JP5229355B2 - Temperature sensor - Google Patents
Temperature sensor Download PDFInfo
- Publication number
- JP5229355B2 JP5229355B2 JP2011133284A JP2011133284A JP5229355B2 JP 5229355 B2 JP5229355 B2 JP 5229355B2 JP 2011133284 A JP2011133284 A JP 2011133284A JP 2011133284 A JP2011133284 A JP 2011133284A JP 5229355 B2 JP5229355 B2 JP 5229355B2
- Authority
- JP
- Japan
- Prior art keywords
- cylindrical member
- insulating tube
- temperature sensor
- temperature
- holding member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K13/00—Thermometers specially adapted for specific purposes
- G01K13/02—Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K1/00—Details of thermometers not specially adapted for particular types of thermometer
- G01K1/08—Protective devices, e.g. casings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K2205/00—Application of thermometers in motors, e.g. of a vehicle
- G01K2205/04—Application of thermometers in motors, e.g. of a vehicle for measuring exhaust gas temperature
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Description
本発明は、感温素子と、貫通孔を有する絶縁管とを備え、感温素子の信号線を上記貫通孔に挿通させた温度センサに関する。 The present invention relates to a temperature sensor including a temperature sensitive element and an insulating tube having a through hole, and a signal line of the temperature sensitive element is inserted into the through hole.
車両の排気ガス等の温度を測定するための温度センサとして、図10に示すごとく、サーミスタ等の感温素子93と、シースピン90とを備えるものが従来から知られている(下記特許文献1参照)。
シースピン90は、金属製の筒状部材92と、該筒状部材92の内部に充填した粉末状の絶縁体94と、感温素子93に接続した一対の信号線95とを備え、絶縁体94によって一対の信号線95を、絶縁性を確保しつつ保持している。
As a temperature sensor for measuring the temperature of exhaust gas or the like of a vehicle, as shown in FIG. 10, a sensor having a temperature sensing element 93 such as a thermistor and a sheath pin 90 has been known (see Patent Document 1 below). ).
The sheath pin 90 includes a cylindrical member 92 made of metal, a powdery insulator 94 filled in the cylindrical member 92, and a pair of signal lines 95 connected to the temperature sensing element 93. Thus, the pair of signal lines 95 are held while ensuring insulation.
シースピン90を製造する際には、所謂しごき加工を行う。すなわち、加工後の筒状部材92よりも外径が大きく、軸線方向長さが短い筒状部材を用意し、この中に一対の信号線95を通すと共に、MgO等からなる粉末状の絶縁体94を充填する。そして、筒状部材の外径を細くしつつ軸線方向長さを長くする加工を行う。しごき加工をすることにより、絶縁体94を密にし、筒状部材92から絶縁体94が抜けることを防止している。 When the sheath pin 90 is manufactured, so-called ironing is performed. That is, a cylindrical member having an outer diameter larger than that of the processed cylindrical member 92 and having a short axial length is prepared, and a pair of signal wires 95 are passed through the cylindrical member, and a powdered insulator made of MgO or the like 94 is filled. And the process which lengthens an axial direction length is performed, making the outer diameter of a cylindrical member thin. By performing the ironing process, the insulator 94 is made dense and the insulator 94 is prevented from coming off from the cylindrical member 92.
一方、シースピン90にはリブ部98が設けられており、このリブ部98に外筒900が固定されている。シースピン90の後端側部分90aは、外筒900に挿入されている。外筒900の後端905には、ゴム製のブッシュ99が取り付けられている。そして、被覆絶縁膜960を有し、信号線95に接続したリード線96が、ブッシュ99内を通っている。また、ブッシュ99及びリード線96の抜け止めをするため、外筒900の後端部905に加締め加工がされている。 On the other hand, the sheath pin 90 is provided with a rib portion 98, and the outer cylinder 900 is fixed to the rib portion 98. The rear end portion 90 a of the sheath pin 90 is inserted into the outer cylinder 900. A rubber bush 99 is attached to the rear end 905 of the outer cylinder 900. A lead wire 96 having a coating insulating film 960 and connected to the signal line 95 passes through the bush 99. Further, in order to prevent the bush 99 and the lead wire 96 from coming off, the rear end portion 905 of the outer cylinder 900 is crimped.
温度センサ91は、車両の排気管97に取り付けられる。排気管97内を流れる排気ガスg(被測定体)の温度を、感温センサ93によって測定し、エンジンの制御等に利用している。 The temperature sensor 91 is attached to the exhaust pipe 97 of the vehicle. The temperature of the exhaust gas g (measuring object) flowing in the exhaust pipe 97 is measured by a temperature sensor 93 and used for engine control and the like.
しかしながら従来の温度センサ91は、シースピン90を製造する際に、上記しごき加工を行う必要があるため、製造コストが高くなるという問題があった。 However, since the conventional temperature sensor 91 needs to perform the ironing process when manufacturing the sheath pin 90, there is a problem that the manufacturing cost is increased.
また、従来の温度センサ91は、シースピン90内の絶縁体94として粉末状のセラミックスを使用しているため、吸湿しやすいという問題があった。絶縁体94が吸湿すると、一対の信号線95の間の絶縁性を確保しにくくなる。絶縁性が低下すると、一対の信号線95の間に電流が流れ、正確な検出電圧を出力できなくなるという問題が生じる。 Further, since the conventional temperature sensor 91 uses powdered ceramics as the insulator 94 in the sheath pin 90, there is a problem that it is easy to absorb moisture. When the insulator 94 absorbs moisture, it becomes difficult to ensure insulation between the pair of signal lines 95. When the insulating property is lowered, a current flows between the pair of signal lines 95, which causes a problem that an accurate detection voltage cannot be output.
さらに、従来の温度センサ91は、筒状部材92の内部に絶縁体94を隙間なく充填しているため、絶縁体94から筒状部材92へ熱伝導しやすいという問題があった。そのため、感温素子93の熱が、絶縁体94から筒状部材92、さらにリブ部98、排気管97を順次伝わって筒状部材の周囲、もしくは排気管外へ放熱され、感温素子93の温度が下がりやすくなる。その結果、感温素子93の温度と、排気ガスgの温度とが等しくなるために長い時間が必要となる。そのため、排気ガスgの温度が変化した場合に、変化後の温度を素早く検出しにくくなる。すなわち、排気ガスgの温度変化に対する応答性が悪いという問題が生じる。 Further, the conventional temperature sensor 91 has a problem that heat conduction from the insulator 94 to the tubular member 92 is easy because the insulator 94 is filled in the tubular member 92 without a gap. Therefore, the heat of the temperature sensing element 93 is sequentially transmitted from the insulator 94 to the cylindrical member 92, the rib portion 98, and the exhaust pipe 97 to be dissipated around the cylindrical member or outside the exhaust pipe. The temperature tends to drop. As a result, a long time is required for the temperature of the temperature sensing element 93 to be equal to the temperature of the exhaust gas g. For this reason, when the temperature of the exhaust gas g changes, it becomes difficult to quickly detect the changed temperature. That is, there arises a problem that the responsiveness to the temperature change of the exhaust gas g is poor.
また、熱が絶縁体94から筒状部材92へ移動しやすいと、排気ガス温度が絶縁体94へ伝わりやすく、絶縁体94を通して温度センサ上部へ熱が伝わるため、ブッシュ99やリード線96等の、排気管97の外部に設けられている部品の温度が上昇しやすくなる。そのため、耐熱性の高い部品を使用する必要が生じ、温度センサ91の製造コストが上昇しやすくなる。 Further, if the heat easily moves from the insulator 94 to the cylindrical member 92, the exhaust gas temperature is easily transmitted to the insulator 94, and heat is transmitted to the upper portion of the temperature sensor through the insulator 94, so that the bush 99, the lead wire 96, etc. The temperature of parts provided outside the exhaust pipe 97 is likely to rise. Therefore, it is necessary to use components having high heat resistance, and the manufacturing cost of the temperature sensor 91 is likely to increase.
本発明は、かかる問題点に鑑みてなされたもので、製造コストを低減でき、信号線の絶縁性を確保しやすく、かつ被測定体の温度変化に対する応答性が良好な温度センサを提供しようとするものである。 The present invention has been made in view of such problems, and is intended to provide a temperature sensor that can reduce the manufacturing cost, can easily ensure the insulation of the signal line, and has good responsiveness to the temperature change of the measured object. To do.
本発明は、先端が閉じた筒状部材と、
該筒状部材の内部における上記先端に設けられた感温素子と、
上記筒状部材の内部に設けられ、セラミック焼結体からなると共に、上記筒状部材の軸線方向に貫通した一対の貫通孔を有する絶縁管と、
上記感温素子に接続し、上記絶縁管の上記貫通孔内を通る一対の信号線と、
上記筒状部材を外周側から保持するリブ部とを備え、
上記筒状部材の先端側には、上記絶縁管の先端部および上記感温素子を保持する縮径部が形成され、上記筒状部材のうち上記縮径部よりも後端側は該縮径部よりも拡径しており、
その拡径した部分には、上記筒状部材の内周面と上記絶縁管の外周面との間に隙間が形成され、
上記軸線方向において、上記隙間の長さは上記縮径部の長さよりも長く、
上記筒状部材との間に上記隙間を設けた状態で上記絶縁管を保持する保持部材が、上記筒状部材に取り付けられており、
上記保持部材は弾性体からなり、
上記保持部材は、上記リブ部よりも上記軸線方向における後端側に取り付けられていることを特徴とする温度センサにある(請求項1)。
The present invention includes a cylindrical member having a closed tip,
A temperature sensing element provided at the tip in the cylindrical member;
An insulating tube provided inside the cylindrical member, made of a ceramic sintered body, and having a pair of through holes penetrating in the axial direction of the cylindrical member;
A pair of signal lines connected to the temperature sensitive element and passing through the through hole of the insulating tube ;
A rib portion for holding the cylindrical member from the outer peripheral side ,
On the distal end side of the tubular member, a distal end portion of the insulating tube and a reduced diameter portion for holding the temperature sensing element are formed, and the rear end side of the tubular member from the reduced diameter portion is the reduced diameter portion. The diameter is larger than the part,
In the expanded diameter portion , a gap is formed between the inner peripheral surface of the cylindrical member and the outer peripheral surface of the insulating tube,
In the axial direction, the length of the gap is longer than the length of the reduced diameter portion,
A holding member that holds the insulating tube in a state where the gap is provided between the cylindrical member and the cylindrical member is attached to the cylindrical member,
The holding member is made of an elastic body,
The holding member is attached to a rear end side in the axial direction with respect to the rib portion (claim 1).
本発明の作用効果について説明する。本発明では、一対の信号線の間の電気的絶縁を確保するための絶縁部材(絶縁管)を、粉末状のセラミックを使用して形成するのではなく、セラミック焼結体を用いて形成した。そして、この絶縁管に設けた貫通孔に、上記信号線を挿通させた。
上記絶縁管はセラミック焼結体からなるため、上記構造にすると、絶縁管が吸湿しにくくなり、一対の信号線の間の絶縁性が低下しにくくなる。
また、本発明では、従来のようにしごき加工を行う必要が無いため、温度センサの製造コストを低減できる。
The function and effect of the present invention will be described. In the present invention, an insulating member (insulating tube) for securing electrical insulation between a pair of signal lines is formed using a ceramic sintered body, not using powdered ceramic. . And the said signal wire was penetrated to the through-hole provided in this insulating tube.
Since the insulating tube is made of a ceramic sintered body, the above structure makes it difficult for the insulating tube to absorb moisture, and the insulation between the pair of signal lines is difficult to decrease.
Further, according to the present invention, since there is no need to perform ironing as in the prior art, the manufacturing cost of the temperature sensor can be reduced.
また、本発明では、絶縁管の軸線方向における少なくとも一部の区間において、筒状部材の内周面と絶縁管の外周面との間に隙間を設けた。
このようにすると、筒状部材と絶縁管との間に隙間が形成されているため、絶縁管から筒状部材へ熱伝導しにくくなる。そのため、感温素子の熱が絶縁管を通って筒状部材へ伝わり、さらに筒状部材の周囲に放熱されたり、リブ、排気管へと熱伝導することによって、排気管外に放熱されたりするという不具合を防止できる。その結果、感温素子の温度と被測定体の温度とが等しくなりやすくなり、被測定体の温度が変化した場合に、変化後の温度を素早く検出することが可能になる。すなわち、被測定体の温度変化に対する応答性が良好になる。
In the present invention, a gap is provided between the inner peripheral surface of the tubular member and the outer peripheral surface of the insulating tube in at least a part of the section in the axial direction of the insulating tube.
If it does in this way, since the clearance gap is formed between the cylindrical member and the insulating tube, it will become difficult to conduct heat from an insulating tube to a cylindrical member. Therefore, the heat of the temperature sensing element is transmitted to the tubular member through the insulating tube, and further radiated to the periphery of the tubular member, or radiated to the outside of the exhaust pipe by conducting heat to the rib and the exhaust pipe. Can be prevented. As a result, the temperature of the temperature sensing element and the temperature of the measured object are likely to be equal, and when the temperature of the measured object changes, the changed temperature can be detected quickly. That is, the response to the temperature change of the measured object is improved.
また、本発明の温度センサは、上記絶縁管を保持する保持部材を有する。そのため、温度センサに外部から何らかの力が加わり、振動した場合でも、絶縁管を筒状部材に対して保持することができる。そのため、絶縁管が径方向に揺れにくくなり、細くて長い絶縁管を用いた場合でも、絶縁管が破損しにくくなる。 Moreover, the temperature sensor of this invention has a holding member holding the said insulating tube. Therefore, even when some force is applied to the temperature sensor from the outside and vibrates, the insulating tube can be held against the cylindrical member. For this reason, the insulating tube is less likely to shake in the radial direction, and even when a thin and long insulating tube is used, the insulating tube is not easily damaged.
また、上記保持部材は、筒状部材との間に隙間を設けた状態で上記絶縁管を保持している。そのため、保持部材の位置や、隙間の大きさを調整することにより、振動によるストレス(応力)を低減することができる。したがって、高い振動ストレスがかかる環境においても絶縁管が割れたり、リード線が断線したりする不具合を防止できる。 Further, the holding member holds the insulating tube in a state where a gap is provided between the holding member and the cylindrical member. Therefore, the stress (stress) due to vibration can be reduced by adjusting the position of the holding member and the size of the gap. Therefore, it is possible to prevent problems such as breakage of the insulating tube and disconnection of the lead wire even in an environment where high vibration stress is applied.
以上のごとく、本発明によれば、製造コストを低減でき、信号線の絶縁性を確保しやすく、かつ被測定体の温度変化に対する応答性が良好であり、耐振性に優れた温度センサを提供することができる。 As described above, according to the present invention, it is possible to reduce the manufacturing cost, to easily ensure the insulation of the signal line, to provide a response to temperature change of the measurement object, and to provide a temperature sensor excellent in vibration resistance. can do.
上述した本発明における好ましい実施の形態につき説明する。
本発明において、上記筒状部材のうち上記感温素子を配置した部分は、上記隙間を設けた部分よりも縮径している。
したがって、感温素子と筒状部材との間の隙間が小さくなるため、被測定体の温度と感温素子の温度とが等しくなりやすい。そのため、被測定体の温度変化に対する応答性が一層、良好になる。
A preferred embodiment of the present invention described above will be described.
In the present invention, the sense portion and the temperature detecting element is disposed out of the tubular member, that have a reduced diameter than the portion provided with the gap.
Therefore , since the gap between the temperature sensitive element and the cylindrical member is reduced, the temperature of the measured object and the temperature of the temperature sensitive element tend to be equal. Therefore, the responsiveness to the temperature change of the measured object is further improved.
また、上記筒状部材は、内側に上記感温素子を配置した部分と、上記絶縁管の外周面との間に上記隙間を設けた部分とが一体に形成されていることが好ましい(請求項2)。
この場合には、筒状部材に腐食等が生じにくくなる。すなわち、内側に感温素子を配置した部分と、上記隙間を設けた部分との2つの部分を、それぞれ別部材として形成し、溶接等を行って接続することもできるが、この場合には、溶接によって鋭敏化が起きるため(例えば、結晶粒界にCr23C6が生成されて粒界のCr濃度が下がる)、溶接部が腐食しやすくなることがある。また、溶接時に、溶接部に熱応力が加わりやすいという問題もある。しかしながら、上記2つの部分を一体形成すれば、溶接等を行う必要がなくなり、溶接部が腐食する等の不具合が生じにくくなる。
Further, it is preferable that the cylindrical member is integrally formed with a portion where the temperature sensing element is disposed inside and a portion where the gap is provided between the outer peripheral surface of the insulating tube. 2 ).
In this case, corrosion or the like hardly occurs in the cylindrical member. That is, the two parts, the part where the temperature sensing element is arranged on the inside and the part where the gap is provided, can be formed as separate members and connected by welding or the like. Since sensitization occurs by welding (for example, Cr 23 C 6 is generated at the grain boundaries and the Cr concentration at the grain boundaries decreases), the welded portion may be easily corroded. Further, there is a problem that thermal stress is easily applied to the welded part during welding. However, if the two parts are integrally formed, it is not necessary to perform welding or the like, and problems such as corrosion of the welded part are less likely to occur.
また、上記保持部材は、上記筒状部材の内周面を径方向外側へ付勢することにより上記保持部材を上記筒状部材に固定する筒側部分と、上記絶縁管の外周面を取り囲む絶縁管側部分と、上記筒側部分と上記絶縁管側部分とを繋ぐ接続部とを備えることが好ましい(請求項3)。
このようにすると、上記筒側部分が筒状部材の内周面を径方向外側へ付勢しているため、この筒側部分によって、保持部材を筒状部材に対してしっかりと固定できる。そのため、温度センサが振動しても、保持部材が位置ずれしにくい。また、上記絶縁管側部分は、絶縁管の外周面を取り囲む形状をしているため、絶縁管を保持しやすい。
Further, the holding member is an insulating member surrounding the outer peripheral surface of the insulating tube and a cylinder side portion that fixes the holding member to the cylindrical member by urging the inner peripheral surface of the cylindrical member radially outward. a tube-side portion is preferably provided with a connection portion connecting the said sleeve portion and said insulating tube portion (claim 3).
If it does in this way, since the said cylinder side part is urging | biasing the inner peripheral surface of a cylindrical member to radial direction outer side, a holding member can be firmly fixed with respect to a cylindrical member by this cylinder side part. Therefore, even if the temperature sensor vibrates, the holding member is not easily displaced. Moreover, since the said insulating-tube side part has the shape which surrounds the outer peripheral surface of an insulating tube, it is easy to hold | maintain an insulating tube.
また、上記保持部材は弾性体から構成されている。
したがって、保持部材の振動吸収効果を向上させることができる。そのため、細くて長い絶縁管を使用しても、振動によって絶縁管が破損する不具合を防止できる。
Further, the holding member that is composed of an elastic material.
Therefore , the vibration absorption effect of the holding member can be improved. Therefore, even if a thin and long insulating tube is used, a problem that the insulating tube is damaged by vibration can be prevented.
また、上記保持部材は、金属製の細線を絡み合わせた金属メッシュからなることが好ましい(請求項4)。
この場合には、温度センサの耐振性を高めることができる。すなわち、金属メッシュは金属材料の選択の幅を広げやすいため、耐熱性が高い金属材料を使って金属メッシュを形成することができる。そのため、この金属メッシュからなる保持部材を、より感温素子に近い位置、すなわち温度が高くなりやすい位置に設けることができる。これにより、絶縁管を保持する位置を調節し、温度センサの固有振動数を調整することが可能になる。そのため、例えば温度センサを車両に搭載して用いる場合、車両の振動数と温度センサの固有振動数をずらすことができ、車両の振動によって温度センサが共振する不具合を防止できる。そのため、温度センサの耐振性を向上できる。
Further, the holding member is preferably made of metal mesh intertwined metallic thin wire (claim 4).
In this case, the vibration resistance of the temperature sensor can be increased. That is, since the metal mesh can easily expand the selection range of the metal material, the metal mesh can be formed using a metal material having high heat resistance. Therefore, the holding member made of this metal mesh can be provided at a position closer to the temperature sensitive element, that is, at a position where the temperature tends to increase. This makes it possible to adjust the natural frequency of the temperature sensor by adjusting the position where the insulating tube is held. Therefore, for example, when a temperature sensor is mounted on a vehicle and used, the frequency of the vehicle and the natural frequency of the temperature sensor can be shifted, and a problem that the temperature sensor resonates due to the vibration of the vehicle can be prevented. Therefore, the vibration resistance of the temperature sensor can be improved.
また、上記筒状部材の内面と上記感温素子の外面との間に、空気よりも熱伝導率が高い高熱伝導材料が充填されていることが好ましい(請求項5)。
この場合には、被測定体の温度と感温素子との温度とが等しくなりやすい。そのため、被測定体の温度変化に対する、温度センサの応答性を向上させることができる。
Between the inner and outer surfaces of said temperature sensitive elements of the tubular member, it is preferable that high high thermal conductivity material thermal conductivity is filled than air (Claim 5).
In this case, the temperature of the measurement object and the temperature of the temperature sensitive element are likely to be equal. Therefore, the responsiveness of the temperature sensor with respect to the temperature change of the measurement object can be improved.
(実施例1)
本発明の実施例にかかる温度センサにつき、図1〜図5を用いて説明する。
本例の温度センサ1は、図1、図2に示すごとく、先端21が閉じた筒状部材2と、該筒状部材2内に設けられた感温素子3と、絶縁管4と、一対の信号線5とを備える。絶縁管4は、筒状部材2の内部に設けられ、セラミック焼結体からなると共に、筒状部材2の軸線方向Xに貫通した一対の貫通孔40を有する(図3参照)。絶縁管4は、例えばAl2O3(アルミナ)、MgO(マグネシア)、ZrO2(ジルコニア)、Si3N4(窒化ケイ素)等の耐熱性をもったセラミックからなる。これらのセラミックの中では、絶縁抵抗が高いことや、加工性が良好なことから、Al2O3が好ましい。
なお、セラミック焼結体の密度を高くすれば、絶縁性や耐吸湿性を高めることができる。そのため、セラミック焼結体の密度は高ければ高いほど好ましい。
また、一対の信号線5は、感温素子3に接続しており、絶縁管4の貫通孔40内を通っている。信号線5は、例えばINCONEL601、FeCrAl等の耐熱金属からなる。
Example 1
A temperature sensor according to an embodiment of the present invention will be described with reference to FIGS.
As shown in FIGS. 1 and 2, the temperature sensor 1 of the present example includes a
In addition, if the density of a ceramic sintered compact is made high, insulation and moisture absorption resistance can be improved. Therefore, the higher the density of the ceramic sintered body, the better.
The pair of
図1に示すごとく、絶縁管4の軸線方向Xにおける少なくとも一部の区間には、筒状部材2の内周面20と絶縁管4の外周面45との間に隙間10が形成されている。
また、筒状部材2との間に隙間10を設けた状態で絶縁管4を保持する保持部材6が、筒状部材2に取り付けられている。
以下、詳説する。
As shown in FIG. 1, a
A holding
The details will be described below.
本例の温度センサ1は、車両の排気管7に取り付けられており、排気管7内を流れる排気ガスg(本例の被測定体)の温度を測定している。
また、本例の筒状部材2は、感温素子3を収納する第1部分2aと、該第1部分2aにその先端部を内嵌した第2部分2bとからなる。図2に示すごとく、第1部分2aと第2部分2bとは、溶接部250にレーザー溶接等を行うことにより溶接されている。第2部分2bの内側には、軸線方向Xにおける全ての区間に、隙間10が形成されている。また、第1部分2aは、第2部分2bの先端面23よりも先端側が縮径しており、この縮径した箇所(縮径部)に、絶縁管4が挿入されている。縮径部に絶縁管4を挿入できるようにするため、縮径部の内径は、絶縁管4の外径よりも僅かに大きくなっている。そのため、縮径部と絶縁管4との間には、0.5mm〜1.0mm程度の隙間がある。
The temperature sensor 1 of this example is attached to the
Moreover, the
感温素子3は、サーミスタからなる。感温素子3は、絶縁管4の先端部41と、筒状部材2の先端21との間に配置されている。また、筒状部材2の先端21と感温素子3との間には、熱伝導性が高い緩衝材11が充填されている。
The temperature
一方、図1に示すごとく、筒状部材2には、径方向外側へ突出するリブ部12が形成されている。このリブ部12の後端側部分12aに、外筒8が外嵌している。また、外筒8には、雄螺子部130を備えた締結部材13が外嵌している。
また、排気管7には、螺子孔70が貫通形成されている。螺子孔70は、内側部分72が縮径している。温度センサ1を排気管7に取り付ける際には、排気管7の外側から温度センサ1を挿入し、締結部材13を螺子孔70に螺合する。このようにすると、上記内側部分72の座面71にリブ部12が密着する。これにより、排気ガスgが外部に漏れることを防止している。
On the other hand, as shown in FIG. 1, the
Further, a
また、外筒8の後端部80には、ゴム製のブッシュ14が取り付けられている。ブッシュ14にはリード線15が通っている。このリード線15は、信号線5と接続している。また、外筒8の後端部80は、加締め加工がされている。これにより、ブッシュ14と、リード線15の抜け止めをしている。
A
保持部材6は、図1に示すごとく、リブ部12よりも軸線方向Xにおける後端側に取り付けられている。保持部材6は、弾性体から構成されている。
また、図4、図5に示すごとく、保持部材6は、筒側部分6aと、絶縁管部分6bと、接続部6cとを備える。筒側部分6aは、筒状部材2の内周面20を径方向外側へ付勢することにより、保持部材6を筒状部材2に固定している。絶縁管部分6bは、絶縁管4の外周面45を取り囲んでいる。接続部6cは、筒側部分6aと絶縁管側部分6bとを繋いでいる。
As shown in FIG. 1, the holding
As shown in FIGS. 4 and 5, the holding
また、筒側部分6aの後端部には、径方向外側へ突出した係止爪6dが形成されている。温度センサ1を製造する際に、保持部材6を筒状部材2内に挿入すると、筒状部材2の後端面22に係止爪6dが引っ掛かり、それ以上、保持部材6が先端側へ移動しなくなる。これにより、保持部材6の位置決めができるようになっている。
Moreover, the latching
本例の作用効果について説明する。図1、図2に示すごとく、本例では、粉末状のセラミックを使用するのではなく、セラミック焼結体からなる絶縁管4を用いた。そして、この絶縁管4に設けた貫通孔40に、信号線5を挿通させた。
絶縁管4はセラミック焼結体からなるため、上記構造にすると、絶縁管4が吸湿しにくくなり、一対の信号線5の間の絶縁性が低下しにくくなる。
また、本例では、従来のようにしごき加工を行う必要が無いため、温度センサ1の製造コストを低減できる。
The effect of this example will be described. As shown in FIGS. 1 and 2, in this example, an insulating
Since the insulating
Further, in this example, since there is no need to perform ironing as in the prior art, the manufacturing cost of the temperature sensor 1 can be reduced.
また、本例では、絶縁管4の軸線方向Xにおける少なくとも一部の区間において、筒状部材2の内周面20と絶縁管4の外周面45との間に隙間10を設けた。
このようにすると、筒状部材2と絶縁管4との間に隙間10が形成されているため、絶縁管4から筒状部材2へ熱伝導しにくくなる。そのため、感温素子3の熱が絶縁管4を通って筒状部材2へ伝わり、さらに筒状部材2の周囲に放熱されるという不具合を防止できる。その結果、感温素子3の温度と被測定体(排気ガスg)の温度とが等しくなりやすくなり、被測定体の温度が変化した場合に、変化後の温度を素早く検出することが可能になる。すなわち、被測定体の温度変化に対する応答性が良好になる。
In this example, the
If it does in this way, since the
また、絶縁管4から筒状部材2へ熱伝導しにくいと、ブッシュ14やリード線15等の温度が高くなりにくい。そのため、耐熱性が高いブッシュ14等を使用する必要がなくなり、温度センサ1の製造コストを低くすることが可能になる。
Further, if it is difficult to conduct heat from the insulating
また、本例の温度センサ1は、絶縁管4を保持する保持部材6を有する。そのため、温度センサ1に外部から何らかの力が加わり、振動した場合でも、絶縁管4を筒状部材2に対して保持することができる。そのため、絶縁管4が径方向に揺れにくくなり、細くて長い絶縁管4を用いた場合でも、絶縁管4が破損しにくくなる。
Further, the temperature sensor 1 of this example includes a holding
図1、図2に示すごとく、本例では、筒状部材2のうち感温素子3を配置した部分は、隙間10を設けた部分よりも縮径している。
このようにすると、感温素子3と筒状部材2との間の隙間を小さくすることができるため、被測定体の温度と感温素子3の温度とが等しくなりやすい。そのため、被測定体の温度変化に対する応答性が一層、良好になる。
As shown in FIGS. 1 and 2, in this example, the portion of the
In this way, since the gap between the
また、図4、図5に示すごとく、保持部材6は、筒状部材2の内周面20を径方向外側へ付勢することにより保持部材6を筒状部材2に固定する筒側部分6aと、絶縁管4の外周面45を取り囲む絶縁管側部分6bと、筒側部分6aと絶縁管側部分6bとを繋ぐ接続部6cとを備える。
このようにすると、筒側部分6aが筒状部材2の内周面20を径方向外側へ付勢しているため、この筒側部分6aによって、保持部材6を筒状部材2に対してしっかりと固定できる。そのため、温度センサ1が振動しても、保持部材6が位置ずれしにくい。また、絶縁管側部分6bは、絶縁管4の外周面45を取り囲む形状をしているため、絶縁管4を保持しやすい。
As shown in FIGS. 4 and 5, the holding
In this case, since the
また、本例では、図1に示すごとく、保持部材6は、リブ部12よりも軸線方向Xにおける後端側に設けられている。
リブ部12は、排気ガスgに接触するため、温度が比較的上昇しやすい。これに対し、リブ部12よりも後端側の部分は、排気ガスgが接触しないため、温度が上昇しにくい。そのため、リブ部12よりも後端側に保持部材6を設ければ、耐熱性が低い保持部材6を使用することが可能になる。そのため、温度センサ1の製造コストを低減できる。
In this example, as shown in FIG. 1, the holding
Since the
また、本例では、保持部材6は弾性体から構成されている。そのため、保持部材6の振動吸収効果が高い。したがって、細くて長い絶縁管4を使用しても、振動によって絶縁管4が破損する不具合を防止できる。
Moreover, in this example, the holding
以上のごとく、本例によれば、製造コストを低減でき、信号線の絶縁性を確保しやすく、かつ被測定体の温度変化に対する応答性が良好な温度センサを提供することができる。 As described above, according to this example, it is possible to provide a temperature sensor that can reduce the manufacturing cost, can easily ensure the insulation of the signal line, and has good responsiveness to the temperature change of the measurement object.
(実施例2)
本例は、保持部材6を変更した例である。図6に示すごとく、本例の保持部材6は、金属製の細線を絡み合わせた金属メッシュからなる。
このようにすると、温度センサ1の耐振性を高めることができる。すなわち、金属メッシュは金属材料の選択の幅を広げやすいため、耐熱性が高い金属材料を使って金属メッシュを形成することができる。そのため、この金属メッシュからなる保持部材6を、より感温素子3に近い位置、すなわち温度が高くなりやすい位置に設けることができる。これにより、絶縁管4を保持する位置を調節し、温度センサ1の固有振動数を調整することが可能になる。そのため、例えば温度センサ1を車両に搭載して用いる場合、車両の振動数と温度センサ1の固有振動数をずらすことができ、車両の振動によって温度センサ1が共振する不具合を防止できる。そのため、温度センサ1の耐振性を向上できる。
なお、金属メッシュは、耐熱性の高い金属材料、例えばINCO601等を用いて形成することができる。
その他、実施例1と同様の構成および作用効果を有する。
(Example 2)
In this example, the holding
In this way, the vibration resistance of the temperature sensor 1 can be improved. That is, since the metal mesh can easily expand the selection range of the metal material, the metal mesh can be formed using a metal material having high heat resistance. Therefore, the holding
Note that the metal mesh can be formed using a metal material having high heat resistance, such as INCO601.
In addition, the configuration and operational effects are the same as those of the first embodiment.
(実施例3)
本例は、図7に示すごとく、筒状部材2の第1部分2aの内面と、感温素子3の外面との間に、空気よりも熱伝導率が高い高熱伝導材料19を充填した例である。高熱伝導材料19としては、例えばアルミナ(Al2O3)を用いることができる。また、本例では、第1部分2aの縮径した部分と絶縁管4との間に、例えば0.5〜1.0mm程度の隙間(図示しない)が形成されており、この隙間にも高熱伝導材料19が充填されている。
(Example 3)
In this example, as shown in FIG. 7, a high thermal
また、図7の例では、第1部分2aの縮径した部分、すなわち矢印Aに示す位置まで高熱伝導材料19を充填したが、図8に示すごとく、筒状部材2の第2部分2bまで高熱伝導材料19を充填してもよい。
その他、実施例1と同様の構成を備える。
Further, in the example of FIG. 7, the high heat
In addition, the same configuration as that of the first embodiment is provided.
本例の作用効果について説明する。本例では、筒状部材2の第1部分2aと感温素子3との間に高熱伝導材料19が充填されているため、被測定体の温度と感温素子3との温度とが等しくなりやすい。そのため、被測定体の温度変化に対する、温度センサ1の応答性を向上させることができる。
その他、実施例1と同様の作用効果を有する。
The effect of this example will be described. In this example, since the high thermal
In addition, the same effects as those of the first embodiment are obtained.
(実施例4)
本例は図9に示すごとく、筒状部材2における、内側に感温素子3を配置した部分(第1部分2a)と、絶縁管4の外周面との間に隙間10を設けた部分(第2部分2b)とを一体に形成した例である。
すなわち本例では、実施例1のように、第1部分2aと第2部分2bとの2個の部材を用意し、これらの部材を溶接して筒状部材2を形成するのではなく(図2参照)、第1部分2aと第2部分2bとが一体となった1部品として、筒状部材2を構成した。このような筒状部材2は、例えば深絞り加工によって製造することができる。
その他、実施例1と同様の構成を備える。
Example 4
In this example, as shown in FIG. 9, a portion of the
That is, in this example, unlike the first embodiment, two members of the
In addition, the same configuration as that of the first embodiment is provided.
本例の作用効果について説明する。上記構成にすると、筒状部材2に腐食等が生じにくくなる。すなわち、第1部分2aと第2部分2b(図2参照)とをそれぞれ別部材として形成し、溶接等を行って接続することもできるが、この場合には、溶接によって鋭敏化が起きるため(例えば、結晶粒界にCr23C6が生成されて粒界のCr濃度が下がる)、溶接部250が腐食しやすくなることがある。また、溶接時に、溶接部250に熱応力が加わりやすいという問題もある。しかしながら、深絞り加工等を行うことにより、第1部分2aと第2部分2bとを一体形成すれば、溶接工程を行う必要がなくなり、溶接部が腐食する等の不具合が生じにくくなる。
その他、実施例1と同様の作用効果を有する。
The effect of this example will be described. If it is the said structure, it will become difficult to produce corrosion etc. in the
In addition, the same effects as those of the first embodiment are obtained.
1 温度センサ
10 隙間
2 筒状部材
3 感温素子
4 絶縁管
5 信号線
6 保持部材
DESCRIPTION OF SYMBOLS 1
Claims (5)
該筒状部材の内部における上記先端に設けられた感温素子と、
上記筒状部材の内部に設けられ、セラミック焼結体からなると共に、上記筒状部材の軸線方向に貫通した一対の貫通孔を有する絶縁管と、
上記感温素子に接続し、上記絶縁管の上記貫通孔内を通る一対の信号線と、
上記筒状部材を外周側から保持するリブ部とを備え、
上記筒状部材の先端側には、上記絶縁管の先端部および上記感温素子を保持する縮径部が形成され、上記筒状部材のうち上記縮径部よりも後端側は該縮径部よりも拡径しており、
その拡径した部分には、上記筒状部材の内周面と上記絶縁管の外周面との間に隙間が形成され、
上記軸線方向において、上記隙間の長さは上記縮径部の長さよりも長く、
上記筒状部材との間に上記隙間を設けた状態で上記絶縁管を保持する保持部材が、上記筒状部材に取り付けられており、
上記保持部材は弾性体からなり、
上記保持部材は、上記リブ部よりも上記軸線方向における後端側に取り付けられていることを特徴とする温度センサ。 A cylindrical member with a closed tip;
A temperature sensing element provided at the tip in the cylindrical member;
An insulating tube provided inside the cylindrical member, made of a ceramic sintered body, and having a pair of through holes penetrating in the axial direction of the cylindrical member;
A pair of signal lines connected to the temperature sensitive element and passing through the through hole of the insulating tube ;
A rib portion for holding the cylindrical member from the outer peripheral side ,
On the distal end side of the tubular member, a distal end portion of the insulating tube and a reduced diameter portion for holding the temperature sensing element are formed, and the rear end side of the tubular member from the reduced diameter portion is the reduced diameter portion. The diameter is larger than the part,
In the expanded diameter portion , a gap is formed between the inner peripheral surface of the cylindrical member and the outer peripheral surface of the insulating tube,
In the axial direction, the length of the gap is longer than the length of the reduced diameter portion,
A holding member that holds the insulating tube in a state where the gap is provided between the cylindrical member and the cylindrical member is attached to the cylindrical member,
The holding member is made of an elastic body,
The temperature sensor , wherein the holding member is attached to a rear end side in the axial direction with respect to the rib portion .
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011133284A JP5229355B2 (en) | 2010-09-27 | 2011-06-15 | Temperature sensor |
DE201110083373 DE102011083373A1 (en) | 2010-09-27 | 2011-09-26 | Temperature sensor for measuring temperature of exhaust gas from vehicle, has sintered ceramic insulation pipe that is arranged in cylindrical structure, and is supported by supporting component |
CN201110294500.7A CN102435330B (en) | 2010-09-27 | 2011-09-27 | Temperature sensor |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010214975 | 2010-09-27 | ||
JP2010214975 | 2010-09-27 | ||
JP2011133284A JP5229355B2 (en) | 2010-09-27 | 2011-06-15 | Temperature sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012093340A JP2012093340A (en) | 2012-05-17 |
JP5229355B2 true JP5229355B2 (en) | 2013-07-03 |
Family
ID=45804874
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011133284A Active JP5229355B2 (en) | 2010-09-27 | 2011-06-15 | Temperature sensor |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5229355B2 (en) |
CN (1) | CN102435330B (en) |
DE (1) | DE102011083373A1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013206797B4 (en) * | 2012-04-17 | 2022-09-15 | Ngk Spark Plug Co., Ltd. | temperature sensor |
CN103105241A (en) * | 2013-01-30 | 2013-05-15 | 上海安可泰环保科技有限公司 | Thermal sensitive ceramic temperature sensing device applied in high voltage environment |
CN103698057A (en) * | 2013-12-15 | 2014-04-02 | 绵阳富林岚科技有限责任公司 | Heat-resistance heat flux sensor |
JP6350400B2 (en) * | 2014-10-31 | 2018-07-04 | 株式会社デンソー | Temperature sensor |
FR3035211B1 (en) * | 2015-04-20 | 2017-05-05 | Sc2N Sa | HIGH TEMPERATURE SENSOR WITH INTEGRATED CONNECTOR |
FR3045149A1 (en) * | 2015-12-15 | 2017-06-16 | Sc2N Sa | SIMPLIFIED TEMPERATURE SENSOR WITH PROTECTIVE CAP |
DE102016111738A1 (en) * | 2016-06-27 | 2017-12-28 | Heraeus Sensor Technology Gmbh | Cable for contacting a sensor, temperature measuring device, method for connecting a cable to a temperature measuring device and use of an alloy for producing a cable |
WO2019189315A1 (en) | 2018-03-30 | 2019-10-03 | ダイキン工業株式会社 | Compressor, refrigeration cycle device |
JP7440459B2 (en) | 2021-05-19 | 2024-02-28 | 株式会社芝浦電子 | temperature sensor |
JP7181655B1 (en) | 2022-01-13 | 2022-12-01 | 株式会社八洲測器 | Temperature sensor and method for manufacturing temperature sensor |
JP7259142B1 (en) * | 2022-05-25 | 2023-04-17 | 株式会社芝浦電子 | Temperature sensor and cooker |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5426859Y2 (en) * | 1974-01-23 | 1979-09-04 | ||
JP3435765B2 (en) * | 1993-11-16 | 2003-08-11 | 株式会社デンソー | Temperature sensor |
JP3555492B2 (en) | 1998-09-22 | 2004-08-18 | 株式会社デンソー | Temperature sensor |
JP4269512B2 (en) * | 2000-11-30 | 2009-05-27 | 株式会社デンソー | Temperature sensor |
JP4254424B2 (en) * | 2003-08-22 | 2009-04-15 | 株式会社デンソー | Gas sensor and assembly method thereof |
JP4986692B2 (en) * | 2007-04-13 | 2012-07-25 | 日本特殊陶業株式会社 | Temperature sensor |
-
2011
- 2011-06-15 JP JP2011133284A patent/JP5229355B2/en active Active
- 2011-09-26 DE DE201110083373 patent/DE102011083373A1/en not_active Withdrawn
- 2011-09-27 CN CN201110294500.7A patent/CN102435330B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN102435330A (en) | 2012-05-02 |
DE102011083373A1 (en) | 2012-03-29 |
CN102435330B (en) | 2014-10-08 |
JP2012093340A (en) | 2012-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5229355B2 (en) | Temperature sensor | |
JP5085398B2 (en) | Temperature sensor | |
JP5155246B2 (en) | Temperature sensor | |
JP5934215B2 (en) | Ceramic glow plug with pressure sensor | |
JP5324536B2 (en) | Temperature sensor | |
JP2004317499A (en) | Temperature sensor | |
JP5198934B2 (en) | Temperature sensor | |
JP6459757B2 (en) | Piping arrangement for temperature sensor | |
JP6992442B2 (en) | Temperature sensor | |
JP6608088B1 (en) | Temperature sensor | |
US10428716B2 (en) | High-temperature exhaust sensor | |
US10989608B2 (en) | Temperature sensor | |
JP6350400B2 (en) | Temperature sensor | |
JP2018036188A (en) | Temperature sensor | |
JP5268874B2 (en) | Temperature sensor | |
JP3826095B2 (en) | Temperature sensor | |
JP2006258724A (en) | Vibration-proof temperature sensor | |
JP2002350239A (en) | Temperature sensor | |
JP2012032235A (en) | Temperature sensor | |
CN110715751B (en) | Temperature sensor | |
JP4059209B2 (en) | Temperature sensor | |
JP2020016633A (en) | Temperature sensor | |
JP5123344B2 (en) | Temperature sensor | |
JP6787691B2 (en) | Temperature sensor | |
JP6576766B2 (en) | Temperature sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121023 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121219 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130219 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130304 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160329 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5229355 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |