溶液の濃縮工程において、着色の原因となり、得られるN−アセチルグルコサミンの外観を損なうという問題や、該N−アセチルグルコサミンの純度や歩留りを低下させるという問題も生じている。   Thus, when impurities such as glucosamine and chitin oligosaccharide are mixed in the hydrolyzed solution in addition to N-acetylglucosamine, when the solution is concentrated to obtain N-acetylglucosamine crystals, The problem arises that these bad contaminants inhibit the crystallization of the N-acetylglucosamine. In addition, impurities such as glucosamine and hetero-oligosaccharides cause coloration in the concentration step of the solution after hydrolysis when obtaining crystals of N-acetylglucosamine, and the appearance of the obtained N-acetylglucosamine is impaired. There is also a problem that the purity and yield of the N-acetylglucosamine are lowered.

この発明は上記のような種々の課題を解決することを目的としてなされたものであって、RO膜を使用せずとも高純度のN−アセチルグルコサミンを製造することができ、さらに、加水分解後の溶液中のグルサミンやヘテロオリゴ糖等の量を減少させたN−アセチルグルコサミンの製造方法、並びにその用途に関する。   The present invention has been made for the purpose of solving the various problems as described above, and can produce high-purity N-acetylglucosamine without using an RO membrane. The present invention relates to a method for producing N-acetylglucosamine in which the amount of glucamine, hetero-oligosaccharide, etc. in the solution of 1 is reduced, and its use.

上記目的を達成するために、請求項1記載のN−アセチルグルコサミンの製造方法は、アルカリによる脱タンパク工程、及び塩酸による脱カルシウム工程を経て得られるキチンを濃塩酸で加水分解して得られるN−アセチルグルコサミンの製造方法であって、前記キチンの0.2wt%ジメチルアセトアミド溶液の粘度が20〜200mPa・Sであることを特徴としている。   In order to achieve the above object, the method for producing N-acetylglucosamine according to claim 1 is characterized in that N obtained by hydrolyzing chitin obtained through a deproteinization step with alkali and a decalcification step with hydrochloric acid with concentrated hydrochloric acid. A method for producing acetylglucosamine, characterized in that the viscosity of a 0.2 wt% dimethylacetamide solution of chitin is 20 to 200 mPa · S.

請求項2記載のN−アセチルグルコサミンの製造方法は、前記脱カルシウム工程の温度が50〜70℃であることを特徴としている。   The method for producing N-acetylglucosamine according to claim 2 is characterized in that a temperature of the decalcification step is 50 to 70 ° C.

請求項3記載のN−アセチルグルコサミンの製造方法は、請求項1又は2記載のN−アセチルグルコサミンの製造方法において、前記キチンを濃塩酸で加水分解した後に、さらに、酵素によって加水分解することを特徴としている。   The method for producing N-acetylglucosamine according to claim 3 is the method for producing N-acetylglucosamine according to claim 1 or 2, wherein the chitin is hydrolyzed with concentrated hydrochloric acid and then hydrolyzed by an enzyme. It is a feature.

請求項4記載のN−アセチルグルコサミンの製造方法は、請求項1乃至3記載のN−アセチルグルコサミンの製造方法において、前記濃塩酸による加水分解を35〜50℃で2〜5時間行うことを特徴としている。   The method for producing N-acetylglucosamine according to claim 4 is the method for producing N-acetylglucosamine according to claims 1 to 3, wherein the hydrolysis with concentrated hydrochloric acid is performed at 35 to 50 ° C for 2 to 5 hours. It is said.

請求項1記載のN−アセチルグルコサミンの製造方法によれば、アルカリによる脱タンパク工程、及び塩酸による脱カルシウム工程を経て得られるキチンを濃塩酸で加水分解して得られるN−アセチルグルコサミンの製造方法であって、前記キチンの0.2wt%ジメチルアセトアミド溶液の粘度が20〜200mPa・Sである。これにより、N−アセチルグルコサミンを製造する際に使用されるキチンの初期分子量を該キチンの脱カルシウム工程において予め低くしたので、加水分解に使用される濃塩酸等と接触するだけで該キチンが膨潤し速やかに均一状態となって、これらのキチンを一度に加水分解させN−アセチルグルコサミンを得ることができる。   According to the method for producing N-acetylglucosamine according to claim 1, a method for producing N-acetylglucosamine obtained by hydrolyzing chitin obtained by the deproteinization step with alkali and the decalcification step with hydrochloric acid with concentrated hydrochloric acid. The viscosity of the 0.2 wt% dimethylacetamide solution of chitin is 20 to 200 mPa · S. As a result, the initial molecular weight of chitin used in producing N-acetylglucosamine was previously reduced in the decalcification step of the chitin, so that the chitin swells only by contacting with concentrated hydrochloric acid used for hydrolysis. And it becomes a uniform state quickly and can hydrolyze these chitin at a time and can obtain N-acetylglucosamine.

これにより、加水分解後の水可溶部に含まれる加水分解後の溶液中のキチンオリゴ糖の発生を抑制することができる。従って、加水分解後の溶液中に極微量に存在するグルコサミンやヘテロオリゴ糖等をイオン交換樹脂で除去すれば、キチンオリゴ糖を除去するために逆浸透膜(RO膜)を使用する必要がなく、N−アセチルグルコサミンの製造工程を簡略化することができ、さらに高純度のN−アセチルグルコサミンを得ることができる。また、加水分解物中のキチンオリゴ糖の発生を抑制したので、N−アセチルグルコサミンの結晶化が阻害されることなく、該N−アセチルグルコサミンを容易に結晶化することができる。さらに、加水分解後の溶液中にはグルコサミンやヘテロオリゴ糖等の着色物質をほとんど含まないので、該溶液の濃縮工程においてほとんど着色することなく、ほぼ白色の高純度のN−アセチルグルコサミンの結晶を得ることができる。   Thereby, generation | occurrence | production of the chitin oligosaccharide in the solution after the hydrolysis contained in the water soluble part after hydrolysis can be suppressed. Therefore, if glucosamine, hetero-oligosaccharides, etc. that are present in trace amounts in the hydrolyzed solution are removed with an ion exchange resin, there is no need to use a reverse osmosis membrane (RO membrane) to remove chitin oligosaccharides, The production process of N-acetylglucosamine can be simplified, and high-purity N-acetylglucosamine can be obtained. Moreover, since generation | occurrence | production of the chitin oligosaccharide in a hydrolyzate was suppressed, this N-acetylglucosamine can be crystallized easily, without inhibiting crystallization of N-acetylglucosamine. Furthermore, since the solution after hydrolysis hardly contains coloring substances such as glucosamine and hetero-oligosaccharide, almost white high-purity N-acetylglucosamine crystals are obtained with little coloration in the concentration step of the solution. be able to.

請求項2記載のN−アセチルグルコサミンの製造方法によれば、前記脱カルシウム工程の温度が50〜70℃である。これにより、請求項1の効果に加えて、キチンの0.2wt%ジメチルアセトアミド溶液の粘度を容易に20〜200mPa・Sとして分子量を低下させることができる。   According to the method for producing N-acetylglucosamine according to claim 2, the temperature of the decalcification step is 50 to 70 ° C. Thereby, in addition to the effect of Claim 1, the viscosity of the 0.2 wt% dimethylacetamide solution of chitin can be easily set to 20 to 200 mPa · S to reduce the molecular weight.

請求項3記載のN−アセチルグルコサミンの製造方法によれば、請求項1又は2記載のN−アセチルグルコサミンの製造方法において、前記キチンを濃塩酸で加水分解した後に、さらに、酵素によって加水分解している。ここで、加水分解後の溶液を濃縮した後、結晶とその母液とを分離するが、N−アセチルグルコサミンの製造の歩留りを向上するためには、該母液をさらに次バッチのN−アセチルグルコサミンの製造工程において再び使用することが好ましい。しかし、加水分解後の溶液に極微量に含まれ、結晶性の乏しいキチンオリゴ糖が母液の再利用の度に増加し、次バッチのN−アセチルグルコサミンの結晶化を阻害する可能性がある。   According to the method for producing N-acetylglucosamine according to claim 3, in the method for producing N-acetylglucosamine according to claim 1 or 2, the chitin is hydrolyzed with concentrated hydrochloric acid and further hydrolyzed with an enzyme. ing. Here, after concentrating the hydrolyzed solution, the crystal and its mother liquor are separated. In order to improve the production yield of N-acetylglucosamine, the mother liquor is further added to the next batch of N-acetylglucosamine. It is preferably used again in the manufacturing process. However, a very small amount of chitin oligosaccharide which is contained in a very small amount in the hydrolyzed solution increases every time the mother liquor is reused, and there is a possibility that the crystallization of N-acetylglucosamine in the next batch may be inhibited.

そのため、濃塩酸による加水分解後に、さらに、酵素による加水分解工程を経ることで、極微量のキチンオリゴ糖に至るまでN−アセチルグルコサミンに加水分解することができるので、該N−アセチルグルコサミンの結晶化をさらに容易にすることにより歩留りの向上に大きく貢献することができる。また、食品添加物公定書においては、キチンを加水分解してN−アセチルグルコサミンとする場合には、その工程中に酵素による加水分解工程を経ることが必須とされている。そのため、酵素による加水分解工程を経た本発明に係るN−アセチルグルコサミンは食品添加物として使用することができる。   Therefore, after hydrolysis with concentrated hydrochloric acid, it can be further hydrolyzed to N-acetylglucosamine by passing through an enzymatic hydrolysis step to reach a very small amount of chitin oligosaccharide. Making the process easier can contribute greatly to the improvement of the yield. In addition, in the food additive official document, when chitin is hydrolyzed to N-acetylglucosamine, it is essential to undergo an enzymatic hydrolysis step during that step. Therefore, the N-acetylglucosamine which concerns on this invention which passed through the hydrolysis process by an enzyme can be used as a food additive.

請求項4記載のN−アセチルグルコサミンの製造方法によれば、請求項1乃至3記載のN−アセチルグルコサミンの製造方法において、前記加水分解を35〜50℃で2〜5時間行うものである。これにより、予め低分子量化されたキチンを効率的に均一に加水分解することができ、キチンオリゴ糖、グルコサミン、ヘテロオリゴ糖等のN−アセチルグルコサミン以外の夾雑物の発生を抑制することができる。   According to the method for producing N-acetylglucosamine according to claim 4, in the method for producing N-acetylglucosamine according to claims 1 to 3, the hydrolysis is performed at 35 to 50 ° C for 2 to 5 hours. Thereby, chitin previously reduced in molecular weight can be efficiently and uniformly hydrolyzed, and generation of impurities other than N-acetylglucosamine, such as chitin oligosaccharide, glucosamine, and heterooligosaccharide, can be suppressed.

この発明におけるN−アセチルグルコサミンの製造方法の最良の実施形態について、以下に説明する。本発明に係るN−アセチルグルコサミンの製造方法は、キチンを濃塩酸で加水分解するものである。   The best embodiment of the method for producing N-acetylglucosamine in the present invention will be described below. The method for producing N-acetylglucosamine according to the present invention hydrolyzes chitin with concentrated hydrochloric acid.

前記キチンは、甲殻類の外骨格等に含まれるアミノ多糖類のことで、化学式は、アセチルグルコサミンが、繰り返して連結したポリ−N−アセチルグルコサミンからなり下記の構造式(I)に示される天然高分子である。   The chitin is an aminopolysaccharide contained in the crustacean exoskeleton and the like, and the chemical formula consists of poly-N-acetylglucosamine in which acetylglucosamine is linked repeatedly and is represented by the following structural formula (I) It is a polymer.

Figure 0005256509
Figure 0005256509

そして、キチンは一般的にエビ殻やカニ殻等が原料として使用されるが、カニ殻等はキチンの他に炭酸カルシウム、タンパク質等を含有しており、これらを除去する必要がある。そのため、カニ殻等からキチンを製造する際には、アルカリによる脱タンパク工程、及び酸による脱カルシウム工程を経て該キチンが得られる。   As chitin, shrimp shells and crab shells are generally used as raw materials. Crab shells and the like contain calcium carbonate, protein and the like in addition to chitin, and it is necessary to remove them. Therefore, when manufacturing chitin from a crab shell etc., this chitin is obtained through the deproteinization process by an alkali and the decalcification process by an acid.

また、本実施形態ではカニ殻を使用しているが、これを使用する場合には、カニ殻内に残存しているタンパク質の変性により該カニ殻が劣化しないように、入荷後速やかに該カニ殻をこれらの工程により、キチン、或いは、さらに処理を行ってキトサン等に変換することが好ましい。   In this embodiment, the crab shell is used. When this crab shell is used, the crab shell is promptly received after arrival so that the crab shell does not deteriorate due to the denaturation of the protein remaining in the crab shell. It is preferable that the shell is converted into chitosan or the like by carrying out further treatment by these steps.

脱カルシウム工程、及び脱タンパク工程はどちらを先に行ってもよいが、これらの工程を行なう前に、カニ殻等の付着物を流水等で除去し乾燥させ、該カニ殻を粉砕する。そして、脱タンパク工程では、粉砕されたカニ殻に希アルカリを添加して脱タンパクを行う。この際には、希アルカリとして5%前後の水酸化ナトリウムを使用し、80℃以上で3時間程度、脱タンパク工程を行う。   Either the decalcification process or the deproteinization process may be performed first, but before performing these processes, the deposits such as crab shells are removed with running water or the like and dried, and the crab shells are pulverized. In the deproteinization step, deproteinization is performed by adding a dilute alkali to the crushed crab shell. At this time, about 5% sodium hydroxide is used as a dilute alkali, and the deproteinization step is performed at 80 ° C. or more for about 3 hours.

そして、脱タンパク後のカニ殻に酸を添加し強攪拌して脱カルシウム工程を行う。この際には、酸として5〜15%の希塩酸を使用し、N−アセチルグルコサミン生産用原料としてのキチンを得る場合は、50〜70℃で2〜4時間程度、好適には55℃で3時間程度脱カルシウム工程を行うことが好ましく、これにより、予めキチンを低分子量化することができる。   Then, acid is added to the crab shell after deproteinization and the mixture is vigorously stirred to perform the decalcification step. In this case, when 5 to 15% dilute hydrochloric acid is used as the acid and chitin is obtained as a raw material for producing N-acetylglucosamine, it is 50 to 70 ° C. for about 2 to 4 hours, preferably 3 to 55 ° C. It is preferable to carry out a decalcification step for about an hour, whereby chitin can be reduced in molecular weight in advance.

また、脱カルシウム工程において、一般的なキチン生産方法に則って反応温度が50度よりも低い室温等で処理した場合は、キチンの分子量は高いままキチン化される。これを濃塩酸で加水分解させた場合、反応が不均一に進行し、加水分解後の水可溶部にはN−アセチルグルコサミンの他にキチンオリゴ糖、ヘテロオリゴ糖、グルコサミン等を含む反応液が得られる。これらが夾雑物となってN−アセチルグルコサミンの結晶化が難しくなる。そして、脱カルシウムの温度が70℃より高い場合は、歩留まりの低下、エネルギーコストの上昇等が考えられ、効率的な生産には不適である。   Further, in the decalcification step, when the reaction is performed at a room temperature or the like where the reaction temperature is lower than 50 degrees in accordance with a general chitin production method, the chitin is chitinated with a high molecular weight. When this is hydrolyzed with concentrated hydrochloric acid, the reaction proceeds non-uniformly, and a reaction solution containing chitin oligosaccharide, heterooligosaccharide, glucosamine, etc. in addition to N-acetylglucosamine is present in the water-soluble part after hydrolysis. can get. These become impurities and it is difficult to crystallize N-acetylglucosamine. And when the temperature of decalcification is higher than 70 degreeC, the fall of a yield, the raise of energy cost, etc. can be considered, and it is unsuitable for efficient production.

また、キチンは、一般的に使用されるテトラヒドロフランやクロロホルム等の有機溶媒に溶解しないことから、Gel Permeation Chromatography(GPC)等で分子量の測定をすることが困難である。そのため、本実施形態では、キチンが可溶な塩化リチウムの8wt%ジメチルアセトアミド溶液を用いて、キチンの0.2wt%ジメチルアセトアミド溶液を作成し、これを例えば回転粘度計等を用いて恒温条件下で粘度測定を行い、測定された粘度から分子量の評価を行っている。   Moreover, since chitin does not dissolve in commonly used organic solvents such as tetrahydrofuran and chloroform, it is difficult to measure the molecular weight by Gel Permeation Chromatography (GPC) or the like. Therefore, in this embodiment, a 0.2 wt% dimethylacetamide solution of chitin is prepared using an 8 wt% dimethylacetamide solution of lithium chloride in which chitin is soluble, and this is subjected to isothermal conditions using, for example, a rotary viscometer or the like. Viscosity measurement is performed, and molecular weight is evaluated from the measured viscosity.

以上のように製造されるキチンの0.2wt%ジメチルアセトアミド溶液の粘度測定を行った結果、これらの粘度は20〜100mPa・Sであった。一方、上述の脱タンパク工程を常温下で行った場合は、同様にして粘度を測定したところ、1000〜3000mPa・Sであった。これらの結果より、キチン製造の際の脱カルシウム工程を常温で行うよりも、50〜70℃で行った方が、反応効率がよく、より分子鎖が切断され該キチンが低分子量化されていることがわかる。そして、予め低分子量化されたキチン使用することで該キチンを一度に加水分解することができ、グルコサミンやキチンオリゴ糖等の夾雑物をほとんど含有しない下記の構造式(II)に示されるN−アセチルグルコサミンを得ることができる。   As a result of measuring the viscosity of the 0.2 wt% dimethylacetamide solution of chitin produced as described above, these viscosities were 20 to 100 mPa · S. On the other hand, when the above-mentioned deproteinization step was performed at room temperature, the viscosity was measured in the same manner, and it was 1000 to 3000 mPa · S. From these results, the reaction efficiency is better when the decalcification step in the production of chitin is performed at room temperature than at normal temperature, and the molecular chain is cut and the chitin is reduced in molecular weight. I understand that. The chitin can be hydrolyzed at once by using chitin having a low molecular weight in advance, and N--shown in the following structural formula (II) containing almost no impurities such as glucosamine and chitin oligosaccharide. Acetylglucosamine can be obtained.

Figure 0005256509
Figure 0005256509

以上のようにして低分子量化されたキチンを用いたN−アセチルグルコサミンの製造方法を以下に示す。   A method for producing N-acetylglucosamine using chitin reduced in molecular weight as described above is shown below.

〔実施例1〕
キチンの0.2wt%ジメチルアセトアミド溶液の粘度が20〜200mPa・Sであるキチン400gに、該キチンに対して5倍量である2.0kgの35%の濃塩酸を加え、約43℃で4時間加水分解を行った。反応液は速やかに均一となり、反応を停止するために水酸化ナトリウム溶液等の濃アルカリ溶液を投入し、pHが5.0〜6.0程度に中和した。この際には、濃塩酸と水酸化ナトリウム溶液との中和反応熱によって、反応液の温度が60℃以上にならないように適宜氷を反応液に投入する。
[Example 1]
To 400 g of chitin having a viscosity of 20 to 200 mPa · S of a 0.2 wt% dimethylacetamide solution of chitin, 2.0 kg of 35% concentrated hydrochloric acid, which is 5 times the amount of the chitin, is added, and 4% at 43 ° C. Time hydrolysis was performed. The reaction solution became uniform quickly, and a concentrated alkali solution such as sodium hydroxide solution was added to neutralize the reaction solution to a pH of about 5.0 to 6.0. At this time, ice is appropriately added to the reaction solution so that the temperature of the reaction solution does not exceed 60 ° C. due to the heat of neutralization reaction between concentrated hydrochloric acid and sodium hydroxide solution.

これにより、90%以上の水溶化部を得ることができ、得られた加水分解後の溶液を活性炭を用いて脱色を行った後、電気透析装置によって脱塩処理を行う。そして、イオン交換樹脂によって、溶液中に残存する微量のグルコサミンやヘテロオリゴ糖等を除去し、再度活性炭による脱色を行った後、溶液を濃縮することによりN−アセチルグルコサミンの結晶を得た。こうして得られたN−アセチルグルコサミンの結晶は、ろ過によって結晶と母液とに分けられた後、乾燥され、純度が98%以上のN−アセチルグルコサミンの結晶が得られた。また、母液は、N−アセチルグルコサミンの歩留り向上のために、次バッチのN−アセチルグルコサミン製造における、濃縮工程の溶液等に加えられ繰り返し使用される。   Thereby, 90% or more of the water-solubilized part can be obtained, and after the obtained hydrolyzed solution is decolorized using activated carbon, it is desalted by an electrodialyzer. Then, trace amounts of glucosamine, hetero-oligosaccharides and the like remaining in the solution were removed with an ion exchange resin, decolorization with activated carbon was performed again, and then the solution was concentrated to obtain N-acetylglucosamine crystals. The N-acetylglucosamine crystals thus obtained were separated into a crystal and a mother liquor by filtration and then dried to obtain N-acetylglucosamine crystals having a purity of 98% or more. Further, the mother liquor is repeatedly added to the solution in the concentration step in the production of the next batch of N-acetylglucosamine in order to improve the yield of N-acetylglucosamine.

そして、加水分解に使用される濃塩酸の量はキチンに対して3〜6倍量、好適には4〜5倍量が好ましく、3倍量よりも少ない場合には、キチンを十分に加水分解することができず水不溶部が多く残り、また、6倍量よりも多い場合には、キチンを十分に加水分解することができるものの、その後の中和や脱塩処理の工程に手間がかかる。そして、加水分解時間は2時間〜5時間程度、好適には3〜4時間が好ましく、2時間よりも短い場合には、キチンを十分に加水分解することができず水不溶部が多く残り、また、5時間よりも長い場合は生産効率が悪くなる。   The amount of concentrated hydrochloric acid used for hydrolysis is 3 to 6 times the amount of chitin, preferably 4 to 5 times the amount, and if less than 3 times the amount, the chitin is sufficiently hydrolyzed. If the amount of water-insoluble parts cannot be increased and more than 6 times the amount, chitin can be sufficiently hydrolyzed, but the subsequent neutralization and desalting processes are time-consuming. . And, the hydrolysis time is about 2 hours to 5 hours, preferably 3 to 4 hours, and when shorter than 2 hours, chitin cannot be sufficiently hydrolyzed, leaving many water-insoluble parts, Moreover, when it is longer than 5 hours, the production efficiency is deteriorated.

また、反応温度は35〜50℃程度、好適には40〜45℃が好ましく、35℃よりも低い場合にはキチンを十分に加水分解することができず水不溶部が多く残り、また、50℃よりも高い場合には生産効率が悪くなる。そして、濃塩酸としては市販の25〜35%程度、好適には35%の濃塩酸を適宜使用することができる。   The reaction temperature is preferably about 35 to 50 ° C., preferably 40 to 45 ° C. If it is lower than 35 ° C., chitin cannot be sufficiently hydrolyzed, leaving many water-insoluble parts, and 50 When it is higher than ° C, the production efficiency is deteriorated. As the concentrated hydrochloric acid, commercially available concentrated hydrochloric acid of about 25 to 35%, preferably 35% can be appropriately used.

また、実施例1のようにイオン交換樹脂を用いて脱グルコサミンや脱ヘテロオリゴ糖を行ったほうが、加水分解後の溶液を濃縮する工程において、溶液中に存在するグルコサミンやヘテロオリゴ糖等の着色物質が着色し、最終的に得られるN−アセチルグルコサミンが着色することがなく好ましい。しかし、予め低分子量化したキチンを使用し、該キチンを一度に低分子量化しているので、グルコサミンやヘテロオリゴ糖等が極めて生じにくいため、イオン交換樹脂でこれらを除去する工程を設けなくともほぼ白色のN−アセチルグルコサミンの結晶を得ることができる。   In addition, when deglucosamine or dehetero-oligosaccharide is performed using an ion exchange resin as in Example 1, in the step of concentrating the hydrolyzed solution, colored substances such as glucosamine and hetero-oligosaccharide present in the solution are present. N-acetylglucosamine which is colored and finally obtained is preferred without being colored. However, since chitin with a low molecular weight is used in advance and the chitin is reduced in molecular weight at a time, glucosamine, hetero-oligosaccharides, etc. are very unlikely to occur, so it is almost white without providing a process for removing these with an ion exchange resin. N-acetylglucosamine crystals can be obtained.

また、予め低分子量化したキチンを使用しているので、キチンオリゴ糖の発生も抑えることができ、該キチンオリゴ糖とN−アセチルグルコサミンとを逆浸透膜(RO膜)や液体クロマト分離等を用いてこれらを分配する必要がない。また、逆浸透膜を用いてキチンオリゴ糖とN−アセチルグルコサミンとを分配する工程を設けても該N−アセチルグルコサミンの結晶を得ることができるのは勿論である。   In addition, since chitin with a low molecular weight is used in advance, the generation of chitin oligosaccharides can be suppressed, and the chitin oligosaccharide and N-acetylglucosamine can be separated by reverse osmosis membrane (RO membrane) or liquid chromatography separation. There is no need to use them to distribute them. Of course, the N-acetylglucosamine crystals can be obtained even if a step of partitioning chitin oligosaccharides and N-acetylglucosamine using a reverse osmosis membrane is provided.

また、予め低分子量化されたキチンを使用することにより、濃塩酸による加水分解後の容器中にはキチンオリゴ糖が極微量しか含まれていないので、分解酵素を使用した加水分解工程を省略することも可能である。しかし、前述のように次バッチのN−アセチルグルコサミン製造の際に母液を再び使用する場合には、再利用ごとに該母液中の極微量のキチンオリゴ糖の割合が高くなり、N−アセチルグルコサミンの結晶化を阻害する原因となり得るので、実施例1において得られた濃縮前の濃塩酸による加水分解後の溶液中に分解酵素を加えて加水分解することが好ましい。また、加水分解に使用される分解酵素としては、N−アセチル−D−グルコサミニダーゼを含有した混合酵素や、菌体外粗酵素にN−アセチル−D−グルコサミニダーゼを含有するトリコデルマ菌等を好適に使用できる。そして、分解酵素を加えて約37℃で20時間程度加水分解することによって確実にキチンオリゴ糖をN−アセチルグルコサミンにすることができる。   In addition, by using chitin with a low molecular weight in advance, the container after hydrolysis with concentrated hydrochloric acid contains a very small amount of chitin oligosaccharide, so the hydrolysis step using a degrading enzyme is omitted. It is also possible. However, as described above, when the mother liquor is used again in the production of the next batch of N-acetylglucosamine, the amount of the extremely small amount of chitin oligosaccharide in the mother liquor increases with each reuse. Therefore, it is preferable to hydrolyze by adding a degrading enzyme to the solution after hydrolysis with concentrated hydrochloric acid before concentration obtained in Example 1. In addition, as a degrading enzyme used for hydrolysis, a mixed enzyme containing N-acetyl-D-glucosaminidase or Trichoderma bacterium containing N-acetyl-D-glucosaminidase as an extracellular crude enzyme is preferably used. it can. The chitin oligosaccharide can be reliably converted to N-acetylglucosamine by adding a degrading enzyme and hydrolyzing at about 37 ° C. for about 20 hours.

ここで、N−アセチルグルコサミンを食品添加物として使用する場合には、食品添加物公定書によれば、キチンからN−アセチルグルコサミンを製造する過程において、酵素による加水分解工程を経る必要がある。そのため、前述のように分解酵素によって得られたN−アセチルグルコサミンは食品添加物としても菓子類や乳製品等の食品に甘味料等として好適に添加することができる。また、N−アセチルグルコサミンは経皮摂取による美肌効果を期待できることから、液体、クリーム状等の化粧料に好適に添加することもできる。さらに、N−アセチルグルコサミンは経口摂取による美肌効果を期待できることから、該N−アセチルグルコサミンをコラーゲン、ヒアルロン酸、各種ビタミン等と錠剤成形することで、美肌促進剤として使用することもできる。   Here, when N-acetylglucosamine is used as a food additive, according to the official standard for food additives, it is necessary to undergo an enzymatic hydrolysis step in the process of producing N-acetylglucosamine from chitin. Therefore, N-acetylglucosamine obtained by the degrading enzyme as described above can be suitably added as a sweetener or the like to foods such as confectionery and dairy products as food additives. Moreover, since N-acetylglucosamine can expect the skin beautifying effect by percutaneous ingestion, it can also be suitably added to cosmetics such as liquids and creams. Furthermore, since N-acetylglucosamine can be expected to have a skin beautifying effect when taken orally, it can also be used as a skin beautifying agent by tableting the N-acetylglucosamine with collagen, hyaluronic acid, various vitamins and the like.

〔比較例1〕
キチンの0.2wt%ジメチルアセトアミド溶液の粘度が1000〜3000mPa・Sであるキチンを用いて、実施例1と同様にN−アセチルグルコサミンの製造を行った。この場合には、加水分解後の溶液をイオン交換樹脂でグルコサミンやヘテロオリゴ糖等を除去し濃縮したが、該溶液にキチンオリゴ糖が多く含まれるためN−アセチルグルコサミンの結晶化が阻害され、該N−アセチルグルコサミンの結晶を得ることができなかった。そして、塩酸加水分解後の水溶部が残渣として多く20%程度残り、キチンオリゴ糖も多く残った。
[Comparative Example 1]
N-acetylglucosamine was produced in the same manner as in Example 1 using chitin in which the viscosity of a 0.2 wt% dimethylacetamide solution of chitin was 1000 to 3000 mPa · S. In this case, the hydrolyzed solution was concentrated by removing glucosamine, hetero-oligosaccharides and the like with an ion exchange resin, but because the solution contains a large amount of chitin oligosaccharide, crystallization of N-acetylglucosamine was inhibited, N-acetylglucosamine crystals could not be obtained. And about 20% of the water-soluble part after hydrochloric acid hydrolysis remained as a residue, and a large amount of chitin oligosaccharide remained.

〔比較例2〕
濃塩酸の量をキチンの2倍量とし、反応時間を2.5時間とした以外は実施例1と同様にしてN−アセチルグルコサミンの製造を行った。この場合は、水可溶部が55%程度であり、また、該水可溶部中のN−アセチルグルコサミンは54%であり、その他はグルコサミン、ヘテロオリゴ糖、キチンオリゴ糖等であった。そのため、加水分解後の溶液をイオン交換樹脂でグルコサミンやヘテロオリゴ糖等を除去し濃縮したが、該溶液にキチンオリゴ糖が多く含まれるためN−アセチルグルコサミンの結晶化が阻害され、速やかに該N−アセチルグルコサミンの結晶を得ることができなかった。
[Comparative Example 2]
N-acetylglucosamine was produced in the same manner as in Example 1 except that the amount of concentrated hydrochloric acid was twice that of chitin and the reaction time was 2.5 hours. In this case, the water-soluble part was about 55%, N-acetylglucosamine in the water-soluble part was 54%, and the others were glucosamine, hetero-oligosaccharide, chitin oligosaccharide and the like. Therefore, the hydrolyzed solution was concentrated by removing glucosamine, hetero-oligosaccharides and the like with an ion exchange resin. However, since the solution contains a large amount of chitin oligosaccharide, crystallization of N-acetylglucosamine was inhibited, and the N -Crystals of acetylglucosamine could not be obtained.

本発明に係るN−アセチルグルコサミンの製造方法は、実験室レベルの小スケールから、プラント等の大型設備における大量生産まで幅広く適応することができる。   The method for producing N-acetylglucosamine according to the present invention can be widely applied from a small scale at a laboratory level to mass production in a large facility such as a plant.

Claims (4)

アルカリによる脱タンパク工程、及び酸による脱カルシウム工程を経て得られるキチンを濃塩酸で加水分解して得られるN−アセチルグルコサミンの製造方法であって、
前記キチンの0.2wt%ジメチルアセトアミド溶液の粘度が20〜200mPa・Sであることを特徴とするN−アセチルグルコサミンの製造方法。
A method for producing N-acetylglucosamine obtained by hydrolyzing chitin obtained by deproteinization step with alkali and decalcification step with acid with concentrated hydrochloric acid,
A method for producing N-acetylglucosamine, wherein a viscosity of a 0.2 wt% dimethylacetamide solution of chitin is 20 to 200 mPa · S.
前記脱カルシウム工程の温度が50〜70℃であることを特徴とする請求項1記載のN−アセチルグルコサミンの製造方法。   The temperature of the said decalcification process is 50-70 degreeC, The manufacturing method of the N-acetylglucosamine of Claim 1 characterized by the above-mentioned. 請求項1又は2記載のN−アセチルグルコサミンの製造方法において、
前記キチンを濃塩酸で加水分解した後に、さらに、酵素によって加水分解することを特徴とするN−アセチルグルコサミンの製造方法。
The method for producing N-acetylglucosamine according to claim 1 or 2,
A method for producing N-acetylglucosamine, wherein the chitin is hydrolyzed with concentrated hydrochloric acid and then hydrolyzed with an enzyme.
請求項1乃至3記載のN−アセチルグルコサミンの製造方法において、
前記濃塩酸による加水分解を35〜50℃で2〜5時間行うことを特徴とするN−アセチルグルコサミンの製造方法。
In the manufacturing method of N-acetylglucosamine of Claims 1 thru | or 3,
A method for producing N-acetylglucosamine, wherein the hydrolysis with concentrated hydrochloric acid is performed at 35 to 50 ° C. for 2 to 5 hours.
JP2008008898A 2008-01-18 2008-01-18 Method for producing N-acetylglucosamine and use thereof Active JP5256509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008008898A JP5256509B2 (en) 2008-01-18 2008-01-18 Method for producing N-acetylglucosamine and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008008898A JP5256509B2 (en) 2008-01-18 2008-01-18 Method for producing N-acetylglucosamine and use thereof

Publications (2)

Publication Number Publication Date
JP2009167140A JP2009167140A (en) 2009-07-30
JP5256509B2 true JP5256509B2 (en) 2013-08-07

Family

ID=40968764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008008898A Active JP5256509B2 (en) 2008-01-18 2008-01-18 Method for producing N-acetylglucosamine and use thereof

Country Status (1)

Country Link
JP (1) JP5256509B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5426099B2 (en) * 2008-02-14 2014-02-26 南海化学株式会社 Process for producing natural N-acetylglucosamine
JP5714963B2 (en) * 2011-04-11 2015-05-07 甲陽ケミカル株式会社 Method for producing chitin degradation product
ES2843877T3 (en) 2016-04-27 2021-07-20 Showa Denko Kk Methods for producing oligomer of chitin, N-acetylglucosamine, and 1-O-alkyl-N-acetylglucosamine
CN106008615B (en) * 2016-06-01 2018-07-13 江苏澳新生物工程有限公司 The method that chitin prepares 2-acetylamino-2-deoxy-D-glucose

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913708A (en) * 1982-07-14 1984-01-24 Shiseido Co Ltd Cosmetic
JPS63273493A (en) * 1987-04-30 1988-11-10 Kyogyo Kumiai N F I Production of n-acetyl-d-glucosamine
JP2901176B2 (en) * 1994-07-27 1999-06-07 日本化薬株式会社 Low viscosity chitosan and method for producing the same
JP2000281696A (en) * 1999-03-29 2000-10-10 Yaizu Suisankagaku Industry Co Ltd Production of natural type n-acetyl-d-glucosamine
JP4276500B2 (en) * 2003-09-10 2009-06-10 焼津水産化学工業株式会社 Method for producing saccharide composition containing N-acetylglucosamine and method for producing food and drink using the method
JP4672994B2 (en) * 2004-03-31 2011-04-20 焼津水産化学工業株式会社 Method for producing chitin degradation product

Also Published As

Publication number Publication date
JP2009167140A (en) 2009-07-30

Similar Documents

Publication Publication Date Title
Struszczyk Chitin and chitosan. Part I. Properties and production
US7923437B2 (en) Water soluble β-glucan, glucosamine, and N-acetylglucosamine compositions and methods for making the same
CN105837708B (en) The method for preparing chitosan as raw material using shrimp and crab shells
US20140100361A1 (en) Extraction of chitins in a single step by enzymatic hydrolysis in an acid medium
JPH0558002B2 (en)
KR101757776B1 (en) Film Manufacturing Method Using Fucoidan Extracted from Marine Algae
BRPI0709666A2 (en) glycosamine and n-acetylglycosamine compositions and methods of producing them from fungal biomass
JP5256509B2 (en) Method for producing N-acetylglucosamine and use thereof
CN103554303B (en) A kind of method of purifying cm-chitosan
JP2000281696A (en) Production of natural type n-acetyl-d-glucosamine
CN112375159A (en) Method for preparing chitosan by comprehensively treating shrimp and crab shells
CN110241155B (en) Production process for extracting D-glucosamine by enzymolysis method and product thereof
JP5426099B2 (en) Process for producing natural N-acetylglucosamine
CN110615855B (en) Method for preparing water-soluble oligomeric derivative by dissolving and degrading biological polysaccharide
CN106243245B (en) A kind of preparation method of chitosan
JP4588205B2 (en) Chitin oligosaccharide production method
JPH11255803A (en) Phospholic acid-bonding starch having high ca-solubilizing activity, oligosaccharide composition thereof and manufacture thereof
KR100383414B1 (en) Method of making useing agar oligosaccharide for edible acetic acid
JP2022099414A (en) Chitin dissolving solvent and chitin elution method
JPS6121102A (en) Preparation of chitosan oligosaccharide
JP5714963B2 (en) Method for producing chitin degradation product
WO2003066682A1 (en) Method for deproteinization of chitosan
JP2018053067A (en) Manufacturing method of amorphous chitin and application thereof
JPS6363701A (en) Production of water-soluble chitosan of lowered molecular weight
JPS62292802A (en) Purification of chitosan

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5256509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250