JP5151103B2 - Voice authentication apparatus, voice authentication method and program - Google Patents

Voice authentication apparatus, voice authentication method and program Download PDF

Info

Publication number
JP5151103B2
JP5151103B2 JP2006249161A JP2006249161A JP5151103B2 JP 5151103 B2 JP5151103 B2 JP 5151103B2 JP 2006249161 A JP2006249161 A JP 2006249161A JP 2006249161 A JP2006249161 A JP 2006249161A JP 5151103 B2 JP5151103 B2 JP 5151103B2
Authority
JP
Japan
Prior art keywords
authentication
voice
noise
threshold value
registered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006249161A
Other languages
Japanese (ja)
Other versions
JP2008070597A (en
Inventor
靖雄 吉岡
毅彦 川▲原▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2006249161A priority Critical patent/JP5151103B2/en
Publication of JP2008070597A publication Critical patent/JP2008070597A/en
Application granted granted Critical
Publication of JP5151103B2 publication Critical patent/JP5151103B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、音声を利用した認証の技術に関する。   The present invention relates to an authentication technique using voice.

正当な利用者から事前に採取された音声(以下「登録音声」という)の特徴量と認証の対象者(以下「被認証者」という)から採取された音声(以下「認証音声」という)の特徴量との距離を閾値と比較することで被認証者の正当性を判別する音声認証の技術が従来から提案されている。また、特許文献1には、認証の目的や必要な精度に応じて閾値を変更する構成が開示されている。
特開2003−248661号公報
Features of the voice (hereinafter referred to as “registered voice”) collected in advance from a legitimate user and the voice (hereinafter referred to as “authentication voice”) collected from the subject of authentication (hereinafter referred to as “authenticated person”) Conventionally, a voice authentication technique has been proposed in which the authenticity of the person to be authenticated is determined by comparing the distance to the feature amount with a threshold value. Patent Document 1 discloses a configuration in which a threshold value is changed according to the purpose of authentication and required accuracy.
JP 2003-248661 A

図8は、音声認証の評価に使用されるグラフである。同図におけるFRR(False Rejection Rate)は、被認証者が正当な利用者であるにも拘わらず認証で正当性が否定される確率(本人拒否率)を意味し、FAR(False Acceptance Rate)は、被認証者が正当な利用者ではないにも拘わらず認証で正当性が肯定される確率(他人受入率)を意味する。同図から理解されるように、認証に使用される閾値を図8の数値aに設定すれば、不当な被認証者が拒否される確度を充分に高水準に維持しながら、正当な利用者が拒否される可能性は充分に低減される。   FIG. 8 is a graph used for evaluation of voice authentication. The FRR (False Rejection Rate) in the figure means the probability (authentication rejection rate) that the authenticity is denied even if the person to be authenticated is a valid user, and the FAR (False Acceptance Rate) is This means the probability (acceptance rate of others) that the authenticity is affirmed even though the person to be authenticated is not a valid user. As can be seen from the figure, if the threshold value used for authentication is set to the numerical value a in FIG. 8, a legitimate user is maintained while maintaining a sufficiently high probability that an unauthorized person will be rejected. The possibility of being rejected is sufficiently reduced.

しかし、認証音声の特性は認証時に周囲で発生している音声(以下「認証時雑音」という)に影響されるから、認証音声と登録音声との距離は認証時雑音に応じて変動する。したがって、FRRやFARの各々の曲線は、認証時雑音の特性に応じて横軸(距離)に沿って平行に移動する。そして、例えば図8に実線で図示されたFARが破線L1に変動した場合には、他人の正当性が誤認される確率が上昇(すなわち認証の精度が低下)し、図8のFRRが破線L2に変動した場合には正当な利用者の認証が拒絶される確率が上昇(すなわち利便性が低下)する。すなわち、従来の音声認証においては、認証時雑音の特性に応じて認証の精度と利便性との均衡が崩れるという問題がある。   However, since the characteristics of the authentication voice are affected by the voice generated around at the time of authentication (hereinafter referred to as “noise at the time of authentication”), the distance between the authentication voice and the registered voice varies according to the noise at the time of authentication. Therefore, each curve of FRR and FAR moves in parallel along the horizontal axis (distance) according to the characteristics of the noise during authentication. For example, when the FAR indicated by the solid line in FIG. 8 changes to the broken line L1, the probability that the validity of another person is misidentified increases (that is, the accuracy of authentication decreases), and the FRR in FIG. In the case of the fluctuation, the probability that legitimate user authentication is rejected increases (that is, convenience decreases). That is, in the conventional voice authentication, there is a problem that the balance between the accuracy and convenience of authentication is lost in accordance with the characteristics of noise during authentication.

特許文献1のように認証の目的や必要な精度に応じて閾値を変更しても以上の問題は何ら解決しない。また、携帯電話機に代表される可搬型の電子機器で認証を実行する場合には電子機器の使用される環境に応じて認証時雑音の特性が多様に変化するから、以上の問題は特に深刻化する。このような事情に鑑みて、本発明は、認証時雑音に拘わらず認証の精度と利便性との均衡を維持するという課題の解決を目的としている。   Even if the threshold value is changed according to the purpose of authentication and the required accuracy as in Patent Document 1, the above problems are not solved at all. In addition, when authentication is performed with a portable electronic device typified by a mobile phone, the characteristics of noise during authentication vary depending on the environment in which the electronic device is used. To do. In view of such circumstances, an object of the present invention is to solve the problem of maintaining a balance between the accuracy and convenience of authentication regardless of noise during authentication.

以上の課題を解決するために、本発明のひとつの形態に係る音声認証装置は、認証時に被認証者の周囲に発生する認証時雑音の特性を分析する特性分析手段と、予め登録された登録音声の登録時の登録時雑音と登録音声との音量比(例えば図4の音量比EN_SN)に対して、特性分析手段が分析した認証時雑音の特性に応じた関係を満たすように、閾値を設定する閾値設定手段と登録音声と被認証者から採取された認証音声との特徴量の類否を示す指標値と閾値設定手段が設定した閾値との比較の結果に応じて当該被認証者を認証する認証手段とを具備する。以上の態様によれば、認証時雑音に応じて閾値が可変に設定されるから、認証時雑音に拘わらず認証の精度と利便性との均衡を維持することが可能である。 In order to solve the above-described problems, a voice authentication device according to one aspect of the present invention includes a characteristic analysis unit that analyzes characteristics of noise at the time of authentication that occurs around a person to be authenticated at the time of authentication, and a registration that is registered in advance. The threshold value is set so as to satisfy the relationship according to the characteristic of the noise during authentication analyzed by the characteristic analysis means with respect to the volume ratio between the noise during registration and the volume of the registered voice (eg, the volume ratio EN_SN in FIG. 4). Depending on the result of comparison between the threshold value setting means to be set and the index value indicating the similarity between the registered voice and the authentication voice collected from the authenticated person and the threshold value set by the threshold setting means And authentication means for authenticating. According to the above aspect, since the threshold value is variably set according to the noise at the time of authentication, it is possible to maintain the balance between the accuracy and convenience of authentication regardless of the noise at the time of authentication.

本発明の好適な態様において閾値設定手段は、登録時雑音と登録音声との音量比に対し、認証時雑音に応じた直線または曲線に沿って閾値が変化するように、閾値を設定する。さらに詳述すると、閾値設定手段は、登録時雑音と登録音声との音量比に対し、認証時雑音および認証音声の音量比(例えば音量比V_SN)と登録時雑音および登録音声の音量比との相違(例えば図4のDIF_SN1〜DIF_SN3)に応じた直線または曲線に沿って閾値が変化するように、閾値を設定する。以上の態様によれば、登録時雑音や認証時雑音の特性に拘わらず簡易な処理によって認証の精度と利便性との均衡を維持することが可能となる。なお、閾値設定手段は、登録時雑音および登録音声の音量比と認証時雑音(より詳細には認証時雑音および認証音声の音量比と登録時雑音および登録音声の音量比との相違)と閾値との関係を定義するテーブルに基づいて閾値を設定してもよいし、これらの数値の関係を表現する数式を利用した演算によって閾値を算定してもよい。テーブルや数式の内容は、例えば利用者からの指示に応じて適宜に変更され得る。 In a preferred aspect of the present invention , the threshold value setting means sets the threshold value so that the threshold value changes along a straight line or a curve corresponding to the noise at the time of authentication with respect to the volume ratio between the noise during registration and the registered voice. More specifically, the threshold value setting means compares the volume ratio between the noise during registration and the volume of the registered voice (for example, the volume ratio V_SN) and the volume ratio between the noise during registration and the volume of the registered voice. The threshold value is set so that the threshold value changes along a straight line or a curve according to the difference (for example, DIF_SN1 to DIF_SN3 in FIG. 4). According to the above aspect, it is possible to maintain the balance between the accuracy and convenience of authentication by a simple process regardless of the characteristics of registration noise and authentication noise. The threshold setting means includes a registration noise and a volume ratio of the registered voice and an authentication noise (more specifically, a difference between the authentication noise and the volume ratio of the authentication voice and the registration noise and the volume ratio of the registration voice) and the threshold value. The threshold value may be set based on a table that defines the relationship between the threshold value and the threshold value may be calculated by calculation using a mathematical expression that expresses the relationship between these numerical values. The contents of the table and the mathematical formula can be appropriately changed according to an instruction from the user, for example.

本発明のひとつの態様において、閾値設定手段は、認証時雑音と登録時雑音との相違(例えば図6の相関値NOISE_DIF)に応じて閾値を補正する補正手段(例えば図1の補正部54)を含む。以上の態様によれば、実際の認証時における認証時雑音と登録時雑音との相関が、登録時雑音および登録音声の音量比と閾値との関係を決定するときに想定した認証時雑音と登録時雑音との相関とは相違する場合であっても、補正手段が閾値を補正することで認証の精度と利便性との均衡を有効に維持することが可能となる。なお、補正手段は、認証時雑音および登録時雑音の相違と補正値(例えば図6の補正値A1)との関係を定義するテーブルに基づいて閾値に対する補正値を設定してもよいし、この関係を表現する数式を利用した演算によって閾値を算定してもよい。テーブルや数式の内容は、例えば利用者からの指示に応じて適宜に変更され得る。   In one aspect of the present invention, the threshold value setting means corrects the threshold value according to the difference between the noise at the time of authentication and the noise at the time of registration (for example, the correlation value NOISE_DIF in FIG. 6) (for example, the correction unit 54 in FIG. 1). including. According to the above aspect, the correlation between the noise at the time of authentication and the noise at the time of registration at the time of actual authentication is the noise at the time of authentication assumed when determining the relationship between the noise at the time of registration and the volume ratio of the registered voice and the threshold value. Even when the correlation with the time noise is different, the balance between the accuracy of authentication and convenience can be effectively maintained by the correction means correcting the threshold value. The correction means may set the correction value for the threshold based on a table that defines the relationship between the difference between the noise at authentication and the noise at registration and the correction value (for example, the correction value A1 in FIG. 6). The threshold value may be calculated by a calculation using a mathematical expression expressing the relationship. The contents of the table and the mathematical formula can be appropriately changed according to an instruction from the user, for example.

本発明のひとつの態様において、閾値設定手段は、認証音声または登録音声の時間長(例えば図7の発声長EN_SPEEECH_LENや発声長V_SPEECH_LEN)に応じて閾値を補正する補正手段(例えば図1の補正部54)を含む。以上の態様によれば、実際の登録音声や認証音声の発声長が、登録時雑音および登録音声の音量比と閾値との関係を決定するときに想定した発声長とは相違する場合であっても、補正手段が閾値を補正することで認証の精度と利便性との均衡を有効に維持することが可能となる。なお、補正手段は、認証音声または登録音声の時間長と補正値(例えば図7の補正値A2)との関係を定義するテーブルに基づいて閾値に対する補正値を設定してもよいし、この関係を表現する数式を利用した演算によって閾値を算定してもよい。テーブルや数式の内容は、例えば利用者からの指示に応じて適宜に変更され得る。   In one aspect of the present invention, the threshold setting means includes a correction means (for example, a correction unit in FIG. 1) that corrects the threshold according to the time length of the authentication voice or the registered voice (for example, the utterance length EN_SPEEECH_LEN and the utterance length V_SPEECH_LEN in FIG. 7). 54). According to the above aspect, the actual utterance length of the registered voice or authentication voice is different from the utterance length assumed when determining the relationship between the noise during registration and the volume ratio of the registered voice and the threshold value. In addition, it is possible to effectively maintain the balance between the accuracy of authentication and convenience by correcting the threshold value by the correcting means. The correction means may set a correction value for the threshold based on a table that defines the relationship between the time length of the authentication voice or the registered voice and the correction value (for example, the correction value A2 in FIG. 7). The threshold value may be calculated by a calculation using a mathematical expression that expresses. The contents of the table and the mathematical formula can be appropriately changed according to an instruction from the user, for example.

なお、閾値に対する補正値を決定するための基準となる変数は、認証時雑音と登録時雑音との相違や認証音声または登録音声の時間長に限定されない。例えば、登録音声や認証音声のうち有声音と無声音との時間長の比率に応じて閾値を補正する補正手段、または、登録音声や認証音声の音節の個数に応じて閾値を補正する補正手段を、閾値設定手段に含ませてもよい。何れの態様においても、以上と同様に、テーブルや数式に応じて補正値を決定する構成や、テーブルや数式の内容が可変とされた構成が採用される。   Note that the variable serving as a reference for determining the correction value for the threshold value is not limited to the difference between the noise at the time of authentication and the noise at the time of registration, or the time length of the authentication voice or the registered voice. For example, correction means for correcting the threshold according to the ratio of the time length of voiced sound and unvoiced sound among the registered voice and authentication voice, or correction means for correcting the threshold according to the number of syllables of the registration voice and authentication voice , It may be included in the threshold setting means. In any aspect, similarly to the above, a configuration in which the correction value is determined according to the table or the mathematical formula or a configuration in which the contents of the table or the mathematical formula are variable is adopted.

本発明は、以上の各態様に係る音声認証装置の動作方法(音声認証方法)としても特定される。本発明のひとつの態様に係る音声認証方法は、被認証者の周囲に認証時に発生する認証時雑音の特性を分析し、予め登録された登録音声の登録時の登録時雑音と登録音声との音量比に対して、分析した認証時雑音の特性に応じた関係を満たすように、閾値を設定し登録音声と被認証者から採取された認証音声との特徴量の類否を示す指標値と設定した閾値との比較の結果に応じて当該被認証者を認証する。以上の方法によれば、本発明に係る音声認証装置と同様の作用および効果が奏される。 The present invention is also specified as an operation method (voice authentication method) of the voice authentication device according to each of the above aspects. A voice authentication method according to one aspect of the present invention analyzes a characteristic of noise at the time of authentication that occurs around an authenticated person at the time of authentication . relative volume ratio, so as to satisfy the analysis relationship in accordance with the characteristics of the authentication noise, set the threshold value, the index value indicating the feature value classes whether the collected authentication voice from the registration voice and the person to be authenticated And the person to be authenticated is authenticated according to the result of comparison with the set threshold value. According to the above method, the same operation and effect as the voice authentication device according to the present invention are exhibited.

以上の各態様に係る音声認証装置は、各処理に専用されるDSP(Digital Signal Processor)などのハードウェア(電子回路)によって実現されるほか、CPU(Central Processing Unit)などの汎用の演算処理装置とプログラムとの協働によっても実現される。本発明に係るプログラムは、被認証者の周囲に認証時に発生する認証時雑音の特性を分析する特性分析処理と、予め登録された登録音声の登録時の登録時雑音と登録音声との音量比に対して、特性分析処理で分析した認証時雑音の特性に応じた関係を満たすように、閾値を設定する閾値設定処理と登録音声と被認証者から採取された認証音声との特徴量の類否を示す指標値と閾値設定処理で設定した閾値との比較の結果に応じて当該被認証者を認証する認証処理とを実行させる内容である。以上のプログラムによっても、以上の各態様に係る音声認証装置と同様の作用および効果が奏される。なお、本発明のプログラムは、CD−ROMなど可搬型の記録媒体に格納された形態で利用者に提供されてコンピュータにインストールされるほか、ネットワークを介した配信の形態でサーバ装置から提供されてコンピュータにインストールされる。 The voice authentication device according to each aspect described above is realized by hardware (electronic circuit) such as a DSP (Digital Signal Processor) dedicated to each process, and a general-purpose arithmetic processing device such as a CPU (Central Processing Unit). This is also realized through collaboration with programs. The program according to the present invention includes a characteristic analysis process for analyzing a characteristic of noise at the time of authentication generated around a person to be authenticated, and a volume ratio between the noise at the time of registration of the registered voice registered in advance and the volume of the registered voice. respect, so as to satisfy the relationship according to the characteristics of the authentication noise analyzed by the characteristics analysis process, and threshold setting process for setting a threshold value, feature quantity of the authentication voice taken from the registration voice and the person to be authenticated This is the content for executing the authentication process for authenticating the person to be authenticated in accordance with the comparison result between the index value indicating similarity and the threshold value set in the threshold value setting process. Even with the above program, the same operations and effects as the voice authentication device according to each of the above aspects can be obtained. The program of the present invention is provided to a user in a form stored in a portable recording medium such as a CD-ROM and installed in a computer, or provided from a server device in a form of distribution via a network. Installed on the computer.

<A:音声認証装置の構成>
図1は、本発明のひとつの形態に係る音声認証装置の構成を示すブロック図である。音声認証装置100は、被認証者が特定の言葉を発声したときの音声に基づいて被認証者の正当性(予め登録された正規の利用者であるか否か)を判定する装置であり、携帯電話機や情報処理装置など各種の電子機器に搭載される。図1に図示された特性分析部20や認証部40や閾値設定部50は、例えばCPUなどの演算処理装置がプログラムを実行することで実現されてもよいし、DSPなどのハードウェア回路によって実現されてもよい。
<A: Configuration of voice authentication device>
FIG. 1 is a block diagram showing a configuration of a voice authentication apparatus according to one embodiment of the present invention. The voice authentication device 100 is a device that determines the legitimacy of the person to be authenticated (whether or not the user is an authorized user registered in advance) based on the voice when the person to be authenticated speaks a specific word. It is installed in various electronic devices such as mobile phones and information processing devices. The characteristic analysis unit 20, the authentication unit 40, and the threshold setting unit 50 illustrated in FIG. 1 may be realized by an arithmetic processing device such as a CPU executing a program, or may be realized by a hardware circuit such as a DSP. May be.

音声認証装置100の動作は初期登録と認証とに区分される。初期登録は、正当な利用者が発声した音声(登録音声)を認証に先立って登録する動作である。認証は、登録音声と被認証者が発声した音声(認証音声)との照合によって被認証者の正当性を認証する動作である。操作部10は、利用者によって操作される複数の操作子を含む。利用者は、操作部10を適宜に操作することで初期登録や認証の開始を音声認証装置100に指示することができる。   The operation of the voice authentication device 100 is divided into initial registration and authentication. The initial registration is an operation for registering voice (registered voice) uttered by a legitimate user prior to authentication. The authentication is an operation for authenticating the authenticity of the person to be authenticated by comparing the registered voice and the voice uttered by the person to be authenticated (authentication voice). The operation unit 10 includes a plurality of operators that are operated by a user. The user can instruct the voice authentication apparatus 100 to start initial registration or authentication by appropriately operating the operation unit 10.

図1の入力部15および特性分析部20は、認証時には、認証音声や音声認証装置100の周囲の雑音(認証時雑音)の特性を検出するために使用され、初期登録時には、同図に破線Rで図示されるように、登録音声や音声認証装置100の周囲の雑音(登録時雑音)の特性を検出するために使用される。   The input unit 15 and the characteristic analysis unit 20 in FIG. 1 are used for detecting characteristics of authentication voice and noise around the voice authentication device 100 (authentication noise) at the time of authentication. As shown by R, it is used to detect the characteristics of registered voice and noise around the voice authentication device 100 (registration noise).

入力部15は、周囲の音響(音声および雑音)に応じた音響信号Sを生成する収音機器である。図2に例示されるように、音響信号Sは、非発声区間P1と発声区間P2とに区分される。発声区間P2は、初期登録に際して正当な利用者が登録音声を発声した区間や認証に際して被認証者が認証音声を発声した区間である。一方、非発声区間P1は、登録音声や認証音声が発声されない区間である。音声認証装置100が設置された環境には各種の雑音が発生し得るから、非発声区間P1においても完全な無音(音響信号Sの振幅がゼロ)ではなく、図2に示すように登録時雑音や認証時雑音が入力部15によって収音される。   The input unit 15 is a sound collection device that generates an acoustic signal S corresponding to surrounding sounds (voice and noise). As illustrated in FIG. 2, the acoustic signal S is divided into a non-vocal segment P1 and a vocal segment P2. The utterance section P2 is a section in which a legitimate user utters a registered voice during initial registration or a section in which an authenticated person utters an authentication voice during authentication. On the other hand, the non-voicing section P1 is a section in which the registered voice and the authentication voice are not uttered. Since various kinds of noise can be generated in the environment where the voice authentication device 100 is installed, it is not completely silent (the amplitude of the acoustic signal S is zero) even in the non-speech section P1, and as shown in FIG. Or noise during authentication is picked up by the input unit 15.

入力部15が生成した音響信号Sは図1の特性分析部20に供給される。特性分析部20は、入力部15が採取した音響を分析する手段であり、区間検出部22と切換部23と雑音分析部25と音声分析部26と特徴分析部28とを含む。区間検出部22は、非発声区間P1と発声区間P2とを区分する。例えば、区間検出部22は、音響信号Sの振幅が不連続に増減した時点を非発声区間P1と発声区間P2との境界として検出する。なお、非発声区間P1と発声区間P2との区分には公知の様々な技術が採用される。   The acoustic signal S generated by the input unit 15 is supplied to the characteristic analysis unit 20 of FIG. The characteristic analysis unit 20 is a means for analyzing the sound collected by the input unit 15, and includes a section detection unit 22, a switching unit 23, a noise analysis unit 25, a voice analysis unit 26, and a feature analysis unit 28. The section detection unit 22 classifies the non-speech section P1 and the utterance section P2. For example, the section detection unit 22 detects a time point when the amplitude of the acoustic signal S increases or decreases discontinuously as a boundary between the non-speaking section P1 and the speaking section P2. It should be noted that various known techniques are employed for the division between the non-speaking section P1 and the speaking section P2.

切換部23は、入力部15が生成した音響信号Sの供給先を選択的に切換える手段である。音響信号Sのうち区間検出部22が非発声区間P1と認定した区間は雑音分析部25に供給され、区間検出部22が発声区間P2と認定した区間は音声分析部26と特徴分析部28とに供給される。   The switching unit 23 is means for selectively switching the supply destination of the acoustic signal S generated by the input unit 15. Of the acoustic signal S, the section that the section detection unit 22 recognizes as the non-voice section P1 is supplied to the noise analysis section 25, and the section that the section detection section 22 recognizes as the utterance section P2 includes the voice analysis section 26 and the feature analysis section 28. To be supplied.

雑音分析部25は、非発声区間P1の音響信号Sに基づいて登録時雑音や認証時雑音の特性を分析する手段である。本形態の雑音分析部25は、非発声区間P1内において周期的に音響信号Sの特性を分析する。そして、操作部10に対する操作に応じて初期登録または認証の開始が指示されると、雑音分析部25は、図2に示すように、当該指示の時点から所定の時間長だけ手前の時点までの区間(以下「検出区間」という)Pにおける分析の結果を登録時雑音や認証時雑音の特性として確定する。なお、以下の説明において、登録時雑音や登録音声に関連する事項は「EN(enroll)」を含む符号で指示され、認証時雑音や認証音声に関連する事項は「V(verify)」を含む符号で指示される。   The noise analysis unit 25 is a means for analyzing the characteristics of the noise during registration and the noise during authentication based on the acoustic signal S in the non-voice section P1. The noise analysis unit 25 of the present embodiment periodically analyzes the characteristics of the acoustic signal S within the non-vocal period P1. When the initial registration or the start of authentication is instructed according to the operation on the operation unit 10, the noise analysis unit 25, as shown in FIG. 2, from the time of the instruction to a time point before the predetermined time length. The result of analysis in the section (hereinafter referred to as “detection section”) P is determined as the characteristics of noise during registration and noise during authentication. In the following explanation, items related to registration noise and registration voice are indicated by a code including “EN (enroll)”, and items related to authentication noise and authentication voice include “V (verify)”. Indicated by the sign.

図1に示すように、本形態の雑音分析部25は、初期登録時には、登録時雑音について周波数特性EN_NOISE_FCと雑音レベルEN_NOISE_LEVELとを算定し、認証時には、認証時雑音について周波数特性V_NOISE_FCと雑音レベルV_NOISE_LEVELとを算定する。雑音レベル(EN_NOISE_LEVEL,V_NOISE_LEVEL)は、非発声区間P1内の検出区間Pにおける音響信号Sのうち所定の周波数帯域に属する成分の強度(音圧)の平均値である。周波数特性(EN_NOISE_FC,V_NOISE_FC)は、検出区間Pの音響信号Sを複数の周波数帯域に区分したときの各成分の強度を示す情報である。したがって、雑音分析部25は、例えば各々の通過帯域が相違する複数のバンドパスフィルタ(フィルタバンク)を含む。ただし、雑音分析部25は、FFT(Fast Fourier Transform)処理などの周波数分析によって周波数スペクトルを周波数特性(EN_NOISE_FC,V_NOISE_FC)として算定する手段であってもよい。   As shown in FIG. 1, the noise analysis unit 25 according to the present embodiment calculates a frequency characteristic EN_NOISE_FC and a noise level EN_NOISE_LEVEL with respect to noise at the time of initial registration, and a frequency characteristic V_NOISE_FC and a noise level V_NOISE_LEVEL with respect to noise at the time of authentication. And calculate. The noise level (EN_NOISE_LEVEL, V_NOISE_LEVEL) is an average value of the intensities (sound pressures) of components belonging to a predetermined frequency band in the acoustic signal S in the detection section P in the non-voice section P1. The frequency characteristics (EN_NOISE_FC, V_NOISE_FC) are information indicating the intensity of each component when the acoustic signal S in the detection section P is divided into a plurality of frequency bands. Therefore, the noise analysis unit 25 includes, for example, a plurality of band pass filters (filter banks) having different pass bands. However, the noise analysis unit 25 may be a means for calculating the frequency spectrum as frequency characteristics (EN_NOISE_FC, V_NOISE_FC) by frequency analysis such as FFT (Fast Fourier Transform) processing.

音声分析部26は、発声区間P2の音響信号Sに基づいて登録音声や認証音声の特性を分析する。本形態の音声分析部26は、初期登録時には、登録音声について発声レベルEN_SPEECH_LEVELと発声長EN_SPEECH_LENとを算定し、認証時には、認証音声について発声レベルV_SPEECH_LEVELと発声長V_SPEECH_LENとを算定する。発声レベル(EN_SPEECH_LEVEL,V_SPEECH_LEVEL)は、発声区間P2内の音響信号Sのうち所定の周波数帯域に属する成分の強度の平均値である。発声長(EN_SPEECH_LEN,V_SPEECH_LEN)は発声区間P2の時間長(すなわち発声が継続される時間長)を示す。音響信号Sの振幅が急峻に増大する時点(発声区間P2の始点)から音響信号Sの振幅が急峻に減少する時点(発声区間P2の終点)までの時間長が発声長(EN_SPEECH_LEN,V_SPEECH_LEN)として検出される。   The voice analysis unit 26 analyzes the characteristics of the registered voice and the authentication voice based on the acoustic signal S in the utterance section P2. The voice analysis unit 26 according to the present embodiment calculates the utterance level EN_SPEECH_LEVEL and the utterance length EN_SPEECH_LEN for the registered voice during initial registration, and calculates the utterance level V_SPEECH_LEVEL and the utterance length V_SPEECH_LEN for the authentication voice during authentication. The utterance level (EN_SPEECH_LEVEL, V_SPEECH_LEVEL) is an average value of the intensities of components belonging to a predetermined frequency band in the acoustic signal S in the utterance section P2. The utterance length (EN_SPEECH_LEN, V_SPEECH_LEN) indicates the time length of the utterance section P2 (that is, the time length during which the utterance is continued). The length of time from when the amplitude of the acoustic signal S sharply increases (start point of the utterance interval P2) to when the amplitude of the acoustic signal S decreases sharply (end point of the utterance interval P2) is the utterance length (EN_SPEECH_LEN, V_SPEECH_LEN) Detected.

特徴分析部28は、登録音声や認証音声の特徴を分析する手段である。本形態の特徴分析部28は、初期登録時には登録音声の特徴量EN_DATAを算定し、認証時には認証音声の特徴量V_DATAを算定する。特徴量(EN_DATA,V_DATA)は、発声区間P2内の音響信号Sから算定されるケプストラムの時系列的なベクトル列である。したがって、周波数分析(例えばFFT処理)を含む各種の演算を実行する手段が特徴分析部28として好適に採用される。   The feature analysis unit 28 is a means for analyzing the features of registered speech and authentication speech. The feature analysis unit 28 of the present embodiment calculates the feature amount EN_DATA of the registered voice at the time of initial registration, and calculates the feature amount V_DATA of the authentication voice at the time of authentication. The feature amount (EN_DATA, V_DATA) is a time-series vector sequence of cepstrum calculated from the acoustic signal S in the utterance section P2. Therefore, means for executing various operations including frequency analysis (for example, FFT processing) is preferably employed as the feature analysis unit 28.

記憶装置32は、認証に使用される各種の情報を記憶する手段である。例えば図1に図示されるように、記憶装置32は、特性分析部20が登録音声および登録時雑音について特定した各種の情報を認証用の辞書として記憶する。すなわち、雑音分析部25が特定した周波数特性EN_NOISE_FCおよび雑音レベルEN_NOISE_LEVELと、音声分析部26が特定した発声レベルEN_SPEECH_LEVELおよび発声長EN_SPEECH_LENと、特徴分析部28が特定した特徴量EN_DATAとが、認証に先立って記憶装置32に格納される。記憶装置32は、音声認証装置100に固定的に設置された機器であっても、音声認証装置100に対して自在に着脱される可搬型の機器(メモリ)であってもよい。   The storage device 32 is a means for storing various information used for authentication. For example, as illustrated in FIG. 1, the storage device 32 stores, as an authentication dictionary, various types of information specified by the characteristic analysis unit 20 regarding registered speech and registration noise. That is, the frequency characteristic EN_NOISE_FC and noise level EN_NOISE_LEVEL specified by the noise analyzer 25, the utterance level EN_SPEECH_LEVEL and utterance length EN_SPEECH_LEN specified by the speech analyzer 26, and the feature quantity EN_DATA specified by the feature analyzer 28 are prior to authentication. And stored in the storage device 32. The storage device 32 may be a device fixedly installed in the voice authentication device 100 or a portable device (memory) that can be freely attached to and detached from the voice authentication device 100.

認証部40は、登録音声と認証音声との照合によって被認証者の正当性を認証する手段であり、距離算定部42と判定部44とを含む。距離算定部42は、特徴分析部28が認証音声について生成した特徴量V_DATAと記憶装置32に記憶された特徴量EN_DATAとの距離DISTを算定する。距離DISTの算定には、特徴量EN_DATAおよびV_DATAの各々のベクトル列について相互間の正規化距離を算定するDPマッチングなど各種のパターンマッチング技術が利用される。距離DISTが小さいほど認証音声は登録音声に類似する(すなわち被認証者が正当な利用者である可能性が高い)。   The authentication unit 40 is means for authenticating the authenticity of the person to be authenticated by comparing the registered voice and the authentication voice, and includes a distance calculation unit 42 and a determination unit 44. The distance calculation unit 42 calculates a distance DIST between the feature value V_DATA generated by the feature analysis unit 28 for the authentication speech and the feature value EN_DATA stored in the storage device 32. For the calculation of the distance DIST, various pattern matching techniques such as DP matching for calculating a normalized distance between the vector strings of the feature quantities EN_DATA and V_DATA are used. As the distance DIST is smaller, the authentication voice is more similar to the registration voice (that is, the person to be authenticated is more likely to be a valid user).

判定部44は、距離算定部42が算定した距離DISTを閾値THと比較することで被認証者の正当性を判定する。すなわち、判定部44は、距離DISTが閾値THを下回る場合(すなわち登録音声と認証音声とが類似する場合)には被認証者の正当性を肯定し、距離DISTが閾値THを上回る場合(すなわち登録音声と認証音声とが乖離する場合)には被認証者の正当性を否定する。判定部44による判定の結果は出力部60から出力される。例えば、認証の結果を画像として出力する表示機器や認証の結果を音声で出力する放音装置が出力部60として好適に採用される。   The determination unit 44 determines the authenticity of the person to be authenticated by comparing the distance DIST calculated by the distance calculation unit 42 with a threshold value TH. That is, the determination unit 44 affirms the authenticity of the person to be authenticated when the distance DIST is less than the threshold TH (that is, when the registered voice and the authentication voice are similar), and when the distance DIST exceeds the threshold TH (that is, If the registration voice and the authentication voice are different, the authenticity of the person to be authenticated is denied. The result of determination by the determination unit 44 is output from the output unit 60. For example, a display device that outputs the authentication result as an image or a sound emitting device that outputs the authentication result by sound is suitably employed as the output unit 60.

閾値設定部50は、判定部44による判定に使用される閾値THを認証時雑音や登録時雑音に応じて可変に設定する手段であり、初期値設定部52と補正部54および56とを含む。初期値設定部52は、特性分析部20が初期登録時および認証時に生成した情報に基づいて閾値THの初期値を設定する。初期値設定部52が設定した閾値THは、補正部54および56による補正を経て判定部44に出力される。補正部54は、認証時雑音と登録時雑音との相違に応じて閾値THを補正する。補正部56は、初期登録時の発声長EN_SPEECH_LENに応じて閾値THを補正する。図1の記憶部35は、閾値THの設定や補正のために閾値設定部50が使用するテーブルを格納する。なお、記憶装置32内の特定の記憶領域を記憶部35としてもよい。   The threshold value setting unit 50 is a means for variably setting the threshold value TH used for determination by the determination unit 44 in accordance with noise at the time of authentication or noise at the time of registration, and includes an initial value setting unit 52 and correction units 54 and 56. . The initial value setting unit 52 sets an initial value of the threshold value TH based on information generated by the characteristic analysis unit 20 at the time of initial registration and authentication. The threshold value TH set by the initial value setting unit 52 is output to the determination unit 44 through correction by the correction units 54 and 56. The correcting unit 54 corrects the threshold value TH according to the difference between the authentication noise and the registration noise. The correcting unit 56 corrects the threshold value TH according to the utterance length EN_SPEECH_LEN at the time of initial registration. The storage unit 35 in FIG. 1 stores a table used by the threshold setting unit 50 for setting and correcting the threshold TH. A specific storage area in the storage device 32 may be used as the storage unit 35.

<B:音声認証装置の動作>
次に、認証時において閾値設定部50が閾値THを設定する処理を中心に音声認証装置100の動作を説明する。閾値設定部50は、認証の必要な時期が到来するたびに図3の処理を実行する。認証が必要な時機としては、例えば、音声認証装置100を搭載した電子機器が電源の投入を契機として動作を開始する時機や、電子機器が所定の動作(例えば特定の情報に対するアクセス)を開始する時機がある。認証が開始すると、被認証者は、操作部10を操作することで発声の開始を指示したうえで入力部15に対して所定の言葉を発声する。雑音分析部25は、操作部10への操作の時機を終点とする検出区間Pの音響信号Sから周波数特性V_NOISE_FCおよび雑音レベルV_NOISE_LEVELを特定するとともに、これに続く発声区間P2の音響信号Sから発声レベルV_SPEECH_LEVELおよび発声長V_SPEECH_LENを特定する。
<B: Operation of voice authentication device>
Next, the operation of the voice authentication device 100 will be described focusing on the process in which the threshold setting unit 50 sets the threshold TH during authentication. The threshold value setting unit 50 executes the process of FIG. 3 every time the time when authentication is necessary comes. For example, when an electronic device equipped with the voice authentication device 100 starts operating when power is turned on, or when the electronic device starts a predetermined operation (for example, access to specific information). There is a time. When authentication starts, the person to be authenticated instructs the start of utterance by operating the operation unit 10 and then utters a predetermined word to the input unit 15. The noise analysis unit 25 specifies the frequency characteristic V_NOISE_FC and the noise level V_NOISE_LEVEL from the acoustic signal S in the detection section P whose end point is the operation timing of the operation unit 10, and utters from the acoustic signal S in the subsequent speech section P2. Specify level V_SPEECH_LEVEL and utterance length V_SPEECH_LEN.

図3に示すように、閾値設定部50は、登録時雑音と登録音声との音量比EN_SNを算定する(ステップS10)。音量比EN_SNは、記憶装置32に格納された発声レベルEN_SPEECH_LEVELと雑音レベルEN_NOISE_LEVELとの相対比であり、例えば以下の式(1)で算定される。
EN_SN=log(EN_SPEECH_LEVEL/EN_NOISE_LEVEL) ……(1)
As shown in FIG. 3, the threshold setting unit 50 calculates a volume ratio EN_SN between the noise at the time of registration and the registered voice (step S10). The volume ratio EN_SN is a relative ratio between the utterance level EN_SPEECH_LEVEL and the noise level EN_NOISE_LEVEL stored in the storage device 32, and is calculated by the following equation (1), for example.
EN_SN = log (EN_SPEECH_LEVEL / EN_NOISE_LEVEL) ...... (1)

次に、閾値設定部50は、認証時雑音と認証音声との音量比V_SNを算定する(ステップS11)。音量比V_SNは、雑音分析部25から供給される雑音レベルV_NOISE_LEVELと音声分析部26から供給される発声レベルV_SPEECH_LEVELとの相対比であり、音量比EN_SNと同様に以下の式(2)で算定される。
V_SN=log(V_SPEECH_LEVEL/V_NOISE_LEVEL) ……(2)
Next, the threshold setting unit 50 calculates the volume ratio V_SN between the noise at the time of authentication and the authentication voice (step S11). The volume ratio V_SN is a relative ratio between the noise level V_NOISE_LEVEL supplied from the noise analysis unit 25 and the utterance level V_SPEECH_LEVEL supplied from the voice analysis unit 26, and is calculated by the following equation (2) in the same manner as the volume ratio EN_SN. The
V_SN = log (V_SPEECH_LEVEL / V_NOISE_LEVEL) ...... (2)

次のステップS12において、閾値設定部50は、ステップS10で算定した初期登録時の音量比EN_SNとステップS11で算定した今回の認証時の音量比V_SNとの差分値(以下「音量比差分値」という)DIF_SNを算定する(DIF_SN=V_SN−EN_SN)。さらに、閾値設定部50は、登録時雑音と認証時雑音との特性の相関(例えばスペクトル形状の類否)を示す相関値NOISE_DIFを算定する(ステップS13)。相関値NOISE_DIFは、例えば以下の式(3)で算定される。

Figure 0005151103
式(3)における数値EN_MAG(i)は、複数の周波数帯域のうち変数iで指定される周波数帯域における登録時雑音の強度であり、数値EN_MAG(i)から減算される数値EN_MAG_AVEは、変数iで指定される周波数帯域における登録時雑音の強度の平均値である。同様に、数値V_MAG(i)は、変数iで指定される周波数帯域における認証時雑音の強度であり、数値V_MAG_AVEは当該周波数帯域における認証時雑音の強度の平均値である。したがって、登録時雑音と認証時雑音とが完全に合致する場合には相関値NOISE_DIFが「1」となり、両雑音の特性の相違が拡大するほど相関値NOISE_DIFは減少していく(−1≦NOISE_DIF≦1)。 In the next step S12, the threshold setting unit 50 determines the difference between the initial registration volume ratio EN_SN calculated in step S10 and the current authentication volume ratio V_SN calculated in step S11 (hereinafter referred to as “volume ratio difference value”). DIF_SN is calculated (DIF_SN = V_SN−EN_SN). Further, the threshold setting unit 50 calculates a correlation value NOISE_DIF indicating a correlation between characteristics of registration noise and authentication noise (for example, similarity of spectrum shape) (step S13). The correlation value NOISE_DIF is calculated by the following equation (3), for example.
Figure 0005151103
The numerical value EN_MAG (i) in Expression (3) is the noise intensity at the time of registration in the frequency band specified by the variable i among the plurality of frequency bands, and the numerical value EN_MAG_AVE subtracted from the numerical value EN_MAG (i) is the variable i This is the average value of the noise intensity during registration in the frequency band specified by. Similarly, the numerical value V_MAG (i) is the intensity of authentication noise in the frequency band specified by the variable i, and the numerical value V_MAG_AVE is an average value of the intensity of authentication noise in the frequency band. Therefore, when the registration noise and the authentication noise completely match, the correlation value NOISE_DIF becomes “1”, and the correlation value NOISE_DIF decreases as the difference between the characteristics of both noises increases (−1 ≦ NOISE_DIF). ≦ 1).

次に、初期値設定部52は、ステップS10で算定した音量比EN_SNとステップS12で算定した音量比差分値DIF_SNとに基づいて閾値THの初期値を特定する(ステップS14)。本願の発明者による試験によれば、認証の精度を高水準に維持するための閾値THは、音量比EN_SNと音量比差分値DIF_SNとに対して所定の関係を満たすという知見を得るに至った。すなわち、図4に示すように、音量比EN_SNの数値(登録時雑音と登録音声との音量比)を変化させた各ケースにおいて認証の精度が所期の条件を満たす(例えばFRRやFARが所期値を下回る)ように閾値THを設定し、横軸を音量比EN_SNとしたうえで各音量比EN_SNに対応した閾値THを縦軸にプロットして統計的に処理すると、各点は音量比差分値DIF_SNに応じた直線上に分布する傾向がある。図4には3種類の音量比差分値DIF_SN(DIF_SN1〜DIF_SN3)に対応した3本の直線が図示されている。いま、音量比EN_SNが数値SNaで音量比差分値DIF_SNが数値DIF_SN1であるとすれば、閾値THを数値THaに選定することで所期の精度による認証が実現される。同図に示すように、音量比EN_SNや音量比差分値DIF_SNが増加するほど、認証を所期の精度に維持するための閾値THは増加する。   Next, the initial value setting unit 52 specifies an initial value of the threshold TH based on the volume ratio EN_SN calculated in step S10 and the volume ratio difference value DIF_SN calculated in step S12 (step S14). According to the test by the inventors of the present application, the threshold TH for maintaining the authentication accuracy at a high level has led to the finding that the sound volume ratio EN_SN and the sound volume ratio difference value DIF_SN satisfy a predetermined relationship. . That is, as shown in FIG. 4, in each case where the numerical value of the volume ratio EN_SN (volume ratio of noise during registration and registered voice) is changed, the accuracy of authentication satisfies the desired condition (for example, FRR or FAR is When the threshold TH is set to be lower than the initial value, the horizontal axis is the volume ratio EN_SN, and the threshold TH corresponding to each volume ratio EN_SN is plotted on the vertical axis and statistically processed, each point is the volume ratio. There is a tendency to be distributed on a straight line according to the difference value DIF_SN. FIG. 4 shows three straight lines corresponding to three types of volume ratio difference values DIF_SN (DIF_SN1 to DIF_SN3). Now, assuming that the volume ratio EN_SN is the numerical value SNa and the volume ratio difference value DIF_SN is the numerical value DIF_SN1, the authentication with the expected accuracy is realized by selecting the threshold value TH as the numerical value THa. As shown in the figure, as the volume ratio EN_SN and the volume ratio difference value DIF_SN increase, the threshold value TH for maintaining the authentication with the expected accuracy increases.

以上の知見に基づいて、初期値設定部52は、ステップS10で算定された音量比EN_SNに対し、音量比差分値DIF_SNに応じた直線の関係を満たすように、閾値THの初期値を設定する。例えば図4に図示されるように、音量比EN_SNが数値SNaであるとすると、ステップS12で数値DIF_SN1が算定された場合には数値THaが閾値THの初期値として設定され、ステップS12で数値DIF_SN2が算定された場合には数値THbが閾値THの初期値として設定される。また、音量比差分値DIF_SNが予め設定された数値に該当しない場合には補間によって閾値THの初期値が算定される。例えば、数値DIF_SN1と数値DIF_SN2との中間の数値DIF_SNがステップS12で算定された場合には、数値DIF_SN1に対応した数値THaと数値DIF_SN2に対応した数値THbとの中間値THcが閾値THの初期値として算定される。   Based on the above knowledge, the initial value setting unit 52 sets the initial value of the threshold value TH so as to satisfy the linear relationship corresponding to the volume ratio difference value DIF_SN with respect to the volume ratio EN_SN calculated in step S10. . For example, as shown in FIG. 4, when the volume ratio EN_SN is a numerical value SNa, when the numerical value DIF_SN1 is calculated in step S12, the numerical value THa is set as an initial value of the threshold value TH, and in step S12, the numerical value DIF_SN2 Is calculated, the numerical value THb is set as the initial value of the threshold value TH. When the volume ratio difference value DIF_SN does not correspond to a preset numerical value, the initial value of the threshold value TH is calculated by interpolation. For example, when the intermediate value DIF_SN between the numerical value DIF_SN1 and the numerical value DIF_SN2 is calculated in step S12, the intermediate value THc between the numerical value THa corresponding to the numerical value DIF_SN1 and the numerical value THb corresponding to the numerical value DIF_SN2 is the initial value of the threshold value TH. Calculated as

本形態の初期値設定部52は、以上の条件を満たすように作成されたテーブルに基づいて音量比EN_SNおよび音量比差分値DIF_SNから閾値THの初期値を算定する。図5は、ステップS14にて使用されるテーブルの内容を示す概念図である。同図に示すように、別個の音量比差分値DIF_SN(DIF_SN1,DIF_SN2,DIF_SN3,……)に対応した複数のテーブルが記憶部35に格納される。ひとつの音量比差分値DIF_SNに対応したテーブルには、音量比EN_SNと閾値THとが当該音量比差分値DIF_SNに対応した直線的な関係を満たすように、音量比EN_SNの各数値と閾値THの初期値とが対応づけられている。ステップS14において、初期値設定部52は、ステップS12で算定された音量比差分値DIF_SNに対応したひとつのテーブルを探索し、ここで探索したテーブルのうちステップS10で算定された音量比EN_SNに対応づけられた閾値THを初期値として設定する。ステップS12で算定された音量比差分値DIF_SNに対応したテーブルが存在しない場合、初期値設定部52は、当該音量比差分値DIF_SNの前後の音量比差分値DIF_SNに対応する各テーブルから音量比EN_SNに応じた閾値THを算定し、各閾値THの補間によって初期値を算定する。   The initial value setting unit 52 of the present embodiment calculates the initial value of the threshold value TH from the volume ratio EN_SN and the volume ratio difference value DIF_SN based on a table created so as to satisfy the above conditions. FIG. 5 is a conceptual diagram showing the contents of the table used in step S14. As shown in the figure, a plurality of tables corresponding to different volume ratio difference values DIF_SN (DIF_SN1, DIF_SN2, DIF_SN3,...) Are stored in the storage unit 35. In the table corresponding to one volume ratio difference value DIF_SN, each numerical value of the volume ratio EN_SN and the threshold value TH are set so that the volume ratio EN_SN and the threshold value TH satisfy a linear relationship corresponding to the volume ratio difference value DIF_SN. The initial value is associated. In step S14, the initial value setting unit 52 searches for one table corresponding to the volume ratio difference value DIF_SN calculated in step S12, and corresponds to the volume ratio EN_SN calculated in step S10 among the searched tables. The attached threshold value TH is set as an initial value. When there is no table corresponding to the volume ratio difference value DIF_SN calculated in step S12, the initial value setting unit 52 determines the volume ratio EN_SN from each table corresponding to the volume ratio difference value DIF_SN before and after the volume ratio difference value DIF_SN. The threshold value TH corresponding to is calculated, and the initial value is calculated by interpolation of each threshold value TH.

ところで、図4に例示した音量比EN_SN,音量比差分値DIF_SNと閾値THとの関係は、例えば登録時雑音と認証時雑音との特性が同等であることを前提として決定される。しかし、実際には登録時雑音と認証時雑音との特性は相違する場合が多い。そこで、補正部54は、ステップS14で算定された閾値THの初期値を登録時雑音と認証時雑音との相関値NOISE_DIFに応じて補正する(ステップS15)。さらに詳述すると、補正部54は、相関値NOISE_DIFに応じた補正値A1を閾値THの初期値に加算することで補正後の閾値THを算定する。   Incidentally, the relationship among the volume ratio EN_SN, the volume ratio difference value DIF_SN, and the threshold value TH illustrated in FIG. 4 is determined on the assumption that, for example, the characteristics of the noise during registration and the noise during authentication are equivalent. In practice, however, the characteristics of registration noise and authentication noise are often different. Therefore, the correction unit 54 corrects the initial value of the threshold value TH calculated in step S14 according to the correlation value NOISE_DIF between the noise during registration and the noise during authentication (step S15). More specifically, the correction unit 54 calculates the corrected threshold value TH by adding the correction value A1 corresponding to the correlation value NOISE_DIF to the initial value of the threshold value TH.

図6は、相関値NOISE_DIFと補正値A1との関係を示すグラフである。式(3)で算定される相関値NOISE_DIFは、登録時雑音と認証時雑音との相関に応じて「−1」から「1」までの範囲内で変動し、双方の雑音の特性が完全に合致する場合には「1」となる。登録時雑音と認証時雑音との関係が図4の関係の決定時と同等である(本形態では双方の雑音が合致する)ならば、相関値NOISE_DIFに応じて閾値THを補正する必要はない。一方、登録時雑音と認証時雑音との関係が図4の関係の決定時から乖離するほど閾値THを大きく補正すべきである。したがって、補正部54は、図6に示すように、相関値NOISE_DIFが「1」である場合に補正値A1をゼロに設定する(補正なし)とともに、相関値NOISE_DIFが「1」よりも小さいほど大きい数値となるように補正値A1を設定する。さらに詳述すると、相関値NOISE_DIFと補正値A1とが対応づけられたテーブルが記憶部35に格納され、補正部54はこのテーブルに基づいて補正値A1を決定する。   FIG. 6 is a graph showing the relationship between the correlation value NOISE_DIF and the correction value A1. The correlation value NOISE_DIF calculated by Equation (3) varies within the range from "-1" to "1" depending on the correlation between the registration noise and the authentication noise, and the characteristics of both noises are completely If they match, it is “1”. If the relationship between the noise at the time of registration and the noise at the time of authentication is equivalent to that at the time of determining the relationship in FIG. 4 (both noises match in this embodiment), it is not necessary to correct the threshold value TH according to the correlation value NOISE_DIF. . On the other hand, the threshold value TH should be corrected so that the relationship between the registration noise and the authentication noise deviates from the determination of the relationship shown in FIG. Therefore, as shown in FIG. 6, when the correlation value NOISE_DIF is “1”, the correction unit 54 sets the correction value A1 to zero (no correction), and as the correlation value NOISE_DIF is smaller than “1”. The correction value A1 is set so as to be a large numerical value. More specifically, a table in which the correlation value NOISE_DIF and the correction value A1 are associated with each other is stored in the storage unit 35, and the correction unit 54 determines the correction value A1 based on this table.

また、図4に示した音量比EN_SNおよび音量比差分値DIF_SNと閾値THとの関係は、例えば登録音声が所定の時間長L0にわたって継続する場合を想定して決定される。しかし、実際の初期登録における登録音声の発声長EN_SPEECH_LENは区々である。そこで、補正部56は、ステップS15における補正後の閾値THを発声長EN_SPEECH_LENに応じて補正する(ステップS16)。さらに詳述すると、補正部56は、発声長EN_SPEECH_LENに応じた補正値A2を閾値THに加算することで補正後の閾値THを算定する。補正部56による補正後の閾値THは、判定部44における距離DISTとの比較に使用される。   Further, the relationship between the volume ratio EN_SN and the volume ratio difference value DIF_SN and the threshold value TH shown in FIG. 4 is determined on the assumption that, for example, the registered voice continues for a predetermined time length L0. However, the utterance length EN_SPEECH_LEN of the registered voice in actual initial registration varies. Therefore, the correcting unit 56 corrects the threshold value TH corrected in step S15 according to the utterance length EN_SPEECH_LEN (step S16). More specifically, the correction unit 56 calculates the corrected threshold value TH by adding the correction value A2 corresponding to the utterance length EN_SPEECH_LEN to the threshold value TH. The threshold value TH after correction by the correction unit 56 is used for comparison with the distance DIST in the determination unit 44.

図7は、発声長EN_SPEECH_LENと補正値A2との関係を示すグラフである。発声長EN_SPEECH_LENが図4の関係の決定時における時間長L0と同等であるならば、発声長EN_SPEECH_LENに応じて閾値THを補正する必要はない。したがって、記憶装置32に格納された発声長EN_SPEECH_LENが時間長L0と同等である場合、補正部56は補正値A2をゼロに設定する。また、発声長EN_SPEECH_LENが長いほど登録音声の発声が安定するから、特徴量EN_DATAは正当な利用者本来の基本的な声質を忠実に反映したものとなって距離DISTの正確性が向上する。したがって、他人の正当性が認証される可能性を低減するという観点から閾値THを低下させても、正当な利用者を否定する可能性が不当に上昇することはない。そこで、補正部56は、発声長EN_SPEECH_LENが時間長L0よりも長い場合には当該発声長EN_SPEECH_LENに応じた負数を補正値A2として選定し、発声長EN_SPEECH_LENが時間長L0よりも短い場合には当該発声長EN_SPEECH_LENに応じた正数を補正値A2として選定する。さらに詳述すると、発声長EN_SPEECH_LENと補正値A2とが対応づけられたテーブルが記憶部35に格納され、補正部56はこのテーブルに基づいて補正値A2を決定する。   FIG. 7 is a graph showing the relationship between the utterance length EN_SPEECH_LEN and the correction value A2. If the utterance length EN_SPEECH_LEN is equivalent to the time length L0 at the time of determining the relationship in FIG. 4, it is not necessary to correct the threshold value TH according to the utterance length EN_SPEECH_LEN. Therefore, when the utterance length EN_SPEECH_LEN stored in the storage device 32 is equal to the time length L0, the correction unit 56 sets the correction value A2 to zero. Further, since the utterance of the registered voice becomes more stable as the utterance length EN_SPEECH_LEN is longer, the feature quantity EN_DATA accurately reflects the basic voice quality of the legitimate user, and the accuracy of the distance DIST is improved. Therefore, even if the threshold value TH is lowered from the viewpoint of reducing the possibility of authenticating the validity of another person, the possibility of denying a legitimate user does not unreasonably increase. Therefore, the correction unit 56 selects a negative value corresponding to the utterance length EN_SPEECH_LEN as the correction value A2 when the utterance length EN_SPEECH_LEN is longer than the time length L0, and when the utterance length EN_SPEECH_LEN is shorter than the time length L0, A positive number corresponding to the utterance length EN_SPEECH_LEN is selected as the correction value A2. More specifically, a table in which the utterance length EN_SPEECH_LEN is associated with the correction value A2 is stored in the storage unit 35, and the correction unit 56 determines the correction value A2 based on this table.

以上に説明したように、本形態においては、認証時雑音と認証音声との関係(V_SN)や登録時雑音と登録音声との関係(EN_SN)に応じて閾値THが可変に設定されるから、認証時雑音や登録時雑音の特性に拘わらず認証を所望の精度に維持することが可能である。すなわち、認証時雑音や登録時雑音に影響されることなく、FRRを低下させて利便性の向上を図りながら、FARの低下によって認証の精度を高水準に維持することが可能となる。   As described above, in this embodiment, the threshold value TH is variably set according to the relationship between the authentication noise and the authentication speech (V_SN) and the relationship between the registration noise and the registration speech (EN_SN). Regardless of the characteristics of noise at the time of authentication and noise at the time of registration, authentication can be maintained at a desired accuracy. In other words, the accuracy of authentication can be maintained at a high level by reducing the FAR, while reducing the FRR and improving the convenience without being affected by the noise at the time of authentication or noise at the time of registration.

本形態においては特に、音量比EN_SNと好適な閾値THとが音量比差分値DIF_SNに応じた直線の関係を満たすという知見に基づいて閾値THが設定される。したがって、閾値THの設定に必要な変数の個数を充分に削減しながら最適な閾値THを高精度に特定できるという利点がある。さらに、相関値NOISE_DIFや発声長EN_SPEECH_LENに応じて閾値THが補正されるから、初期登録時や認証時における音声認証装置100の環境を忠実に反映した閾値THを認証に利用することが可能となる。   Particularly in the present embodiment, the threshold value TH is set based on the knowledge that the volume ratio EN_SN and the suitable threshold value TH satisfy a straight line relationship according to the volume ratio difference value DIF_SN. Therefore, there is an advantage that the optimum threshold value TH can be specified with high accuracy while sufficiently reducing the number of variables necessary for setting the threshold value TH. Furthermore, since the threshold value TH is corrected according to the correlation value NOISE_DIF and the utterance length EN_SPEECH_LEN, the threshold value TH that faithfully reflects the environment of the voice authentication device 100 at the time of initial registration or authentication can be used for authentication. .

<C:変形例>
以上の形態には様々な変形を加えることができる。具体的な変形の態様を例示すれば以下の通りである。なお、以下の各態様を適宜に組み合わせてもよい。
<C: Modification>
Various modifications can be made to the above embodiment. An example of a specific modification is as follows. In addition, you may combine each following aspect suitably.

(1)変形例1
以上の形態においては記憶部35に格納されたテーブルが利用される構成を例示したが、所定の演算式を利用した演算処理によって閾値THの初期値や補正値A1およびA2が選定される構成としてもよい。例えば、音量比差分値DIF_SNに応じた直線(音量比EN_SNと閾値THとの関係を定義する図4の各直線)を表わす複数の数式が記憶部35に格納され、初期値設定部52は、ステップS12で算定された音量比差分値DIF_SNに応じた数式にステップS10で算定された音量比EN_SNを代入することで閾値THを演算する。また、相関値NOISE_DIFと補正値A1との関係を表わす数式に基づいて補正部54が補正値A1を算定する構成や、発声長EN_SPEECH_LENと補正値A2との関係を表わす数式に基づいて補正部56が補正値A2を算定する構成も採用される。
(1) Modification 1
In the above embodiment, the configuration in which the table stored in the storage unit 35 is used is exemplified. However, the initial value of the threshold value TH and the correction values A1 and A2 are selected by a calculation process using a predetermined calculation formula. Also good. For example, a plurality of mathematical expressions representing straight lines corresponding to the sound volume ratio difference value DIF_SN (each straight line in FIG. 4 defining the relationship between the sound volume ratio EN_SN and the threshold value TH) are stored in the storage unit 35, and the initial value setting unit 52 is The threshold value TH is calculated by substituting the sound volume ratio EN_SN calculated in step S10 into the mathematical formula corresponding to the sound volume ratio difference value DIF_SN calculated in step S12. Further, a configuration in which the correction unit 54 calculates the correction value A1 based on a mathematical expression representing the relationship between the correlation value NOISE_DIF and the correction value A1, and a correction unit 56 based on the mathematical expression representing the relationship between the utterance length EN_SPEECH_LEN and the correction value A2. A configuration for calculating the correction value A2 is also adopted.

(2)変形例2
閾値THの補正の程度を決定する変数は相関値NOISE_DIFや発声長EN_SPEECH_LENに限定されない。例えば、発声長EN_SPEECH_LENに応じて閾値THを補正する構成に代えて、またはこの構成とともに、認証音声の発声長V_SPEECH_LENに応じて閾値THを補正する構成や、発声長EN_SPEECH_LENと発声長V_SPEECH_LENとの平均値に応じて閾値THを補正する構成を採用してもよい。例えば、発声長EN_SPEECH_LENと補正値A2との関係と同様に、発声長V_SPEECH_LENが長いほど閾値THが低下するように閾値THが補正される。
(2) Modification 2
The variable that determines the degree of correction of the threshold value TH is not limited to the correlation value NOISE_DIF or the utterance length EN_SPEECH_LEN. For example, instead of the configuration in which the threshold TH is corrected according to the utterance length EN_SPEECH_LEN, or in addition to this configuration, the configuration in which the threshold TH is corrected according to the utterance length V_SPEECH_LEN of the authentication speech, or the average of the utterance length EN_SPEECH_LEN and the utterance length V_SPEECH_LEN A configuration in which the threshold value TH is corrected according to the value may be employed. For example, similarly to the relationship between the utterance length EN_SPEECH_LEN and the correction value A2, the threshold value TH is corrected so that the threshold value TH decreases as the utterance length V_SPEECH_LEN increases.

また、以上に列挙した以外の変数に基づいて閾値THを補正してもよい。例えば、登録音声や認証音声(発声区間P2)のうち有声音と無声音との時間長の比率に応じて閾値THを補正してもよい。有声音の比率が高いほど特徴量(EN_DATA,V_DATA)は発声者の声質を忠実に反映した数値となるから距離DISTの正確性は向上する。したがって、閾値THを低下させてもFRRが不当に上昇することはない。そこで、登録音声や認証音声のうち有声音の比率が高いほど閾値THが低下するように閾値THを補正する構成が採用される。また、登録音声や認証音声において音節(モーラ)の個数が多いほど距離DISTの正確性は向上するから、例えば登録音声や認証音声の音節数が多いほど閾値THが低下するように閾値THを補正する構成としてもよい。   Further, the threshold value TH may be corrected based on variables other than those listed above. For example, the threshold value TH may be corrected according to the ratio of the time length of voiced sound to unvoiced sound in the registered voice or authentication voice (speech section P2). The higher the ratio of voiced sound, the more accurate the distance DIST improves because the feature values (EN_DATA, V_DATA) are values that faithfully reflect the voice quality of the speaker. Therefore, even if the threshold value TH is lowered, the FRR does not rise unduly. Therefore, a configuration is adopted in which the threshold value TH is corrected so that the threshold value TH decreases as the ratio of voiced sound in the registered voice and authentication voice increases. In addition, since the accuracy of the distance DIST improves as the number of syllables (mora) in the registered voice or authentication voice increases, for example, the threshold TH is corrected so that the threshold TH decreases as the number of syllables in the registered voice or authentication voice increases. It is good also as composition to do.

(3)変形例3
閾値THと各変数との関係が可変である構成も採用される。例えば、操作部10の操作に応じてテーブルを更新することで音量比EN_SNや音量比差分値DIF_SNと閾値THの初期値との関係が変更される構成としてもよい。同様に、各変数と閾値THに対する補正の程度との関係が可変である構成も採用される。例えば、相関値NOISE_DIFに対応した補正値A1や発声長EN_SPEECH_LENに応じた補正値A2は操作部10に対する操作に応じて変更され得る。これらの構成によれば、利用者の要求に応じた認証を実現することが可能となる。また、変形例1に例示したように数式の演算によって閾値THや補正値(A1,A2)が算定される構成においては、数式の内容(例えば各変数の係数)が操作部10に対する操作に応じて変更されるようにしてもよい。
(3) Modification 3
A configuration in which the relationship between the threshold value TH and each variable is variable is also employed. For example, the relationship between the volume ratio EN_SN or the volume ratio difference value DIF_SN and the initial value of the threshold TH may be changed by updating the table according to the operation of the operation unit 10. Similarly, a configuration in which the relationship between each variable and the degree of correction with respect to the threshold value TH is variable is also employed. For example, the correction value A1 corresponding to the correlation value NOISE_DIF and the correction value A2 corresponding to the utterance length EN_SPEECH_LEN can be changed according to the operation on the operation unit 10. According to these configurations, it is possible to realize authentication according to a user's request. Moreover, in the configuration in which the threshold value TH and the correction values (A1, A2) are calculated by calculating the mathematical formula as exemplified in the first modification, the content of the mathematical formula (for example, the coefficient of each variable) depends on the operation on the operation unit 10. May be changed.

(4)変形例4
以上の形態においては登録音声と認証音声との距離DISTが認証に利用される構成を例示したが、双方の音声の類似度の指標となる数値は距離DISTに限定されない。例えば、登録音声と認証音声とで特性が接近するほど数値が増加する性質の変数(指標値)に基づいて認証が実行される構成も採用される。この構成においては、各変数に対する閾値THの大小の関係が以上の形態とは逆転する。すなわち、例えば図4とは逆に、音量比EN_SNが増加するほど閾値THが減少するように閾値THが設定される。
(4) Modification 4
In the above embodiment, the configuration in which the distance DIST between the registered voice and the authentication voice is used for the authentication is exemplified, but the numerical value that is an index of the similarity between the two voices is not limited to the distance DIST. For example, a configuration in which authentication is performed based on a variable (index value) having a property that the numerical value increases as the characteristics of the registered voice and the authentication voice approach each other is also adopted. In this configuration, the magnitude relationship of the threshold value TH with respect to each variable is reversed from the above form. That is, for example, contrary to FIG. 4, the threshold value TH is set so that the threshold value TH decreases as the volume ratio EN_SN increases.

(5)変形例5
以上の形態においては音量比EN_SNに応じて閾値THが直線的に変化する場合を例示したが、音量比EN_SNと閾値THとの関係は適宜に変更される。例えば、音量比EN_SNと閾値THとが音量比差分値DIF_SNに応じた曲線の関係を満たすように(すなわち、音量比EN_SNに対し、音量比差分値DIF_SNに応じた曲線に沿って閾値THが変化するように)、音量比EN_SNと音量比差分値DIF_SNとに応じて閾値THが特定される構成も採用される。以上のように、本発明の好適な態様においては、音量比EN_SNと閾値THとが認証時雑音に応じて異なる関係(典型的には音量比差分値DIF_SNに応じた直線的または曲線的な関係)となるように閾値THが設定されれば足り、ひとつの音量比差分値DIF_SNに対応した音量比EN_SNと閾値THとの具体的な関係は、例えば各変数の関係を導出するための試験の結果やこの結果に対する統計的な処理の如何に応じて適宜に変更される。
(5) Modification 5
Although the case where the threshold value TH changes linearly according to the volume ratio EN_SN is illustrated in the above embodiment, the relationship between the volume ratio EN_SN and the threshold value TH is appropriately changed. For example, the threshold value TH changes so that the volume ratio EN_SN and the threshold value TH satisfy the relationship of the curve according to the volume ratio difference value DIF_SN (that is, the volume ratio EN_SN changes along the curve according to the volume ratio difference value DIF_SN). Thus, a configuration in which the threshold TH is specified according to the volume ratio EN_SN and the volume ratio difference value DIF_SN is also employed. As described above, in the preferred embodiment of the present invention, the relationship between the volume ratio EN_SN and the threshold value TH differs according to the noise at the time of authentication (typically a linear or curved relationship according to the volume ratio difference value DIF_SN). It is sufficient that the threshold value TH is set so as to be equal to), and the specific relationship between the volume ratio EN_SN corresponding to one volume ratio difference value DIF_SN and the threshold value TH is, for example, a test for deriving the relationship of each variable. It is appropriately changed depending on the result and statistical processing on the result.

(6)変形例6
以上の形態においては正当な利用者と他人との区別に音声認証装置100が利用される場合を例示したが、正当な利用者の発声に基づいて事前に登録されたパスワードと認証音声から特定されるパスワードとの合致を判定する音声パスワード認証にも以上の形態に係る音声認証装置100を利用することが可能である。
(6) Modification 6
In the above embodiment, the case where the voice authentication device 100 is used for distinguishing between a legitimate user and another person is exemplified. However, the voice authentication apparatus 100 is specified from a password and authentication voice registered in advance based on the voice of the legitimate user. The voice authentication apparatus 100 according to the above embodiment can also be used for voice password authentication for determining a match with a password.

本発明のひとつの形態に係る音声認証装置の構成を示すブロック図である。It is a block diagram which shows the structure of the voice authentication apparatus which concerns on one form of this invention. 入力部が生成する音響信号の波形図である。It is a wave form diagram of the acoustic signal which an input part generates. 閾値設定部による処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the process by a threshold value setting part. 音量比EN_SNおよび音量比差分値DIF_SNと閾値THとの関係を示すグラフである。It is a graph which shows the relationship between volume ratio EN_SN and volume ratio difference value DIF_SN, and threshold value TH. 閾値の決定に使用されるテーブルの内容を示す概念図である。It is a conceptual diagram which shows the content of the table used for determination of a threshold value. 相関値NOISE_DIFと補正値A1との関係を示すグラフである。It is a graph which shows the relationship between correlation value NOISE_DIF and correction value A1. 発声長EN_SPEECH_LENと補正値A2との関係を示すグラフである。It is a graph which shows the relationship between utterance length EN_SPEECH_LEN and correction value A2. 閾値とFARおよびFRRとの関係を示すグラフである。It is a graph which shows the relationship between a threshold value, FAR, and FRR.

符号の説明Explanation of symbols

100……音声認証装置、10……操作部、15……入力部、20……特性分析部、22……区間検出部、23……切換部、25……雑音分析部、26……音声分析部、28……特徴分析部、32……記憶装置、35……記憶部、40……認証部、42……距離算定部、44……判定部、50……閾値設定部、52……初期値設定部、54……補正部、56……補正部、60……出力部。 DESCRIPTION OF SYMBOLS 100 ... Voice authentication apparatus, 10 ... Operation part, 15 ... Input part, 20 ... Characteristic analysis part, 22 ... Section detection part, 23 ... Switching part, 25 ... Noise analysis part, 26 ... Voice Analysis unit 28... Feature analysis unit 32... Storage device 35... Storage unit 40... Authentication unit 42. ... initial value setting section, 54 ... correction section, 56 ... correction section, 60 ... output section.

Claims (7)

認証時に被認証者の周囲に発生する認証時雑音の特性を分析する特性分析手段と、
予め登録された登録音声の登録時の登録時雑音と前記登録音声との音量比に対して、前記特性分析手段が分析した認証時雑音の特性に応じた関係を満たすように、閾値を設定する閾値設定手段と、
前記登録音声と被認証者から採取された認証音声との特徴量の類否を示す指標値と前記閾値設定手段が設定した閾値との比較の結果に応じて当該被認証者を認証する認証手段と
を具備する音声認証装置。
A characteristic analysis means for analyzing characteristics of noise generated during authentication around the person to be authenticated;
A threshold is set so as to satisfy the relationship according to the characteristic of the noise during authentication analyzed by the characteristic analysis unit , with respect to the volume ratio between the registered noise and the registered voice at the time of registration of the registered voice registered in advance. Threshold setting means;
Authentication means for authenticating the person to be authenticated according to a result of comparison with the threshold value of the registration voice and the index value and the threshold value setting means for indicating the class not feature quantity of the authentication voice taken from a person to be authenticated is set A voice authentication device comprising:
前記閾値設定手段は、前記登録時雑音と前記登録音声との音量比に対し、前記認証時雑音に応じた直線または曲線に沿って閾値が変化するように、前記閾値を設定する
請求項1に記載の音声認証装置。
The threshold value setting means sets the threshold value so that the threshold value changes along a straight line or a curve corresponding to the authentication noise with respect to a volume ratio between the registration noise and the registered voice.
The voice authentication device according to claim 1 .
前記閾値設定手段は、前記登録時雑音と前記登録音声との音量比に対し、前記認証時雑音および前記認証音声の音量比と前記登録時雑音および前記登録音声の音量比との相違に応じた直線または曲線に沿って閾値が変化するように、前記閾値を設定する
請求項2に記載の音声認証装置。
The threshold setting means is configured to respond to a difference between a volume ratio between the noise during registration and the registered voice, and a volume ratio between the noise during authentication and the authentication voice and a volume ratio between the noise during registration and the registered voice. Set the threshold so that the threshold varies along a straight line or curve
The voice authentication device according to claim 2 .
前記閾値設定手段は、前記認証時雑音と前記登録時雑音との相違に応じて閾値を補正する補正手段を含む
請求項1から請求項3の何れかに記載の音声認証装置。
The threshold value setting unit includes a correction unit that corrects a threshold value according to a difference between the authentication noise and the registration noise.
The voice authentication device according to any one of claims 1 to 3 .
前記閾値設定手段は、前記認証音声または前記登録音声の時間長に応じて閾値を補正する補正手段を含む
請求項1から請求項4の何れかに記載の音声認証装置。
The threshold setting unit includes a correction unit that corrects the threshold according to a time length of the authentication voice or the registered voice.
The voice authentication device according to any one of claims 1 to 4 .
認証時に被認証者の周囲に発生する認証時雑音の特性を分析し、
予め登録された登録音声の登録時の登録時雑音と前記登録音声との音量比に対して、前記分析した認証時雑音の特性に応じた関係を満たすように、閾値を設定し、
前記登録音声と被認証者から採取された認証音声との特徴量の類否を示す指標値と前記設定した閾値との比較の結果に応じて当該被認証者を認証する
音声認証方法。
Analyzing the characteristics of noise generated during authentication around the person being authenticated,
A threshold value is set so as to satisfy the relationship according to the characteristics of the analyzed noise at the time of authentication, with respect to the volume ratio between the registered noise and the registered voice at the time of registration of the registered voice registered in advance .
Voice authentication method for authenticating the person to be authenticated according to a result of comparison between the registration voice and the feature amount of the index value and the set threshold value that indicates the kind not the collected authentication voice from the person to be authenticated.
コンピュータに、
認証時に被認証者の周囲に発生する認証時雑音の特性を分析する特性分析処理と、
予め登録された登録音声の登録時の登録時雑音と前記登録音声との音量比に対して、前記特性分析処理で分析した認証時雑音の特性に応じた関係を満たすように、閾値を設定する閾値設定処理と、
前記登録音声と被認証者から採取された認証音声との特徴量の類否を示す指標値と前記閾値設定処理で設定した閾値との比較の結果に応じて当該被認証者を認証する認証処理と
を実行させるプログラム。
On the computer,
Characteristic analysis processing that analyzes the characteristics of noise at the time of authentication that occurs around the person being authenticated during authentication,
A threshold is set so as to satisfy the relationship according to the characteristic of the noise during authentication analyzed by the characteristic analysis process, with respect to the volume ratio between the registered noise and the registered voice at the time of registration of the registered voice registered in advance. Threshold setting processing;
Authentication processing for authenticating the person to be authenticated according to a result of comparison with the threshold value set by the threshold value setting process and the index value indicating the kind not feature quantity of the authentication voice taken from the registration voice and the person to be authenticated A program that executes and.
JP2006249161A 2006-09-14 2006-09-14 Voice authentication apparatus, voice authentication method and program Expired - Fee Related JP5151103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006249161A JP5151103B2 (en) 2006-09-14 2006-09-14 Voice authentication apparatus, voice authentication method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006249161A JP5151103B2 (en) 2006-09-14 2006-09-14 Voice authentication apparatus, voice authentication method and program

Publications (2)

Publication Number Publication Date
JP2008070597A JP2008070597A (en) 2008-03-27
JP5151103B2 true JP5151103B2 (en) 2013-02-27

Family

ID=39292232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006249161A Expired - Fee Related JP5151103B2 (en) 2006-09-14 2006-09-14 Voice authentication apparatus, voice authentication method and program

Country Status (1)

Country Link
JP (1) JP5151103B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9384738B2 (en) * 2014-06-24 2016-07-05 Google Inc. Dynamic threshold for speaker verification
DE102016203987A1 (en) * 2016-03-10 2017-09-14 Sivantos Pte. Ltd. Method for operating a hearing device and hearing aid
GB2555661A (en) * 2016-11-07 2018-05-09 Cirrus Logic Int Semiconductor Ltd Methods and apparatus for biometric authentication in an electronic device
KR20200066149A (en) * 2018-11-30 2020-06-09 삼성전자주식회사 User authentication method and apparatus thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1055194A (en) * 1996-08-08 1998-02-24 Sanyo Electric Co Ltd Device and method of voice control
JP2002236665A (en) * 2001-02-09 2002-08-23 Matsushita Electric Ind Co Ltd Personal authentication device
JP2003308091A (en) * 2002-04-17 2003-10-31 Pioneer Electronic Corp Device, method and program for recognizing speech
JP4212825B2 (en) * 2002-04-19 2009-01-21 株式会社アプコット Personal authentication method and apparatus, and personal authentication system
JP3926242B2 (en) * 2002-09-19 2007-06-06 富士通株式会社 Spoken dialogue system, program for spoken dialogue, and spoken dialogue method
US20040260547A1 (en) * 2003-05-08 2004-12-23 Voice Signal Technologies Signal-to-noise mediated speech recognition algorithm

Also Published As

Publication number Publication date
JP2008070597A (en) 2008-03-27

Similar Documents

Publication Publication Date Title
JP5151102B2 (en) Voice authentication apparatus, voice authentication method and program
US10950245B2 (en) Generating prompts for user vocalisation for biometric speaker recognition
Xiao et al. Spoofing speech detection using high dimensional magnitude and phase features: the NTU approach for ASVspoof 2015 challenge.
US7013276B2 (en) Method of assessing degree of acoustic confusability, and system therefor
US20090313016A1 (en) System and Method for Detecting Repeated Patterns in Dialog Systems
US6134527A (en) Method of testing a vocabulary word being enrolled in a speech recognition system
US20150066512A1 (en) Method and Apparatus for Detecting Synthesized Speech
US20080154585A1 (en) Sound Signal Processing Apparatus and Program
US20050143997A1 (en) Method and apparatus using spectral addition for speaker recognition
GB2552722A (en) Speaker recognition
CA2536976A1 (en) Method and apparatus for detecting speaker change in a voice transaction
Yang et al. BaNa: A noise resilient fundamental frequency detection algorithm for speech and music
KR101888058B1 (en) The method and apparatus for identifying speaker based on spoken word
JP5151103B2 (en) Voice authentication apparatus, voice authentication method and program
US7908142B2 (en) Apparatus and method for identifying prosody and apparatus and method for recognizing speech
JP2969862B2 (en) Voice recognition device
CN113241059B (en) Voice wake-up method, device, equipment and storage medium
JPWO2020003413A1 (en) Information processing equipment, control methods, and programs
Jayamaha et al. Voizlock-human voice authentication system using hidden markov model
KR20110079161A (en) Method and apparatus for verifying speaker in mobile terminal
RU2234746C2 (en) Method for narrator-independent recognition of speech sounds
JP2006010739A (en) Speech recognition device
Barlaskar et al. Study on the varying degree of speaker identity information reflected across the different MFCCs
WO2006027844A1 (en) Speaker collator
JP4807261B2 (en) Voice processing apparatus and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5151103

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees