JP5177269B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP5177269B2
JP5177269B2 JP2011193176A JP2011193176A JP5177269B2 JP 5177269 B2 JP5177269 B2 JP 5177269B2 JP 2011193176 A JP2011193176 A JP 2011193176A JP 2011193176 A JP2011193176 A JP 2011193176A JP 5177269 B2 JP5177269 B2 JP 5177269B2
Authority
JP
Japan
Prior art keywords
fuel
fuel ratio
air
value
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011193176A
Other languages
Japanese (ja)
Other versions
JP2012007620A (en
Inventor
栄記 守谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011193176A priority Critical patent/JP5177269B2/en
Publication of JP2012007620A publication Critical patent/JP2012007620A/en
Application granted granted Critical
Publication of JP5177269B2 publication Critical patent/JP5177269B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関の制御装置に関し、特に、燃料性状を検出する機能を有するものに関する。   The present invention relates to a control device for an internal combustion engine, and more particularly to an apparatus having a function of detecting fuel properties.

内燃機関の燃料の成分は多様であり、またガソリンにエタノールやメタノールを混合したアルコール混合燃料のような混合燃料を用いる内燃機関も実用化されている。このため、燃料の性状を車両側で検出できることが望ましい。   The components of the fuel of the internal combustion engine are various, and an internal combustion engine using a mixed fuel such as an alcohol mixed fuel in which ethanol or methanol is mixed with gasoline has been put into practical use. For this reason, it is desirable that the property of the fuel can be detected on the vehicle side.

燃料性状を車両側で検出する目的から、特許文献1に開示された装置は、始動不良が検出された場合に空燃比を補正し、その空燃比補正量から理論空燃比(ストイキ空燃比)を推定し、この理論空燃比からオクタン価を推定している。   For the purpose of detecting the fuel property on the vehicle side, the device disclosed in Patent Document 1 corrects the air-fuel ratio when a starting failure is detected, and calculates the stoichiometric air-fuel ratio (stoichiometric air-fuel ratio) from the air-fuel ratio correction amount. The octane number is estimated from this theoretical air-fuel ratio.

また、特許文献2に開示された装置は、筒内圧の検出値から筒内の発熱量を算出し、燃料の低位発熱量を求めることで燃料性状を検出している。   Further, the apparatus disclosed in Patent Document 2 detects the fuel property by calculating the amount of heat generated in the cylinder from the detected value of the in-cylinder pressure and determining the lower heat value of the fuel.

また、特許文献3は、燃料中のアルコール濃度と、理論空燃比と、ガソリンの重質度との関係を示すデータを格納した記憶手段を備え、アルコール濃度および理論空燃比(ストイキ空燃比)のデータと比較することにより、ガソリンの重質度を検出している。   Further, Patent Document 3 includes storage means for storing data indicating the relationship between the alcohol concentration in the fuel, the theoretical air-fuel ratio, and the gasoline heaviness, and the alcohol concentration and the stoichiometric air-fuel ratio (stoichiometric air-fuel ratio). By comparing with the data, the severity of gasoline is detected.

特開2000−170581号公報JP 2000-170581 A 特開昭64−88153号公報JP-A-64-88153 特許2907594号公報Japanese Patent No. 2907594

しかしながら、特許文献1の装置は、始動不良を検出した場合でないと燃料性状を検出できず、また、空燃比をストイキ空燃比に収束させるのに時間を要する。特許文献2の装置は、空燃比を制御できない。特許文献3の装置は、アルコール濃度とストイキ空燃比を何らかの手段で求める必要があり、より簡易な手段が望まれる。他方、発熱量とストイキ空燃比との関係を利用した制御装置は従来存在しない。   However, the apparatus of Patent Document 1 cannot detect the fuel property unless it is a case where a starting failure is detected, and it takes time to converge the air-fuel ratio to the stoichiometric air-fuel ratio. The device of Patent Document 2 cannot control the air-fuel ratio. The apparatus of Patent Document 3 needs to obtain the alcohol concentration and the stoichiometric air-fuel ratio by some means, and a simpler means is desired. On the other hand, there is no conventional control device that uses the relationship between the heat generation amount and the stoichiometric air-fuel ratio.

そこで、本発明の目的は、燃料性状を検出する機能を有する制御装置において、発熱量とストイキ空燃比との関係を利用して制御を行う新規な手段を提供することにある。   Accordingly, an object of the present invention is to provide a novel means for performing control using a relationship between a calorific value and a stoichiometric air-fuel ratio in a control device having a function of detecting fuel properties.

本発明の一態様は、排ガスの空燃比検出値に基づいてストイキ空燃比を算出する手段を有する内燃機関の制御装置において、低位発熱量とストイキ空燃比との既知の関係に基づいて、前記算出されたストイキ空燃比から燃料の低位発熱量を算出する手段と、筒内圧検出値に基づいて低位発熱量を算出する手段と、ストイキ空燃比に基づいて算出した低位発熱量の値と、筒内圧検出値に基づいて算出した低位発熱量の値との比較に基づいて、前記筒内圧検出値に基づいて低位発熱量を算出する手段および前記排ガスの空燃比検出値に基づいてストイキ空燃比を算出する手段のうち少なくとも一方を診断する診断手段と、を更に備えたことを特徴とする。この態様では、検出システムを診断するための新たな手段を提供できる。 One aspect of the present invention is a control device for an internal combustion engine having means for calculating a stoichiometric air-fuel ratio based on an air-fuel ratio detection value of exhaust gas, wherein the calculation is based on a known relationship between a low heating value and a stoichiometric air-fuel ratio. Means for calculating the lower heating value of the fuel from the stoichiometric air-fuel ratio , means for calculating the lower heating value based on the in-cylinder pressure detection value, the value of the lower heating value calculated based on the stoichiometric air-fuel ratio, and the in-cylinder pressure Based on the comparison with the value of the lower heating value calculated based on the detected value, the means for calculating the lower heating value based on the detected in-cylinder pressure and the stoichiometric air-fuel ratio based on the detected air-fuel ratio of the exhaust gas And a diagnostic means for diagnosing at least one of the means for performing. In this aspect, a new means for diagnosing the detection system can be provided.

筒内圧センサの検出値から熱発生量を求めるには、検出された筒内圧Pと、前記筒内圧Pの検出時点における燃焼室容積Vを供給される混合気の比熱比κ近傍の値で累乗した値との積値PVκを、前記熱発生量パラメータとして算出することが好ましい。気体の状態方程式:PV=nRT(P:圧力、V:体積、n:気体のモル数、R:気体定数(J/mol・K)、T:温度(K))から、断熱変化においてはPVκ=一定となることがわかっている。そのため、燃焼室内において燃料の燃焼が生じたときのPVκの変化量(すなわち2点間の差分)は、該燃焼により生じたエネルギーに依存する。従って、PVκは燃焼室内での熱発生量と相関が高く、このPVκを熱発生量パラメータとして燃料性状を判定することによって、より高精度で該燃料の性状を判定することができる。筒内圧Pは筒内圧センサによって直接検出することができ、体積(筒内容積)Vは所定のマップまたは関数によってクランク角から一義的に求めることができる。定数κは、燃焼室において形成される混合気の比熱比近傍の値であればよく、また予め定められた固定値であっても、吸入空気量や燃料噴射量等に応じて変更するようにしてもよい。 In order to obtain the amount of heat generation from the detected value of the in-cylinder pressure sensor, the detected in-cylinder pressure P and the combustion chamber volume V at the time of detection of the in-cylinder pressure P are raised to a power near the specific heat ratio κ of the supplied air-fuel mixture. It is preferable to calculate a product value PV κ with the calculated value as the heat generation amount parameter. Equation of state of gas: PV = nRT (P: pressure, V: volume, n: number of moles of gas, R: gas constant (J / mol · K), T: temperature (K)), PV in adiabatic change It has been found that κ = constant. Therefore, the amount of change in PV κ (that is, the difference between two points) when fuel combustion occurs in the combustion chamber depends on the energy generated by the combustion. Therefore, PV κ has a high correlation with the amount of heat generated in the combustion chamber, and by determining the fuel properties using PV κ as a heat generation amount parameter, the properties of the fuel can be determined with higher accuracy. The in-cylinder pressure P can be directly detected by the in-cylinder pressure sensor, and the volume (in-cylinder volume) V can be uniquely determined from the crank angle by a predetermined map or function. The constant κ may be a value near the specific heat ratio of the air-fuel mixture formed in the combustion chamber, and even if it is a predetermined fixed value, it should be changed according to the intake air amount, the fuel injection amount, and the like. May be.

本発明による制御装置が適用された内燃機関を示す概略構成図である。It is a schematic block diagram which shows the internal combustion engine to which the control apparatus by this invention was applied. ストイキ空燃比/低位発熱量比マップの構成例を示すグラフである。It is a graph which shows the structural example of a stoichi air fuel ratio / low heating value ratio map. 第1実施形態における燃料性状判別処理を示すフローチャートである。It is a flowchart which shows the fuel property discrimination | determination process in 1st Embodiment. 第2実施形態における空燃比フィードバック制御の実行例を示すグラフである。It is a graph which shows the execution example of the air fuel ratio feedback control in 2nd Embodiment. 第2実施形態における燃料性状判別処理を示すフローチャートである。It is a flowchart which shows the fuel property discrimination | determination process in 2nd Embodiment. 第3実施形態における筒内圧検出系の診断処理を示すフローチャートである。It is a flowchart which shows the diagnostic process of the in-cylinder pressure detection system in 3rd Embodiment.

以下、図面を参照しながら、本発明を実施するための最良の形態について具体的に説明する。   Hereinafter, the best mode for carrying out the present invention will be specifically described with reference to the drawings.

図1は、本発明による制御装置が適用された内燃機関を示す概略構成図である。同図に示される内燃機関1は、シリンダブロック2に形成された燃焼室3の内部で燃料および空気の混合気を燃焼させ、燃焼室3内でピストン4を往復移動させることにより動力を発生するものである。内燃機関1は、ガソリンによる運転、およびガソリンとアルコールとの混合燃料による運転が可能である。内燃機関1は多気筒エンジンとして構成されると好ましく、本実施形態の内燃機関1は、例えば4気筒エンジンとして構成される。   FIG. 1 is a schematic configuration diagram showing an internal combustion engine to which a control device according to the present invention is applied. The internal combustion engine 1 shown in FIG. 1 generates power by burning a fuel / air mixture in a combustion chamber 3 formed in a cylinder block 2 and reciprocating a piston 4 in the combustion chamber 3. Is. The internal combustion engine 1 can be operated with gasoline and with a mixed fuel of gasoline and alcohol. The internal combustion engine 1 is preferably configured as a multi-cylinder engine, and the internal combustion engine 1 of the present embodiment is configured as, for example, a 4-cylinder engine.

各燃焼室3の吸気ポートは、吸気管(吸気マニホールド)5にそれぞれ接続され、各燃焼室3の排気ポートは、排気管6(排気マニホールド)にそれぞれ接続されている。また、内燃機関1のシリンダヘッドには、吸気弁Viおよび排気弁Veが燃焼室3ごとに配設されている。各吸気弁Viは対応する吸気ポートを開閉し、各排気弁Veは対応する排気ポートを開閉する。各吸気弁Viおよび各排気弁Veは、可変バルブタイミング機構を含む動弁機構VMによって開閉させられる。更に、内燃機関1は、気筒数に応じた数の点火プラグ7を有し、点火プラグ7は、対応する燃焼室3内に臨むようにシリンダヘッドに配設されている。   The intake port of each combustion chamber 3 is connected to an intake pipe (intake manifold) 5, and the exhaust port of each combustion chamber 3 is connected to an exhaust pipe 6 (exhaust manifold). In addition, an intake valve Vi and an exhaust valve Ve are provided for each combustion chamber 3 in the cylinder head of the internal combustion engine 1. Each intake valve Vi opens and closes a corresponding intake port, and each exhaust valve Ve opens and closes a corresponding exhaust port. Each intake valve Vi and each exhaust valve Ve are opened and closed by a valve operating mechanism VM including a variable valve timing mechanism. Further, the internal combustion engine 1 has a number of spark plugs 7 corresponding to the number of cylinders, and the spark plugs 7 are disposed in the cylinder heads so as to face the corresponding combustion chambers 3.

吸気管5は、図1に示されるように、サージタンク8に接続されている。サージタンク8には、給気ラインL1が接続されており、給気ラインL1は、エアクリーナ9を介して図示されない空気取入口に接続されている。そして、給気ラインL1の中途(サージタンク8とエアクリーナ9との間)には、スロットルバルブ(本実施形態では、電子制御式スロットルバルブ)10が組み込まれている。一方、排気管6には、図1に示されるように、例えば三元触媒を含む前段触媒装置11aおよび例えばNOx吸蔵還元触媒を含む後段触媒装置11bが接続されている。   The intake pipe 5 is connected to a surge tank 8 as shown in FIG. An air supply line L1 is connected to the surge tank 8, and the air supply line L1 is connected to an air intake port (not shown) via an air cleaner 9. A throttle valve (in this embodiment, an electronically controlled throttle valve) 10 is incorporated in the middle of the air supply line L1 (between the surge tank 8 and the air cleaner 9). On the other hand, as shown in FIG. 1, for example, a front-stage catalyst device 11 a including a three-way catalyst and a rear-stage catalyst device 11 b including a NOx storage reduction catalyst are connected to the exhaust pipe 6.

更に、内燃機関1は、複数のインジェクタ12を有し、各インジェクタ12は、図1に示されるように、対応する燃焼室3内に臨むようにシリンダヘッドに配置されている。また、内燃機関1の各ピストン4は、いわゆる深皿頂面型に構成されており、その上面に、凹部4aを有している。そして、内燃機関1では、各燃焼室3内に空気を吸入させた状態で、各インジェクタ12から各燃焼室3内のピストン4の凹部4aに向けてガソリン等の燃料が直接噴射される。   Furthermore, the internal combustion engine 1 has a plurality of injectors 12, and each injector 12 is disposed in the cylinder head so as to face the corresponding combustion chamber 3 as shown in FIG. 1. Each piston 4 of the internal combustion engine 1 is configured as a so-called deep dish top surface type, and has a concave portion 4a on its upper surface. In the internal combustion engine 1, fuel such as gasoline is directly injected from each injector 12 toward the recess 4 a of the piston 4 in each combustion chamber 3 in a state where air is sucked into each combustion chamber 3.

これにより、内燃機関1では、点火プラグ7の近傍に燃料と空気との混合気の層が周囲の空気層と分離された状態で形成(成層化)されるので、極めて希薄な混合気を用いて安定した成層燃焼を実行することが可能となる。なお、本実施形態の内燃機関1は、いわゆる直噴エンジンとして説明されるが、これに限られるものではなく、本発明が吸気管(吸気ポート)噴射式の内燃機関に適用され得ることはいうまでもない。   As a result, in the internal combustion engine 1, the fuel / air mixture layer is formed (stratified) in the vicinity of the spark plug 7 so as to be separated from the surrounding air layer. And stable stratified combustion can be performed. The internal combustion engine 1 of the present embodiment is described as a so-called direct injection engine, but is not limited to this, and the present invention can be applied to an intake pipe (intake port) injection type internal combustion engine. Not too long.

上述の各点火プラグ7、スロットルバルブ10、各インジェクタ12および動弁機構VM等は、内燃機関1の制御装置として機能するECU20に電気的に接続されている。ECU20は、何れも図示されないCPU、ROM、RAM、入出力ポート、および、記憶装置等を含むものである。ECU20には、図1に示されるように、内燃機関1のクランク角センサ14を始めとした各種センサが電気的に接続されている。ECU20は、記憶装置に記憶されている各種マップ等を用いると共に各種センサの検出値等に基づいて、所望の出力が得られるように、点火プラグ7、スロットルバルブ10、インジェクタ12、動弁機構VM等を制御する。   Each of the spark plugs 7, the throttle valve 10, the injectors 12, the valve operating mechanism VM, and the like described above are electrically connected to the ECU 20 that functions as a control device for the internal combustion engine 1. The ECU 20 includes a CPU, a ROM, a RAM, an input / output port, a storage device, and the like, all not shown. As shown in FIG. 1, various sensors including the crank angle sensor 14 of the internal combustion engine 1 are electrically connected to the ECU 20. The ECU 20 uses the various maps stored in the storage device and the spark plug 7, the throttle valve 10, the injector 12, and the valve mechanism VM so that a desired output can be obtained based on detection values of various sensors. Control etc.

また、内燃機関1は、半導体素子、圧電素子、磁歪素子あるいは光ファイバ検出素子等を含む筒内圧センサ(筒内圧検出手段)15を気筒数に応じた数だけ有している。各筒内圧センサ15は、対応する燃焼室3内に受圧面が臨むようにシリンダヘッドに配設されており、図示されないA/D変換器等を介してECU20に電気的に接続されている。各筒内圧センサ15は、燃焼室3内でその受圧面に加わる圧力(筒内圧力)を大気圧に対する相対値として出力するものであり、その受圧面に加わる圧力(筒内圧力)に応じた電圧信号(検出値を示す信号)をECU20に与える。   The internal combustion engine 1 has in-cylinder pressure sensors (in-cylinder pressure detecting means) 15 including semiconductor elements, piezoelectric elements, magnetostrictive elements, optical fiber detecting elements, and the like corresponding to the number of cylinders. Each in-cylinder pressure sensor 15 is disposed on the cylinder head so that the pressure receiving surface faces the corresponding combustion chamber 3, and is electrically connected to the ECU 20 via an A / D converter (not shown). Each in-cylinder pressure sensor 15 outputs the pressure (in-cylinder pressure) applied to the pressure receiving surface in the combustion chamber 3 as a relative value to the atmospheric pressure, and corresponds to the pressure (in-cylinder pressure) applied to the pressure receiving surface. A voltage signal (a signal indicating a detected value) is supplied to the ECU 20.

更に、内燃機関1は、サージタンク8内の吸入空気の圧力(吸気圧)を絶対圧力として検出する吸気圧センサ16を有している。吸気圧センサ16も、図示されないA/D変換器等を介してECU20に電気的に接続されており、検出したサージタンク8内の吸入空気の絶対圧力を示す信号をECU20に与える。なお、クランク角センサ14、吸気圧センサ16の検出値は、微小時間おきにECU20に順次与えられ、ECU20の所定の記憶領域(バッファ)に所定量ずつ格納保持される。また、各筒内圧センサ15の検出値(筒内圧力)は、吸気圧センサ16の検出値に基づいて絶対圧補正された上で、ECU20の所定の記憶領域(バッファ)に所定量ずつ格納保持される。   Furthermore, the internal combustion engine 1 has an intake pressure sensor 16 that detects the pressure (intake pressure) of intake air in the surge tank 8 as an absolute pressure. The intake pressure sensor 16 is also electrically connected to the ECU 20 via an A / D converter (not shown) or the like, and gives a signal indicating the detected absolute pressure of the intake air in the surge tank 8 to the ECU 20. The detected values of the crank angle sensor 14 and the intake pressure sensor 16 are sequentially given to the ECU 20 every minute time, and are stored and held in a predetermined storage area (buffer) of the ECU 20 by a predetermined amount. Further, the detection value (in-cylinder pressure) of each in-cylinder pressure sensor 15 is subjected to absolute pressure correction based on the detection value of the intake pressure sensor 16, and then stored and held in a predetermined storage area (buffer) of the ECU 20 by a predetermined amount. Is done.

更に内燃機関1は、排気管6内の空燃比を検出するA/Fセンサ17と、排気管6内の酸素濃度を検出するO2センサ18とを前段触媒装置11aの前段に有しており、これらA/Fセンサ17およびO2センサ18は、検出信号をそれぞれECU20に与える。A
/Fセンサ17は、内燃機関1で燃焼された混合気の空燃比に比例した出力電圧を発生する全域空燃比センサ(リニア空燃比センサ)である。O2センサ18は、内燃機関1で燃焼された混合気の空燃比が理論空燃比に対してリッチであるかリーンであるかをオン−オフ的に検出する。
Furthermore, the internal combustion engine 1 has an A / F sensor 17 that detects the air-fuel ratio in the exhaust pipe 6 and an O 2 sensor 18 that detects the oxygen concentration in the exhaust pipe 6 in the front stage of the front catalyst device 11a. The A / F sensor 17 and the O 2 sensor 18 provide detection signals to the ECU 20, respectively. A
The / F sensor 17 is a full-range air-fuel ratio sensor (linear air-fuel ratio sensor) that generates an output voltage proportional to the air-fuel ratio of the air-fuel mixture burned in the internal combustion engine 1. The O 2 sensor 18 detects whether the air-fuel ratio of the air-fuel mixture burned in the internal combustion engine 1 is rich or lean with respect to the stoichiometric air-fuel ratio.

ECU20のROMには、予め作成された図2に示されるようなストイキ空燃比/低位発熱量比マップが格納されている。同マップは、ストイキ空燃比と低位発熱量比との既知の関係を記憶したものであり、これらの一方の値から他方の値を検索可能に構成されている。ここにいうストイキ空燃比とは、空気中の酸素と燃料が過不足なく反応し完全燃焼するときの空燃比である。ここにいう低位発熱量比とは、燃料の低位発熱量が規範ガソリン燃料の低位発熱量に対してなす比率である。図2に示されるように、ストイキ空燃比と低位発熱量比とは概ね比例関係にある。   The ROM of the ECU 20 stores a stoichiometric air-fuel ratio / low heating value ratio map as shown in FIG. The map stores a known relationship between the stoichiometric air-fuel ratio and the lower heating value ratio, and is configured so that the other value can be retrieved from one of these values. The stoichiometric air-fuel ratio here is an air-fuel ratio when oxygen in the air and fuel react with each other without excess or deficiency and complete combustion. Here, the lower heating value ratio is a ratio that the lower heating value of the fuel makes with respect to the lower heating value of the reference gasoline fuel. As shown in FIG. 2, the stoichiometric air-fuel ratio and the lower heating value ratio are approximately proportional.

ECU20のROMには、予め作成された2種類の燃料噴射量マップ、2種類の噴射時期マップ、および2種類の点火時期マップが格納されている。各2種類のマップのうちの
一方はガソリン燃料に、また他方はガソリン・アルコール混合燃料に対応している。なお、各マップは、例えば吸入空気量およびエンジン回転数を入力変数とし、これらの値に対応して、燃料噴射量、噴射時期および点火時期を読み出すことができるように構成されている。またECU20のROMには更に、これら各マップから読み出された燃料噴射量、噴射時期および点火時期に対して、吸気温、スロットル開度、およびエンジン水温などの運転状態を示す他の各種パラメータに基づいて補正を行うための関数およびプログラムが格納されている。
The ROM of the ECU 20 stores two types of fuel injection amount maps, two types of injection timing maps, and two types of ignition timing maps created in advance. One of each of the two types of maps corresponds to gasoline fuel, and the other corresponds to gasoline / alcohol mixed fuel. Each map is configured such that, for example, the intake air amount and the engine speed are input variables, and the fuel injection amount, the injection timing, and the ignition timing can be read according to these values. Further, the ROM of the ECU 20 further includes other various parameters indicating the operation state such as the intake air temperature, the throttle opening degree, and the engine water temperature with respect to the fuel injection amount, the injection timing and the ignition timing read from each of these maps. A function and a program for performing correction based on this are stored.

本実施形態では、空燃比が目標ストイキ空燃比に近づくように燃料噴射量を制御する空燃比フィードバック制御が行われる。この空燃比フィードバック制御は、具体的には、予め設定されている目標ストイキ空燃比A/Ftgtと、A/Fセンサ17の検出値との偏差を求め、偏差に応じた量、燃料噴射量を偏差が0に近づく方向に変更することで実行される。   In this embodiment, air-fuel ratio feedback control is performed to control the fuel injection amount so that the air-fuel ratio approaches the target stoichiometric air-fuel ratio. Specifically, the air-fuel ratio feedback control calculates a deviation between a preset target stoichiometric air-fuel ratio A / Ftgt and a detected value of the A / F sensor 17, and sets an amount corresponding to the deviation and a fuel injection amount. It is executed by changing the deviation in a direction approaching zero.

次に、図3を参照しながら、上述の内燃機関1において燃料性状を判別する手順について説明する。内燃機関1を始動させるように不図示のイグニッションキーが操作されると、ECU20によって図3に示される燃料性状判別処理が所定期間おきに繰返し実行される。図3において、ECU20は、まず、エンジン条件を示すパラメータを読み込む(S10)。ここで読み込まれるパラメータは、筒内圧P、クランク角θ及び燃料噴射量Tauである。これらのパラメータは、気筒ごとに、予め定められた複数のクランク角θについて取得され、ECU20の所定の記憶領域に格納される。   Next, a procedure for determining the fuel property in the internal combustion engine 1 will be described with reference to FIG. When an ignition key (not shown) is operated so as to start the internal combustion engine 1, the ECU 20 repeatedly executes the fuel property determination process shown in FIG. 3 at predetermined intervals. In FIG. 3, the ECU 20 first reads parameters indicating engine conditions (S10). The parameters read here are the in-cylinder pressure P, the crank angle θ, and the fuel injection amount Tau. These parameters are acquired for a plurality of predetermined crank angles θ for each cylinder and stored in a predetermined storage area of the ECU 20.

次にECU20は、熱発生量パラメータとして、所定の基準クランク角における筒内圧P、筒内容積V、および上述のとおり予め定められた比熱比κまたはその近傍の値から、PVκの値を各気筒について算出し(S20)、ECU20の所定の記憶領域に格納する。 Next, the ECU 20 determines the value of PV κ from the in-cylinder pressure P at the predetermined reference crank angle, the in-cylinder volume V, and the specific heat ratio κ determined in advance as described above or a value in the vicinity thereof as a heat generation amount parameter. The cylinder is calculated (S20) and stored in a predetermined storage area of the ECU 20.

全気筒についての検出および演算が終了すると、ECU20は、低位発熱量比RQを算出する(S30)。ここにいう低位発熱量比は、検出対象となる燃料の低位発熱量が、規範ガソリン燃料の低位発熱量に対してなす比である。具体的には、ECU20は次の数式
(1)により、ステップS40で算出したPVκの吸気下死点からの上昇量ΔPVκを当該燃料の図示発熱量Qindとみなし、これを規範ガソリン燃料の所定単位あたりの低位発熱量Qref、検出期間における燃料噴射量Tau、および低位発熱量に換算するための換算係数xで除して、低位発熱量比RQを算出する。
The detection and computation of all the cylinders is completed, ECU 20 calculates the lower calorific value ratio R Q (S30). The lower calorific value ratio here is a ratio that the lower calorific value of the fuel to be detected forms with respect to the lower calorific value of the reference gasoline fuel. Specifically, the ECU 20 regards the amount of increase ΔPV κ from the intake bottom dead center of PV κ calculated in step S40 as the indicated calorific value Qind of the fuel according to the following equation (1), and this is the reference gasoline fuel. A lower heating value ratio RQ is calculated by dividing by the lower heating value Qref per predetermined unit, the fuel injection amount Tau in the detection period, and the conversion coefficient x for converting to the lower heating value.

Figure 0005177269
Figure 0005177269

この低位発熱量比RQの値は燃料の性状に応じて異なり、アルコール混合燃料の場合には、ガソリン燃料の場合よりも小さい値となる。 The value of the lower calorific value ratio R Q are different depending on the nature of the fuel, in the case of an alcohol blended fuel, it becomes smaller than the case of gasoline fuel.

そして、低位発熱量比RQによって、上述したストイキ空燃比/低位発熱量比マップ(図2)を参照し、これに対応するストイキ空燃比AFtgtを算出する(S40)。ここで算出されたストイキ空燃比AFtgtは、後述する空燃比フィードバック制御において目標ストイキ値として用いられる。 Then, the lower calorific value ratio R Q, with reference to the stoichiometric air-fuel ratio / lower calorific value ratio map as described above (FIG. 2), and calculates the stoichiometric air-fuel ratio AFtgt corresponding thereto (S40). The stoichiometric air-fuel ratio AFtgt calculated here is used as a target stoichiometric value in air-fuel ratio feedback control described later.

次に、ECU20は算出されたストイキ空燃比AFtgtを、規範ガソリン燃料に対応する値として予め定められたしきい値と比較し(S50)、しきい値より小さい場合には、アルコール混合燃料と判定して、所定の混合燃料使用フラグをセットする(S60)。またストイキ空燃比AFtgtがしきい値以上である場合には、ガソリン燃料と判定して、混合燃料使用フラグをリセットする(S80)。   Next, the ECU 20 compares the calculated stoichiometric air-fuel ratio AFtgt with a threshold value determined in advance as a value corresponding to the reference gasoline fuel (S50). Then, a predetermined mixed fuel use flag is set (S60). If the stoichiometric air-fuel ratio AFtgt is greater than or equal to the threshold value, it is determined as gasoline fuel and the mixed fuel use flag is reset (S80).

そしてこれらの燃料着火性判断(S60,S80)に応答して、ECU20は運転マップの切替を行う(S70)。具体的には、上記混合燃料使用フラグの参照に応じて、各2種類の燃料噴射量マップ、燃料噴射時期マップおよび点火時期マップのうち、アルコール混合燃料が使用されている場合にはアルコール混合燃料用のものが選択され、ガソリン燃料が使用されている場合にはガソリン燃料用のものが選択されて、燃料噴射量・噴射時期および点火時期の制御にそれぞれ使用される。   In response to these fuel ignitability determinations (S60, S80), the ECU 20 switches the operation map (S70). Specifically, in accordance with the reference to the mixed fuel use flag, alcohol mixed fuel is used when alcohol mixed fuel is used among the two types of fuel injection amount maps, fuel injection timing maps, and ignition timing maps. When gasoline fuel is used, one for gasoline fuel is selected and used for control of fuel injection amount / injection timing and ignition timing, respectively.

以上の処理の結果、ストイキ空燃比AFtgtがしきい値よりも小さい場合に、アルコール混合燃料用の制御マップが選択され、エンジンの制御に使用されることになる。   As a result of the above processing, when the stoichiometric air-fuel ratio AFtgt is smaller than the threshold value, the control map for the alcohol mixed fuel is selected and used for engine control.

他方、ステップS40で算出されたストイキ空燃比AFtgtは、空燃比フィードバック制御において目標値として用いられる。空燃比フィードバック制御は、排気通路中に設置されたA/Fセンサ17の検出値AFが目標ストイキ空燃比AFtgtに一致するように燃料噴射量を制御するものであり、具体的には、目標ストイキ空燃比AFtgtと検出値AFとの偏差に比例ゲインKcを乗じて補正量を算出し、この補正量を現在の燃料噴射量に加算又は減算するものである。なお、この空燃比フィードバック制御における制御系は、フィードバック補正量を算出する調節部の動作が比例(P)動作(P項)だけではなく、定常偏差をなくする作用を有する積分(I)動作(I項)、積分動作の導入による制御の不安定性を回避する微分(D)動作(D項)を有することとしてもよい(いわゆるPID制御)。しかして本実施形態では、目標ストイキ空燃比AFtgtが燃料性状に応じて変更されるので(S40)、燃料性状に応じた適正なストイキ空燃比で運転が行われることになる。   On the other hand, the stoichiometric air-fuel ratio AFtgt calculated in step S40 is used as a target value in the air-fuel ratio feedback control. In the air-fuel ratio feedback control, the fuel injection amount is controlled so that the detection value AF of the A / F sensor 17 installed in the exhaust passage matches the target stoichiometric air-fuel ratio AFtgt. Specifically, the target stoichiometric control is performed. A correction amount is calculated by multiplying the deviation between the air-fuel ratio AFtgt and the detected value AF by a proportional gain Kc, and this correction amount is added to or subtracted from the current fuel injection amount. In the control system in the air-fuel ratio feedback control, the operation of the adjustment unit for calculating the feedback correction amount is not only the proportional (P) operation (P term) but also the integral (I) operation having an effect of eliminating the steady-state deviation ( It is also possible to have a differential (D) operation (D term) that avoids control instability due to the introduction of an integral operation (so-called PID control). Therefore, in the present embodiment, the target stoichiometric air-fuel ratio AFtgt is changed according to the fuel property (S40), so that the operation is performed at an appropriate stoichiometric air-fuel ratio according to the fuel property.

以上のとおり、本実施形態では、燃料の低位発熱量Qindを算出し、算出した低位発熱量に基づいて目標ストイキ空燃比AFtgtを設定するので(S40)、発熱量とストイキ空燃比との関係を利用して、燃料性状に応じた空燃比制御を行うことが可能になる。   As described above, in the present embodiment, the lower heating value Qind of the fuel is calculated, and the target stoichiometric air-fuel ratio AFtgt is set based on the calculated lower heating value (S40). Therefore, the relationship between the heating value and the stoichiometric air-fuel ratio is determined. By utilizing this, it becomes possible to perform air-fuel ratio control according to the fuel properties.

また、本実施形態では燃料の低位発熱量Qindを、筒内圧センサの検出値Pから得られる熱発生量を用いて算出するので、簡易な構成によって本発明に所期の効果を得ることができる。   Further, in the present embodiment, the lower heating value Qind of the fuel is calculated using the heat generation amount obtained from the detection value P of the in-cylinder pressure sensor. Therefore, the expected effect of the present invention can be obtained with a simple configuration. .

次に、本発明の第2実施形態について説明する。第2実施形態の装置は、排ガス中の成分に基づいてストイキ空燃比を算出する手段を有する内燃機関の制御装置において、ストイキ空燃比に基づいて低位発熱量を算出する手段を更に備えたことを特徴とする。第2実施形態の機械的構成は第1実施形態と同様であるため、その詳細の説明は省略する。   Next, a second embodiment of the present invention will be described. The apparatus of the second embodiment further includes means for calculating a lower heating value based on the stoichiometric air-fuel ratio in a control device for an internal combustion engine having means for calculating the stoichiometric air-fuel ratio based on components in the exhaust gas. Features. Since the mechanical configuration of the second embodiment is the same as that of the first embodiment, detailed description thereof is omitted.

本実施形態では、本発明に係る燃料性状判定処理とは別途に、O2センサ18の検出値に基づいて燃料噴射量を制御することで、空燃比をリーン側とリッチ側とに所定時間ごとに反転させながら、空燃比をストイキ空燃比に維持するO2フィードバック制御が行われる。そして、同制御の実行中におけるO2センサ18の検出値とA/Fセンサ17の検出値とに基づいてストイキ空燃比を算出し、このストイキ空燃比に基づいて燃料性状を判定する。 In the present embodiment, separately from the fuel property determination process according to the present invention, the fuel injection amount is controlled based on the detection value of the O 2 sensor 18 so that the air-fuel ratio is set to the lean side and the rich side every predetermined time. O 2 feedback control is performed to maintain the air-fuel ratio at the stoichiometric air-fuel ratio while reversing. Then, the stoichiometric air-fuel ratio is calculated based on the detected value of the O 2 sensor 18 and the detected value of the A / F sensor 17 during the execution of the control, and the fuel property is determined based on the stoichiometric air-fuel ratio.

図5の処理ルーチンはO2フィードバック制御が実行中であることを条件に実行される。まずECU20はO2センサ18の出力を読み込み(S110)、メモリに格納する。次にECU20は、A/Fセンサ17出力を読み込み(S120)、メモリに格納する。これらステップS110,120の処理は、O2センサの出力信号の反転の所定周期にわたって(S130)繰返し実行される。周期のカウントは、インジェクタ12に対する動作指令出力を利用して行ってもよく、O2センサの出力信号自体を解析して行ってもよい。 The processing routine of FIG. 5 is executed on condition that the O 2 feedback control is being executed. First, the ECU 20 reads the output of the O 2 sensor 18 (S110) and stores it in the memory. Next, the ECU 20 reads the output of the A / F sensor 17 (S120) and stores it in the memory. The processes in steps S110 and S120 are repeatedly executed over a predetermined period of inversion of the output signal of the O 2 sensor (S130). The period may be counted by using an operation command output to the injector 12 or by analyzing the output signal itself of the O 2 sensor.

所定周期のO2センサ出力及びA/Fセンサ出力が得られると、次にECU20は、格納されている複数周期分のO2センサ18の出力値を、最大値を1とし最小値を0として0〜1に正規化する(S140)。 When the O 2 sensor output and the A / F sensor output of a predetermined cycle are obtained, the ECU 20 then sets the stored output value of the O 2 sensor 18 for a plurality of cycles to 1 as the maximum value and 0 as the minimum value. Normalize to 0-1 (S140).

次にECU20は、このようにして正規化されたO2センサ18の出力値O2i(i=1
〜k)と、これに対応するタイミングで取得されたA/Fセンサ17の出力値AFi(i
=1〜k)とを用い、次の数式(2)により、O2iで重み付けされたAFiの重み付き平均(加重平均)である重み付き平均ストイキ空燃比AFstを算出する(S150)。
Next, the ECU 20 normalizes the output value O2 i (i = 1) of the O 2 sensor 18 thus normalized.
˜k) and the output value AF i (i) of the A / F sensor 17 acquired at the timing corresponding thereto.
= 1 to k), a weighted average stoichiometric air-fuel ratio AFst, which is a weighted average (weighted average) of AF i weighted by O 2 i , is calculated by the following equation (2) (S150).

Figure 0005177269
Figure 0005177269

そしてECU20は、算出された重み付き平均ストイキ空燃比AFstによって、上述したストイキ空燃比/低位発熱量比マップ(図2)を参照し、これに対応する低位発熱量比RQを算出する(S160)。 The ECU20 is the calculated weighted average stoichiometric air-fuel ratio AFST, with reference to the stoichiometric air-fuel ratio / lower calorific value ratio map as described above (FIG. 2), calculates the lower calorific value ratio R Q corresponding thereto (S160 ).

次に、ECU20は算出された低位発熱量比RQを、規範ガソリン燃料に対応する値として予め定められたしきい値と比較し(S170)、しきい値より小さい場合には、アルコール混合燃料と判定して、所定の混合燃料使用フラグをセットする(S180)。また低位発熱量比RQがしきい値以上である場合には、ガソリン燃料と判定して、混合燃料使用フラグをリセットする(S200)。 Next, the lower calorific value ratio R Q calculated in ECU 20, and compared with a predetermined threshold as a value corresponding to the norms gasoline fuel (S170), is smaller than the threshold value, alcohol-mixed fuel And a predetermined mixed fuel use flag is set (S180). If the lower heating value ratio RQ is greater than or equal to the threshold value, it is determined that the fuel is gasoline fuel and the mixed fuel use flag is reset (S200).

そしてこれらの燃料着火性判断(S180,S200)に応答して、ECU20は運転マップの切替を行う(S190)。具体的には、上記混合燃料使用フラグの参照に応じて、各2種類の燃料噴射量マップ、燃料噴射時期マップおよび点火時期マップのうち、アルコール混合燃料が使用されている場合にはアルコール混合燃料用のものが選択され、ガソリン燃料が使用されている場合にはガソリン燃料用のものが選択されて、燃料噴射量・噴射時期および点火時期の制御にそれぞれ使用される。以上の処理の結果、低位発熱量比R
Qがしきい値よりも小さい場合に、アルコール混合燃料用の制御マップが選択され、エンジンの制御に使用されることになる。
In response to these fuel ignitability determinations (S180, S200), the ECU 20 switches the operation map (S190). Specifically, in accordance with the reference to the mixed fuel use flag, alcohol mixed fuel is used when alcohol mixed fuel is used among the two types of fuel injection amount maps, fuel injection timing maps, and ignition timing maps. When gasoline fuel is used, one for gasoline fuel is selected and used for control of fuel injection amount / injection timing and ignition timing, respectively. As a result of the above processing, the lower heating value ratio R
If Q is less than the threshold, the control map for the alcohol blend will be selected and used to control the engine.

他方、ステップS150で算出された重み付き平均ストイキ空燃比AFstは、空燃比フィードバック制御において目標値として用いられ、排気通路中に設置されたA/Fセンサ17の検出値AFが目標値であるストイキ空燃比AFstに一致するように燃料噴射量が制御される。   On the other hand, the weighted average stoichiometric air-fuel ratio AFst calculated in step S150 is used as a target value in the air-fuel ratio feedback control, and the detected value AF of the A / F sensor 17 installed in the exhaust passage is the target value. The fuel injection amount is controlled to coincide with the air-fuel ratio AFst.

以上のとおり、第2実施形態では、発熱量とストイキ空燃比との関係を利用して、逆にストイキ空燃比から発熱量を算出することが可能になり、発熱量を算出するための新たな手段を提供できる。したがって、筒内圧センサ15を用いた発熱量の算出自体を不要にすることも可能になる。また、本実施形態ではA/Fセンサ17の出力の単純平均でなく、酸素濃度で重み付けされた重み付き平均を用いるため、O2フィードバック制御による安定したストイキ点が得られていない状態であっても、重み付き平均ストイキ空燃比を算出できるという利点がある。 As described above, in the second embodiment, it is possible to calculate the heat generation amount from the stoichiometric air-fuel ratio by using the relationship between the heat generation amount and the stoichiometric air-fuel ratio, and a new one for calculating the heat generation amount. Means can be provided. Accordingly, it is possible to eliminate the calculation of the amount of heat generation using the in-cylinder pressure sensor 15 itself. In the present embodiment, since a weighted average weighted by oxygen concentration is used instead of a simple average of the output of the A / F sensor 17, a stable stoichiometric point by O 2 feedback control is not obtained. However, there is an advantage that the weighted average stoichiometric air-fuel ratio can be calculated.

次に、第3実施形態について説明する。上述した第2実施形態ではストイキ空燃比に基づいて低位発熱量を算出したが、第3実施形態は当該処理に係る部分(ステップS110
〜S160)と同様の処理を利用し、更に、ストイキ空燃比に基づいて算出した低位発熱量の値(低位発熱量比RQ1)と、筒内圧に基づいて算出した低位発熱量の値(低位発熱量比RQ2)との比較に基づいて、筒内圧検出系を診断するものである。ここにいう筒内圧検出系とは、筒内圧センサ15および同センサからECU20への伝送経路、ならびに筒内圧検出値を用いて燃料性状を判定する一連の処理を行うプログラム及び各種基準値を含む。第3実施形態の機械的構成は第1実施形態と同様であるため、その詳細の説明は省略する。
Next, a third embodiment will be described. In the second embodiment described above, the lower heating value is calculated based on the stoichiometric air-fuel ratio. However, in the third embodiment, the portion related to the processing (step S110)
To S160), the lower heating value calculated based on the stoichiometric air-fuel ratio (lower heating value ratio R Q1 ), and the lower heating value calculated based on the in-cylinder pressure (lower). The in-cylinder pressure detection system is diagnosed based on the comparison with the calorific value ratio R Q2 ). The in-cylinder pressure detection system here includes an in-cylinder pressure sensor 15, a transmission path from the sensor to the ECU 20, a program for performing a series of processes for determining fuel properties using the in-cylinder pressure detection value, and various reference values. Since the mechanical configuration of the third embodiment is the same as that of the first embodiment, detailed description thereof is omitted.

第3実施形態の制御について説明する。図6において、まずECU20は、ストイキ空燃比に基づいて低位発熱量の値(低位発熱量比RQ1)を算出する(S210)。このステップS210における処理は、上記ステップS110〜S160と同様である。 The control of the third embodiment will be described. In FIG. 6, first, the ECU 20 calculates a value of the lower heating value (lower heating value ratio R Q1 ) based on the stoichiometric air-fuel ratio (S210). The processing in step S210 is the same as that in steps S110 to S160.

次にECU20は、筒内圧に基づいて低位発熱量の値(低位発熱量比RQ2)を算出する
(S220)。このステップS220における処理は、上記第1実施形態におけるステップS10〜S30のものと同様である。
Next, the ECU 20 calculates a value of the lower heating value (lower heating value ratio R Q2 ) based on the in-cylinder pressure (S220). The process in step S220 is the same as that in steps S10 to S30 in the first embodiment.

そしてECU20は、筒内圧に基づいて算出した低位発熱量比RQ2が、ストイキ空燃比に基づいて算出した低位発熱量比RQ1と所定範囲内で一致するかを判定し(S230)、肯定の場合には、筒内圧検出系が正常と判定して、所定の筒内圧検出系異常フラグをリセットする(S240)。またステップS230で否定の場合には、筒内圧検出系が異常と判定して、筒内圧検出系異常フラグをセットする(S250)。この筒内圧検出系異常フラグは、筒内圧検出値または同検出値を用いて行われた演算結果を用いる他の制御において参照され、同フラグがセットされている場合には筒内圧検出値または同検出値を用いて行われた演算結果を用いる制御自体が中止されるか、あるいは筒内圧検出値または同検出値を用いて行われた演算結果として所定の代用値が用いられる。 Then, the ECU 20 determines whether or not the lower heating value ratio R Q2 calculated based on the in-cylinder pressure matches the lower heating value ratio R Q1 calculated based on the stoichiometric air-fuel ratio within a predetermined range (S230). In this case, it is determined that the in-cylinder pressure detection system is normal, and a predetermined in-cylinder pressure detection system abnormality flag is reset (S240). If the determination in step S230 is negative, it is determined that the in-cylinder pressure detection system is abnormal, and an in-cylinder pressure detection system abnormality flag is set (S250). The in-cylinder pressure detection system abnormality flag is referred to in other control using the in-cylinder pressure detection value or the calculation result performed using the detection value. When the flag is set, the in-cylinder pressure detection value or the same value is detected. The control itself using the calculation result performed using the detection value is stopped, or a predetermined substitute value is used as the calculation result performed using the in-cylinder pressure detection value or the detection value.

以上のとおり、第3実施形態では、筒内圧検出系を診断することが可能になる。   As described above, in the third embodiment, the in-cylinder pressure detection system can be diagnosed.

なお、第3実施形態では筒内圧検出系を診断する構成について説明したが、このような構成に代えて、低位発熱量比RQ2が低位発熱量比RQ1と所定範囲内で一致しない場合に、空燃比検出系を異常と判定してもよい。ここにいう空燃比検出系とは、A/Fセンサ17および同センサからECU20への伝送経路、ならびに空燃比検出値を用いてストイキ空燃比を算出する一連の処理を行うプログラム及び各種基準値を含む。 In the third embodiment, the configuration for diagnosing the in-cylinder pressure detection system has been described. However, instead of such a configuration, when the lower heating value ratio R Q2 does not match the lower heating value ratio R Q1 within a predetermined range. The air-fuel ratio detection system may be determined to be abnormal. The air-fuel ratio detection system mentioned here includes a program for performing a series of processes for calculating the stoichiometric air-fuel ratio using the A / F sensor 17 and the transmission path from the sensor to the ECU 20, the air-fuel ratio detection value, and various reference values. Including.

また、低位発熱量比RQ2が低位発熱量比RQ1と所定範囲内で一致しない場合に、筒内圧検出系と空燃比検出系の両者を異常と判定することにより、両者の診断を行う構成としてもよい。さらに、低位発熱量比RQ2が低位発熱量比RQ1と所定範囲内で一致しない場合に、他の診断手段(例えば、燃料の屈折率から粘度および比重を判定する性状センサを燃料系に配置し、この性状センサの検出値から算出した低位発熱量と筒内圧から算出した低位発熱量との比較により筒内圧検出系を診断する処理プログラム)による筒内圧検出系および/または空燃比検出系の診断結果を参照することにより、筒内圧検出系と空燃比検出系とのいずれが異常であるかを多数決論理で判定する構成としてもよい。 Further, when the lower heating value ratio R Q2 does not match the lower heating value ratio R Q1 within a predetermined range, both the in-cylinder pressure detection system and the air-fuel ratio detection system are determined to be abnormal, thereby diagnosing both. It is good. Further, when the lower heating value ratio R Q2 does not match the lower heating value ratio R Q1 within a predetermined range, other diagnostic means (for example, a property sensor for determining the viscosity and specific gravity from the refractive index of the fuel is arranged in the fuel system) In addition, the in-cylinder pressure detection system and / or the air-fuel ratio detection system in accordance with the processing program for diagnosing the in-cylinder pressure detection system by comparing the lower calorific value calculated from the detection value of the property sensor and the lower calorific value calculated from the in-cylinder pressure By referring to the diagnosis result, it may be configured that the majority logic determines which of the in-cylinder pressure detection system and the air-fuel ratio detection system is abnormal.

なお、上記実施形態では、本発明をある程度の具体性をもって説明したが、本発明については、特許請求の範囲に記載された発明の精神や範囲から離れることなしに、さまざまな改変や変更が可能であることは理解されなければならない。すなわち、本発明は特許請求の範囲およびその等価物の範囲および趣旨に含まれる修正および変更を包含するものである。例えば、A/Fセンサ17の検出値からストイキ空燃比を求める手法は、上記各実施形態に示したもの以外にも各種の手法を採用することができる。また、上記各実施形態ではガソリン・アルコール混合燃料を使用可能な車両の内燃機関に本発明を適用した例について説明したが、本発明は単一種類の燃料を含む他の種類の燃料を用いる内燃機関、あるいは各種内燃機関を駆動源として含むハイブリッド車についても適用可能である。   In the above embodiment, the present invention has been described with a certain degree of concreteness, but various modifications and changes can be made to the present invention without departing from the spirit and scope of the invention described in the claims. It must be understood that. That is, the present invention includes modifications and changes that fall within the scope and spirit of the appended claims and their equivalents. For example, as a method for obtaining the stoichiometric air-fuel ratio from the detection value of the A / F sensor 17, various methods other than those shown in the above embodiments can be adopted. In each of the above embodiments, an example in which the present invention is applied to an internal combustion engine of a vehicle that can use a gasoline / alcohol mixed fuel has been described. The present invention is also applicable to an engine or a hybrid vehicle including various internal combustion engines as a drive source.

1 内燃機関3 燃焼室14 クランク角センサ15 筒内圧センサ16 吸気圧センサ20 ECUVe 排気弁Vi 吸気弁VM 動弁機構 1 Internal combustion engine 3 Combustion chamber 14 Crank angle sensor 15 In-cylinder pressure sensor 16 Intake pressure sensor 20 ECU Ve Exhaust valve Vi Intake valve VM Valve mechanism

Claims (1)

排ガスの空燃比検出値に基づいてストイキ空燃比を算出する手段を有する内燃機関の制御装置において、
低位発熱量とストイキ空燃比との既知の関係に基づいて、前記算出されたストイキ空燃比から燃料の低位発熱量を算出する手段と、
筒内圧検出値に基づいて低位発熱量を算出する手段と、
ストイキ空燃比に基づいて算出した低位発熱量の値と、筒内圧検出値に基づいて算出した低位発熱量の値との比較に基づいて、前記筒内圧検出値に基づいて低位発熱量を算出する手段および前記排ガスの空燃比検出値に基づいてストイキ空燃比を算出する手段のうち少なくとも一方を診断する診断手段と、
を更に備えたことを特徴とする内燃機関の制御装置。
In a control device for an internal combustion engine having means for calculating a stoichiometric air-fuel ratio based on an air-fuel ratio detection value of exhaust gas,
Means for calculating a lower heating value of the fuel from the calculated stoichiometric air-fuel ratio based on a known relationship between the lower heating value and the stoichiometric air-fuel ratio ;
Means for calculating a lower heating value based on the in-cylinder pressure detection value;
Based on the comparison between the lower heating value calculated based on the stoichiometric air-fuel ratio and the lower heating value calculated based on the in-cylinder pressure detection value, the lower heating value is calculated based on the detected in-cylinder pressure. Diagnosing means for diagnosing at least one of the means and the means for calculating the stoichiometric air-fuel ratio based on the detected air-fuel ratio of the exhaust gas
A control device for an internal combustion engine, further comprising:
JP2011193176A 2011-09-05 2011-09-05 Control device for internal combustion engine Expired - Fee Related JP5177269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011193176A JP5177269B2 (en) 2011-09-05 2011-09-05 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011193176A JP5177269B2 (en) 2011-09-05 2011-09-05 Control device for internal combustion engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007120949A Division JP2008274883A (en) 2007-05-01 2007-05-01 Control device of internal combustion engine

Publications (2)

Publication Number Publication Date
JP2012007620A JP2012007620A (en) 2012-01-12
JP5177269B2 true JP5177269B2 (en) 2013-04-03

Family

ID=45538412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011193176A Expired - Fee Related JP5177269B2 (en) 2011-09-05 2011-09-05 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5177269B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2832977A1 (en) * 2013-07-30 2015-02-04 Hitachi, Ltd. Method and apparatus for estimating an alcohol concentration in an alcohol fuel mixture supplied to an internal combustion engine
JP6280711B2 (en) * 2013-09-04 2018-02-14 大阪瓦斯株式会社 Engine, heat pump device, and method of estimating calorific value of fuel gas

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750099B2 (en) * 1987-09-29 1995-05-31 三菱電機株式会社 Fuel property detection device for internal combustion engine
JPH041438A (en) * 1990-04-17 1992-01-06 Hitachi Ltd Controller of internal combustion engine
JP2907594B2 (en) * 1991-08-07 1999-06-21 株式会社日立製作所 Engine control system
JP2887056B2 (en) * 1993-11-12 1999-04-26 三菱電機株式会社 Fuel property determination device for internal combustion engine
JP3544228B2 (en) * 1994-09-20 2004-07-21 株式会社日立ユニシアオートモティブ Self-diagnosis device for in-cylinder pressure sensor and fail-safe device for control based on in-cylinder pressure in internal combustion engine
JP3191691B2 (en) * 1996-08-13 2001-07-23 トヨタ自動車株式会社 Control device for gas-fueled internal combustion engine
JP2000170581A (en) * 1998-12-09 2000-06-20 Hitachi Ltd Control device for caseous fuel engine
JP2003073676A (en) * 2001-09-05 2003-03-12 Oputei:Kk Method for calculating theoretical air/fuel ratio of gasoline and method for producing gasoline with desired theoretical air/fuel ratio
JP4158747B2 (en) * 2004-06-28 2008-10-01 日産自動車株式会社 Ignition timing control device for internal combustion engine
JP2007077945A (en) * 2005-09-16 2007-03-29 Honda Motor Co Ltd Control device for internal combustion engine

Also Published As

Publication number Publication date
JP2012007620A (en) 2012-01-12

Similar Documents

Publication Publication Date Title
JP2008274883A (en) Control device of internal combustion engine
JP4784868B2 (en) Control device for internal combustion engine
JP4096835B2 (en) Control device for internal combustion engine and misfire determination method for internal combustion engine
JP4803100B2 (en) Control device for internal combustion engine
JP4281445B2 (en) Control device for internal combustion engine and control method for internal combustion engine
US10087867B2 (en) Control device for internal combustion engine
JP4362826B2 (en) Internal combustion engine control device and air-fuel ratio calculation method
JP4022885B2 (en) Control device for internal combustion engine and method for calculating intake air amount of internal combustion engine
JP5910651B2 (en) Air-fuel ratio detection device for internal combustion engine
JP5177269B2 (en) Control device for internal combustion engine
JP4277279B2 (en) Control device and control method for internal combustion engine
US9903293B2 (en) Diagnostic system for internal combustion engine
JP2008025406A (en) Controller of internal combustion engine
JP4274055B2 (en) Control device and control method for internal combustion engine
JP2008309006A (en) Control device for internal combustion engine
JP2006312919A (en) Engine controller
JP2010071107A (en) Control device for internal combustion engine
JP4207870B2 (en) Internal combustion engine control device and misfire determination method
JP2005351150A (en) Crank angle measuring device and measuring method
JP5126104B2 (en) Deterioration judgment device for intake pressure sensor
JP2006097588A (en) Control device for internal combustion engine and method for calculating air fuel ratio
JP2016109102A (en) Subsidiary chamber engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121224

R151 Written notification of patent or utility model registration

Ref document number: 5177269

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160118

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees