JP5180269B2 - Lighting device - Google Patents
Lighting device Download PDFInfo
- Publication number
- JP5180269B2 JP5180269B2 JP2010202644A JP2010202644A JP5180269B2 JP 5180269 B2 JP5180269 B2 JP 5180269B2 JP 2010202644 A JP2010202644 A JP 2010202644A JP 2010202644 A JP2010202644 A JP 2010202644A JP 5180269 B2 JP5180269 B2 JP 5180269B2
- Authority
- JP
- Japan
- Prior art keywords
- incident side
- lens
- light source
- incident
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005286 illumination Methods 0.000 claims description 64
- 230000005499 meniscus Effects 0.000 claims description 10
- 230000002093 peripheral effect Effects 0.000 claims description 10
- 230000003287 optical effect Effects 0.000 description 44
- 230000000052 comparative effect Effects 0.000 description 16
- 238000007689 inspection Methods 0.000 description 16
- 239000011347 resin Substances 0.000 description 12
- 229920005989 resin Polymers 0.000 description 12
- 239000000758 substrate Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 5
- 230000004907 flux Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000005304 optical glass Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Landscapes
- Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
Description
本発明は照明装置に係り、特に、光学レンズ等の光学部材の検査用照明として好適な照明装置の構造に関する。 The present invention relates to an illuminating device, and more particularly to a structure of an illuminating device suitable as illumination for inspection of an optical member such as an optical lens.
一般に、光学レンズの検査時においては、光学レンズ等の光学部材に照明装置から放出される光を照射した状態で光学部材の表面の傷や汚れ等を検査することが行われている。この場合に、照明装置により照明された光学部材を撮影して得た画像に基づいて検査を行うこともある。このような検査用の照明装置としては、近年、光源としてLED(発光ダイオード)を用いたものが多く提供されるようになってきている。また、光学部材の傷や汚れを高いコントラストで検出できるようにするために、発光部分の形状を輪帯状に構成したもの(輪帯照明)、光学レンズ等の表面を粗面状にして乱反射させるなどの光拡散手段を用いるものなどが提案されている(以下の特許文献1乃至3参照)。 In general, when an optical lens is inspected, the surface of the optical member is inspected for scratches, dirt, and the like in a state in which the optical member such as the optical lens is irradiated with light emitted from the illumination device. In this case, the inspection may be performed based on an image obtained by photographing the optical member illuminated by the illumination device. In recent years, many lighting apparatuses using LEDs (light emitting diodes) as light sources have been provided. In addition, in order to be able to detect scratches and dirt on the optical member with high contrast, the light emitting portion is configured in a ring shape (annular illumination), and the surface of the optical lens or the like is roughened to be diffusely reflected. A device using a light diffusing means such as the above has been proposed (see Patent Documents 1 to 3 below).
しかしながら、上記従来の検査用照明装置においては、複数の樹脂レンズ付きのLED素子を用いているために、装置が大型化する割には光強度が不十分であり、しかも、LED素子の樹脂レンズによる指向性を前提に装置を設計しなければならないという問題点がある。また、照明光の出射部のレンズ面等を粗面化して光を拡散させる場合には、照明光が出射部において散乱することで、充分な集光性を得ることができないとともに照明効率が低下するという問題点がある。 However, since the conventional illumination device for inspection uses LED elements with a plurality of resin lenses, the light intensity is insufficient for the apparatus to be large, and the resin lens of the LED element. There is a problem that the device must be designed on the premise of directivity by. In addition, when diffusing light by roughening the lens surface or the like of the exit portion of the illumination light, the illumination light is scattered at the exit portion, so that sufficient light condensing performance cannot be obtained and illumination efficiency is reduced. There is a problem of doing.
また、樹脂レンズが付随しない複数のLEDチップを配列させた照明用の大光量のLED光源(例えば、マルチチップ方式のLED光源)を用いることも考えられるが、この場合には、光強度は十分に得られるものの、LED光源の発光パターンが投射されやすくなり、均一な照明を行うことが難しいという問題点が予想される。特に、ランプ用のLED光源の場合、単に室内等を照明する用途であれば問題は生じないものの、検査用照明として用いる場合には発光パターンが検査対象物に投射されやすくなり、均一な照度が得られないことにより正確な検査或いは判定が難しくなるという問題が考えられる。 In addition, it is conceivable to use an LED light source with a large amount of illumination for arranging a plurality of LED chips not accompanied by a resin lens (for example, a multi-chip LED light source). In this case, the light intensity is sufficient. However, it is expected that the light emission pattern of the LED light source is easily projected and it is difficult to perform uniform illumination. In particular, in the case of an LED light source for a lamp, there is no problem if it is simply used to illuminate a room or the like. However, when used as inspection illumination, a light emission pattern is likely to be projected onto an inspection object and uniform illuminance is obtained. There is a problem that accurate inspection or determination becomes difficult due to the fact that it cannot be obtained.
そこで、本発明は上記問題点を解決するものであり、その課題は、充分な照明強度が得られるとともにLEDの発光パターンが投射されにくい照明装置を提供することにある。 Therefore, the present invention solves the above-described problems, and an object of the present invention is to provide an illuminating device that can obtain a sufficient illumination intensity and is difficult to project an LED light emission pattern.
斯かる実情に鑑み、本発明の照明装置は、複数のLEDチップが面上に配列されてなり、チップ毎のレンズ構造を有しないLED光源と、該LED光源と対向する側に凹曲面状の光入射面を備えるとともに前記LED光源とは反対側に凸曲面状の光出射面を備えた、前記光入射面及び前記光出射面がそれぞれ連続した一つの曲面で構成された凸メニスカスレンズである、直列に配置された複数の入射側レンズと、該入射側レンズに対して前記LED光源とは反対側に配置された集光レンズとを具備し、前記複数の入射側レンズのうちの少なくとも一つの入射側レンズの前記光入射面が粗面であるとともに、前記複数の入射側レンズの前記光出射面が平滑面であり、前記複数の入射側レンズのうちの前記LED光源に最も近い前記入射側レンズの有効径は前記LED光源の発光領域の外接円径よりも大きく、相互に隣接する入射側レンズ間において前記LED光源とは反対側にある入射側レンズの有効径は前記LED光源の側にある入射側レンズの有効径よりも大きく、前記集光レンズの有効径は前記複数の入射側レンズのうちの前記LED光源から最も離れた入射側レンズの有効径よりも大きく、相互に隣接する入射側レンズ間において前記LED光源の側の入射側レンズの有効径内から出射する発散光束が前記LED光源とは反対側の入射側レンズの有効径内に入射し、前記複数の入射側レンズのうちの前記LED光源から最も離れた入射側レンズの有効径内から出射する発散光束が前記集光レンズ(22)の有効径内に入射することを特徴とする。 In view of such circumstances, the illumination device of the present invention, Ri Na plurality of LED chips are arranged on the surface, the LED light source does not have a lens structure of each chip, concavely curved on the side facing the said LED light source A convex meniscus lens comprising a light curved surface on which the light incident surface and the light emitting surface are continuous, and a light curved surface on the opposite side of the LED light source. there, comprising a plurality of incident side lenses arranged in series, and a condenser lens arranged on the side opposite to the LED light source with respect to the incident-side lens, at least one of said plurality of incident side lenses The light incident surface of one incident side lens is a rough surface, and the light exit surface of the plurality of incident side lenses is a smooth surface, and is closest to the LED light source of the plurality of incident side lenses. Incident side lens The effective diameter is larger than the circumscribed circle diameter of the light emitting region of the LED light source, and the effective diameter of the incident side lens on the opposite side to the LED light source between the adjacent incident side lenses is incident on the LED light source side. The effective diameter of the condensing lens is larger than the effective diameter of the incident side lens farthest from the LED light source among the plurality of incident side lenses and is adjacent to each other. The divergent light beam emitted from within the effective diameter of the incident side lens on the LED light source side is incident within the effective diameter of the incident side lens opposite to the LED light source, and among the plurality of incident side lenses The divergent light beam emitted from the effective diameter of the incident side lens farthest from the LED light source is incident on the effective diameter of the condenser lens (22) .
この発明によれば、LED光源の放出光は、複数の入射側レンズの光入射面のうち少なくとも一つが粗面であることから、入射側レンズを通過する際に散乱され、その後、入射側レンズの光出射面から出射された光が集光レンズにより集光された後に出射される。ここで、入射側レンズの光入射面が凹曲面状であることから、照明装置の光軸方向の距離を抑制しつつLED光源と光入射面との間の距離を確保しやすくなるとともに、LED光源からの放出光を広い角度範囲で取り込むことができ、しかも、入射側レンズの光学面が粗面であることでLED光源に近い場所で散乱させることができるため、照明光の出射効率を確保しつつ照度分布の均一性を得ることができる。また、入射側レンズは凹曲面状の光入射面を有するために集光度に制約を受けるが、複数の入射側レンズを用いるとともに集光レンズを別途設けることにより集光性を高めることができるため、必要な照度を容易に得ることができる。さらに、入射側レンズの粗面で光を散乱させた後に集光レンズで集光するので、照明光の出射時における効率の低下を抑制できる。 According to the present invention, the light emitted from the LED light source is scattered when passing through the incident side lens because at least one of the light incident surfaces of the plurality of incident side lenses is a rough surface, and then the incident side lens. The light emitted from the light exit surface is emitted after being collected by the condenser lens. Here, since the light incident surface of the incident side lens has a concave curved surface shape, it is easy to secure the distance between the LED light source and the light incident surface while suppressing the distance in the optical axis direction of the illumination device. Emission light from the light source can be captured in a wide angle range, and the incident lens has a rough optical surface that can be scattered near the LED light source, ensuring illumination light emission efficiency. In addition, the uniformity of the illuminance distribution can be obtained. In addition, since the incident side lens has a concave curved light incident surface, the degree of light collection is limited. However, by using a plurality of incident side lenses and separately providing a condensing lens, the light condensing performance can be improved. The required illuminance can be easily obtained. Furthermore, since the light is scattered by the rough surface of the incident side lens and then condensed by the condensing lens, it is possible to suppress a decrease in efficiency when the illumination light is emitted.
本発明において、前記入射側レンズの前記光入射面が粗面であり、前記光出射面は平滑面であることにより、上記の効果に加えて、入射側レンズの凹曲面状の光入射面で上記放出光を散乱させることができるため、よりLED光源に近い場所で散乱させることができ、しかも光出射面が凸曲面状であるために散乱光を効率的に集光して集光レンズへ向けて出射できる。したがって、充分な散乱効果を得てより均一な照明が可能になると同時に、効率的に照射対象に光を集光することができるため照度を高めることができる。 In the present invention, a the light incident surface is rough surface of the entrance side lens, by the light emitting surface is a smooth surface, in addition to the above effects, in concavely curved light incident surface of the incident-side lens Since the emitted light can be scattered, it can be scattered at a location closer to the LED light source, and the light exit surface is a convex curved surface, so that the scattered light can be efficiently condensed to the condenser lens. Can be emitted. Therefore, it is possible to obtain a sufficient scattering effect and more uniform illumination, and at the same time, it is possible to efficiently collect the light on the irradiation target, thereby increasing the illuminance.
本発明において、複数の前記入射側レンズが直列に配列され、前記LED光源に最も近い前記入射側レンズの前記光入射面が粗面であり、前記複数の入射側レンズの他の光学面が平滑面であることが好ましい。これによれば、上述のように複数の入射側レンズを用いることによってさらに照明効率を高めることができるだけでなく、最も近い光入射面が粗面とされ、他の光学面が平滑面とされることで、光の効率利用と照明分布の均一化をより高次元で両立できる。 In the present invention, the plurality of incident side lenses are arranged in series, the light incident surface of the incident side lens closest to the LED light source is a rough surface, and the other optical surfaces of the plurality of incident side lenses are smooth. A surface is preferred. According to this , not only can the illumination efficiency be further increased by using a plurality of incident side lenses as described above , but the nearest light incident surface is a rough surface and the other optical surfaces are smooth surfaces. As a result, it is possible to achieve both the efficient use of light and uniform illumination distribution at a higher level.
本発明において、前記LED光源の周囲で、かつ、前記入射側レンズの前記光入射面に対向する位置に配置された光検出器と、前記光検出器により検出された光量に基づいて前記LED光源を制御駆動する制御駆動手段と、をさらに具備することが好ましい。これによれば、上記粗面で散乱された光によって高精度かつ安定的にLED光源の発光量を計測できる。 In the present invention, a photodetector arranged around the LED light source and at a position facing the light incident surface of the incident side lens, and the LED light source based on the light amount detected by the photodetector. It is preferable to further comprise a control driving means for controlling and driving. According to this, the light emission amount of the LED light source can be measured with high accuracy and stability by the light scattered on the rough surface.
本発明によれば、充分な照明強度が効率的に得られるとともに均一な照度分布が実現できる照明装置を提供できるという優れた効果を奏し得る。 According to the present invention, it is possible to provide an excellent effect that a sufficient illumination intensity can be efficiently obtained and a lighting device capable of realizing a uniform illuminance distribution can be provided.
次に、添付図面を参照して本発明の実施形態について詳細に説明する。図1は本発明に係る照明装置の実施形態の分解斜視図、図2は同実施形態を斜め前方から見た外観斜視図、図3は同実施形態の本体を斜め後方から見た斜視図、図4は同実施形態の本体の縦断面図である。なお、本実施形態の照明装置は、光学部材の検査用照明装置の他に、医療用、歯科用の照明装置としても好適である。 Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is an exploded perspective view of an embodiment of a lighting device according to the present invention, FIG. 2 is an external perspective view of the embodiment viewed obliquely from the front, and FIG. 3 is a perspective view of the main body of the embodiment viewed obliquely from the rear. FIG. 4 is a longitudinal sectional view of the main body of the embodiment. Note that the illumination device of the present embodiment is also suitable as a medical or dental illumination device in addition to the optical member inspection illumination device.
この照明装置10は、図2に示すように、円筒状の本体10Aと、本体10Aを適宜の場所において支持し若しくは取り付けるための保持具10Bとを有する。本体10Aは図示例では円筒状の鏡筒状に構成されている。本体10Aは、内部に収容空間を備えた主ケース部(本体ハウジング)11と、この主ケース部11の後部開口を閉鎖する後部板12とを有する。また、主ケース部11の前部には照明ケース部13が取り付けられ、この照明ケース部13の前部に出射ケース部14が装着される。主ケース部11と照明ケース部13はネジ構造等で着脱可能に構成され、また、照明ケース部13と出射ケース部14もネジ構造等で着脱可能に構成されている。 As shown in FIG. 2, the lighting device 10 includes a cylindrical main body 10A and a holder 10B for supporting or attaching the main body 10A at an appropriate place. The main body 10A is formed in a cylindrical barrel shape in the illustrated example. The main body 10 </ b> A includes a main case portion (main body housing) 11 having an accommodation space therein, and a rear plate 12 that closes the rear opening of the main case portion 11. Further, an illumination case part 13 is attached to the front part of the main case part 11, and an emission case part 14 is attached to the front part of the illumination case part 13. The main case portion 11 and the illumination case portion 13 are configured to be detachable with a screw structure or the like, and the illumination case portion 13 and the emission case portion 14 are also configured to be detachable with a screw structure or the like.
図1に示すように、主ケース部11の前部には板状の支持部11aが設けられ、その周囲に前方へ突出する円筒状の周囲枠11bが設けられ、この周囲枠11bの外周面上に照明ケース部13と螺合する雄ネジ部が形成される。支持部11aの外面上にはLED光源15が取り付けられている。また、主ケース部11の内部には回路基板16が収容される。この回路基板16にはLED光源15を制御する光源制御回路及び光源駆動回路からなる制御駆動回路16aが形成される。また、回路基板16には前方へ突出する突き出し部が設けられ、この突き出し部の先端に光検出器17が実装されている。この光検出器17は、支持部11aに設けられた開口部11cを通して支持部11aの前方に露出した位置に配置される。さらに、LED光源15は支持部11aに設けられた別の開口部11dを通して回路基板16に接続される配線16bに接続される。 As shown in FIG. 1, a plate-like support portion 11a is provided at the front portion of the main case portion 11, and a cylindrical peripheral frame 11b protruding forward is provided around the support portion 11a. An outer peripheral surface of the peripheral frame 11b A male screw portion that is screwed onto the illumination case portion 13 is formed on the top. An LED light source 15 is attached on the outer surface of the support portion 11a. A circuit board 16 is accommodated in the main case portion 11. The circuit board 16 is provided with a control drive circuit 16a including a light source control circuit for controlling the LED light source 15 and a light source drive circuit. Further, the circuit board 16 is provided with a protruding portion that protrudes forward, and a photodetector 17 is mounted at the tip of the protruding portion. The photodetector 17 is disposed at a position exposed to the front of the support portion 11a through an opening 11c provided in the support portion 11a. Further, the LED light source 15 is connected to a wiring 16b connected to the circuit board 16 through another opening 11d provided in the support portion 11a.
回路基板16は後部板12に取り付けられ、図3に示すように、回路基板16の後部に実装された電源スイッチ18A及び光量設定スイッチ18Bが後部板12の複数の開口部を通して後方へ露出している。また、後部板12上には電源コード19Bを接続する電源コネクタ19Aも設けられている。さらに、後部板12の開口部を通して外部の電源スイッチ18C(図2参照)に接続される配線16bが導出される。 The circuit board 16 is attached to the rear plate 12, and as shown in FIG. 3, the power switch 18A and the light amount setting switch 18B mounted on the rear portion of the circuit board 16 are exposed rearward through a plurality of openings of the rear plate 12. Yes. On the rear plate 12, a power connector 19A for connecting a power cord 19B is also provided. Further, the wiring 16b connected to the external power switch 18C (see FIG. 2) through the opening of the rear plate 12 is led out.
上記制御駆動回路16aの光源制御回路は、光検出器17の検出信号に基づいてLED光源15の放出光量を検出し、この検出された放出光量に応じてLED光源15の上記光源駆動回路に対する制御信号を出力する。当該光源駆動回路は、上記の制御信号に基づいてLED光源15の駆動態様を決定する。例えば、光源駆動回路が定電流回路であれば、当該定電流回路の電流値が設定される。 The light source control circuit of the control drive circuit 16a detects the amount of light emitted from the LED light source 15 based on the detection signal of the photodetector 17, and controls the LED light source 15 for the light source drive circuit according to the detected amount of emitted light. Output a signal. The light source driving circuit determines the driving mode of the LED light source 15 based on the control signal. For example, if the light source driving circuit is a constant current circuit, the current value of the constant current circuit is set.
LED光源15の前方には入射側レンズ鏡筒21が配置される。この入射側レンズ鏡筒21は、上記主ケース部11の周囲枠11bの内側に嵌合される。入射側レンズ鏡筒21の内部には、図4に示すように、凸メニスカスレンズである入射側レンズ21A、21Bが直列に保持されている。入射側レンズ鏡筒21の前方には照明ケース部13を介して出射ケース部14に保持された両凸レンズである集光レンズ22が配置される。 An incident side lens barrel 21 is disposed in front of the LED light source 15. The incident side lens barrel 21 is fitted inside the peripheral frame 11 b of the main case portion 11. As shown in FIG. 4, incident side lenses 21 </ b> A and 21 </ b> B, which are convex meniscus lenses, are held in series inside the incident side lens barrel 21. A condensing lens 22, which is a biconvex lens held by the exit case portion 14 via the illumination case portion 13, is disposed in front of the incident side lens barrel 21.
主ケース部11と照明ケース部13は共にアルミニウム(合金)等の金属といった熱伝動性の高い素材で形成されるとともに、その外周面には凹凸状(リング状)の放熱フィン11f、13fが一体に設けられている。また、後部板12や出射ケース部14も同様に金属で構成されることが好ましい。これは、LED光源15において生ずる熱を上記支持部11aから外周部に伝達させた後に効率的に放散させるためである。 The main case portion 11 and the lighting case portion 13 are both made of a material having a high heat transfer property such as a metal such as aluminum (alloy), and uneven radiating fins 11f and 13f are integrally formed on the outer peripheral surface thereof. Is provided. Similarly, the rear plate 12 and the emission case portion 14 are preferably made of metal. This is because the heat generated in the LED light source 15 is efficiently dissipated after being transmitted from the support portion 11a to the outer peripheral portion.
また、本体10Aの内部の迷光を低減するために、少なくとも、主ケース部11の上記支持部11aの外面、周囲枠11bの内面、入射側レンズ鏡筒21の内外面、照明ケース部13の内面及び出射ケース部14の内面は、黒色アルマイト処理、黒色アクリル樹脂塗装等の艶消し黒色塗装などといった反射防止処理が施されて光反射を抑制した面とされている。本実施形態では、主ケース部11、後部板12、照明ケース部13及び出射ケース部14の全表面に上記の反射防止処理が施されている。 In order to reduce stray light inside the main body 10A, at least the outer surface of the support portion 11a of the main case portion 11, the inner surface of the peripheral frame 11b, the inner and outer surfaces of the incident side lens barrel 21, and the inner surface of the illumination case portion 13 Further, the inner surface of the emission case portion 14 is a surface that is subjected to an antireflection treatment such as a black alumite treatment or a matte black paint such as a black acrylic resin coating to suppress light reflection. In the present embodiment, the antireflection treatment is applied to the entire surface of the main case portion 11, the rear plate 12, the illumination case portion 13, and the emission case portion 14.
図4に示すように、本実施形態においては、LED光源15の光出射範囲の径よりも、入射側レンズ21Aの有効径(LED光源15から放出された光束が自由に通過できる区域の直径、以下同様。)が大きく、入射側レンズ21Aの有効径よりもLED光源15とは反対側に配置される入射側レンズ21Bの有効径が大きく構成され、さらに、入射側レンズ21Bの有効径よりも集光レンズ22の有効径が大きくなるように構成されている。照明ケース部13は、入射側レンズ鏡筒21の前部から集光レンズ22へ向けて漸次拡径する内面13aを有している。図示例の場合、内面13aは前方へ向けて広がる円錐面状に構成される。 As shown in FIG. 4, in the present embodiment, the effective diameter of the incident side lens 21 </ b> A (the diameter of the area through which the light beam emitted from the LED light source 15 can pass freely, rather than the diameter of the light emission range of the LED light source 15). The same applies hereinafter), and the effective diameter of the incident side lens 21B disposed on the opposite side of the LED light source 15 is larger than the effective diameter of the incident side lens 21A, and further, the effective diameter of the incident side lens 21B. The effective diameter of the condenser lens 22 is configured to be large. The illumination case part 13 has an inner surface 13 a that gradually increases in diameter from the front part of the incident side lens barrel 21 toward the condenser lens 22. In the case of the illustrated example, the inner surface 13a is formed in a conical surface shape that spreads forward.
より具体的に述べると、内面13aは、入射側レンズ21A、21Bの有効径内から集光用レンズ22の有効径内に向かう光束を遮光しないように構成される。すなわち、図7に示すように、内面13aは、入射側レンズ21Bの有効径を示す円上から集光レンズ22の有効径を示す円上に向かう円錐面、或いは、当該円錐面の外側に沿った円錐面となっている。このため、入射側レンズ21A、21Bで集光された有効径内を通過した光束以外の迷光の少なくとも一部は内面13aによって遮断される。 More specifically, the inner surface 13a is configured not to block a light beam traveling from the effective diameter of the incident side lenses 21A and 21B to the effective diameter of the condensing lens 22. That is, as shown in FIG. 7, the inner surface 13a extends from a circle indicating the effective diameter of the incident side lens 21B to a circle indicating the effective diameter of the condenser lens 22, or along the outer side of the conical surface. It has a conical surface. For this reason, at least a part of stray light other than the light beam that has passed through the effective diameter collected by the incident side lenses 21A and 21B is blocked by the inner surface 13a.
また、出射ケース部14の内部には、集光レンズ22の周囲から前方へ突出する遮光面14aが設けられている。図示例では、遮光面14aは光軸20と平行な円筒面となっている。ただし、この遮光面14aは、入射側レンズ21A、21Bから集光レンズ22へと向かう有効径内を通過した光束以外の迷光の少なくとも一部を遮断できるものであれば特に限定されない。この場合、遮光面14aは、上記の有効径内を通過して集光レンズ22から出射した光束の全てを通過させることが可能となるように構成されることがより望ましい。 In addition, a light shielding surface 14 a that protrudes forward from the periphery of the condenser lens 22 is provided inside the emission case portion 14. In the illustrated example, the light shielding surface 14 a is a cylindrical surface parallel to the optical axis 20. However, the light shielding surface 14a is not particularly limited as long as it can block at least a part of stray light other than the luminous flux that has passed through the effective diameter from the incident side lenses 21A and 21B toward the condenser lens 22. In this case, it is more desirable that the light shielding surface 14a is configured to allow all of the light beams emitted from the condenser lens 22 to pass through the effective diameter.
図5は主ケース部11の支持部11a上の構造を拡大して示す拡大部分平面図、図6(a)は同構造を拡大して示す断面図、図6(b)はLED光源15の拡大断面図である。 5 is an enlarged partial plan view showing an enlarged structure on the support portion 11a of the main case portion 11, FIG. 6A is an enlarged sectional view showing the structure, and FIG. It is an expanded sectional view.
支持部11a上にはLED光源15が密接固定されている。LED光源15は、アルミニウムやアルミニウム合金等で構成された基板151と、この基板151上に絶縁膜152を介して所定のパターンに形成された配線層153A、153Bとを有する。また、基板151上には絶縁層154を介してLEDチップ155が形成されている。基板151上においては領域15A内に複数のLEDチップ155が配置されている。これらのLEDチップ155は配線層153A、153Bの隣接する配線部分に金ワイヤ156A、156B等の導電部材を介して導電接続されている。図示例の場合、複数のLEDチップ155はいずれも配線層153Aと153Bの間に並列に接続される。 An LED light source 15 is closely fixed on the support portion 11a. The LED light source 15 includes a substrate 151 made of aluminum, an aluminum alloy, or the like, and wiring layers 153A and 153B formed in a predetermined pattern on the substrate 151 via an insulating film 152. An LED chip 155 is formed on the substrate 151 with an insulating layer 154 interposed therebetween. On the substrate 151, a plurality of LED chips 155 are arranged in the region 15A. These LED chips 155 are conductively connected to adjacent wiring portions of the wiring layers 153A and 153B through conductive members such as gold wires 156A and 156B. In the illustrated example, all of the plurality of LED chips 155 are connected in parallel between the wiring layers 153A and 153B.
上記配線層153Aと153Bはそれぞれ配線16bを介して上記の制御駆動回路16aに接続される。光源制御回路16a内の上記光源制御回路が光検出器17の検出信号に応じて所定の制御信号を出力したとき、上記光源駆動回路は当該制御信号に応じてLED光源15の配線層153Aと153Bの間に所定の電力(電流)を供給する。 The wiring layers 153A and 153B are connected to the control drive circuit 16a through the wiring 16b. When the light source control circuit in the light source control circuit 16a outputs a predetermined control signal according to the detection signal of the photodetector 17, the light source driving circuit responds to the control signal with the wiring layers 153A and 153B of the LED light source 15 being used. A predetermined electric power (current) is supplied during
複数のLEDチップ155が配列されてなる上記領域15Aを含む範囲には、YAGなどの蛍光材料を分散させた透明樹脂よりなる透光性樹脂層157が形成される。透光性樹脂層157は、LEDチップ155の発光特性に応じて、照明装置の照明光として要求される照明特性(出射光強度の波長依存性や出射角依存性)を実現する。 A translucent resin layer 157 made of a transparent resin in which a fluorescent material such as YAG is dispersed is formed in a range including the region 15A in which a plurality of LED chips 155 are arranged. The translucent resin layer 157 realizes illumination characteristics (wavelength dependence and emission angle dependence of outgoing light intensity) required as illumination light of the lighting device according to the light emission characteristics of the LED chip 155.
なお、本実施形態に用いられるLED光源15は、上記蛍光材料を用いた白色ダイオードであるが、照明光として要求される種々の照明特性が得られるものであれば、種々の蛍光体方式、例えば三色LED方式であってもよいなど、上記の形式に限定されるものではない。例えば、黄色のフィルタを光学系に設けることで白色化したものであってもよく、複数色のLEDを樹脂封止なしで配列させたものであってもよい。これらのように樹脂封止しないことで光源寿命を延ばすことができる場合がある。 Note that the LED light source 15 used in the present embodiment is a white diode using the above-described fluorescent material, but various phosphor methods, for example, as long as various illumination characteristics required as illumination light can be obtained. It is not limited to the above-mentioned form, such as a three-color LED system. For example, it may be whitened by providing a yellow filter in the optical system, or may be a multi-color LED arrayed without resin sealing. In some cases, the life of the light source can be extended by not sealing with resin.
また、本実施形態のLED光源15は、多数のLEDチップを小面積内に高密度で配列させて高い輝度を実現するものであるが、複数のLEDチップが設置面(図示例では平面)上に配列されているものであれば、LEDチップの個数や輝度についても何ら限定されるものではない。ただし、LED光源15として必要な輝度を得る観点からは、LEDチップ155の配置密度は10個/cm2以上であることが好ましく、50個/cm2以上であることが望ましい。一般的には、上記配置密度は50〜150個/cm2の範囲内が好ましい。LEDチップ155の単体の平面サイズは一般的には0.2〜2.0mm角程度である。なお、本実施形態のLEDチップ155は半導体チップそのもので構成されるが、LED光源15は、当該半導体チップを封止した表面実装型のパッケージLED(0.6〜7.0mm角程度)を基板上に実装した構造であってもよい。LED光源15の表面(基板151の表面、すなわち、少なくとも上記領域15Aの発光素子以外の表面部分)は反射面とされ、LEDチップ155から放出される光や入射レンズ21Aの側から入射する光を反射するように構成される。 In addition, the LED light source 15 of the present embodiment realizes high luminance by arranging a large number of LED chips in a small area at a high density, but a plurality of LED chips are arranged on the installation surface (planar in the illustrated example). As long as it is arranged in the above, the number and brightness of the LED chips are not limited at all. However, from the viewpoint of obtaining luminance necessary for the LED light source 15, the arrangement density of the LED chips 155 is preferably 10 / cm 2 or more, and more preferably 50 / cm 2 or more. Generally, the arrangement density is preferably in the range of 50 to 150 / cm 2 . The planar size of a single LED chip 155 is generally about 0.2 to 2.0 mm square. The LED chip 155 of the present embodiment is composed of a semiconductor chip itself, but the LED light source 15 is a surface-mount package LED (about 0.6 to 7.0 mm square) encapsulating the semiconductor chip as a substrate. The structure mounted above may be used. The surface of the LED light source 15 (the surface of the substrate 151, that is, at least the surface portion other than the light emitting element in the region 15A) is a reflecting surface, and emits light emitted from the LED chip 155 or incident light from the incident lens 21A side. Configured to reflect.
図7は本実施形態の光学系の全体構成を示す図である。LED光源15の発光領域15a(上記の領域15Aとほぼ対応する平面)からは、比較的広い範囲に光が放出される。この放出角範囲(例えば、最も光強度の高い方向(光軸20上)の光強度の半分の光強度となる角度範囲、すなわち半値角)は、光軸20を中心とした約110〜120度程度の範囲である。なお、入射側レンズ21Aの有効径とLED光源15からの距離を適宜に設定することで、上記の放出角範囲内の光が全て入射側レンズ21Aの有効径内を通過するように構成することが好ましい。図示例では140度の放出角の範囲内の光が光学系の有効径内を通過できるように構成される。 FIG. 7 is a diagram showing the overall configuration of the optical system of the present embodiment. Light is emitted in a relatively wide range from the light emitting region 15a of the LED light source 15 (a plane substantially corresponding to the region 15A). This emission angle range (for example, an angle range in which the light intensity is half the light intensity in the direction with the highest light intensity (on the optical axis 20), that is, a half-value angle) is about 110 to 120 degrees centered on the optical axis 20. The range of the degree. It should be noted that, by appropriately setting the effective diameter of the incident side lens 21A and the distance from the LED light source 15, it is configured so that all the light within the above emission angle range passes through the effective diameter of the incident side lens 21A. Is preferred. In the illustrated example, it is configured such that light within an emission angle range of 140 degrees can pass through the effective diameter of the optical system.
上記の放出光は最初に入射側レンズ21Aに入射する。入射側レンズ21Aはメニスカスレンズであり、その光入射面21a−1は凹曲面状(図示例では凹球面、以下同様。)とされ、光出射面21a−2は凸曲面状(図示例では凸球面、以下同様。)とされている。光入射面21a−1が凹曲面状とされることで、上述のように広い放出角を有するLED光源15の放出光を効率的に入射側レンズ21A内に入射させることができる。また、入射側レンズ21Aは光入射面21a−1の曲率よりも光出射面21a−2の曲率の方が大きい凸メニスカスレンズとなっているため、集光能を有し、広い範囲にて入射した上記放出光をより小さな角度範囲に収束させることができる。 The emitted light is first incident on the incident side lens 21A. The incident side lens 21A is a meniscus lens, and its light incident surface 21a-1 has a concave curved surface (in the illustrated example, a concave spherical surface, the same applies hereinafter), and the light emitting surface 21a-2 has a convex curved surface (in the illustrated example, convex). Spherical surface, and so on.) Since the light incident surface 21a-1 has a concave curved surface, the light emitted from the LED light source 15 having a wide emission angle as described above can be efficiently incident on the incident side lens 21A. Further, since the incident side lens 21A is a convex meniscus lens having a larger curvature on the light exit surface 21a-2 than on the light incident surface 21a-1, it has a light collecting ability and is incident in a wide range. The emitted light can be converged in a smaller angle range.
入射側レンズ21Aの有効径21arは、上記発光領域15aの外径15r(光軸20を中心として最も外側に位置する部分を通る円を描いた時の直径)よりも大きく設定されている。また、発光領域15aは、入射側レンズ21A(並びに21B)の光入射面21a−1(同21b−1)の曲率中心よりも光軸20に沿った入射側レンズ21A(同21B)の側の位置に配置されている。これによって、より広い角度範囲の放出光が入射側レンズ21A(同21B)内に入射できるように構成できる。また、このように広い角度範囲の放出光が入射側レンズ21A内に入射できるように構成しても、光入射面21a−1が凹曲面状に構成されることにより、光軸20上の発光領域15aと入射側レンズ21Aとの距離を確保することができるため、後述する粗面による散乱効果と合わせて、基板151による反射によりLED光源15の放出光を充分に拡散させることができる。 The effective diameter 21ar of the incident side lens 21A is set to be larger than the outer diameter 15r of the light emitting region 15a (diameter when a circle passing through the outermost portion centered on the optical axis 20 is drawn). The light emitting region 15a is located closer to the incident side lens 21A (21B) along the optical axis 20 than the center of curvature of the light incident surface 21a-1 (21b-1) of the incident side lens 21A (and 21B). Placed in position. Thereby, it can be configured such that emitted light in a wider angular range can be incident on the incident side lens 21A (21B). Further, even if the emission light in such a wide angle range can be incident on the incident side lens 21A, the light incident surface 21a-1 is formed in a concave curved surface, so that light emission on the optical axis 20 is achieved. Since the distance between the region 15a and the incident side lens 21A can be ensured, the light emitted from the LED light source 15 can be sufficiently diffused by reflection by the substrate 151 together with a scattering effect by a rough surface described later.
なお、本実施形態では外径15r内から放出された上記放出角範囲の光が全て光学系に入射するように構成されることが好ましい。この場合、図示例のように発光領域15aが円形ではなくても、外径15rは発光領域15aの内接円ではなく外接円(半径方向の最も外側にある点(角部)を通過する円)とすることが望ましい。これは、LED光源15から放出される光を最大限効率的に照明光として利用することができるようになる(光の利用効率を増大できる)からである。また、このようにすると光学系に発光領域15aの発光パターンを反映した光がそのまま取り込まれることとなるが、発光領域15aの発光パターン形状による照明分布への影響は粗面による照度分布の均一化によってなくすことができるため、問題は生じない。 In the present embodiment, it is preferable that all the light in the emission angle range emitted from the outer diameter 15r is incident on the optical system. In this case, even if the light emitting region 15a is not circular as in the illustrated example, the outer diameter 15r is not an inscribed circle of the light emitting region 15a but a circumscribed circle (a circle passing through the outermost point (corner) in the radial direction). ) Is desirable. This is because light emitted from the LED light source 15 can be used as illumination light with maximum efficiency (light use efficiency can be increased). Further, in this way, the light reflecting the light emission pattern of the light emitting region 15a is directly taken into the optical system, but the influence of the light emission pattern shape of the light emitting region 15a on the illumination distribution is uniform in the illuminance distribution by the rough surface. The problem does not occur.
上記の入射側レンズ21Aを通過した光は、その後、入射側レンズ21Bを通過する。入射側レンズ21Bはメニスカスレンズであり、光入射面21b−1は凹曲面状であり、光出射面21b−2は凸曲面状である。この入射側レンズ21Bも光入射面21b−1の曲率よりも光出射面21b−2の曲率の方が大きな凸メニスカスレンズとなっているため、集光能を有し、広い範囲にて入射した上記出射光をより小さな角度範囲に収束させることができる。この入射側レンズ21Bの有効径21brは上記入射側レンズ21Aの有効径21arよりも大きく設定されている。これにより、入射側レンズ21Aの集光性が低くても、入射側レンズ21Aからのより広い角度範囲の出射光が入射側レンズ21Bに入射できるように構成でき、光の利用効率を高めることができる。 The light that has passed through the incident side lens 21A then passes through the incident side lens 21B. The incident side lens 21B is a meniscus lens, the light incident surface 21b-1 has a concave curved surface shape, and the light emitting surface 21b-2 has a convex curved surface shape. The incident side lens 21B is also a convex meniscus lens having a larger curvature on the light exit surface 21b-2 than on the light incident surface 21b-1, and thus has a light collecting ability and is incident in a wide range. The emitted light can be converged in a smaller angle range. The effective diameter 21br of the incident side lens 21B is set larger than the effective diameter 21ar of the incident side lens 21A. Thereby, even if the light condensing property of the incident side lens 21A is low, it can be configured such that outgoing light in a wider angle range from the incident side lens 21A can be incident on the incident side lens 21B, thereby improving the light utilization efficiency. it can.
光入射面21b−1の曲率は光入射面21a−1の曲率よりも小さい。これは、入射側レンズ21Aの集光性によりLED光源15の放出光の入射角よりも入射側レンズ21Aからの出射光の出射角が小さくなるため、入射側レンズ21Aの有効径内を通過した光を全て取り込むために要する曲率が小さくなるからである。また、このように光入射面21b−1の曲率が小さくなることによって入射側レンズ21Bの集光性を高めることも容易になる。ここで、入射側レンズ21Aの有効径内を通過した光が全て入射側レンズ21Bの有効径内を通過するように構成することが好ましく、例えば、上記放射角範囲内の光束が全て入射側レンズ21A、21Bの有効径内を通過するように構成することが望ましい。 The curvature of the light incident surface 21b-1 is smaller than the curvature of the light incident surface 21a-1. This is because the exit angle of the emitted light from the incident side lens 21A is smaller than the incident angle of the emitted light of the LED light source 15 due to the light condensing property of the incident side lens 21A, and thus the light passes through the effective diameter of the incident side lens 21A. This is because the curvature required to capture all the light is reduced. In addition, since the curvature of the light incident surface 21b-1 is thus reduced, it is easy to improve the light condensing property of the incident side lens 21B. Here, it is preferable that all the light that has passed through the effective diameter of the incident side lens 21A pass through the effective diameter of the incident side lens 21B. It is desirable to configure so as to pass through the effective diameters of 21A and 21B.
なお、本実施形態では、二つの入射側レンズ21Aと21Bを直列に配列させているが、三以上の入射側レンズを直列に配列させても構わない。これらのレンズ群の構成は、例えば照明装置10を検査用照明として用いる場合には、LED光源15の発光輝度及び発光領域15aの大きさと、検査時に要求される照度及び照明範囲との関係によって決められる。 In the present embodiment, the two incident side lenses 21A and 21B are arranged in series, but three or more incident side lenses may be arranged in series. The configuration of these lens groups is determined by the relationship between the light emission brightness of the LED light source 15 and the size of the light emitting region 15a, the illuminance required during inspection, and the illumination range, for example, when the illumination device 10 is used as inspection illumination. It is done.
上記の入射側レンズ21A、21Bの前方には集光レンズ22が配置される。集光レンズ22は集光性を有していれば特に限定されるものではないが、本実施形態では光入射面22aと22bのいずれもが凸曲面状である両凸レンズとなっている。これによって充分な集光性能を得ることができる。なお、集光レンズは、集光性を有する光学系であればよく、単一のレンズと、複数のレンズを含むレンズ群のいずれでも構成できる。集光レンズ22の有効径22rは上記入射側レンズ21Bの有効径21brよりも大きい。これにより、入射側レンズ21A、21Bの集光性が低くても、光の利用効率の低下を抑制できる。本実施形態では、入射側レンズ21Bの有効径内から出射した光の全てが集光レンズ22の有効径内を通過するように構成される。 A condensing lens 22 is disposed in front of the incident side lenses 21A and 21B. Although the condensing lens 22 will not be specifically limited if it has condensing property, In this embodiment, all of the light-incidence surfaces 22a and 22b are biconvex lenses with a convex-curve shape. Thereby, sufficient light collecting performance can be obtained. In addition, the condensing lens should just be an optical system which has condensing property, and can comprise either a single lens and the lens group containing a some lens. The effective diameter 22r of the condensing lens 22 is larger than the effective diameter 21br of the incident side lens 21B. Thereby, even if the condensing property of entrance side lenses 21A and 21B is low, the fall of the utilization efficiency of light can be suppressed. In the present embodiment, all of the light emitted from the effective diameter of the incident side lens 21 </ b> B passes through the effective diameter of the condenser lens 22.
上記の光学系において、入射側レンズ21A、21Bの各光学面の少なくとも一つは粗面となっている。図8には、入射側レンズ21Aの光入射面21a−1を粗面とし、他の光学面を平滑面とした例について示してある。この場合、LED光源15から放出された光は最初の光学面である光入射面21a−1上で散乱し、その散乱光のうち、周囲の内面(支持部11a、周囲枠11bの内面、照明ケース13の内面等)で吸収されないもの、例えば、そのまま入射側レンズ21A内に散乱される光やLED光源15によって入射側レンズ21Aの側に反射された光など、が入射側レンズ21Bに入射され、最終的に集光レンズ22で集光されて出射される。 In the above optical system, at least one of the optical surfaces of the incident side lenses 21A and 21B is a rough surface. FIG. 8 shows an example in which the light incident surface 21a-1 of the incident side lens 21A is a rough surface and the other optical surfaces are smooth surfaces. In this case, the light emitted from the LED light source 15 is scattered on the light incident surface 21a-1 which is the first optical surface, and the inner surface (the support portion 11a, the inner surface of the peripheral frame 11b, the illumination) of the scattered light. What is not absorbed by the inner surface of the case 13), for example, light that is directly scattered in the incident side lens 21A or light that is reflected by the LED light source 15 toward the incident side lens 21A is incident on the incident side lens 21B. Finally, the light is condensed by the condenser lens 22 and emitted.
上記粗面は、ガラス基材で構成された入射側レンズを例えば粒度#1000番(JIS R6001)の研摩材で研摩することで形成することができ、また、フロスト剤を用いたフロストエッチング処理などで形成することも可能である。なお、樹脂成形で入射側レンズを形成する場合には型面を粗面状とすることで上記粗面を形成することも可能である。 The rough surface can be formed by polishing an incident side lens made of a glass substrate with, for example, an abrasive having a particle size of # 1000 (JIS R6001), and a frost etching process using a frost agent. It can also be formed. In addition, when forming the incident side lens by resin molding, it is also possible to form the rough surface by making the mold surface rough.
上記のように入射側レンズ21A、21Bの光学面を粗面とすることで、LED光源15の放出光を集光して照射した場合でも、LED光源15の発光面15aの発光パターン形状が投射されることを防止でき、均一で高い照度が実現可能になる。このような照明態様は、光学レンズの傷、埃、焼け、泡、その他の汚れなどを検査する場合に極めて有効である。例えば、目視で上記検査を行う場合には、「目合わせ」という作業を行って判断基準を統一して検査を行うものの、照明装置の照度の大小やばらつき、発光パターンの投射などが存在すると、正確な検査を行うことができない。また、照明された光学レンズを撮影した画像を元に検査を行う場合でも、照明条件がばらついたり、発光パターンが投射されたりすると、画像処理による判定においても検査精度が低下することになる。 By making the optical surfaces of the incident side lenses 21A and 21B rough as described above, the light emission pattern shape of the light emitting surface 15a of the LED light source 15 is projected even when the emitted light of the LED light source 15 is condensed and irradiated. Can be prevented, and uniform and high illuminance can be realized. Such an illumination mode is extremely effective when inspecting scratches, dust, burns, bubbles, and other dirt on the optical lens. For example, when performing the above-mentioned inspection visually, although the inspection is performed by unifying the judgment criteria by performing the operation of `` matching '', if there is a magnitude or variation of the illumination device illumination, projection of the light emission pattern, etc., An accurate inspection cannot be performed. Even in the case where an inspection is performed based on an image obtained by photographing an illuminated optical lens, if the illumination condition varies or a light emission pattern is projected, the inspection accuracy also decreases in the determination by image processing.
本実施形態では、特に、最初の入射側レンズ21Aの光入射面21a−1を粗面とすることで、光をLED光源15の近くで散乱させることで充分な光拡散作用を得ることができるとともに、その後、入射レンズ21Aの光出射面21a−2と、入射レンズ21B及び集光レンズ22とで集光するようにしているので、高い照度で均一な照明を行うことが可能になっている。 In this embodiment, in particular, by making the light incident surface 21a-1 of the first incident side lens 21A rough, it is possible to obtain a sufficient light diffusion effect by scattering light near the LED light source 15. At the same time, since the light exit surface 21a-2 of the incident lens 21A, the incident lens 21B, and the condensing lens 22 condense, it is possible to perform uniform illumination with high illuminance. .
特に、本実施形態では、高輝度のLED光源15(図示例の場合には青色発光ダイオードからなるLEDチップ155)から放出される光を用いているため、白熱電球、蛍光灯、ハロゲンランプ等の他の光源と比べて短波長領域の光強度が高い波長分布を有する。具体的には、当該波長分布は、波長450nmのピーク強度(この強度を100%とする)と、波長560nmのより幅広のピーク(強度66%)とを有する。このため、粗面による散乱強度も高くなる特徴を有している。また、後述するようにLEDチップ155から放出される光を樹脂レンズなどの集光素子を介在させずに(必要に応じて上記の蛍光材料を分散させた透光性樹脂層157を介して)そのまま粗面で散乱させることで高い散乱度を実現できる。 In particular, in the present embodiment, light emitted from the high-intensity LED light source 15 (in the illustrated example, the LED chip 155 made of a blue light-emitting diode) is used, so that an incandescent bulb, a fluorescent lamp, a halogen lamp, etc. Compared with other light sources, it has a wavelength distribution in which the light intensity in the short wavelength region is high. Specifically, the wavelength distribution has a peak intensity at a wavelength of 450 nm (this intensity is assumed to be 100%) and a broader peak (intensity of 66%) at a wavelength of 560 nm. For this reason, it has the characteristic that the scattering intensity by a rough surface also becomes high. Further, as will be described later, the light emitted from the LED chip 155 is not interposed through a condensing element such as a resin lens (via the light-transmitting resin layer 157 in which the fluorescent material is dispersed as necessary). A high degree of scattering can be realized by directly scatter on a rough surface.
また、本実施形態では、複数のLEDチップ155を高密度で面上に配列させてなるLED光源15を用いているため、LEDチップ155毎に樹脂レンズ等を設けることができず、実際にチップ毎のレンズ構造を有していない。その結果、発光パターン形状がLEDチップ155の配列パターンに基づいて特殊な形状となっているとともに、LED光源15から放出される光の視野角(放出角範囲)は110〜120度程度と極めて広くなっている。したがって、発光パターン形状がそのまま投射されることによって照明ムラを引き起こす虞があるとともに、上記の広い範囲へ放出される光を効率的に集光しないと高い照度を得ることができない。 Further, in this embodiment, since the LED light source 15 in which a plurality of LED chips 155 are arranged on the surface at a high density is used, a resin lens or the like cannot be provided for each LED chip 155, and the chip actually Does not have a lens structure. As a result, the light emission pattern has a special shape based on the array pattern of the LED chips 155, and the viewing angle (emission angle range) of the light emitted from the LED light source 15 is as extremely wide as about 110 to 120 degrees. It has become. Therefore, there is a possibility that uneven illumination may be caused by projecting the light emission pattern shape as it is, and high illuminance cannot be obtained unless the light emitted to the wide range is efficiently condensed.
本実施形態では、LED光源15に隣接する凹曲面状の光入射面21a−1を備えた入射側レンズ21Aを配置することで、LED光源から広い角度範囲で放出された放出光を有効に取り込むことができるとともに、凸曲面状の光出射面21a−2により集光して出射させることができる。したがって、広い放出角範囲を有するLED光源15の放出光を効率的に取り込むとともに効率的に集光することが可能になる。 In the present embodiment, by arranging the incident side lens 21A having the concave curved light incident surface 21a-1 adjacent to the LED light source 15, the emitted light emitted from the LED light source in a wide angle range is effectively captured. In addition, the light can be condensed and emitted by the light emitting surface 21a-2 having a convex curved surface. Therefore, it is possible to efficiently capture and efficiently collect the emitted light of the LED light source 15 having a wide emission angle range.
また、本実施形態ではさらにもう一つの入射側レンズ21Bを設け、この入射側レンズ21BについてもLED光源15の側に凹曲面状の光入射面21b−1を備えることで、入射側レンズ21Aから出射された光を広範囲に取り込むことができ、なおかつ、凸曲面状の光出射面21b−2により集光して出射させることができる。したがって、コンパクトな光学系でLED光源15の放出光を効率的に取り込むとともに効率的に集光することができる。 Further, in the present embodiment, another incident side lens 21B is provided, and the incident side lens 21B is also provided with a concave curved light incident surface 21b-1 on the side of the LED light source 15, so that the incident side lens 21A is separated from the incident side lens 21A. The emitted light can be captured in a wide range, and can be condensed and emitted by the convex light emitting surface 21b-2. Therefore, the light emitted from the LED light source 15 can be efficiently captured and condensed with a compact optical system.
本実施形態では、上記入射側レンズ21A、21Bに対してLED光源15とは反対側にさらに集光レンズ22を配置しているので、入射側レンズ21A、21Bから出射した光をさらに集光することができるため、検査工程に適した高い照度を実現することができる。なお、この集光レンズ22としては、図示例のような両凸レンズに限らず、平凸レンズや凸メニスカスレンズなど、結果として集光性を呈するレンズであれば如何なるものであっても構わない。 In this embodiment, since the condensing lens 22 is further arranged on the opposite side of the LED light source 15 with respect to the incident side lenses 21A and 21B, the light emitted from the incident side lenses 21A and 21B is further condensed. Therefore, high illuminance suitable for the inspection process can be realized. The condensing lens 22 is not limited to the biconvex lens as shown in the figure, but may be any lens such as a plano-convex lens or a convex meniscus lens as long as it exhibits condensing characteristics .
本実施形態では、入射側レンズ21A、21Bのいずれかの光学面を粗面とすることにより、集光レンズ22による最終的な集光前にLED光源15の放出光を散乱させることで、LED光源15の発光パターンを消失させることができる。これによって、LED光源15の放出光を集光して高い照度を実現しても、LED光源15の発光パターンが結像するといったことがなくなるため、検査工程において有害な発光パターンに起因する照度のばらつきや波長の分散を防止することができる。 In the present embodiment, by making any one of the optical surfaces of the incident side lenses 21A and 21B rough, the light emitted from the LED light source 15 is scattered before final condensing by the condensing lens 22, so that the LED The light emission pattern of the light source 15 can be eliminated. As a result, even if light emitted from the LED light source 15 is condensed to achieve high illuminance, the light emission pattern of the LED light source 15 does not form an image. Therefore, the illuminance caused by the harmful light emission pattern in the inspection process is eliminated. Variation and wavelength dispersion can be prevented.
特に、本実施形態では、入射側レンズ21A、21Bの光入射面21a−1、21b−1を粗面とすることで、光出射面21a−2、21b−2による集光前にLED光源15の放出光を散乱させることができるため、効率的な集光を妨げにくいという利点がある。この利点は、本実施形態のように複数の入射側レンズ21A、21Bを用いる場合においてLED光源15に隣接する(に最も近い)入射側レンズ21Aの光入射面21a−1を粗面にすることによってさらに強化される。 In particular, in the present embodiment, the light incident surfaces 21a-1 and 21b-1 of the incident-side lenses 21A and 21B are roughened, so that the LED light source 15 is collected before the light condensing by the light emitting surfaces 21a-2 and 21b-2. Since the emitted light can be scattered, there is an advantage that it is difficult to prevent efficient light collection. This advantage is that the light incident surface 21a-1 of the incident side lens 21A adjacent to (closest to) the LED light source 15 is made rough when using a plurality of incident side lenses 21A and 21B as in the present embodiment. Is further enhanced by.
また、本実施形態においては、粗面として形成された入射側レンズ21A、21Bの凹曲面状の光入射面21a−1、21b−1がLED光源15側に向いていることにより、LED光源15の側に向かう散乱光が外側(光軸20より離れる側)に散乱しにくくなるので、このような散乱光がLED光源15若しくはその周囲において反射されて再度入射側レンズ21A、21Bの側に戻ることで照明成分として用いることが可能になるため、さらに効率的な照明が実現できるという効果もある。この利点も、本実施形態のように複数の入射側レンズ21A、21Bを用いる場合においてLED光源15に隣接する(に最も近い)入射側レンズ21Aの光入射面21a−1を粗面にすることによってさらに強化される。 In the present embodiment, the concave light-incident surfaces 21a-1 and 21b-1 of the incident-side lenses 21A and 21B formed as rough surfaces face the LED light source 15 side, so that the LED light source 15 Since the scattered light traveling toward the side of the light source is less likely to be scattered outside (the side away from the optical axis 20), such scattered light is reflected at the LED light source 15 or its surroundings and returns to the incident side lenses 21A and 21B again. Therefore, it can be used as an illumination component, so that more efficient illumination can be realized. This advantage is also achieved by making the light incident surface 21a-1 of the incident side lens 21A adjacent to (closest to) the LED light source 15 rough when using a plurality of incident side lenses 21A and 21B as in this embodiment. Is further enhanced by.
本実施形態では、上述のようにLED光源15の周囲に配置された光検出器17でLED光源15の放出光量を検出している。この場合、凹曲面状の光入射面21a−1が粗面であることにより、LED光源15の光が当該光入射面21a−1で散乱されてなる散乱光が光検出器17で主体的に検出されることとなるため、光検出器17の検出光量がLED光源15内の複数のLEDチップ155間のばらつきや経時変化の差による影響を受けにくくなることから、検出光量の高精度化や安定化を図ることができる。この利点も、本実施形態のように複数の入射側レンズ21A、21Bを用いる場合においてLED光源15に隣接する(に最も近い)入射側レンズ21Aの光入射面21a−1を粗面にすることによって検出光量が増大することでさらに強化される。 In the present embodiment, the amount of light emitted from the LED light source 15 is detected by the photodetector 17 disposed around the LED light source 15 as described above. In this case, since the concave light-incident surface 21a-1 is a rough surface, scattered light obtained by scattering light from the LED light source 15 on the light incident surface 21a-1 is mainly detected by the photodetector 17. Since the amount of light detected by the photodetector 17 is less likely to be affected by variations among the plurality of LED chips 155 in the LED light source 15 and differences with time, the detection light amount can be increased in accuracy. Stabilization can be achieved. This advantage is also achieved by making the light incident surface 21a-1 of the incident side lens 21A adjacent to (closest to) the LED light source 15 rough when using a plurality of incident side lenses 21A and 21B as in this embodiment. This further enhances the amount of light detected.
図9乃至図12には、実施例と比較例の照明態様を示す写真を示す。ここで、本実施形態の構成を有する実施例の各レンズはいずれも光学ガラスBK7の球面レンズを用い、各光学面について、LED光源15の発光領域15aの発光面(上記有効径としての口径9.000mm)又は隣接する光学面からの光軸20上の距離と曲率半径をそれぞれ示すと次のとおりである。口径23.000mmの入射レンズ21Aにおいて、光入射面21a−1と上記発光面との距離は6.000mm、光入射面21a−1の曲率半径が−15.000mm、光出射面21a−2と上記光入射面21a−1との距離は5.000mm、光出射面21a−2の曲率半径が−12.000mm、口径32.000mmの入射レンズ21Bにおいて、光入射面21b−1と上記光出射面21a−2との距離は1.000mm、光入射面21b−1の曲率半径が−40.000mm、光出射面12b−2と上記光入射面21b−1との距離は9.000mm、光出射面21b−1の曲率半径が−17.000mm、口径50.000mmの集光レンズ22において、光入射面22aと上記光出射面21b−2との距離は8.950mm、光入射面22aの曲率半径が81.130mm、光出射面22bと上記光入射面22aとの距離は11.000mm、光出射面22bの曲率半径が−81.313mmである。なお、この光学系の焦点距離は1000.000mmとした。 9 to 12 show photographs showing illumination modes of the example and the comparative example. Here, each lens of the example having the configuration of the present embodiment uses a spherical lens of optical glass BK7, and for each optical surface, the light emitting surface of the light emitting region 15a of the LED light source 15 (the aperture 9 as the effective diameter). .000 mm) or the distance on the optical axis 20 from the adjacent optical surface and the radius of curvature are as follows. In the incident lens 21A having a diameter of 23.000 mm, the distance between the light incident surface 21a-1 and the light emitting surface is 6.000 mm, the radius of curvature of the light incident surface 21a-1 is -15.000 mm, and the light emitting surface 21a-2. In the incident lens 21B having a distance of 5.000 mm from the light incident surface 21a-1, a radius of curvature of the light emitting surface 21a-2 of -12.000 mm, and a diameter of 32.000 mm, the light incident surface 21b-1 and the light emitting surface The distance from the surface 21a-2 is 1.000 mm, the radius of curvature of the light incident surface 21b-1 is −40.000 mm, the distance between the light emitting surface 12b-2 and the light incident surface 21b-1 is 9.000 mm, and light In the condensing lens 22 whose exit surface 21b-1 has a radius of curvature of -17.000 mm and an aperture of 50.000 mm, the distance between the light incident surface 22a and the light exit surface 21b-2 is 8.950 mm, Radius of curvature 81.130mm of the entrance surface 22a, the distance between the light emitting surface 22b and the light incident surface 22a is 11.000Mm, the curvature of the light exit surface 22b with a radius of -81.313Mm. The focal length of this optical system was set to 1000.000 mm.
一方、上記実施例の光入射面21a−1を平坦な平滑面に変更した、平凸レンズの入射側レンズを用いた場合を比較例1とし、実施例の光入射面21a−1を凹曲面状のままで平滑面に変更した場合を比較例2とし、実施例の光入射面21a−1を粗面であるが平坦面に変更した、平凸レンズを用いた場合を比較例3として、それぞれ実施例と共に照度及び照度分布を調べた。他の光学面は実施例と同じである。ここで、図9は比較例1、図10は比較例2、図11は比較例3、図12は実施例の照明パターンを撮影した写真であり、それぞれ、装置前端から300mmの距離に設置した灰色に塗装した被照明板(金属板)に照射した照明スポットを暗室内で撮影したものである。なお、各写真の上部中央に見られる輝点は被照明板からの直接反射光が写りこんだものである。 On the other hand, the case where an incident side lens of a plano-convex lens in which the light incident surface 21a-1 of the above embodiment is changed to a flat smooth surface is used as Comparative Example 1, and the light incident surface 21a-1 of the embodiment is a concave curved surface. The case where the surface is changed to a smooth surface is referred to as Comparative Example 2, and the case where a plano-convex lens is used in which the light incident surface 21a-1 of the embodiment is a rough surface but is changed to a flat surface is used as Comparative Example 3, respectively. The illuminance and illuminance distribution were examined with examples. Other optical surfaces are the same as in the embodiment. Here, FIG. 9 is a photograph of Comparative Example 1, FIG. 10 is a Comparative Example 2, FIG. 11 is a photograph of the illumination pattern of the Example, and FIG. 12 is a photograph of the illumination pattern of the Example. The illumination spot irradiated to the to-be-illuminated board (metal plate) painted in gray was image | photographed in the dark room. Note that the bright spot seen in the upper center of each photograph is a direct reflection of light from the illuminated plate.
また、以下の表1には、それぞれ装置前端からの距離において最も照度の高い部分(照明範囲の中央部)を照度計で計測した照度データと、照度分布の均一性(発光パターンの消失度合)の程度及び光の照明効率の程度をそれぞれ4段階で評価した結果を示す。なお、表中の例えば80.00kLは8万ルクスを示す。また、備考欄には光入射面21a−1の光学面の態様(凹曲面状か平坦か、平滑面か粗面か)を示した。 Table 1 below shows illuminance data obtained by measuring a portion with the highest illuminance at the distance from the front end of the device (the central portion of the illumination range) with an illuminometer, and uniformity of illuminance distribution (the degree of disappearance of the light emission pattern). The results of evaluating the degree of light and the light illumination efficiency in four stages are shown. For example, 80.00 kL in the table indicates 80,000 lux. In the remarks column, the mode of the optical surface of the light incident surface 21a-1 (concave or flat, smooth or rough) is shown.
上記の結果、図9乃至図12に示すように、実施例(図12)では発光パターンが完全に消失しているのに対して、比較例1〜3(図9〜図11)はいずれも発光パターンが残存しており、特に、比較例1及び2では発光パターンの形状もはっきりと反映されている。また、実施例、比較例1及び2では照明の全光束量が高いのに対し、比較例3では照度が低下し光束量も少なくなっている。なお、実施例の中心部の照度データは比較例1及び2と比べると低いが、これは照明範囲が広いとともに照度分布が均一であるためである。実施例の照度若しくは光効率(照明範囲に照射される全光束の強度、或いは、LED光源の放出光から照明光を得る際の光の利用効率若しくは割合)は比較例1より高く比較例2と同様に良好である。 As a result, as shown in FIGS. 9 to 12, the light emission pattern disappeared completely in the example (FIG. 12), whereas all of Comparative Examples 1 to 3 (FIGS. 9 to 11). The light emission pattern remains, and in Comparative Examples 1 and 2, the shape of the light emission pattern is clearly reflected. In the example and comparative examples 1 and 2, the total luminous flux of the illumination is high, whereas in the comparative example 3, the illuminance is lowered and the luminous flux is reduced. Note that the illuminance data at the center of the embodiment is lower than that in Comparative Examples 1 and 2, but this is because the illumination range is wide and the illuminance distribution is uniform. The illuminance or light efficiency (the intensity of the total luminous flux irradiated to the illumination range, or the light use efficiency or ratio when obtaining the illumination light from the emitted light of the LED light source) of the example is higher than that of Comparative Example 1 and Comparative Example 2 It is equally good.
尚、本発明の照明装置は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 In addition, the illuminating device of this invention is not limited only to the above-mentioned illustration example, Of course, a various change can be added in the range which does not deviate from the summary of this invention.
10…照明装置、10A…本体、10B…保持具、11…主ケース部、12…後部板、13…照明ケース部、14…出射ケース部、11a…支持部、11b…周囲枠、15…LED光源、155…LEDチップ、15a…発光領域、16…回路基板、16a…制御駆動回路、17…光検出器、20…光軸、21…入射側レンズ鏡筒、21A、21B…入射側レンズ、22…集光レンズ DESCRIPTION OF SYMBOLS 10 ... Illuminating device, 10A ... Main body, 10B ... Holder, 11 ... Main case part, 12 ... Rear plate, 13 ... Illuminating case part, 14 ... Outgoing case part, 11a ... Supporting part, 11b ... Surrounding frame, 15 ... LED Light source, 155 ... LED chip, 15a ... light emitting area, 16 ... circuit board, 16a ... control drive circuit, 17 ... photodetector, 20 ... optical axis, 21 ... incident side lens barrel, 21A, 21B ... incident side lens, 22 ... Condensing lens
Claims (4)
該LED光源と対向する側に凹曲面状の光入射面(21a−1,21b−1)を備えるとともに前記LED光源とは反対側に凸曲面状の光出射面(21a−2,21b−2)を備えた、前記光入射面及び前記光出射面がそれぞれ連続した一つの曲面で構成された凸メニスカスレンズである、直列に配置された複数の入射側レンズ(21A、21B)と、
該入射側レンズに対して前記LED光源とは反対側に配置された集光レンズ(22)とを具備し、
前記複数の入射側レンズのうちの少なくとも一つの入射側レンズ(21A)の前記光入射面(21a−1)が粗面であるとともに、前記複数の入射側レンズ(21A,21B)の前記光出射面(21a−2、21b−2)が平滑面であり、
前記複数の入射側レンズのうちの前記LED光源に最も近い前記入射側レンズ(21A)の有効径(21ar)は前記LED光源の発光領域(15a)の外接円径(15r)よりも大きく、相互に隣接する入射側レンズ間において前記LED光源とは反対側にある入射側レンズ(21B)の有効径(21br)は前記LED光源の側にある入射側レンズ(21A)の有効径(21ar)よりも大きく、前記集光レンズの有効径(22r)は前記複数の入射側レンズのうちの前記LED光源から最も離れた入射側レンズ(21B)の有効径(21br)よりも大きく、
相互に隣接する入射側レンズ間において前記LED光源の側の入射側レンズ(21A)の有効径内から出射する発散光束が前記LED光源とは反対側の入射側レンズ(21B)の有効径内に入射し、前記複数の入射側レンズのうちの前記LED光源から最も離れた入射側レンズ(21B)の有効径(21br)内から出射する発散光束が前記集光レンズ(22)の有効径(22r)内に入射することを特徴とする照明装置。 Ri Na plurality of LED chips (155) is arranged on a surface, the LED light source does not have a lens structure of each chip (15),
A light incident surface (21a-1, 21b-1) having a concave curved surface is provided on the side facing the LED light source and a light emitting surface (21a-2, 21b-2 ) having a convex curved surface on the side opposite to the LED light source. ) equipped with the light incident surface and the light exit surface is a convex meniscus lens formed by respective successive one of the curved surfaces, and a plurality of incident side lenses arranged in series (21A, 21B),
A condenser lens (22) disposed on the opposite side of the LED light source with respect to the incident side lens;
The light incident surface (21a-1) of at least one incident side lens (21A) of the plurality of incident side lenses is a rough surface, and the light emission of the plurality of incident side lenses (21A, 21B). The surfaces (21a-2, 21b-2) are smooth surfaces,
The effective diameter (21ar) of the incident side lens (21A) closest to the LED light source among the plurality of incident side lenses is larger than the circumscribed circle diameter (15r) of the light emitting region (15a) of the LED light source. The effective diameter (21br) of the incident side lens (21B) on the opposite side of the LED light source between the incident side lenses adjacent to each other is larger than the effective diameter (21ar) of the incident side lens (21A) on the LED light source side. The effective diameter (22r) of the condenser lens is larger than the effective diameter (21br) of the incident side lens (21B) farthest from the LED light source among the plurality of incident side lenses,
The divergent light beam emitted from the effective diameter of the incident side lens (21A) on the LED light source side between the adjacent incident side lenses is within the effective diameter of the incident side lens (21B) opposite to the LED light source. A divergent light beam that enters and exits from the effective diameter (21br) of the incident side lens (21B) farthest from the LED light source among the plurality of incident side lenses is the effective diameter (22r) of the condenser lens (22). The illumination device is incident on the inside of the illumination device.
前記ケース体には、反射防止処理が施されて光反射が抑制された面で構成されるとともに前記入射側レンズから前記集光レンズへ向けて漸次拡径する内面(13a)が設けられ、前記複数の入射側レンズの有効径内から前記集光レンズの有効径内に向かう光束が遮光されないように構成され、かつ、前記複数の入射側レンズ(21A,21B)の有効径内を通過した光束以外の迷光の少なくとも一部が前記内面(13a)によって遮断されることを特徴とする請求項1又は2に記載の照明装置。 A case body (11, 13, 14) for housing the LED light source, the incident side lens and the condenser lens;
The case body is provided with an inner surface (13a) that is formed of a surface that is subjected to antireflection treatment and light reflection is suppressed and that gradually increases in diameter from the incident side lens toward the condenser lens. A light beam which is configured so as not to be shielded from an effective diameter of a plurality of incident side lenses and into an effective diameter of the condenser lens and which has passed through an effective diameter of the plurality of incident side lenses (21A, 21B). the lighting device according to claim 1 or 2, wherein at least a portion of the stray light, characterized in that it is blocked by the inner surface (13a) other than.
前記主ケース部(11)の前面には前記LED光源を支持する板状の支持部(11a)が設けられ、前記支持部(11a)の周囲に前方へ突出する周囲枠(11b)が設けられ、前記周囲枠(11b)の内側には、前記複数の入射側レンズ(21A,21B)を保持する入射側レンズ鏡筒(21)が嵌合されることを特徴とする請求項3に記載の照明装置。 The case body includes a main case portion (11) that holds the LED light source, an illumination case portion (13), and an emission case portion (14) that holds the condenser lens. 11) the lighting case part (13) is attached to the front part, and the light emitting case part (14) is attached to the front part of the lighting case part,
A plate-like support part (11a) for supporting the LED light source is provided on the front surface of the main case part (11), and a peripheral frame (11b) protruding forward is provided around the support part (11a). , on the inner side of the peripheral frame (11b), according to claim 3, wherein the plurality of incident side lenses (21A, 21B) incident lens barrel for holding the (21) is fitted Lighting device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010202644A JP5180269B2 (en) | 2010-09-10 | 2010-09-10 | Lighting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010202644A JP5180269B2 (en) | 2010-09-10 | 2010-09-10 | Lighting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012059584A JP2012059584A (en) | 2012-03-22 |
JP5180269B2 true JP5180269B2 (en) | 2013-04-10 |
Family
ID=46056444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010202644A Active JP5180269B2 (en) | 2010-09-10 | 2010-09-10 | Lighting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5180269B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101804858B1 (en) | 2012-11-14 | 2017-12-05 | 코에룩스 에스알엘 | Artificial illumination device for generating natural light |
WO2014076218A1 (en) | 2012-11-14 | 2014-05-22 | Light In Light S.R.L. | Illumination device synthesizing light from an object at virtually infinite distance |
KR101525975B1 (en) * | 2014-08-11 | 2015-06-05 | 주식회사 태영미디어 | Lighting equipment using LED |
CN105334023B (en) * | 2015-02-05 | 2018-02-27 | 西安理工大学 | Source mass detector and detection method |
KR101908942B1 (en) * | 2016-07-22 | 2018-10-17 | 주식회사 아모센스 | down light |
JP2018152177A (en) * | 2017-03-10 | 2018-09-27 | フェニックス電機株式会社 | Light emitting diode lamp |
JP6956351B2 (en) * | 2017-06-29 | 2021-11-02 | パナソニックIpマネジメント株式会社 | lighting equipment |
JP7065315B2 (en) * | 2018-05-14 | 2022-05-12 | パナソニックIpマネジメント株式会社 | Lighting equipment |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4275363B2 (en) * | 2002-07-11 | 2009-06-10 | 京都電機器株式会社 | Lighting equipment for inspection |
JP2007292577A (en) * | 2006-04-25 | 2007-11-08 | Matsushita Electric Ind Co Ltd | Light source device |
JP5380052B2 (en) * | 2008-11-25 | 2014-01-08 | パナソニック株式会社 | LED lighting device |
-
2010
- 2010-09-10 JP JP2010202644A patent/JP5180269B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012059584A (en) | 2012-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5180269B2 (en) | Lighting device | |
JP4604123B2 (en) | LIGHT SOURCE MODULE AND ELECTRONIC DEVICE PROVIDED WITH THE MODULE | |
JP5649047B2 (en) | Lens member and optical unit | |
JP5380052B2 (en) | LED lighting device | |
JP5506408B2 (en) | Optical unit | |
JP3726150B2 (en) | Micro-area illumination device | |
JP2011232512A (en) | Lens member and optical unit | |
US20120217519A1 (en) | Method and structure for encapsulating solid-state light emitting chip and light sources using the encapsulation structure | |
JP4601709B1 (en) | LIGHT SOURCE MODULE AND ELECTRONIC DEVICE PROVIDED WITH THE MODULE | |
JP2012160666A (en) | Light source module and lighting device | |
CN1643703A (en) | LED light collection and uniform transmission system | |
JP2006310549A (en) | Lighting apparatus and imaging apparatus | |
JP4222764B2 (en) | Inspection lighting device | |
JP2010086661A (en) | Optical member, planar light source, display, and method of manufacturing the optical member | |
JP5950198B2 (en) | lighting equipment | |
JP6749084B2 (en) | LED lighting device | |
JP4223044B2 (en) | Inspection lighting device | |
JP5967574B2 (en) | lighting equipment | |
TW201316566A (en) | Lighting module and lighting device thereof | |
TWI495850B (en) | Optical sensing device | |
JP4112064B2 (en) | Optical path adjusting member and lighting device including the same | |
JP2007311731A (en) | Light emitting device employing led | |
JP2014010428A (en) | Line illumination apparatus | |
JP6075216B2 (en) | Illumination apparatus and image reading apparatus using the same | |
KR101220909B1 (en) | LED lamp of florescent-type |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120925 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121126 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121211 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130110 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5180269 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |