JP5250301B2 - Mold manufacturing method - Google Patents

Mold manufacturing method Download PDF

Info

Publication number
JP5250301B2
JP5250301B2 JP2008118942A JP2008118942A JP5250301B2 JP 5250301 B2 JP5250301 B2 JP 5250301B2 JP 2008118942 A JP2008118942 A JP 2008118942A JP 2008118942 A JP2008118942 A JP 2008118942A JP 5250301 B2 JP5250301 B2 JP 5250301B2
Authority
JP
Japan
Prior art keywords
acid
weight
mold
sand
curing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008118942A
Other languages
Japanese (ja)
Other versions
JP2009269039A (en
Inventor
俊樹 松尾
由光 伊奈
茂夫 仲井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2008118942A priority Critical patent/JP5250301B2/en
Publication of JP2009269039A publication Critical patent/JP2009269039A/en
Application granted granted Critical
Publication of JP5250301B2 publication Critical patent/JP5250301B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Mold Materials And Core Materials (AREA)

Description

本発明は、再生鋳物砂を用いた鋳型の製造方法に関する。   The present invention relates to a method for producing a mold using reclaimed foundry sand.

鋳型の成型に用いられる鋳物砂(耐火性粒状材料)に多く用いられてきた珪砂、ジルコン砂、クロマイト砂、オリビン砂等の欠点を補う目的で、近年、人工的に製造された鋳物砂の使用が検討されている。   In recent years, artificially produced foundry sand has been used to compensate for the shortcomings of silica sand, zircon sand, chromite sand, olivine sand, etc. that have been widely used for foundry sand (refractory granular material) used for mold molding. Is being considered.

特許文献1においては、大物や複雑な鋳型を成型する際に、混練砂が硬化し始めるまでの時間が長くなるよう調整し成型した場合、即ちいわゆる可使時間が長い場合において、鋳型強度が低下する課題に対して、硬化剤にリン酸及び有機スルホン酸を必須成分とし、リン酸の含有量が10〜85重量%及び有機スルホン酸の含有量が5〜70重量%である鋳型成型用組成物が開示されている。   In Patent Document 1, when molding a large or complex mold, the mold strength is reduced when the mold is adjusted and molded so that the time until the kneaded sand begins to harden, that is, when the so-called pot life is long. In order to solve this problem, a mold molding composition in which phosphoric acid and organic sulfonic acid are essential components in the curing agent, the phosphoric acid content is 10 to 85% by weight, and the organic sulfonic acid content is 5 to 70% by weight. Things are disclosed.

また、特許文献2には、フラン系樹脂と、酸硬化剤としてメタンスルホン酸とを用いた鋳型用結合剤被覆砂粒が記載されている。
特開平9−47840号公報 特開平9−234540号公報
Patent Document 2 describes a binder-coated sand particle for a mold using a furan resin and methanesulfonic acid as an acid curing agent.
Japanese Patent Laid-Open No. 9-47840 Japanese Patent Laid-Open No. 9-234540

一般に鋳物砂は繰返し再生利用されるが、鋳物砂のなかでも造粒焼成法により得られた鋳物砂は、酸硬化性樹脂と硬化剤を用いて鋳型を製造する場合、鋳型の硬化速度が低下する課題があった。特に再生鋳物砂の残存樹脂分を少なく管理するために強い再生処理を行う場合や、鋳型と鋳物の重量比〔鋳型/熔湯(重量比)〕であるサンドメタル比が低い場合などには、この課題が顕著に現れる。この課題は、再生鋳物砂を得る鋳型に用いた硬化剤と同じものを、再生鋳物砂から鋳型を得る際に用いても解消しない。また、特許文献1、2は、造粒焼成法により得られた鋳物砂から得た再生鋳物砂についての問題に言及していない。   In general, casting sand is reused repeatedly. Among casting sands, casting sand obtained by the granulation firing method has a lower mold curing rate when the mold is produced using an acid curable resin and a curing agent. There was a problem to do. In particular, when performing a strong regeneration process in order to manage the residual resin content of the reclaimed foundry sand, or when the sand metal ratio, which is the weight ratio of the mold to the foundry [mould / molten metal (weight ratio)], is low, This problem appears prominently. This problem cannot be solved even when the same curing agent used for the mold for obtaining the reclaimed foundry sand is used for obtaining the mold from the reclaimed foundry sand. Moreover, patent documents 1, 2 do not mention the problem about the reclaimed foundry sand obtained from the foundry sand obtained by the granulation firing method.

本発明は、造粒焼成法により得られた鋳物砂の再生鋳物砂を用いて鋳型を製造するにあたり、硬化速度の低下を抑制できる製造方法を提供することである。   This invention is providing the manufacturing method which can suppress the fall of a hardening rate in manufacturing a casting_mold | template using the recast foundry sand of the foundry sand obtained by the granulation baking method.

本発明は、再生鋳物砂を用いて鋳型を製造する工程を含む鋳型の製造方法であって、再生鋳物砂が、(1)造粒焼成法により得られた鋳物砂と、(2)酸硬化性樹脂を含有する結合剤と、(3)メタンスルホン酸を含有し硫酸含有量が5重量%以下である硬化剤とを用いて製造された鋳型から得られるものである、鋳型の製造方法に関する。   The present invention relates to a method for producing a mold including a step of producing a mold using reclaimed foundry sand, wherein the reclaimed foundry sand comprises (1) foundry sand obtained by a granulation firing method, and (2) acid hardening. The present invention relates to a method for producing a mold, which is obtained from a mold produced using a binder containing a functional resin and (3) a curing agent containing methanesulfonic acid and having a sulfuric acid content of 5% by weight or less. .

また、本発明は、造粒焼成法により得られた鋳物砂を、鋳型の製造及び該鋳型からの再生鋳物砂の製造に繰り返して用いる方法であって、前記鋳型を(1)造粒焼成法により得られた鋳物砂と、(2)酸硬化性樹脂を含有する結合剤と、(3)メタンスルホン酸を含有し硫酸含有量が5重量%以下である硬化剤とを用いて製造する、鋳物砂の繰り返し使用方法に関する。   The present invention also relates to a method of repeatedly using the foundry sand obtained by the granulation firing method in the production of a mold and the production of reclaimed foundry sand from the mold, wherein the mold is used in (1) the granulation firing method. And (2) a binder containing an acid curable resin, and (3) a curing agent containing methanesulfonic acid and having a sulfuric acid content of 5% by weight or less. The present invention relates to a method for repeatedly using foundry sand.

本発明によれば、造粒焼成法により得られた鋳物砂を用いた鋳型から得た再生鋳物砂を使用して鋳型を製造する際の硬化速度の低下を抑制でき、良好な鋳型強度、なかでも初期の鋳型強度を得ることができる。   According to the present invention, it is possible to suppress a decrease in the curing speed when producing a mold using a reclaimed foundry sand obtained from a mold using a foundry sand obtained by the granulation firing method. However, the initial mold strength can be obtained.

本発明は、再生鋳物砂、酸硬化性樹脂を含有する結合剤(I)、及び硬化剤(I)を用いた鋳型の製造方法であって、
前記再生鋳物砂が、造粒焼成法により得られた鋳物砂(A)と酸硬化性樹脂を含有する結合剤(II)と硬化剤(II)とを用いて製造した鋳型から得られた再生鋳物砂であり、
前記硬化剤(II)が、メタンスルホン酸を含有し、且つ該硬化剤中の硫酸含有量が5重量%以下である、
鋳型の製造方法として実施できる。従って、以下、この態様に基づいて説明する。
The present invention is a method for producing a mold using recycled foundry sand, a binder (I) containing an acid curable resin, and a curing agent (I),
The regenerated foundry sand is regenerated from a mold produced using a foundry sand (A) obtained by a granulation firing method, a binder (II) containing an acid curable resin, and a hardener (II). Casting sand,
The curing agent (II) contains methanesulfonic acid, and the sulfuric acid content in the curing agent is 5% by weight or less.
It can be implemented as a method for producing a mold. Therefore, the following description is based on this aspect.

本発明に用いられる前記再生鋳物砂は、造粒焼成法により得られた鋳物砂(A)と酸硬化性樹脂からなる結合剤(II)と硬化剤(II)とを用いて製造した鋳型から得られた再生鋳物砂である。ここで、硬化剤(II)は、メタンスルホン酸を含有し、且つ該硬化剤中の硫酸含有量が5重量%以下のものである。硬化剤(II)はリン酸含有量が5重量%以下のものが好ましい。硬化剤(II)ついて、硫酸とはH2SO4なる化学式で表される物質をいい、リン酸とは五酸化二燐が水和してできる酸の総称であり、メタリン酸、ピロリン酸、オルトリン酸、リン酸、二リン酸、三リン酸、四リン酸等が挙げられる。 The reclaimed foundry sand used in the present invention is obtained from a mold produced using a foundry sand (A) obtained by a granulation firing method, a binder (II) comprising an acid curable resin, and a hardener (II). It is the reclaimed foundry sand obtained. Here, the curing agent (II) contains methanesulfonic acid, and the sulfuric acid content in the curing agent is 5% by weight or less. The curing agent (II) preferably has a phosphoric acid content of 5% by weight or less. Regarding the curing agent (II), sulfuric acid refers to a substance represented by the chemical formula H 2 SO 4 , and phosphoric acid is a general term for acids formed by hydration of diphosphorus pentoxide, including metaphosphoric acid, pyrophosphoric acid, Examples include orthophosphoric acid, phosphoric acid, diphosphoric acid, triphosphoric acid, and tetraphosphoric acid.

硬化剤(II)は、メタンスルホン酸を含有する。硬化剤(II)中、メタンスルホン酸の含有量は5〜100重量%、更に10〜90重量%、より更に20〜70重量%が好ましい。   The curing agent (II) contains methanesulfonic acid. In the curing agent (II), the content of methanesulfonic acid is preferably 5 to 100% by weight, more preferably 10 to 90% by weight, and still more preferably 20 to 70% by weight.

また、硬化剤(II)は、メタンスルホン酸のほかに、他の有機スルホン酸を含有することができる。他の有機スルホン酸としては、エタンスルホン酸、ベンゼンスルホン酸、トルエンスルホン酸、キシレンスルホン酸等のアルカン若しくはアリールスルホン酸、フェノールスルホン酸などが挙げられるが、鋳型強度、コストなどの観点から、キシレンスルホン酸、トルエンスルホン酸、及びエチルベンゼンスルホン酸からなる群から選ばれる少なくとも1種が好ましく、キシレンスルホン酸及びトルエンスルホン酸からなる群から選ばれる少なくとも1種がより好ましい。   The curing agent (II) can contain other organic sulfonic acid in addition to methanesulfonic acid. Other organic sulfonic acids include alkanes such as ethane sulfonic acid, benzene sulfonic acid, toluene sulfonic acid, xylene sulfonic acid, aryl sulfonic acid, phenol sulfonic acid, etc., but from the viewpoint of mold strength, cost, etc., xylene At least one selected from the group consisting of sulfonic acid, toluenesulfonic acid, and ethylbenzenesulfonic acid is preferable, and at least one selected from the group consisting of xylenesulfonic acid and toluenesulfonic acid is more preferable.

他の有機スルホン酸は、製造時に生成する異性体を含んでいても差し支えない。例えば、キシレンスルホン酸を例に挙げると、m−キシレン−4−スルホン酸、m−キシレン−2−スルホン酸、o−キシレン−4−スルホン酸、o−キシレン−2−スルホン酸、p−キシレン−2−スルホン酸や、不純物としてm−キシレン−2,4−ジスルホン酸やm−キシレン−2,6−ジスルホン酸などのジスルホン酸などが含まれていても良い。   Other organic sulfonic acids may contain isomers produced during production. For example, taking xylene sulfonic acid as an example, m-xylene-4-sulfonic acid, m-xylene-2-sulfonic acid, o-xylene-4-sulfonic acid, o-xylene-2-sulfonic acid, p-xylene -2-sulfonic acid and disulfonic acid such as m-xylene-2,4-disulfonic acid and m-xylene-2,6-disulfonic acid may be contained as impurities.

硬化剤(II)中のその他の有機スルホン酸の含有量は0〜95重量%、更に0〜80重量%、より更に0〜75重量%が好ましい。   The content of other organic sulfonic acids in the curing agent (II) is preferably 0 to 95% by weight, more preferably 0 to 80% by weight, and still more preferably 0 to 75% by weight.

硬化剤(I)及び硬化剤(II)中の硫酸、スルホン酸及びリン酸の含有量は、電位差滴定、元素分析及び/又はNMRにより同定することができる。   The contents of sulfuric acid, sulfonic acid and phosphoric acid in the curing agent (I) and the curing agent (II) can be identified by potentiometric titration, elemental analysis and / or NMR.

また、硬化剤(II)は、メタンスルホン酸、更に他の有機スルホン酸以外の硫酸やリン酸などの硬化剤を併用することができるが、再生鋳物砂使用における鋳型の硬化速度維持及び強度向上の観点から、硬化剤(II)中の硫酸の含有量が5重量%以下であり、1重量%以下が好ましく、実質的に0重量%が更に好ましい。また、同様な観点から、硬化剤(II)中のリン酸の含有量は、5重量%以下が好ましく、1重量%以下がより好ましく、実質的に0重量%が更に好ましい。「実質的に」とは、不純物程度の量は含有してもよいことを意味する。   Curing agent (II) can be used in combination with methanesulfonic acid and other curing agents such as sulfuric acid and phosphoric acid other than organic sulfonic acid. From this viewpoint, the content of sulfuric acid in the curing agent (II) is 5% by weight or less, preferably 1% by weight or less, and more preferably substantially 0% by weight. From the same viewpoint, the content of phosphoric acid in the curing agent (II) is preferably 5% by weight or less, more preferably 1% by weight or less, and still more preferably 0% by weight. “Substantially” means that an impurity amount may be contained.

硬化剤(II)には、メタンスルホン酸、更に他の有機スルホン酸及び硫酸以外に由来する硫黄(S)元素を含有する場合があるが、再生鋳物砂使用における鋳型の硬化速度維持及び強度向上の観点から、硬化剤(II)中に含まれる全S元素量に占める有機スルホン酸由来のS元素量の割合は80重量%以上が好ましく、90重量%以上がより好ましく、実質的に100重量%がより好ましい。且つ、同様な観点から、硬化剤(II)中の全S元素量に占める硫酸由来のS元素量の割合は10重量%以下が好ましく、6重量%以下がより好ましく、実質的に0重量%が更に好ましい。また、硬化剤(II)中に含まれるリン(P)元素量は、1重量%以下が好ましく、実質的に0重量%がより好ましい。「実質的に」とは、不純物程度の量は含有してもよいことを意味する。   Hardener (II) may contain methanesulfonic acid, sulfur (S) element derived from other organic sulfonic acid and sulfuric acid, but maintain mold hardening speed and improve strength when using reclaimed foundry sand. In view of the above, the proportion of the amount of S element derived from organic sulfonic acid in the total amount of S element contained in the curing agent (II) is preferably 80% by weight or more, more preferably 90% by weight or more, and substantially 100% by weight. % Is more preferable. Further, from the same viewpoint, the ratio of the amount of S element derived from sulfuric acid to the total amount of S element in the curing agent (II) is preferably 10% by weight or less, more preferably 6% by weight or less, and substantially 0% by weight. Is more preferable. Further, the amount of phosphorus (P) element contained in the curing agent (II) is preferably 1% by weight or less, and more preferably substantially 0% by weight. “Substantially” means that an impurity amount may be contained.

硬化剤(II)には、メタンスルホン酸及び他の有機スルホン酸以外の、公知の酸性物質を加えて使用してもよい。酸性物質としては、例えば、カルボン酸等の有機酸、硝酸等の無機酸などの1種又は2種以上の混合物を含有しても良いが、硫酸、更に好ましくはリン酸の量は制限される。   A known acidic substance other than methanesulfonic acid and other organic sulfonic acids may be added to the curing agent (II). The acidic substance may contain, for example, one kind or a mixture of two or more kinds of organic acids such as carboxylic acids and inorganic acids such as nitric acid, but the amount of sulfuric acid, more preferably phosphoric acid is limited. .

硬化剤(II)は、その他に水若しくはアルコール等の希釈溶媒を含有していてもよい。希釈溶媒に使用される溶媒としては、コスト等の観点から、水、メタノール、エタノール、イソプロピルアルコールが好ましい。   In addition, the curing agent (II) may contain a diluent solvent such as water or alcohol. As the solvent used for the dilution solvent, water, methanol, ethanol, and isopropyl alcohol are preferable from the viewpoint of cost and the like.

本発明では、メタンスルホン酸を含有し、且つ硫酸量を低減した特定の硬化剤(II)を用いて製造した鋳型からの再生鋳物砂を用いることで、造粒焼成法により得られた鋳物砂(A)の再生鋳物砂において、再生時の硬化速度の低下を抑制できる。その理由については、詳細は不明であるが、硫酸の場合、鋳造時の熱により造粒焼成法により得られた鋳物砂中のAl23成分等と反応し、何らかの硬化阻害物質が生成し、これが次回の再生鋳物砂による造型に影響を及ぼしているものと推察している。一方、メタンスルホン酸の場合、このような硬化阻害物質はほとんど生成されないため、再生時の硬化速度の低下が防止されるものと推察している。 In the present invention, foundry sand obtained by a granulation firing method by using reclaimed foundry sand from a mold containing methanesulfonic acid and using a specific curing agent (II) having a reduced amount of sulfuric acid. In the recycled foundry sand of (A), it is possible to suppress a decrease in the curing rate during regeneration. The reason for this is unknown, but in the case of sulfuric acid, it reacts with the Al 2 O 3 component in the foundry sand obtained by the granulation firing method due to the heat during casting, and some hardening inhibitor is generated. This is presumed to have an effect on the molding of the next reclaimed foundry sand. On the other hand, in the case of methanesulfonic acid, since such a curing inhibitor is hardly generated, it is presumed that a decrease in the curing rate during regeneration is prevented.

また、硬化剤(II)は、酸硬化性樹脂を含有する結合剤(II)と共に用いられる。酸硬化性樹脂としては、酸硬化性フラン樹脂、酸硬化性フェノール樹脂が挙げられる。酸硬化性フラン樹脂としては、従来公知の樹脂が用いられ、これを単独で又は混合して結合剤として使用する。酸硬化性フラン樹脂の具体例としては、フルフリルアルコール、フルフリルアルコールポリマーやフルフリルアルコール・アルデヒド類重縮合物が使用される。更に、フェノール類・アルデヒド類重縮合物、メラミン・アルデヒド類重縮合物、尿素・アルデヒド類重縮合物等のフルフリルアルコールとの混合物又は共縮合物が使用される。また、これらの重縮合物のうち、2種以上を更に共縮合させたものも、酸硬化性フラン樹脂として使用することができる。フルフリルアルコール等と重縮合されるアルデヒド類としては、ホルムアルデヒド、グリオキザール、フルフラール等の従来公知のアルデヒド化合物を使用することができる。また、フェノール類・アルデヒド類重縮合物を使用する場合、フェノール類としては、フェノール、レゾルシノール、ビスフェノールA、ビスフェノールF等の公知のフェノール化合物を単独で又は混合して用いることができる。また、公知の変性剤とともに使用してもよい。   The curing agent (II) is used together with a binder (II) containing an acid curable resin. Examples of the acid curable resin include acid curable furan resins and acid curable phenol resins. As the acid curable furan resin, conventionally known resins are used, and these are used alone or in combination as a binder. Specific examples of the acid curable furan resin include furfuryl alcohol, furfuryl alcohol polymer, and furfuryl alcohol / aldehyde polycondensate. Furthermore, mixtures or cocondensates with furfuryl alcohol such as phenols / aldehydes polycondensates, melamines / aldehydes polycondensates, urea / aldehydes polycondensates are used. Moreover, what further co-condensed 2 or more types of these polycondensates can also be used as an acid-curable furan resin. Conventionally known aldehyde compounds such as formaldehyde, glyoxal, and furfural can be used as aldehydes that are polycondensed with furfuryl alcohol or the like. Moreover, when using phenols and aldehydes polycondensates, known phenol compounds such as phenol, resorcinol, bisphenol A, bisphenol F and the like can be used alone or as a mixture. Moreover, you may use it with a well-known modifier | denaturant.

結合剤(II)が、酸硬化性樹脂として酸硬化性フラン樹脂を含有する場合、鋳型強度を更に向上させる点から、下記の一般式(1)で示される化合物の1種又は2種以上を含有することが好ましい。   When the binder (II) contains an acid curable furan resin as the acid curable resin, one or more of the compounds represented by the following general formula (1) is selected from the viewpoint of further improving the mold strength. It is preferable to contain.

Figure 0005250301
Figure 0005250301

一般式(1)の化合物としては、2,5−ビスヒドロキシメチルフラン、2,5−ビスメトキシメチルフラン、2,5−ビスエトキシメチルフラン、2−ヒドロキシメチル−5−メトキシメチルフラン、2−ヒドロキシメチル−5−エトキシメチルフラン、2−メトキシメチル−5−エトキシメチルフランが挙げられ、これらは単独で又は混合して使用される。特に、2,5−ビスヒドロキシメチルフランを使用するのが好ましい。   Examples of the compound of the general formula (1) include 2,5-bishydroxymethylfuran, 2,5-bismethoxymethylfuran, 2,5-bisethoxymethylfuran, 2-hydroxymethyl-5-methoxymethylfuran, 2- Examples thereof include hydroxymethyl-5-ethoxymethylfuran and 2-methoxymethyl-5-ethoxymethylfuran, which are used alone or in combination. In particular, it is preferable to use 2,5-bishydroxymethylfuran.

一般式(1)で示される化合物の結合剤(II)中の含有量は、例えば0.5〜63.0重量%、好ましくは1.8〜50.0重量%、より好ましくは2.5〜50.0重量%、更に好ましくは5.0〜40.0重量%、より更に好ましくは7.0〜40.0重量%である。一般式(1)で示される化合物の量が0.5重量%以上であると、一般式(1)で示された化合物を含有させたことによる鋳型強度の向上効果が得られやすく、また、63.0重量%以下であると、一般式(1)で示される化合物が酸硬化性樹脂中に速やかに溶解し、結合剤中に沈澱が発生することを防止しやすい。   The content of the compound represented by the general formula (1) in the binder (II) is, for example, 0.5 to 63.0% by weight, preferably 1.8 to 50.0% by weight, more preferably 2.5. -50.0 wt%, more preferably 5.0-40.0 wt%, still more preferably 7.0-40.0 wt%. When the amount of the compound represented by the general formula (1) is 0.5% by weight or more, an effect of improving the mold strength due to the inclusion of the compound represented by the general formula (1) is easily obtained, When it is 63.0% by weight or less, it is easy to prevent the compound represented by the general formula (1) from rapidly dissolving in the acid curable resin and causing precipitation in the binder.

また、結合剤(II)が、酸硬化性樹脂として酸硬化性フラン樹脂を含有する場合、硬化速度向上の点から、ポリフェノール化合物を含有することが好ましい。ポリフェノール化合物としては、合成又は天然のポリフェノール化合物を使用することができる。例えば、カテコール、レゾルシノール、ヒドロキノン、ピロガロール及びフロログルシノール等の合成品並びにこれらから誘導される骨格を有する合成ポリフェノール化合物や、タンニン、リグニン及びカテキン等の天然ポリフェノール化合物並びにこれらから誘導される骨格を有する合成ポリフェノール化合物等が挙げられる。また、ポリフェノール化合物の結合剤(II)中の含有量は、好ましくは0.1〜40重量%、より好ましくは0.1〜20重量%、更に好ましくは3〜10重量%である。ポリフェノール化合物の含有量がこの範囲であると、酸硬化性樹脂中にポリフェノール化合物が沈殿を生じることなく良好に溶解するため好ましい。   Moreover, when binder (II) contains acid-curable furan resin as acid-curable resin, it is preferable to contain a polyphenol compound from the point of a hardening rate improvement. A synthetic or natural polyphenol compound can be used as the polyphenol compound. For example, synthetic products such as catechol, resorcinol, hydroquinone, pyrogallol and phloroglucinol, and synthetic polyphenol compounds having a skeleton derived therefrom, natural polyphenol compounds such as tannin, lignin and catechin, and skeletons derived therefrom Examples include synthetic polyphenol compounds. Moreover, content in binder (II) of a polyphenol compound becomes like this. Preferably it is 0.1 to 40 weight%, More preferably, it is 0.1 to 20 weight%, More preferably, it is 3 to 10 weight%. When the content of the polyphenol compound is within this range, the polyphenol compound is preferably dissolved in the acid curable resin without causing precipitation.

更に、結合剤(II)を用いて鋳型を製造する際には、鋳型強度をより向上させる目的でシランカップリング剤を加えてもよい。シランカップリング剤としては、例えばγ−(2−アミノ)アミノプロピルメチルジメトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシランなどを使用することができる。なお、シランカップリング剤を、混練砂中に添加するには、結合剤(II)中や、硬化剤(II)中にシランカップリング剤を添加して、結合剤(II)や硬化剤(II)を鋳物砂(A)に添加混練してもよく、鋳物砂(A)にシランカップリング剤を直接添加混練してもよい。   Further, when a mold is produced using the binder (II), a silane coupling agent may be added for the purpose of further improving the mold strength. As the silane coupling agent, for example, γ- (2-amino) aminopropylmethyldimethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane and the like are used. be able to. In order to add the silane coupling agent to the kneaded sand, the silane coupling agent is added to the binder (II) or the curing agent (II), and the binder (II) or the curing agent ( II) may be added and kneaded to the foundry sand (A), or a silane coupling agent may be directly added and kneaded to the foundry sand (A).

本発明に用いられる鋳物砂(A)の平均粒径(mm)は、造型時のバインダーの使用量の低減(再生効率の向上)や鋳型強度の観点から、0.05〜1.5mmが好適である。鋳物砂の再生効率を高める観点から、0.75〜1.5mmが好ましく、一方、鋳型強度を高める観点から、0.05〜1.0mmが好ましい。再生効率と鋳型強度の両者を高める観点から、0.05〜0.5mmがより好ましく、0.05〜0.35mmが更に好ましい。   The average particle size (mm) of the foundry sand (A) used in the present invention is preferably 0.05 to 1.5 mm from the viewpoint of reducing the amount of binder used during molding (improving regeneration efficiency) and mold strength. It is. From the viewpoint of increasing the recycle efficiency of the foundry sand, 0.75 to 1.5 mm is preferable, and from the viewpoint of increasing the mold strength, 0.05 to 1.0 mm is preferable. From the viewpoint of increasing both the regeneration efficiency and the mold strength, 0.05 to 0.5 mm is more preferable, and 0.05 to 0.35 mm is still more preferable.

前記平均粒径は以下のようにして求めることができる。すなわち、鋳物砂粒子の粒子投影断面からの球形度=1の場合は直径(mm)を測定し、一方、球形度<1の場合はランダムに配向させた鋳物砂粒子の長軸径(mm)と短軸径(mm)を測定して(長軸径+短軸径)/2を求め、任意の100個の鋳物砂粒子につき、それぞれ得られた値を平均して平均粒径(mm)とする。長軸径と短軸径は、以下のように定義される。粒子を平面上に安定させ、その粒子の平面上への投影像を2本の平行線ではさんだとき、その平行線の間隔が最小となる粒子の幅を短軸径といい、一方、この平行線に直角な方向の2本の平行線で粒子をはさむときの距離を長軸径という。   The average particle diameter can be determined as follows. That is, the diameter (mm) is measured when the sphericity from the projected particle cross section of the foundry sand particle is 1, while the major axis diameter (mm) of the randomly oriented foundry sand particle when the sphericity <1. The major axis diameter (mm) is measured to obtain (major axis diameter + minor axis diameter) / 2, and the average particle diameter (mm) is obtained by averaging the values obtained for any 100 casting sand particles. And The major axis diameter and the minor axis diameter are defined as follows. When the particle is stabilized on a plane and the projected image of the particle on the plane is sandwiched between two parallel lines, the width of the particle that minimizes the distance between the parallel lines is called the minor axis diameter. The distance when a particle is sandwiched between two parallel lines in a direction perpendicular to the line is called the major axis diameter.

なお、鋳物砂粒子の長軸径と短軸径は、光学顕微鏡又はデジタルスコープ(例えば、キーエンス社製、VH−8000型)により該粒子の像(写真)を得、得られた像を画像解析することにより求めることができる。   The major axis diameter and minor axis diameter of the foundry sand particles are obtained by obtaining an image (photograph) of the particles with an optical microscope or a digital scope (for example, VH-8000 type, manufactured by Keyence Corporation), and image analysis of the obtained image is performed. Can be obtained.

造粒焼成法により得られた鋳物砂(A)はAl23を主成分とする鋳物砂であり、Al23を20〜100重量%、更に40〜100重量%含有することが好ましく、本発明の効果が大きくなる観点から60重量%〜100重量%、特に好ましくは80〜100重量%含有することが好ましい。また、砂の製造の容易さと得られた鋳型の熱膨張を低減させる観点から、SiO2を含有することが好ましく、SiO2を40〜5重量%、更に40〜15重量%含有することが好ましい。 The foundry sand (A) obtained by the granulation firing method is foundry sand mainly composed of Al 2 O 3 , and preferably contains 20 to 100% by weight, and further 40 to 100% by weight of Al 2 O 3. From the viewpoint of increasing the effect of the present invention, it is preferably contained in an amount of 60 to 100% by weight, particularly preferably 80 to 100% by weight. Further, from the viewpoint of ease of production of sand and reduction of thermal expansion of the obtained mold, SiO 2 is preferably contained, and SiO 2 is preferably contained in an amount of 40 to 5% by weight, more preferably 40 to 15% by weight. .

造粒焼成法により得られた鋳物砂(A)としては、例えば特開昭61−63333号に示されるようなものが挙げられる。更に、市販品としては、例えば商品名「ナイガイセラビーズ60 #650」〔伊藤忠セラテック(株)製〕などが挙げられる。   Examples of the foundry sand (A) obtained by the granulation firing method include those disclosed in JP-A-61-63333. Furthermore, as a commercial item, a brand name "Nyiga Cera beads 60 # 650" [made by ITOCHU CERATECH Co., Ltd.] etc. are mentioned, for example.

造粒焼成法による鋳物砂の製造方法の具体例として、Al23が20〜70重量%、S≡O2が80〜30重量%になるように泥漿を配合し、該泥漿をスプレードライヤーにより350〜450℃で乾燥造粒し、その後これをロータリーキルンにて1550℃で焼結すること、などが挙げられる。 As a specific example of the method for producing foundry sand by the granulation firing method, slurry is blended so that Al 2 O 3 is 20 to 70% by weight and S≡O 2 is 80 to 30% by weight, and the slurry is spray-dried. And dry granulation at 350 to 450 ° C., and thereafter sintering this at 1550 ° C. in a rotary kiln.

以上のような鋳物砂(A)と、酸硬化性樹脂を含有する結合剤(II)と、硬化剤(II)とを用いて、鋳型を成型するには、常法に従って、例えば、まず鋳物砂(A)100部(重量基準、以下に同じ)に対し、硬化剤(II)を0.2〜3部混合し、次いで酸硬化性フラン樹脂0.5〜5部相当量を含有する結合剤(II)を混合して成型する。   In order to mold a mold using the foundry sand (A), the binder (II) containing the acid curable resin, and the curing agent (II), according to a conventional method, for example, first, the casting Bonds containing 0.2 to 3 parts of curing agent (II) to 100 parts of sand (A) (weight basis, the same below), and then containing 0.5 to 5 parts equivalent of acid-curable furan resin The agent (II) is mixed and molded.

鋳型から再生鋳物砂を得る方法は公知の方法に準じることができ、通常の機械的磨耗式あるいは焙焼式の再生方法が使用されるが、磨耗式で再生されたものは収率も高く、経済的に優れ好ましい。   The method for obtaining reclaimed foundry sand from the mold can be in accordance with a known method, and a normal mechanical wear type or roasting type reclaim method is used. Economically preferable.

再生鋳物砂は、鋳型の硬化速度維持及び強度向上の観点から、砂1gあたりの下記測定法によるアルミニウム元素の溶出量が、50μg以下、更に40μg以下であることが好ましい。   From the viewpoint of maintaining the mold curing speed and improving the strength, the recycled casting sand preferably has an aluminum element elution amount of 50 μg or less, more preferably 40 μg or less per 1 g of sand.

(アルミニウム元素の溶出量の測定方法)
再生鋳物砂25.0gをビーカーに秤取し、0.1N−HCl水溶液50.0mlを添加した後、マグネチックスターラーにて15分間撹拌する。5分間静置後、上澄み液をろ紙を用いてろ過し、ろ液中のアルミニウム元素量をICP分析法(誘導結合プラズマ発光分光分析法)により定量し、再生鋳物砂1g当りの溶出量を算出する。
(Measurement method of aluminum element elution)
25.0 g of reclaimed foundry sand is weighed in a beaker, 50.0 ml of 0.1N HCl aqueous solution is added, and then stirred for 15 minutes with a magnetic stirrer. After standing for 5 minutes, the supernatant liquid is filtered using filter paper, the amount of aluminum element in the filtrate is quantified by ICP analysis (inductively coupled plasma emission spectrometry), and the amount of elution per gram of recycled foundry sand is calculated. To do.

また、このアルミニウム溶出量は、球状鋳物砂(A)の再生において、機械再生の強さ(処理段数、処理時間、再生機の回転数等)を調整すること、焙焼再生条件(温度、時間)や造型条件(サンドメタル比、硬化剤添加量)を変えることで調整できる。   In addition, this aluminum elution amount is determined by adjusting the strength of machine regeneration (number of processing stages, processing time, number of revolutions of regenerator, etc.) during regeneration of spheroidal casting sand (A), and roasting regeneration conditions (temperature, time). ) And molding conditions (sand metal ratio, amount of hardener added).

また、再生鋳物砂は、強熱減量分が3重量%以下、より2重量%以下、更に1重量%以下、より更に0.5重量%以下であることが好ましい。強熱減量分は、鋳物砂に残存する、吸着水分、層間水分のほかに熱分解する物質の質量変化割合を重量百分率で表したものであり、本発明では、日本鋳造技術協会規格:「JACT試験法 S−2」に規定される「鋳物砂の強熱減量試験法」に従って測定したものをいう。   The reclaimed foundry sand preferably has a loss on ignition of 3% by weight or less, more preferably 2% by weight or less, further 1% by weight or less, and still more preferably 0.5% by weight or less. The loss on ignition is the mass change rate of the substance that thermally decomposes in addition to the adsorbed moisture and interlayer moisture remaining in the foundry sand. In the present invention, the Japan Casting Technology Association Standard: “JACT It means what was measured in accordance with “Testing method for loss on ignition of foundry sand” defined in “Test method S-2”.

本発明では、上記のような特定の履歴をもつ再生鋳物砂と、酸硬化性樹脂を含有する結合剤(I)と、硬化剤(I)とを用いて鋳型を製造する。   In the present invention, a mold is produced using the reclaimed foundry sand having a specific history as described above, the binder (I) containing an acid curable resin, and the curing agent (I).

結合剤(I)は前記結合剤(II)と同じものでも異なるものでも使用でき、好ましい態様も結合剤(II)と同様である。結合剤(I)が酸硬化性樹脂として酸硬化性フラン樹脂を含有するものが好ましく、その場合、前記一般式(1)で示される化合物の1種又は2種以上、及び/又はポリフェノール化合物を含有することが好ましい。また、硬化剤(I)は前記硬化剤(II)と同じものでも異なるものでも使用できるが、メタンスルホン酸を含有する硬化剤(II)を用いた再生鋳物砂を繰り返し使用する観点から、前記硬化剤(II)の好ましい態様を満たす硬化剤を使用するのが好ましい。   The binder (I) may be the same as or different from the binder (II), and the preferred embodiment is the same as that of the binder (II). The binder (I) preferably contains an acid curable furan resin as the acid curable resin. In that case, one or more of the compounds represented by the general formula (1) and / or a polyphenol compound is used. It is preferable to contain. Further, the curing agent (I) can be the same as or different from the curing agent (II), but from the viewpoint of repeatedly using the reclaimed foundry sand using the curing agent (II) containing methanesulfonic acid, It is preferable to use a curing agent that satisfies the preferred embodiment of the curing agent (II).

再生鋳物砂と結合剤(I)と硬化剤(I)とを用いて、鋳型を製造するには、例えば、まず再生鋳物砂100部(重量基準、以下に同じ)に対し、硬化剤(I)を0.2〜3部混合し、次いで酸硬化性フラン樹脂0.5〜5部相当量を含有する結合剤(I)を混合して成型できる。また、以上により得られた混合砂を鋳型すべてに用いても良いし、必要とする部分だけに用いるのも良い。例えば、肌砂として使用し、裏砂には一般に使用されている珪砂からなるものを用いても良い。また、混合砂(鋳型成型用組成物)を鋳型の造型に際しては、例えば硬化を促進するための添加剤等の公知の添加剤を使用してもよい。   In order to manufacture a mold using the reclaimed foundry sand, the binder (I), and the hardener (I), for example, first, 100 parts of reclaimed foundry sand (weight basis, the same applies hereinafter) to the hardener (I ) Is mixed in an amount of 0.2 to 3 parts, and then the binder (I) containing 0.5 to 5 parts of an acid-curable furan resin is mixed and molded. Moreover, the mixed sand obtained by the above may be used for all the molds, or may be used only for necessary portions. For example, it may be used as skin sand, and the back sand may be made of commonly used silica sand. Further, when molding the mixed sand (mold molding composition), a known additive such as an additive for accelerating curing may be used.

以上のようにして混練砂を得た後、これを型枠に充填し、常温で所定時間放置しておけば、酸硬化性フラン樹脂が硬化して鋳型本体を得ることができる。   After the kneaded sand is obtained as described above, it is filled into a mold and left at room temperature for a predetermined time, whereby the acid curable furan resin is cured and a mold body can be obtained.

本発明は、造粒焼成法により得られた鋳物砂から、造型、再生を繰り返して使用する際に、再生条件が同等である場合には、その由来となる鋳型が特定条件で製造されているものが、次回の新たな鋳型の製造における硬化速度の低下抑制に良い影響を及ぼすことを見いだしたものである。本発明は、造粒焼成法により得られた鋳物砂を、鋳型の製造及び該鋳型からの再生鋳物砂の製造に繰り返して用いる方法であって、前記鋳型を(1)造粒焼成法により得られた鋳物砂と、(2)酸硬化性樹脂を含有する結合剤と、(3)メタンスルホン酸を含有し硫酸含有量が5重量%以下である硬化剤とを用いて製造する、鋳物砂の繰り返し使用方法として実施できる。   In the present invention, when molding and regeneration are used repeatedly from casting sand obtained by the granulation firing method, if the regeneration conditions are the same, the mold from which the mold is derived is manufactured under specific conditions. Has been found to have a positive effect on suppressing the decrease in the curing rate in the next new mold production. The present invention is a method of repeatedly using the foundry sand obtained by the granulation firing method for the production of a mold and the production of reclaimed foundry sand from the mold, wherein the mold is obtained by (1) the granulation firing method. Foundry sand, (2) a binder containing an acid curable resin, and (3) a hardener containing methanesulfonic acid and having a sulfuric acid content of 5% by weight or less. It can be implemented as a repeated use method.

以上の説明は、本発明の好適な鋳型の製造方法に関するものであるが、その他の方法も適宜採用し得るものである。例えば、以上の説明においては、混練砂の作成、混練砂の充填及び結合剤の硬化は、常温(雰囲気温度)で行なうとしたが、加熱しながら行っても良い。本発明の鋳型の製造方法は、各種鋳型の製造において、汎用的に使用することのできるものである。   The above description relates to a preferred method for producing a mold according to the present invention, but other methods can be employed as appropriate. For example, in the above description, the preparation of the kneaded sand, the filling of the kneaded sand, and the curing of the binder are performed at room temperature (atmospheric temperature), but may be performed while heating. The mold production method of the present invention can be used for general purposes in the production of various molds.

実施例1
造粒焼成法により得られた鋳物砂(ナイガイセラビーズ60 #650、伊藤忠セラテック(株)製)100重量部に対し、硬化剤としてメタンスルホン酸33.9重量%の水溶液〔硬化剤(II)〕を0.6重量部加え、次いでフラン樹脂(カオーライトナーEF−5401、花王クエーカー(株)製)〔結合剤(II)〕を1.5重量部添加、混練して試験鋳型を作製し、サンドメタル比が2の鋳物を鋳造した。回収した砂をクラッシャーにて解砕して、回収砂とした。この回収砂を日本鋳造(株)製ハイブリッドサンドマスターHSM1115を用いて、回転数2600rpm、処理時間30分、処理量80kgにて、砂の機械再生を行い、再生鋳物砂を得た。得られた再生鋳物砂を用い、アルミニウム元素溶出量を測定し、また、25℃、55%RHの条件にて砂100重量部に対し、硬化剤としてp−トルエンスルホン酸61重量%の水溶液〔硬化剤(I)〕0.6重量部加え、次いでフラン樹脂(カオーライトナーEF−5401、花王クエーカー(株)製)〔結合剤(I)〕を1.5重量部添加、混練して直ちに直径50mm、高さ50mmの円筒形のテストピースを作製し、0.5時間後及び24時間後の圧縮強度を測定した。結果を表1に示す。
Example 1
An aqueous solution of 33.9% by weight of methanesulfonic acid as a curing agent (curing agent (II)) with respect to 100 parts by weight of foundry sand (Naigaisera beads 60 # 650, manufactured by ITOCHU CERATECH Co., Ltd.) obtained by the granulation firing method 0.6 parts by weight, and then added 1.5 parts by weight of a furan resin (Kaolitener EF-5401, manufactured by Kao Quaker Co., Ltd.) [Binder (II)] and kneaded to prepare a test template. A casting with a sand metal ratio of 2 was cast. The recovered sand was crushed with a crusher to obtain recovered sand. The recovered sand was mechanically regenerated using a hybrid sand master HSM1115 manufactured by Nippon Casting Co., Ltd. at a rotational speed of 2600 rpm, a treatment time of 30 minutes, and a treatment amount of 80 kg to obtain reclaimed foundry sand. Using the obtained reclaimed foundry sand, the aluminum element elution amount was measured, and an aqueous solution of 61% by weight of p-toluenesulfonic acid as a curing agent with respect to 100 parts by weight of sand under the conditions of 25 ° C. and 55% RH [ Curing agent (I)] 0.6 parts by weight was added, followed by addition of 1.5 parts by weight of furan resin (Kaolitener EF-5401, manufactured by Kao Quaker Co., Ltd.) [Binder (I)] Cylindrical test pieces having a height of 50 mm and a height of 50 mm were produced, and the compressive strength was measured after 0.5 hours and 24 hours. The results are shown in Table 1.

実施例2
実施例1の回収砂を500℃にて1時間焙焼して、再生鋳物砂を得、実施例1記載と同じ方法にてアルミニウム元素溶出量と圧縮強度を測定した。結果を表1に示す。
Example 2
The recovered sand of Example 1 was roasted at 500 ° C. for 1 hour to obtain recycled casting sand, and the aluminum element elution amount and compressive strength were measured in the same manner as described in Example 1. The results are shown in Table 1.

比較例1
硬化剤(II)として、硫酸32.7重量%の水溶液を用いた以外は、実施例1記載と同じ方法にて再生鋳物砂を得、アルミニウム元素溶出量と圧縮強度を測定した。結果を表1に示す。
Comparative Example 1
Recycled cast sand was obtained by the same method as described in Example 1 except that an aqueous solution of 32.7% by weight sulfuric acid was used as the curing agent (II), and the aluminum element elution amount and compressive strength were measured. The results are shown in Table 1.

比較例2
比較例1の回収砂を500℃にて1時間焙焼して、再生鋳物砂を得た。得られた再生鋳物砂を用い、実施例1記載と同じ方法にてアルミニウム元素溶出量と圧縮強度を測定した。結果を表1に示す。
Comparative Example 2
The recovered sand of Comparative Example 1 was roasted at 500 ° C. for 1 hour to obtain recycled casting sand. Using the obtained recycled foundry sand, the aluminum element elution amount and compressive strength were measured by the same method as described in Example 1. The results are shown in Table 1.

実施例3
硬化剤(II)として、メタンスルホン酸9.5重量%及びキシレンスルホン酸47.8重量%の水溶液を用いた以外は、実施例1記載と同じ方法にて再生鋳物砂を得、アルミニウム元素溶出量と圧縮強度を測定した。結果を表1に示す。
Example 3
Recycled foundry sand was obtained in the same manner as described in Example 1 except that an aqueous solution of 9.5% by weight of methanesulfonic acid and 47.8% by weight of xylenesulfonic acid was used as the curing agent (II). Quantity and compressive strength were measured. The results are shown in Table 1.

比較例3
硬化剤(II)として、硫酸9.4重量%及びキシレンスルホン酸47.8重量%の水溶液を用いた以外は、実施例1記載と同じ方法にて再生鋳物砂を得、アルミニウム元素溶出量と圧縮強度を測定した。結果を表1に示す。
Comparative Example 3
Recycled foundry sand was obtained in the same manner as described in Example 1, except that an aqueous solution of 9.4% by weight sulfuric acid and 47.8% by weight xylene sulfonic acid was used as the curing agent (II). The compressive strength was measured. The results are shown in Table 1.

実施例4
造粒焼成法により得られた鋳物砂(ナイガイセラビーズ60 #650、伊藤忠セラテック(株)製)100重量部に対し、硬化剤(II)としてメタンスルホン酸33.9重量%の水溶液を0.75重量部加え、次いでフラン樹脂(カオーライトナーEF−5401、花王クエーカー(株)製)〔結合剤(II)〕を1.5重量部添加混練して試験鋳型を作製し、サンドメタル比が2の鋳物を鋳造した。回収した砂をクラッシャーにて解砕して、回収砂とした。この回収砂を実施例1と同様に日本鋳造(株)製ハイブリッドサンドマスターを用いて砂の機械再生を行い再生鋳物砂とした。更にその再生鋳物砂を用い、上記操作を5回繰り返し、5回目の再生鋳物砂を用い、実施例1記載と同じ方法にてアルミニウム元素溶出量と圧縮強度を測定した。結果を表1に示す。
Example 4
An aqueous solution containing 33.9% by weight of methanesulfonic acid as a curing agent (II) is added to 100 parts by weight of casting sand (Nyiga Sera Beads 60 # 650, manufactured by ITOCHU CERATECH Co., Ltd.) obtained by the granulation firing method. Add 75 parts by weight, then add 1.5 parts by weight of furan resin (Kaolitener EF-5401, manufactured by Kao Quaker Co., Ltd.) [Binder (II)] to prepare a test mold, and the sand metal ratio is 2 The casting was cast. The recovered sand was crushed with a crusher to obtain recovered sand. The recovered sand was mechanically regenerated by using a hybrid sand master manufactured by Nippon Casting Co., Ltd. in the same manner as in Example 1 to obtain reclaimed foundry sand. Further, using the regenerated foundry sand, the above operation was repeated 5 times, and the fifth regenerated foundry sand was used to measure the aluminum element elution amount and compressive strength in the same manner as described in Example 1. The results are shown in Table 1.

比較例4
硬化剤(II)として、硫酸32.7重量%の水溶液を用いた以外は、実施例4記載と同じ方法にて再生鋳物砂を得、アルミニウム元素溶出量と圧縮強度を測定した。結果を表1に示す。
Comparative Example 4
Recycled casting sand was obtained by the same method as described in Example 4 except that an aqueous solution of 32.7% by weight sulfuric acid was used as the curing agent (II), and the aluminum element elution amount and compressive strength were measured. The results are shown in Table 1.

実施例5
結合剤(II)として、ポリフェノール化合物((株)コシイウッドソリューションズ製、アカシアマンギウムGKA−100のメタノール抽出物)10重量部及びフラン樹脂(花王クエーカー(株)製、カオーライトナーEF−5401)90重量部からなる溶液を用いた以外は、実施例1記載の方法と同じ方法にて鋳物砂の機械再生を行い再生鋳物砂を得、アルミニウム元素溶出量及び硬化挙動を測定した。結果を表1に示した。
Example 5
As binder (II), a polyphenol compound (manufactured by Koshii Wood Solutions Co., Ltd., methanol extract of Acacia mangium GKA-100) and furan resin (manufactured by Kao Quaker Co., Ltd., Kao Lightner EF-5401) Except using the solution which consists of 90 weight part, the mechanical reproduction | regeneration of foundry sand was performed by the same method as the method of Example 1, the reclaimed foundry sand was obtained, and the aluminum element elution amount and hardening behavior were measured. The results are shown in Table 1.

比較例5
硬化剤(II)として硫酸32.7重量%の水溶液を用いた以外は、実施例5記載と同じ方法にて再生鋳物砂を得、アルミニウム元素溶出量と圧縮強度を測定した。結果を表1に示す。
Comparative Example 5
Recycled cast sand was obtained in the same manner as described in Example 5 except that an aqueous solution of 32.7% by weight sulfuric acid was used as the curing agent (II), and the aluminum element elution amount and compressive strength were measured. The results are shown in Table 1.

実施例6
実施例5にて得られた再生鋳物砂を用い25℃、55%RHの条件にて砂100重量部に対し、p−トルエンスルホン酸61重量%の水溶液からなる硬化剤〔硬化剤(I)〕0.6重量部加え、次いでポリフェノール化合物((株)コシイウッドソリューションズ製、アカシアマンギウムGKA−100のメタノール抽出物)10重量部及びフラン樹脂(花王クエーカー(株)製、カオーライトナーEF−5401)90重量部からなる溶液〔結合剤(I)〕を1.5重量部添加混練して直ちに直径50mm、高さ50mmの円筒形のテストピースを作製し、実施例1と同様に、0.5時間後及び24時間後の圧縮強度を測定した。結果を表1に示した。
Example 6
Curing agent composed of an aqueous solution of 61% by weight of p-toluenesulfonic acid with respect to 100 parts by weight of sand under the conditions of 25 ° C. and 55% RH using the reclaimed foundry sand obtained in Example 5 [curing agent (I) ] 0.6 parts by weight, followed by 10 parts by weight of a polyphenol compound (manufactured by Koshii Wood Solutions, methanol extract of Acacia mangium GKA-100) and furan resin (manufactured by Kao Quaker Co., Ltd., Kao Lightner EF-) 5401) A cylindrical test piece having a diameter of 50 mm and a height of 50 mm was prepared by adding 1.5 parts by weight of a solution [binder (I)] consisting of 90 parts by weight and kneading immediately. Compressive strength was measured after 5 hours and 24 hours. The results are shown in Table 1.

比較例6
比較例5にて得られた再生鋳物砂を用いた以外は、実施例6記載と同じ方法でアルミニウム元素溶出量と圧縮強度を測定した。結果を表1に示す。
Comparative Example 6
The aluminum element elution amount and compressive strength were measured by the same method as described in Example 6 except that the reclaimed foundry sand obtained in Comparative Example 5 was used. The results are shown in Table 1.

参考例1
25℃、55%RHの条件にて、造粒焼成法により得られた鋳物砂(ナイガイセラビーズ60 #650、伊藤忠セラテック(株)製)100重量部に対し、硬化剤としてp−トルエンスルホン酸61重量%の水溶液0.6重量部を加え、次いでフラン樹脂(花王クエーカー(株)製、カオーライトナーEF−5401)を1.5重量部添加、混練して直ちに直径50mm、高さ50mmの円筒形のテストピースを作製し、0.5時間後及び24時間後の圧縮強度を測定した。なお、本例で用いた鋳物砂のアルミニウム元素溶出量も実施例1と同様に測定した。結果を表1に示す。
Reference example 1
P-Toluenesulfonic acid as a curing agent with respect to 100 parts by weight of foundry sand (Naigai Cera Beads 60 # 650, manufactured by ITOCHU CERATECH Co., Ltd.) obtained by granulation and firing under the conditions of 25 ° C. and 55% RH A cylinder having a diameter of 50 mm and a height of 50 mm was added after adding 0.6 parts by weight of a 61% by weight aqueous solution and then adding 1.5 parts by weight of a furan resin (Kao Quaker Co., Ltd., Kao Lightner EF-5401). Shaped test pieces were prepared and the compressive strength was measured after 0.5 and 24 hours. In addition, the aluminum element elution amount of the foundry sand used in this example was also measured in the same manner as in Example 1. The results are shown in Table 1.

参考例2
25℃、55%RHの条件にて、新砂フリーマントルシリカサンド(フリーマントル、山川産業(株)製)100重量部に対し、硬化剤としてp−トルエンスルホン酸61重量%水溶液0.28重量部加え、次いでフラン樹脂(花王クエーカー(株)製、カオーライトナーEF−5401)を0.7重量部添加、混練して直ちに直径50mm、高さ50mmの円筒形のテストピースを作製し、0.5時間後及び24時間後の圧縮強度を測定した。なお、本例で用いた新砂フリーマントルシリカサンドの鉄元素及びアルミニウム元素溶出量も実施例1と同様に測定した。結果を表1に示す。
Reference example 2
Under conditions of 25 ° C. and 55% RH, 0.28 parts by weight of 61% by weight aqueous solution of p-toluenesulfonic acid as a curing agent with respect to 100 parts by weight of fresh sand free mantle silica sand (Fremantle, manufactured by Yamakawa Sangyo Co., Ltd.) In addition, 0.7 parts by weight of furan resin (Kao Quaker Co., Ltd., Cao Lightner EF-5401) was added and kneaded to immediately produce a cylindrical test piece having a diameter of 50 mm and a height of 50 mm. The compressive strength after 24 hours was measured. The elution amounts of iron element and aluminum element of the fresh sand free mantle silica sand used in this example were also measured in the same manner as in Example 1. The results are shown in Table 1.

参考例3
新砂フリーマントルシリカサンド(フリーマントル、山川産業(株)製)100重量部に対し、硬化剤として硫酸9.4重量%及びキシレンスルホン酸47.8重量%の水溶液〔硬化剤(II)〕を0.28重量部加え、次いでフラン樹脂(カオーライトナーEF−5401、花王クエーカー(株)製)〔結合剤(II)〕を0.7重量部添加、混練して試験鋳型を作製し、サンドメタル比が2の鋳物を鋳造した。回収した砂をクラッシャーにて解砕して、回収砂とした。この回収砂を実施例1と同様に日本鋳造(株)製ハイブリッドサンドマスターを用いて砂の機械再生を行い、再生鋳物砂を得た。得られた再生鋳物砂を用い、アルミニウム元素溶出量を測定し、また、25℃、55%RHの条件にて砂100重量部に対し、硬化剤としてp−トルエンスルホン酸61重量%の水溶液〔硬化剤(I)〕0.28重量部加え、次いでフラン樹脂(カオーライトナーEF−5401、花王クエーカー(株)製)〔結合剤(I)〕を0.7重量部添加、混練して直ちに直径50mm、高さ50mmの円筒形のテストピースを作製し、0.5時間後及び24時間後の圧縮強度を測定した。結果を表1に示す。
Reference example 3
An aqueous solution [curing agent (II)] of 9.4% by weight sulfuric acid and 47.8% by weight xylene sulfonic acid is used as a curing agent for 100 parts by weight of fresh sand free mantle silica sand (free mantle, manufactured by Yamakawa Sangyo Co., Ltd.). Add 0.28 parts by weight, then add 0.7 parts by weight of furan resin (Kaolitener EF-5401, manufactured by Kao Quaker Co., Ltd.) [Binder (II)] and knead to prepare a test mold. Castings with a ratio of 2 were cast. The recovered sand was crushed with a crusher to obtain recovered sand. The recovered sand was mechanically regenerated using a hybrid sand master manufactured by Nippon Casting Co., Ltd. in the same manner as in Example 1 to obtain reclaimed foundry sand. Using the obtained reclaimed foundry sand, the aluminum element elution amount was measured, and an aqueous solution of 61% by weight of p-toluenesulfonic acid as a curing agent with respect to 100 parts by weight of sand under the conditions of 25 ° C. and 55% RH [ Curing agent (I)] 0.28 parts by weight was added, and then 0.7 parts by weight of furan resin (Kaolitener EF-5401, manufactured by Kao Quaker Co., Ltd.) [Binder (I)] was added and kneaded to obtain a diameter. Cylindrical test pieces having a height of 50 mm and a height of 50 mm were produced, and the compressive strength was measured after 0.5 hours and 24 hours. The results are shown in Table 1.

Figure 0005250301
Figure 0005250301

参考例2〜3より、フリーマントルシリカサンドを用いた場合、再生鋳物砂の硬化速度は低下しない。従って、再生鋳物砂における硬化速度の低下は、鋳物砂(A)に特有の課題であることがわかる。   From Reference Examples 2 to 3, when free mantle silica sand is used, the curing rate of the reclaimed foundry sand does not decrease. Therefore, it turns out that the fall of the hardening rate in reproduction | regeneration molding sand is a subject peculiar to casting sand (A).

新砂を用いた参考例1と比較して、実施例1〜6では、初期強度(0.5時間後)の低下が抑制されているが、比較例1〜6では大幅に低下している。すなわち、実施例1〜6のように、メタンスルホン酸を含有し、且つ硫酸含有量の少ない硬化剤(II)を用いた、鋳物砂(A)の再生鋳物砂を用いることにより、硬化速度の低下が抑えられた鋳型の製造方法が提供される。   Compared with the reference example 1 using fresh sand, in Examples 1-6, although the fall of initial strength (after 0.5 hour) is suppressed, in Comparative Examples 1-6, it is falling significantly. That is, as in Examples 1 to 6, by using the reclaimed foundry sand of the foundry sand (A) using the curing agent (II) containing methanesulfonic acid and having a low sulfuric acid content, the curing rate can be increased. Provided is a method for producing a mold in which the decrease is suppressed.

Claims (6)

再生鋳物砂を用いて鋳型を製造する工程を含む鋳型の製造方法であって、再生鋳物砂が、(1)造粒焼成法により得られた鋳物砂と、(2)酸硬化性樹脂を含有する結合剤と、(3)メタンスルホン酸を含有し硫酸含有量が5重量%以下である硬化剤とを用いて製造された鋳型から得られるものである、鋳型の製造方法。   A method for producing a mold including a step of producing a mold using reclaimed foundry sand, wherein the reclaimed foundry sand comprises (1) foundry sand obtained by a granulation firing method, and (2) an acid-curable resin. A method for producing a mold, which is obtained from a mold produced using a binder that comprises (3) a curing agent containing methanesulfonic acid and having a sulfuric acid content of 5% by weight or less. 前記硬化剤が、更に他の有機スルホン酸を含有する請求項1記載の鋳型の製造方法。   The method for producing a mold according to claim 1, wherein the curing agent further contains another organic sulfonic acid. 他の有機スルホン酸が、キシレンスルホン酸、トルエンスルホン酸、及びエチルベンゼンスルホン酸からなる群から選ばれる少なくとも1種である請求項2記載の鋳型の製造方法。   The method for producing a mold according to claim 2, wherein the other organic sulfonic acid is at least one selected from the group consisting of xylene sulfonic acid, toluene sulfonic acid, and ethylbenzene sulfonic acid. 前記硬化剤が、メタンスルホン酸を5〜100重量%含有する請求項1〜3の何れか1項記載の鋳型の製造方法。 The method for producing a mold according to any one of claims 1 to 3, wherein the curing agent contains 5 to 100% by weight of methanesulfonic acid. 前記結合剤が、酸硬化性樹脂として酸硬化性フラン樹脂を含有し、更に、ポリフェノール化合物を含有する、請求項1〜4の何れか1項記載の鋳型の製造方法。   The method for producing a mold according to any one of claims 1 to 4, wherein the binder contains an acid curable furan resin as an acid curable resin, and further contains a polyphenol compound. 造粒焼成法により得られた鋳物砂を、鋳型の製造及び該鋳型からの再生鋳物砂の製造に繰り返して用いる方法であって、前記鋳型を(1)造粒焼成法により得られた鋳物砂と、(2)酸硬化性樹脂を含有する結合剤と、(3)メタンスルホン酸を含有し硫酸含有量が5重量%以下である硬化剤とを用いて製造する、鋳物砂の繰り返し使用方法。   The casting sand obtained by the granulation firing method is used repeatedly in the production of a mold and in the production of recycled casting sand from the mold, wherein the casting mold is obtained by (1) the granulation firing method. And (2) a binder containing an acid curable resin, and (3) a curing agent containing methanesulfonic acid and having a sulfuric acid content of 5% by weight or less. .
JP2008118942A 2008-04-30 2008-04-30 Mold manufacturing method Expired - Fee Related JP5250301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008118942A JP5250301B2 (en) 2008-04-30 2008-04-30 Mold manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008118942A JP5250301B2 (en) 2008-04-30 2008-04-30 Mold manufacturing method

Publications (2)

Publication Number Publication Date
JP2009269039A JP2009269039A (en) 2009-11-19
JP5250301B2 true JP5250301B2 (en) 2013-07-31

Family

ID=41436049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008118942A Expired - Fee Related JP5250301B2 (en) 2008-04-30 2008-04-30 Mold manufacturing method

Country Status (1)

Country Link
JP (1) JP5250301B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5563875B2 (en) * 2010-04-16 2014-07-30 花王株式会社 Kit for producing a mold composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5772750A (en) * 1980-10-27 1982-05-07 Aisin Chem Co Ltd Binder composition for mold
JP3248816B2 (en) * 1994-08-19 2002-01-21 花王株式会社 Mold and method for producing mold
JP3115510B2 (en) * 1995-05-30 2000-12-11 花王株式会社 Molding composition
JPH09234540A (en) * 1996-02-29 1997-09-09 Elf Atochem Japan Kk Binder coated sand grain for mold

Also Published As

Publication number Publication date
JP2009269039A (en) 2009-11-19

Similar Documents

Publication Publication Date Title
JP5537067B2 (en) Mold manufacturing method
JP6069047B2 (en) Hardener composition for mold making
JP3114516B2 (en) Binder composition for mold production and method for producing mold
KR101444047B1 (en) Binder composition for mold molding
EP1839774B1 (en) Furan resin composition for producing mold
JP5250300B2 (en) Mold manufacturing method
JP5250301B2 (en) Mold manufacturing method
JP5683941B2 (en) Method for producing binder composition for mold making
JP2542144B2 (en) Binder composition for organic ester-curable foundry sand and method for producing mold using the same
JP7316137B2 (en) Binder composition for mold making
JPH0550177A (en) Resin composition for casting sand
JP2898799B2 (en) Method for treating casting sand and method for producing sand mold for casting
JP2011125926A (en) Binder composition for mold molding
JP3457188B2 (en) Hardener composition for mold production
JPS6228043A (en) Binder resin composition for casting
JP3197973B2 (en) Composition for foundry sand
JP2954395B2 (en) Resin composition for producing curable mold and method for producing mold
JP2504660B2 (en) Organic ester-curable molding sand curing agent composition and method for producing mold using the same
JPH0857576A (en) Binder composition for production of casting mold and production of casting mold
JP3092983B2 (en) Casting sand mold manufacturing method
JP2954396B2 (en) Resin composition for producing curable mold and method for producing mold
JPH04135035A (en) Binder composition for molding sand
JPH04118146A (en) Binder composition for molding sand
JPH04118144A (en) Binder composition for molding sand
JPS62252635A (en) Binder composition for casting mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R151 Written notification of patent or utility model registration

Ref document number: 5250301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees