JP5146010B2 - Method for producing ceramic molded body and method for producing ceramic sintered body using the same - Google Patents

Method for producing ceramic molded body and method for producing ceramic sintered body using the same Download PDF

Info

Publication number
JP5146010B2
JP5146010B2 JP2008047548A JP2008047548A JP5146010B2 JP 5146010 B2 JP5146010 B2 JP 5146010B2 JP 2008047548 A JP2008047548 A JP 2008047548A JP 2008047548 A JP2008047548 A JP 2008047548A JP 5146010 B2 JP5146010 B2 JP 5146010B2
Authority
JP
Japan
Prior art keywords
solvent
molded body
mold
ceramic
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008047548A
Other languages
Japanese (ja)
Other versions
JP2009202451A (en
Inventor
康博 中野
正樹 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008047548A priority Critical patent/JP5146010B2/en
Publication of JP2009202451A publication Critical patent/JP2009202451A/en
Application granted granted Critical
Publication of JP5146010B2 publication Critical patent/JP5146010B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Moulds, Cores, Or Mandrels (AREA)

Description

本発明は、複雑形状のセラミックス製品を容易に製造するためのセラミック成形体の製造方法に関するものである。   The present invention relates to a method for manufacturing a ceramic molded body for easily manufacturing a ceramic product having a complicated shape.

近年、複雑形状のセラミックス部品を要求されるようになり、射出成形、鋳込み成形、押出し成形等で検討がなされている。中でも複雑で大物形状の成形に適している鋳込み成形方法は、それに適する樹脂バインダーや成形型の検討がなされ、様々な提案がされている(特許文献1、2、3、4、5、6)。   In recent years, ceramic parts having complicated shapes have been required, and studies have been made on injection molding, casting molding, extrusion molding, and the like. Among them, as for the casting molding method suitable for molding of a complicated and large shape, a resin binder and a molding die suitable for it have been studied, and various proposals have been made (Patent Documents 1, 2, 3, 4, 5, 6). .

しかしながら、これらの成形方法で複雑形状物を成形する場合において、成形型に課題がある。複雑形状物を成形するためには、成形型は崩壊性の型である必要がある。素材としてはロストワックス、発泡スチロールが好適である。しかしロストワックスは成形後の脱型工程において溶解させる際、成形体から完全には取れず、表面に薄い膜を形成する。そのため、その後の乾燥工程で不均一な乾燥がおこり、成形体が割れてしまうという現象が発生する。一方発泡スチロールはリモネン等の溶剤できれいに溶解するため乾燥等に影響はないが、成形体表面に発泡スチロールの表面形状が転写してしまうため表面がざらざらな成形体となってしまい、成形体の後加工に長時間を費やす必要が生じたり、製品に出来ないという問題が発生する。また、発泡体樹脂表面に有機溶媒に対して不溶な樹脂の被覆を施した中子型を使用するスリップキャスティングが提案されている(特許文献7)。しかしながら表面粗度は向上するが、発泡体樹脂溶解後に有機溶媒に不溶な樹脂膜を成形体から外す際、うまく成形体から外せなかったり、有機溶媒に不溶な樹脂を被覆することにより複雑形状部の寸法や形状が正確に作成できないという問題が発生している。
特公平7−22931号公報 特許第3692682号公報 特開平2001−278673号公報 特開2005−53716号公報 特開2007−136912号公報 特開2004−034572号公報 特開平5−111907号公報
However, there is a problem with the mold when molding a complicated shape by these molding methods. In order to mold a complicated shape, the mold needs to be a collapsible mold. The material is preferably lost wax or polystyrene foam. However, when the lost wax is dissolved in the demolding step after molding, it cannot be completely removed from the molded product, and a thin film is formed on the surface. Therefore, non-uniform drying occurs in the subsequent drying process, and a phenomenon that the molded body is broken occurs. On the other hand, polystyrene foam dissolves cleanly with a solvent such as limonene, so there is no effect on drying, etc., but the surface shape of the polystyrene foam is transferred to the surface of the molded body, resulting in a rough molded body and post-processing of the molded body There is a problem that it is necessary to spend a long time or the product cannot be used. In addition, slip casting using a core mold in which a foam resin surface is coated with a resin insoluble in an organic solvent has been proposed (Patent Document 7). However, the surface roughness is improved, but when the resin film insoluble in the organic solvent is removed from the molded product after the foam resin is dissolved, it cannot be removed well from the molded product, or the resin is insoluble in the organic solvent. There is a problem that the size and shape of the image cannot be created accurately.
Japanese Patent Publication No. 7-22931 Japanese Patent No. 3692682 JP-A-2001-278673 JP 2005-53716 A JP 2007-136912 A JP 2004-034572 A Japanese Patent Laid-Open No. 5-111907

本発明の目的は、表面状態がきれいで寸法精度の良い複雑形状成形体を、乾燥割れや変形がなく簡単に製造でき、また焼結体としたときの物性に優れたセラミックス成形体の製造方法を提供することにある。   An object of the present invention is to provide a method for producing a ceramic molded body having excellent physical properties when a complex shaped molded body having a clean surface condition and good dimensional accuracy can be easily produced without dry cracking or deformation. Is to provide.


本発明は、かかる課題を解決するために以下のような手段を採用するものである。すなわち、セラミックス粉体、分散剤、硬化性樹脂および溶媒を含む混合物を溶可溶性の成形型内に注入する工程、注入した該混合物を硬化させて成形し、含溶媒セラミックス成形体とする工程、該成形型を溶剤で溶解除去する脱型工程、該脱型工程によって得られた含溶媒セラミックス成形体を乾燥させる工程を有するセラミックス成形体の製造方法において、該溶媒は水であり、該成形型として内側表面に撥水処理を施した成形型を用いることを特徴とするセラミックス成形体の製造方法である。

The present invention employs the following means in order to solve such problems. That is, ceramic powder, a step of injecting a dispersing agent, a mold of the solvent-soluble mixture containing a curable resin and a solvent, the injected mixture is cured and molded, the step of the solvent content ceramic body, In a method for producing a ceramic molded body comprising a demolding step of dissolving and removing the molding die with a solvent, and a step of drying the solvent-containing ceramic molded body obtained by the demolding step, the solvent is water, and the molding die A method for producing a ceramic molded body characterized in that a mold having a water repellent treatment applied to the inner surface is used.

本発明により、表面状態がきれいで寸法精度の良い複雑形状の成形体を、乾燥割れや変形がなく簡単に製造でき、また焼結体としたときの物性に優れたセラミックス成形体の製造方法を提供することができる。   According to the present invention, there is provided a method for producing a ceramic molded body having a clean surface condition and having a good dimensional accuracy, which can be easily produced without dry cracking or deformation, and having excellent physical properties when formed into a sintered body. Can be provided.


セラミックス粉体、分散剤、硬化性樹脂、ならびに溶媒を含む混合物を溶可溶性の成形型内に注入する工程、注入した該混合物を硬化させて成形し、含溶媒セラミックス成形体とする工程、該成形型を溶剤で溶解除去する脱型工程、該脱型工程によって得られた含溶媒セラミックス成形体を乾燥させる工程を有するセラミックス成形体の製造方法において、該溶媒は水であり、該成形型として内側表面に撥水処理を施した成形型を特徴とするセラミックス成形体の製造方法である。

Ceramic powder, dispersing agents, curing resins, and the step of injecting a mixture comprising a solvent in a mold of solvent-soluble, the injected mixture is cured and molded, the step of the solvent content ceramic body, the In a method for producing a ceramic molded body comprising a demolding step of dissolving and removing the molding die with a solvent, and a step of drying the solvent-containing ceramic molded body obtained by the demolding step, the solvent is water, This is a method for producing a ceramic molded body characterized by a mold having a water repellent treatment on the inner surface.

ここで、セラミックス粉体とは、その種類を限定されるものではないが、例えば、酸化アルミニウム、酸化ジルコニウム、窒化珪素、炭化珪素、窒化アルミニウム、SIALONなどの粉末があげられる。これらは単独で使用してもよいし、適宜混合してもよい。   Here, the kind of the ceramic powder is not limited, but examples thereof include powders such as aluminum oxide, zirconium oxide, silicon nitride, silicon carbide, aluminum nitride, and SIALON. These may be used alone or may be mixed as appropriate.


石膏型等の吸水性の成形型を用いない鋳込み方法はセラミックス粉体、分散剤、硬化性樹脂および溶媒を含む混合物を作成し、成形型内に注入する工程、注入した前記混合物を成形し含溶媒セラミックス成形体とする工程、前記成形型を取り除く脱型工程、前記含溶媒セラミックス成形体を乾燥させる工程で成り立っている。しかし、複雑形状の成形体を製造するためには、成形型は崩壊性の型である必要がある。成形型を取り除く脱型工程としてはロストワックス等を用いて加熱することによって溶融除去する方法、発泡性樹脂等の溶剤に可溶な型を用いて溶剤によって溶解除去する方法が挙げられる。しかし、ロストワックス等の熱で融解する成形型は、成形後の脱型工程において融解させる際、成形体から完全には取れず、表面に薄い膜を形成する。そのため、その後の乾燥工程で不均一な乾燥がおこり、成形体が割れてしまうという現象が発生するため、焼結割れが発生する場合がある。そのため、本発明においては、焼結割れ抑制の観点から、溶剤に可溶な型を用いて溶で溶解除去する方法が好ましい。溶剤に可溶な型に用いる樹脂は発泡性樹脂が好ましい。特に発泡スチロールはリモネン等により容易に溶解するのでより好ましい。しかし発泡スチロールは表面が平坦でないため、発泡スチロールの面を転写した成形体の表面は表面粗さの大きなざらざらな面となってしまうという欠点がある。この問題を解決するために本発明においては成形型である発体表面に撥水処理を施すことが重要である。本発明において撥水処理とは撥水性の樹脂を塗布し、処理後の水に対する接触角を120°以上、好ましくは140°以上にすることをいう。

A casting method that does not use a water-absorbing mold such as a plaster mold creates a mixture containing ceramic powder, a dispersant, a curable resin, and a solvent, and injects the mixture into the mold, and molds and contains the injected mixture. It consists of a step of forming a solvent ceramic molded body, a demolding step of removing the mold, and a step of drying the solvent-containing ceramic molded body. However, in order to produce a compact shaped body, the mold needs to be a collapsible mold. Examples of the demolding step for removing the mold include a method of melting and removing by heating using lost wax or the like, and a method of dissolving and removing with a solvent using a mold soluble in a solvent such as foamable resin. However, when a mold such as lost wax that is melted by heat is melted in the demolding step after molding, it cannot be completely removed from the molded body, and forms a thin film on the surface. Therefore, non-uniform drying occurs in the subsequent drying process, and a phenomenon that the molded body is cracked occurs, so that sintered cracks may occur. Therefore, in the present invention, a method of dissolving and removing from the viewpoint of sintering cracking inhibition, with Solvent using soluble type solvent is preferred. The resin used for the mold soluble in the solvent is preferably a foamable resin. In particular, styrene foam is more preferable because it is easily dissolved by limonene or the like. However, since the surface of the polystyrene foam is not flat, the surface of the molded body to which the surface of the polystyrene foam is transferred has a drawback that it becomes a rough surface with a large surface roughness. It is important to apply the water repellent treatment on the foamed surface is the mold in the present invention to solve this problem. In the present invention, the water-repellent treatment means that a water-repellent resin is applied and the contact angle with respect to water after treatment is 120 ° or more, preferably 140 ° or more.


一般に、セラミックス成形体の製造に用いるスラリーは水系であり、本発明の溶媒は水であるので、発泡体表面を撥水状態にすることにより、表面の凹部にスラリーが浸入することを防止し、平坦できれいな面を有する成形体を作成することができる。撥水処理にはフッ素系樹脂の塗布やシリコーン系樹脂の塗布等が挙げられる。フッ素系樹脂としてはポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン−エチレン共重合体(ETFE)、ポリビニリデンフルオリド(PVDE)等が挙げられる。シリコーン系樹脂としてはポリシロキサン、ポリジメチルシロキサン等を挙げることができる。これら単独でも混合でも良いが、フッ素系樹脂は効果が高く含有しているとより好ましい。塗布する方法は刷毛等で塗っても良いし、ディップコートしても良いし、スプレーのように吹き付けても良い。

In general, the slurry used for the production of the ceramic molded body is water-based, and the solvent of the present invention is water. Therefore, by making the foam surface water-repellent, the slurry is prevented from entering the recesses on the surface, A molded body having a flat and clean surface can be produced. Examples of the water repellent treatment include application of a fluorine-based resin and application of a silicone-based resin. Examples of fluororesins include polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), and tetrafluoroethylene-ethylene copolymer. (ETFE), polyvinylidene fluoride (PVDE) and the like. Examples of silicone resins include polysiloxane and polydimethylsiloxane. These may be used singly or as a mixture, but it is more preferable that the fluororesin contains a high effect. The method of application may be a brush or the like, dip coating, or spraying like a spray.

本発明において用いる硬化性樹脂は重合反応により3次元網目構造を形成するものであればよいが混合物の流動性を高め、成形型への注入を良好にするという点から液状であることが望ましい。硬化性樹脂と溶媒の親和性についても、親和性が悪いと分離して成形体内部で偏析し、焼結時にポアなどの欠陥の原因となる恐れがあるので、溶媒との親和性のよい硬化性樹脂を選択することが望ましい。かかる硬化性樹脂としては、例えば、メラミン樹脂、フェノール樹脂、エポキシ樹脂、アクリル酸樹脂、ウレタン樹脂等を挙げることができる。中でもエポキシ樹脂は成形体の保形性を高めるために、好適に用いられる。エポキシ樹脂としては、例えばビスフェノールA型、ビスフェノールF型等のビスフェノール類のジグリシジルエーテル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、脂肪族エポキシ樹脂等のグリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、メチルグリシジルエーテル型エポキシ樹脂、シクロヘキセンオキサイド型エポキシ樹脂、ゴム変性エポキシ樹脂などが挙げられる。環境への影響から溶媒は水系が好ましく、そのため硬化性樹脂も水溶性が好ましく、グリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、メチルグリシジルエーテル型エポキシ樹脂、シクロヘキセンオキサイド型エポキシ樹脂が好ましく、中でもグリシジルエーテル型エポキシ樹脂が室温でも円滑に硬化が起こるのでより好ましい。
エポキシ樹脂の平均分子量は20〜30000が好ましく、平均分子量50〜3000が粉体との混合が容易であり、かつ一定の機械強度が得られることから、より好ましい。さらに好ましくは50〜2500である。かかるエポキシ樹脂は単独で、または複数を組み合わせて用いることもできる。
The curable resin used in the present invention is not particularly limited as long as it forms a three-dimensional network structure by a polymerization reaction. However, it is desirable that the curable resin is liquid in terms of improving the fluidity of the mixture and improving the injection into the mold. As for the affinity between the curable resin and the solvent, if the affinity is poor, it separates and segregates inside the molded body, which may cause pores and other defects during sintering. It is desirable to select a functional resin. Examples of such curable resins include melamine resins, phenol resins, epoxy resins, acrylic resins, urethane resins, and the like. Among these, an epoxy resin is preferably used in order to improve the shape retention of the molded body. Examples of the epoxy resin include glycidyl such as diglycidyl ether type epoxy resins of bisphenols such as bisphenol A type and bisphenol F type, phenol novolac type epoxy resins, cresol novolac type epoxy resins, glycidyl amine type epoxy resins, aliphatic epoxy resins, and the like. Examples include ether type epoxy resins, glycidyl ester type epoxy resins, methyl glycidyl ether type epoxy resins, cyclohexene oxide type epoxy resins, and rubber-modified epoxy resins. The solvent is preferably aqueous based on the influence on the environment. Therefore, the curable resin is preferably water-soluble, and glycidyl ether type epoxy resin, glycidyl ester type epoxy resin, methyl glycidyl ether type epoxy resin, and cyclohexene oxide type epoxy resin are preferable. An ether type epoxy resin is more preferable because it cures smoothly even at room temperature.
The average molecular weight of the epoxy resin is preferably 20 to 30000, and the average molecular weight of 50 to 3000 is more preferable because it can be easily mixed with the powder and a certain mechanical strength can be obtained. More preferably, it is 50-2500. Such epoxy resins can be used alone or in combination.

本発明の製造方法において、含溶媒セラミックス成形体の形成に用いる混合物に含まれる硬化性樹脂は、前記混合物中5〜15体積%が好ましい。硬化性樹脂の含有量が前記混合物中、5体積%未満であると含溶媒成形体及び乾燥成形体の強度が不十分な場合があり、15体積%を超えると含溶媒成形体を乾燥工程中に割れが発生したり、乾燥成形体を焼結体とするための脱脂工程や焼結工程など、硬化樹脂を除去する工程において、割れ等の問題が発生するという場合があり好ましくない。   In the production method of the present invention, the curable resin contained in the mixture used for forming the solvent-containing ceramic molded body is preferably 5 to 15% by volume in the mixture. If the content of the curable resin is less than 5% by volume in the mixture, the strength of the solvent-containing molded body and the dried molded body may be insufficient. If the content exceeds 15% by volume, the solvent-containing molded body is being dried. In the process of removing the cured resin, such as a degreasing process or a sintering process for forming a dry molded body into a sintered body, problems such as cracking may occur, which is not preferable.

本発明の製造方法において、含溶媒セラミックス成形体の形成に用いる混合物は、硬化剤を含むことが好ましい。硬化剤としては、例えばアミン系硬化剤、酸無水物系硬化剤、ポリアミド系硬化剤等を用いることができる。アミン系硬化剤は反応が迅速であるという点で好ましく、酸無水物系硬化剤は耐熱衝撃性にすぐれた硬化物が得られるという点で好ましく用いられる。中でもアミン系硬化剤は室温において硬化可能なことから型の耐熱性などに自由度が増すため好ましい。アミン系硬化剤としては、脂肪族アミン、脂環族アミン、芳香族アミンなどが挙げられ、モノアミン、ジアミン、トリアミン、ポリアミンのいずれも用いることができる。   In the production method of the present invention, the mixture used for forming the solvent-containing ceramic molded body preferably contains a curing agent. As the curing agent, for example, an amine curing agent, an acid anhydride curing agent, a polyamide curing agent, or the like can be used. An amine-based curing agent is preferable in terms of rapid reaction, and an acid anhydride-based curing agent is preferably used in that a cured product having excellent thermal shock resistance can be obtained. Of these, amine-based curing agents are preferable because they can be cured at room temperature, and the degree of freedom in the heat resistance of the mold is increased. Examples of the amine curing agent include aliphatic amines, alicyclic amines, aromatic amines, and any of monoamines, diamines, triamines, and polyamines can be used.

このように硬化剤を添加する場合、その添加量は硬化性樹脂との組合せにより適宜決めることができる。すなわち硬化性樹脂の官能基当量と硬化剤の活性基当量により、好ましい配合比は異なるが、例えば、硬化性樹脂としてエポキシ樹脂を、硬化剤としてポリアミン系硬化剤を用いる場合には、エポキシ当量に対するアミン系硬化剤の活性水素当量の比が0.8〜1.5程度とすることが硬化性の点から好ましい。   Thus, when adding a hardening | curing agent, the addition amount can be suitably determined with the combination with curable resin. That is, the preferred compounding ratio differs depending on the functional group equivalent of the curable resin and the active group equivalent of the curing agent. For example, when using an epoxy resin as the curable resin and a polyamine curing agent as the curing agent, The active hydrogen equivalent ratio of the amine curing agent is preferably about 0.8 to 1.5 from the viewpoint of curability.

混合物を成形型内に注入した後、注入した混合物を硬化させて成形し、含溶媒セラミックス成形体を得る。硬化性樹脂としてエポキシ樹脂を、硬化剤としてポリアミン系硬化剤を用いた常温硬化型のスラリーの場合、室温近辺の常温で好ましくは0.5〜50時間、さらに好ましくは1〜5時間放置して硬化させることによって、含溶媒セラミックス成形体を得ることができる。   After injecting the mixture into the mold, the injected mixture is cured and molded to obtain a solvent-containing ceramic molded body. In the case of a room temperature curing type slurry using an epoxy resin as a curable resin and a polyamine type curing agent as a curing agent, the slurry is preferably left at room temperature near room temperature for 0.5 to 50 hours, more preferably 1 to 5 hours. By curing, a solvent-containing ceramic molded body can be obtained.

混合物を硬化させ含溶媒セラミックス成形体を得た後、成形型を溶剤で溶解除去して脱型する。上述のように成形型に発泡スチロールを用いる場合、溶剤としてはリモネンを用いることが特に好ましい。   After the mixture is cured to obtain a solvent-containing ceramic molded body, the mold is dissolved and removed with a solvent and demolded. As described above, when using polystyrene foam for the mold, it is particularly preferable to use limonene as the solvent.

作成した含溶媒セラミックス成形体はこれに使用した粉末や成形体の形状によってそれぞれ適した条件で乾燥することによって、良好な形状を有するセラミックス成形体を得ることができる。さらに、このようにして得られたセラミックス成形体を、これに使用した粉末や成形体の形状によってそれぞれ適した条件で脱脂、焼結することにより、クラックや反りなどのない良好な焼成体を得ることができる。   The produced solvent-containing ceramic molded body is dried under conditions suitable for the powder used and the shape of the molded body, whereby a ceramic molded body having a good shape can be obtained. Furthermore, the ceramic molded body thus obtained is degreased and sintered under conditions suitable for the powder used and the shape of the molded body, thereby obtaining a good fired body free from cracks and warpage. be able to.

また、乾燥時間を短縮するために脱型工程と乾燥工程の間に熱処理を行っても良い。本発明において熱処理とは含溶媒成形体を乾燥させずに熱をかけることをいう。混合物に使用したものと同成分の溶媒中に含溶媒セラミックス成形体を入れて含溶媒セラミックス成形体に熱をかける方法や高温蒸気中に含溶媒成形体を入れる方法等がある。硬化し脱型した含溶媒成形体を熱処理すると硬化性樹脂が収縮し、含溶媒成形体中の溶媒を絞り出すため、含有する溶媒量を減少させることができる。そのため、含溶媒成形体の弾性率が高くなり乾燥速度を上げることができ、また含有溶媒量が少なく、乾燥時間を短くすることが出来るようになる。熱処理の方法は溶媒中に含溶媒成形体を入れる方法が簡単であり好ましい。   In order to shorten the drying time, heat treatment may be performed between the demolding process and the drying process. In the present invention, the heat treatment refers to applying heat without drying the solvent-containing molded body. There are a method of putting a solvent-containing ceramic molded body in a solvent of the same component as that used for the mixture and heating the solvent-containing ceramic molded body, a method of putting the solvent-containing molded body in high-temperature steam, and the like. When the cured and demolded solvent-containing molded body is heat-treated, the curable resin shrinks and the solvent in the solvent-containing molded body is squeezed out, so that the amount of solvent contained can be reduced. Therefore, the elastic modulus of the solvent-containing molded body is increased, the drying speed can be increased, the amount of the solvent is small, and the drying time can be shortened. As a method for the heat treatment, a method of putting a solvent-containing molded body in a solvent is simple and preferable.

本発明の製造方法において、含溶媒セラミックス成形体の形成に用いる混合物は、分散剤を含むことが必要である。特に、分散剤がポリカルボン酸塩であり、分散剤の量がセラミックス粉体に対し、0.2〜1.0重量%の範囲内であることがよい。分散剤は水等の溶媒で希釈されている場合が多く、実際の含有量を用いる。鋳込みに適した混合物を作るためには粉末を溶媒中に分散する必要がある。そのためにpHを調整するものや、分散剤としてヘキサメタリン酸等の無機塩や、アニオン系、カチオン系、ノニオン系の有機の界面活性剤等を用いることができる。中でもポリカルボン酸系は分散効果が高く、また熱処理により硬化させる効果が高く望ましい。   In the production method of the present invention, the mixture used for forming the solvent-containing ceramic molded body needs to contain a dispersant. In particular, the dispersant is a polycarboxylate, and the amount of the dispersant is preferably in the range of 0.2 to 1.0% by weight with respect to the ceramic powder. The dispersant is often diluted with a solvent such as water, and the actual content is used. In order to make a mixture suitable for casting, it is necessary to disperse the powder in a solvent. For this purpose, a pH adjusting agent, an inorganic salt such as hexametaphosphoric acid, an anionic, cationic or nonionic organic surfactant can be used as a dispersant. Among them, the polycarboxylic acid type is preferable because of its high dispersion effect and high effect of curing by heat treatment.

分散剤の含有量がセラミックス粉体に対して0.2重量%未満では分散効果が小さく、1.0重量%を超えると凝集が起こる可能性がある。好ましくは0.3〜0.7重量%である。   When the content of the dispersant is less than 0.2% by weight with respect to the ceramic powder, the dispersion effect is small, and when it exceeds 1.0% by weight, aggregation may occur. Preferably it is 0.3-0.7 weight%.

本発明において前記混合物の粘度が5Pa・s以下であるとよい。粘度は粘度計で測定することができる。セラミックス粉末を含む混合物は非ニュートン流体であり、剪断速度により粘度は変化するため、本発明ではせん断速度1.9(1/s)のときの値とする。5Pa・sを超えると流動性が悪く、複雑形状の成形型に上手く鋳込めなかったり、また混合物に大きな泡がかみこみ、欠陥となることがある。好ましくは3Pa・s以下、より好ましくは1Pa・s以下が望ましい。   In the present invention, the viscosity of the mixture is preferably 5 Pa · s or less. The viscosity can be measured with a viscometer. Since the mixture containing the ceramic powder is a non-Newtonian fluid and the viscosity changes depending on the shear rate, in the present invention, the value at the shear rate of 1.9 (1 / s) is used. If it exceeds 5 Pa · s, the fluidity is poor, and it is difficult to cast into a mold having a complicated shape, or large bubbles may be entrained in the mixture, resulting in defects. It is preferably 3 Pa · s or less, more preferably 1 Pa · s or less.

本発明の製造方法において、含溶媒セラミックス成形体の形成に用いる混合物中のセラミックス粉体の量は70〜90重量%の範囲内が好ましい。セラミックス粉体が70重量%未満の場合では、流動性が高く鋳込みやすいが、含溶媒セラミックスの弾性率が低くて保形性が悪く、また乾燥に時間がかかってしまうため好ましくない。また90重量%を超える場合では、流動性が劣るため好ましくない。
得られたセラミックス成形体を焼結体にするために脱脂、焼結を行う。脱脂条件はバインダーの種類、量、成形体の形状等、焼結温度は使用するセラミックス素材及びセラミックス成形体の形状等により適宜決定すると良い。特に大型成形体や肉厚成形体は脱脂による割れが発生しないように600℃程度まで30℃/時間以下の速度で昇温してバインダーを取り除くと良い。焼結条件は例えば酸化ジルコニウムの場合は大気雰囲気下で1350〜1500℃で2時間〜3時間保持し、700℃程度まで200℃/時間程度で降温後、室温まで100℃/時間以下で降温し、酸化アルミニウムの場合も同様であるが、1550〜1650℃で2時間〜3時間保持すると良い。
In the production method of the present invention, the amount of the ceramic powder in the mixture used for forming the solvent-containing ceramic molded body is preferably in the range of 70 to 90% by weight. When the ceramic powder is less than 70% by weight, the fluidity is high and the casting is easy, but this is not preferable because the elastic modulus of the solvent-containing ceramic is low, the shape retention is poor, and the drying takes time. On the other hand, when it exceeds 90% by weight, the fluidity is inferior, which is not preferable.
Degreasing and sintering are performed to make the obtained ceramic molded body into a sintered body. The degreasing conditions may be appropriately determined depending on the type and amount of the binder, the shape of the molded body, and the sintering temperature depending on the ceramic material to be used and the shape of the ceramic molded body. In particular, a large molded body or a thick molded body may be heated to a temperature of 30 ° C./hour or less up to about 600 ° C. so as to prevent cracking due to degreasing to remove the binder. For example, in the case of zirconium oxide, the temperature is maintained at 1350-1500 ° C. for 2 hours to 3 hours in an air atmosphere, lowered to about 700 ° C. at about 200 ° C./hour, and then lowered to room temperature at 100 ° C./hour or less. The same applies to aluminum oxide, but it is preferable to hold at 1550 to 1650 ° C. for 2 to 3 hours.

以下実施例について述べる。   Examples will be described below.

実施例の物性の測定、評価は以下のように行った。
(1)BET比表面積
BET比表面積の測定はJIS−R1626(1996)「ファインセラミックス粉体の気体吸着BET法による比表面積の測定方法」に則り、BET1点法で行った。
(2)混合物の粘度
作成した硬化剤添加前の混合物を粘度計によって粘度を測定した。粘度計は株式会社トキメック製E型粘度計DVU−EII型を用いた。測定条件は、ローターは標準1°34′R24を用い、温度20℃、回転数0.5rpm(剪断速度1.9(1/s))とした。
(3)乾燥時の割れ
作製した100mm×70mm、厚さ20mmの含溶媒成形体サンプルを恒温恒湿乾燥機を用いて温度30℃、相対湿度90%で48時間キープした後、30℃、相対湿度70%で48時間キープして割れの有無を確認した。サンプル数は10個とした。
(4)焼結体の相対密度
焼結体の焼結密度をアルキメデス法により測定した。焼結密度を理論密度(組成比)で除した値を百分率で表した値を相対密度(%)とした。ここで、それぞれの理論密度は以下の値を用いた。
酸化アルミニウム:3.98g/cm
酸化ジルコニウム:6.08g/cm
炭化珪素:3.21g/cm
窒化珪素:3.24g/cm
(5)表面粗さ
JISB0601に則り触針法で、焼結体の表面粗さを測定した。測定長は4mmとし、カットオフ値は0.8μmとした。算術平均高さRa(μm)をそれぞれの表面粗さとした。
(6)成形型の水に対する接触角
成形型に純水を滴下して水滴を作り、接触角を測定した。測定には協和界面科学(株)製接触角計CA−Dを使用した。測定は5回行い、上下の値を除いた3点の平均を接触角の値とした。
The physical properties of the examples were measured and evaluated as follows.
(1) BET specific surface area The BET specific surface area was measured by the BET single point method according to JIS-R1626 (1996) "Method for measuring specific surface area by gas adsorption BET method of fine ceramic powder".
(2) Viscosity of the mixture The viscosity of the prepared mixture before addition of the curing agent was measured with a viscometer. As the viscometer, an E-type viscometer DVU-EII type manufactured by Tokimec Co., Ltd. was used. The measurement conditions were such that the rotor was standard 1 ° 34′R24, the temperature was 20 ° C., and the rotation speed was 0.5 rpm (shear rate 1.9 (1 / s)).
(3) Cracking at the time of drying The prepared 100 mm × 70 mm, 20 mm thick solvent-containing molded sample was kept for 48 hours at a temperature of 30 ° C. and a relative humidity of 90% using a constant temperature and humidity dryer. The humidity was maintained at 70% for 48 hours to check for cracks. The number of samples was 10.
(4) Relative density of sintered body The sintered density of the sintered body was measured by the Archimedes method. A value obtained by dividing the sintered density by the theoretical density (composition ratio) as a percentage was defined as a relative density (%). Here, the following values were used for the respective theoretical densities.
Aluminum oxide: 3.98 g / cm 3
Zirconium oxide: 6.08 g / cm 3
Silicon carbide: 3.21 g / cm 3
Silicon nitride: 3.24 g / cm 3 .
(5) Surface roughness The surface roughness of the sintered body was measured by a stylus method according to JISB0601. The measurement length was 4 mm, and the cut-off value was 0.8 μm. The arithmetic average height Ra (μm) was defined as the respective surface roughness.
(6) Contact angle of mold to water Pure water was dropped on the mold to form water droplets, and the contact angle was measured. For the measurement, a contact angle meter CA-D manufactured by Kyowa Interface Science Co., Ltd. was used. The measurement was performed 5 times, and the average of 3 points excluding the upper and lower values was used as the value of the contact angle.

実施例1
表1の実施例1の欄に示す処方の混合物をボールミルに入れ24時間混合した。
セラミックス粉末:酸化アルミニウム(比表面積:BET値 4m/g)
硬化性樹脂:水溶性エポキシ樹脂(グリシジルエーテル型)(ナガセケムテックス製“EX−313”)
溶媒:イオン交換水
分散剤:ポリカルボン酸塩(中京油脂製“D−305”(含有量40%))
次に、ボールミルから混合物を取り出し、ロータリーエバポレーターで硬化剤を混合し、成形型に流し込み、20℃で24時間放置して硬化させ含溶媒成形体を得た。硬化剤は1−(2−アミノエチル)ピペラジンを使用した。成形型は発泡スチロール製100mm×70mm、厚さ20mmの内面にフッ素塗料撥水スプレー(NTTアドバウステクノロジー製“HIREC1450”)を塗布して乾燥させたものを用いた。水に対する接触角は151°であった。
Example 1
The mixture of the formulation shown in the column of Example 1 in Table 1 was placed in a ball mill and mixed for 24 hours.
Ceramic powder: Aluminum oxide (specific surface area: BET value 4 m 2 / g)
Curable resin: Water-soluble epoxy resin (glycidyl ether type) (“EX-313” manufactured by Nagase ChemteX)
Solvent: ion-exchange water dispersant: polycarboxylate (“D-305” (content 40%) manufactured by Chukyo Yushi)
Next, the mixture was taken out from the ball mill, mixed with a curing agent by a rotary evaporator, poured into a mold, and allowed to cure at 20 ° C. for 24 hours to obtain a solvent-containing molded body. As the curing agent, 1- (2-aminoethyl) piperazine was used. The mold used was a styrene foam 100 mm × 70 mm, 20 mm thick inner surface coated with a fluorine paint water repellent spray (“HIREC 1450” manufactured by NTT Adbaus Technology) and dried. The contact angle with water was 151 °.

リモネンを用いて脱型後、イオン交換水に浸漬し、溶液を加熱し、80℃で120分保持後含溶媒成形体サンプルを得た。含溶媒成形体サンプルは温度30℃相対湿度90%で48時間加湿乾燥し、割れの有無を確認した。また、100mm×70mm、厚さ20mmの含溶媒成形体サンプルを温度30℃相対湿度90%で5日間加湿乾燥後、100℃で24時間熱風乾燥し、乾燥成形体を得、さらに電気炉で600℃まで25℃/時間で昇温後、さらに昇温し1600℃で2時間焼結し焼結体サンプルを得た。得られた焼結体サンプルで密度、表面粗さを測定した。結果は表1に示す。乾燥割れは発生しなかった。また、焼結体の相対密度は99%以上であり、焼結体の表面粗さはRa0.9μmと小さな値であった。   After demolding using limonene, it was immersed in ion-exchanged water, the solution was heated, and held at 80 ° C. for 120 minutes to obtain a solvent-containing molded body sample. The solvent-containing molded body sample was humidified and dried for 48 hours at a temperature of 30 ° C. and a relative humidity of 90%, and the presence of cracks was confirmed. Further, a 100 mm × 70 mm, 20 mm thick solvent-containing molded body sample was humidified and dried for 5 days at a temperature of 30 ° C. and a relative humidity of 90%, and then dried with hot air at 100 ° C. for 24 hours to obtain a dried molded body. After heating up to 25 ° C./hour up to 25 ° C., the temperature was further raised and sintered at 1600 ° C. for 2 hours to obtain a sintered body sample. The density and surface roughness of the obtained sintered body sample were measured. The results are shown in Table 1. Dry cracking did not occur. Further, the relative density of the sintered body was 99% or more, and the surface roughness of the sintered body was a small value of Ra 0.9 μm.

実施例2
表1の実施例2の欄に示す処方の混合物をボールミルに入れ24時間混合した。
セラミックス粉末:酸化ジルコニウム(BET値 12m/g)
硬化性樹脂:水溶性エポキシ樹脂(グリシジルエーテル型)(坂本薬品工業製“SR−PG”)
溶媒:イオン交換水
分散剤:ポリカルボン酸塩(中京油脂製“D−305”(含有量40%))
次に、ボールミルから混合物を取り出し、ロータリーエバポレーターで硬化剤を混合し、成形型に流し込み、20℃で15時間放置して硬化させ含溶媒成形体を得た。硬化剤は1−(2−アミノエチル)ピペラジンを使用した。成形型は発泡スチロール製100mm×70mm、厚さ20mmにフッ素系防水スプレー(ライカ製“HYDRO−TECH”)を塗布して乾燥させたものを用いた。水に対する接触角は140°であった。リモネンを用いて脱型後、イオン交換水に浸漬し、溶液を加熱し、90℃で60分保持後、室温まで冷却し、含溶媒成形体サンプルを得た。実施例1と同様にして各測定を実施した。なお焼結は1400℃で2時間保持した。結果は表1に示すとおり、混合物の粘度は少し高めであったが乾燥割れは発生しなかった。焼結体の相対密度は98.8%と高い値であり、表面粗さはRa1.6μmと小さな値であった。
Example 2
The mixture of the formulation shown in the column of Example 2 in Table 1 was placed in a ball mill and mixed for 24 hours.
Ceramic powder: Zirconium oxide (BET value 12m 2 / g)
Curable resin: Water-soluble epoxy resin (glycidyl ether type) ("SR-PG" manufactured by Sakamoto Pharmaceutical Co., Ltd.)
Solvent: ion-exchange water dispersant: polycarboxylate (“D-305” (content 40%) manufactured by Chukyo Yushi)
Next, the mixture was taken out from the ball mill, the curing agent was mixed with a rotary evaporator, poured into a mold, and allowed to cure at 20 ° C. for 15 hours to obtain a solvent-containing molded body. As the curing agent, 1- (2-aminoethyl) piperazine was used. The molding die used was 100 mm × 70 mm made of polystyrene foam and 20 mm thick coated with fluorine waterproof spray (Leica “HYDRO-TECH”) and dried. The contact angle with water was 140 °. After demolding using limonene, it was immersed in ion-exchanged water, the solution was heated, held at 90 ° C. for 60 minutes, and then cooled to room temperature to obtain a solvent-containing molded body sample. Each measurement was carried out in the same manner as in Example 1. Sintering was held at 1400 ° C. for 2 hours. As shown in Table 1, the viscosity of the mixture was slightly higher, but no dry cracking occurred. The relative density of the sintered body was as high as 98.8%, and the surface roughness was as small as Ra 1.6 μm.

実施例3
表1の実施例3の欄に示す処方の混合物をボールミルに入れ24時間混合した。
セラミックス粉末:炭化珪素(BET値 15m/g)
硬化性樹脂:水溶性エポキシ樹脂(グリシジルエーテル型)(坂本薬品工業製“SR−PG”)
溶媒:イオン交換水
分散剤:ポリカルボン酸塩(中京油脂製“D−305”(含有量40%)
次に、ボールミルから混合物を取り出し、ロータリーエバポレーターで硬化剤を混合しながら脱泡し、成形型に流し込み、20℃で15時間放置して硬化させ含溶媒成形体を得た。硬化剤は1−(2−アミノエチル)ピペラジンを使用した。成形型は発泡スチロール製100mm×70mm、厚さ20mmにシリコン系樹脂(中京化成製ペリコートAL−H)を塗布して乾燥させたものを用いた。水に対する接触角は123°であった。リモネンを用いて脱型後、イオン交換水に浸漬し、溶液を加熱し、100℃で30分保持後室温まで冷却し、含溶媒成形体サンプルを得た。実施例1と同様にして各測定を実施した。なお焼結は真空焼結炉を用い、1450℃で2時間保持した。結果は表1に示すとおり乾燥割れは発生しなかった。焼結体の相対密度は99.0%と高く、表面粗さはRa2.4μmであった。
Example 3
The mixture of the formulation shown in the column of Example 3 in Table 1 was placed in a ball mill and mixed for 24 hours.
Ceramic powder: Silicon carbide (BET value 15 m 2 / g)
Curable resin: Water-soluble epoxy resin (glycidyl ether type) ("SR-PG" manufactured by Sakamoto Pharmaceutical Co., Ltd.)
Solvent: ion-exchange water dispersant: polycarboxylate (“D-305” manufactured by Chukyo Yushi Co., Ltd., content 40%)
Next, the mixture was taken out from the ball mill, defoamed while mixing the curing agent with a rotary evaporator, poured into a mold, and allowed to cure at 20 ° C. for 15 hours to obtain a solvent-containing molded article. As the curing agent, 1- (2-aminoethyl) piperazine was used. The molding die used was a foamed polystyrene 100 mm × 70 mm and a thickness of 20 mm coated with a silicone resin (Peicoat AL-H manufactured by Chukyo Kasei) and dried. The contact angle with respect to water was 123 °. After demolding using limonene, it was immersed in ion-exchanged water, the solution was heated, held at 100 ° C. for 30 minutes, and then cooled to room temperature to obtain a solvent-containing molded body sample. Each measurement was carried out in the same manner as in Example 1. In addition, sintering was hold | maintained at 1450 degreeC for 2 hours using the vacuum sintering furnace. As a result, dry cracking did not occur as shown in Table 1. The relative density of the sintered body was as high as 99.0%, and the surface roughness was Ra 2.4 μm.

実施例4
表1の実施例4の欄に示す処方の混合物をボールミルに入れ24時間混合した。処方の窒化珪素には焼結助剤として酸化ジルコニウム、スピネル(MgAlO)をそれぞれ3.5重量%添加している。
セラミックス粉末:窒化珪素 (BET値6m/g)
硬化性樹脂:水溶性エポキシ樹脂(グリシジルエーテル型)(ナガセケムテックス製“EX−314”)
溶媒:イオン交換水
分散剤:ポリカルボン酸塩(中京油脂製“D−735(含有量20%))
次に、ボールミルから混合物を取り出し、ロータリーエバポレーターで硬化剤を混合し、成形型に流し込み、20℃で15時間放置して硬化させ含溶媒成形体を得た。硬化剤は1−(2−アミノエチル)ピペラジンを使用した。成形型は発泡スチロール製100mm×70mm、厚さ20mmにシリコン樹脂スプレー(東レ・ダウコーニング製“リリエース”)を塗布して乾燥させたものを用いた。水に対する接触角は120°であった。リモネンを用いて脱型後、イオン交換水に浸漬し、溶液を加熱し、100℃で30分保持後室温まで冷却し、含溶媒成形体サンプルを得た。実施例1と同様にして各測定を実施した。なお焼結は雰囲気焼結炉を用い窒素雰囲気で2000℃2時間保持した。結果は表1に示すとおり乾燥割れは発生しなかった。焼結体の相対密度は99%と高く、表面粗さはRa3.2μmであった。
Example 4
The mixture of the formulation shown in the column of Example 4 in Table 1 was placed in a ball mill and mixed for 24 hours. Zirconium oxide and spinel (MgAl 2 O) are added to the prescribed silicon nitride as sintering aids in an amount of 3.5% by weight.
Ceramic powder: Silicon nitride (BET value 6m 2 / g)
Curable resin: Water-soluble epoxy resin (glycidyl ether type) (“EX-314” manufactured by Nagase ChemteX)
Solvent: ion-exchange water dispersant: polycarboxylate (manufactured by Chukyo Yushi "D-735 (content 20%))"
Next, the mixture was taken out from the ball mill, the curing agent was mixed with a rotary evaporator, poured into a mold, and allowed to cure at 20 ° C. for 15 hours to obtain a solvent-containing molded body. As the curing agent, 1- (2-aminoethyl) piperazine was used. The mold used was 100 mm × 70 mm made of styrene foam and 20 mm thick coated with a silicone resin spray (“Reliece” manufactured by Toray Dow Corning) and dried. The contact angle with water was 120 °. After demolding using limonene, it was immersed in ion-exchanged water, the solution was heated, held at 100 ° C. for 30 minutes, and then cooled to room temperature to obtain a solvent-containing molded body sample. Each measurement was carried out in the same manner as in Example 1. Sintering was performed at 2000 ° C. for 2 hours in a nitrogen atmosphere using an atmosphere sintering furnace. As a result, dry cracking did not occur as shown in Table 1. The relative density of the sintered body was as high as 99%, and the surface roughness was Ra 3.2 μm.

比較例1
表1の比較例1の欄に示す処方の混合物をボールミルに入れ24時間混合した。
セラミックス粉末:酸化アルミニウム(BET値 4m/g)
硬化性樹脂:水溶性エポキシ樹脂(グリシジルエーテル型)(ナガセケムテックス製“EX−313”)
溶媒:イオン交換水
分散剤:ポリカルボン酸塩(中京油脂製“D−305”(含有量40%))
次に、ボールミルから混合物を取り出し、ロータリーエバポレーターで硬化剤を混合し、成形型に流し込み、20℃で24時間放置して硬化させ含溶媒成形体を得た。硬化剤は1−(2−アミノエチル)ピペラジンを使用した。成形型は発泡スチロール製100mm×70mm、厚さ20mmとした。水に対する接触角は110°であった。リモネンを用いて脱型後、含溶媒成形体サンプルを実施例1と同様にして各測定を実施した。結果は表1に示すとおり割れの発生が無く、焼結体密度も99.2%と高かったが、表面粗さがRa12.9μmと高い値であった。
Comparative Example 1
The mixture of the formulation shown in the column of Comparative Example 1 in Table 1 was placed in a ball mill and mixed for 24 hours.
Ceramic powder: Aluminum oxide (BET value 4m 2 / g)
Curable resin: Water-soluble epoxy resin (glycidyl ether type) (“EX-313” manufactured by Nagase ChemteX)
Solvent: ion-exchange water dispersant: polycarboxylate (“D-305” (content 40%) manufactured by Chukyo Yushi)
Next, the mixture was taken out from the ball mill, mixed with a curing agent by a rotary evaporator, poured into a mold, and allowed to cure at 20 ° C. for 24 hours to obtain a solvent-containing molded body. As the curing agent, 1- (2-aminoethyl) piperazine was used. The mold was made of polystyrene foam 100 mm × 70 mm and thickness 20 mm. The contact angle with water was 110 °. After demolding using limonene, each measurement was carried out on the solvent-containing molded body sample in the same manner as in Example 1. As shown in Table 1, there was no cracking and the sintered body density was as high as 99.2%, but the surface roughness was as high as Ra12.9 μm.

比較例2
成形型はロストワックス製100mm×70mm、厚さ20mmを使用した以外は比較例1と同様に実施した。水に対する接触角は106°であった。ロストワックスを湯で溶解させたが成形型表面に付着したワックスは取れきれなかった。結果は表1に示すとおり焼結体密度も99.2%と高く、表面粗さもRa1.5μmと小さな値であったがサンプル10個中6個が乾燥割れを起こした。
Comparative Example 2
The mold was carried out in the same manner as Comparative Example 1 except that a lost wax 100 mm × 70 mm and a thickness of 20 mm were used. The contact angle with water was 106 °. Lost wax was dissolved in hot water, but the wax adhering to the mold surface could not be removed. As shown in Table 1, the sintered body density was as high as 99.2% and the surface roughness was as small as Ra 1.5 μm, but 6 out of 10 samples caused dry cracking.

比較例3
成形型は発泡スチロール製100mm×70mm、厚さ20mmの表面にウレタンエマルジョン(三洋化成製“パーマリンUA−300”)を刷毛で塗布し乾燥させたものを使用した以外は比較例1と同様に実施した。水に対する接触角は69°であった。発泡スチロールを溶解した後、含溶媒セラミックスからウレタン樹脂の膜をはぎ取った。樹脂を塗布した分だけ形状が変わってしまった。結果は表1に示すとおり焼結体密度も99.2%と高かったが表面粗さはRa4.5μmと大きな値であった。
Comparative Example 3
The mold was carried out in the same manner as in Comparative Example 1 except that a urethane emulsion (“Permarin UA-300” manufactured by Sanyo Kasei) was applied to the surface of polystyrene foam 100 mm × 70 mm and thickness 20 mm with a brush and dried. . The contact angle with water was 69 °. After dissolving the expanded polystyrene, the urethane resin film was peeled off from the solvent-containing ceramic. The shape changed as much as the resin was applied. As shown in Table 1, the sintered body density was as high as 99.2%, but the surface roughness was a large value of Ra 4.5 μm.

Figure 0005146010
Figure 0005146010

表1の実施例1〜4の欄に示す通り、本発明のセラミックス成形体の製造方法によると、表面粗さが小さく寸法精度が良く、また割れがなく、焼結体とした場合の特性に優れた成形体を得ることができる。   As shown in the columns of Examples 1 to 4 in Table 1, according to the method for producing a ceramic molded body of the present invention, the surface roughness is small, the dimensional accuracy is good, there is no crack, and the characteristics when a sintered body is obtained. An excellent molded body can be obtained.

本発明による成形体の製造方法は、複雑形状物、大型複雑形状物等を好適に提供できるため、大型構造用部品、半導体部品、各種精密部品などに応用することができるが、その応用範囲がこれらに限られるものではない。   The method for producing a molded body according to the present invention can be suitably applied to large-sized structural parts, semiconductor parts, various precision parts, etc., because it can suitably provide complicated shaped objects, large-sized complicated shaped objects, etc. However, it is not limited to these.

Claims (5)

セラミックス粉体、分散剤、硬化性樹脂および溶媒を含む混合物を溶可溶性の成形型内に注入する工程、注入した該混合物を硬化させて成形し、含溶媒セラミックス成形体とする工程、該成形型を溶剤で溶解除去する脱型工程、該脱型工程によって得られた含溶媒セラミックス成形体を乾燥させる工程を有するセラミックス成形体の製造方法において、該溶媒は水であり、該成形型として内側表面に撥水処理を施した成形型を用いることを特徴とするセラミックス成形体の製造方法。 Ceramic powder, dispersant, implanting a mixture comprising curable resin and a solvent into the mold of solvent-soluble, the injected mixture is cured and molded, the step of the solvent content ceramic body, the molding In a method for producing a ceramic molded body comprising a demolding step of dissolving and removing a mold with a solvent, and a step of drying the solvent-containing ceramic molded body obtained by the demolding step, the solvent is water, and the inner side is the mold A method for producing a ceramic molded body, wherein a molding die having a water repellent treatment on the surface thereof is used. 前記成形型が発泡スチロールを主成分とする請求項1に記載のセラミックス成形体の製造方法。 The method for producing a ceramic molded body according to claim 1, wherein the mold has a polystyrene foam as a main component. 前記撥水処理が前記成形型の内側表面にフッ素系樹脂を塗布することにより施されている請求項1または2に記載のセラミックス成形体の製造方法。 The method for producing a ceramic molded body according to claim 1 or 2, wherein the water repellent treatment is performed by applying a fluorine-based resin to an inner surface of the mold. 前記硬化性樹脂が水溶性のエポキシ樹脂であることを特徴とする請求項1〜3のいずれかに記載のセラミックス成形体の製造方法。 The method for producing a ceramic molded body according to any one of claims 1 to 3, wherein the curable resin is a water-soluble epoxy resin. 請求項1〜4のいずれかの製造方法によって得られたセラミックス成形体を焼結することを特徴とするセラミック焼結体の製造方法。 A method for producing a ceramic sintered body, comprising sintering a ceramic molded body obtained by the production method according to claim 1.
JP2008047548A 2008-02-28 2008-02-28 Method for producing ceramic molded body and method for producing ceramic sintered body using the same Expired - Fee Related JP5146010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008047548A JP5146010B2 (en) 2008-02-28 2008-02-28 Method for producing ceramic molded body and method for producing ceramic sintered body using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008047548A JP5146010B2 (en) 2008-02-28 2008-02-28 Method for producing ceramic molded body and method for producing ceramic sintered body using the same

Publications (2)

Publication Number Publication Date
JP2009202451A JP2009202451A (en) 2009-09-10
JP5146010B2 true JP5146010B2 (en) 2013-02-20

Family

ID=41145209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008047548A Expired - Fee Related JP5146010B2 (en) 2008-02-28 2008-02-28 Method for producing ceramic molded body and method for producing ceramic sintered body using the same

Country Status (1)

Country Link
JP (1) JP5146010B2 (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10226919B2 (en) 2007-07-18 2019-03-12 Voxeljet Ag Articles and structures prepared by three-dimensional printing method
DE102007050953A1 (en) 2007-10-23 2009-04-30 Voxeljet Technology Gmbh Device for the layered construction of models
DE102010006939A1 (en) 2010-02-04 2011-08-04 Voxeljet Technology GmbH, 86167 Device for producing three-dimensional models
DE102010013732A1 (en) 2010-03-31 2011-10-06 Voxeljet Technology Gmbh Device for producing three-dimensional models
DE102010014969A1 (en) 2010-04-14 2011-10-20 Voxeljet Technology Gmbh Device for producing three-dimensional models
DE102010015451A1 (en) 2010-04-17 2011-10-20 Voxeljet Technology Gmbh Method and device for producing three-dimensional objects
DE102011007957A1 (en) 2011-01-05 2012-07-05 Voxeljet Technology Gmbh Device and method for constructing a layer body with at least one body limiting the construction field and adjustable in terms of its position
DE102011111498A1 (en) 2011-08-31 2013-02-28 Voxeljet Technology Gmbh Device for the layered construction of models
DE102012004213A1 (en) 2012-03-06 2013-09-12 Voxeljet Technology Gmbh Method and device for producing three-dimensional models
DE102012010272A1 (en) 2012-05-25 2013-11-28 Voxeljet Technology Gmbh Method for producing three-dimensional models with special construction platforms and drive systems
DE102012012363A1 (en) 2012-06-22 2013-12-24 Voxeljet Technology Gmbh Apparatus for building up a layer body with a storage or filling container movable along the discharge container
DE102012020000A1 (en) 2012-10-12 2014-04-17 Voxeljet Ag 3D multi-stage process
DE102013004940A1 (en) 2012-10-15 2014-04-17 Voxeljet Ag Method and device for producing three-dimensional models with tempered printhead
DE102012022859A1 (en) 2012-11-25 2014-05-28 Voxeljet Ag Construction of a 3D printing device for the production of components
DE102013003303A1 (en) 2013-02-28 2014-08-28 FluidSolids AG Process for producing a molded part with a water-soluble casting mold and material system for its production
DE102013018182A1 (en) 2013-10-30 2015-04-30 Voxeljet Ag Method and device for producing three-dimensional models with binder system
DE102013018031A1 (en) 2013-12-02 2015-06-03 Voxeljet Ag Swap body with movable side wall
DE102013020491A1 (en) 2013-12-11 2015-06-11 Voxeljet Ag 3D infiltration process
EP2886307A1 (en) 2013-12-20 2015-06-24 Voxeljet AG Device, special paper and method for the production of moulded components
DE102014004692A1 (en) * 2014-03-31 2015-10-15 Voxeljet Ag Method and apparatus for 3D printing with conditioned process control
DE102014007584A1 (en) 2014-05-26 2015-11-26 Voxeljet Ag 3D reverse printing method and apparatus
CN106573294B (en) 2014-08-02 2021-01-01 沃克斯艾捷特股份有限公司 Method and casting mould, in particular for a cold casting method
DE102015006533A1 (en) 2014-12-22 2016-06-23 Voxeljet Ag Method and device for producing 3D molded parts with layer construction technique
DE102015003372A1 (en) 2015-03-17 2016-09-22 Voxeljet Ag Method and device for producing 3D molded parts with double recoater
DE102015006363A1 (en) 2015-05-20 2016-12-15 Voxeljet Ag Phenolic resin method
DE102015011503A1 (en) 2015-09-09 2017-03-09 Voxeljet Ag Method for applying fluids
DE102015011790A1 (en) 2015-09-16 2017-03-16 Voxeljet Ag Device and method for producing three-dimensional molded parts
DE102015015353A1 (en) 2015-12-01 2017-06-01 Voxeljet Ag Method and device for producing three-dimensional components by means of an excess quantity sensor
DE102016002777A1 (en) 2016-03-09 2017-09-14 Voxeljet Ag Method and device for producing 3D molded parts with construction field tools
DE102016013610A1 (en) 2016-11-15 2018-05-17 Voxeljet Ag Intra-head printhead maintenance station for powder bed-based 3D printing
DE102017006860A1 (en) 2017-07-21 2019-01-24 Voxeljet Ag Method and device for producing 3D molded parts with spectrum converter
DE102018006473A1 (en) 2018-08-16 2020-02-20 Voxeljet Ag Method and device for the production of 3D molded parts by means of layer construction technology by means of a closure device
DE102019000796A1 (en) 2019-02-05 2020-08-06 Voxeljet Ag Exchangeable process unit
DE102019007595A1 (en) 2019-11-01 2021-05-06 Voxeljet Ag 3D PRINTING PROCESS AND MOLDED PART MANUFACTURED WITH LIGNINE SULPHATE

Also Published As

Publication number Publication date
JP2009202451A (en) 2009-09-10

Similar Documents

Publication Publication Date Title
JP5146010B2 (en) Method for producing ceramic molded body and method for producing ceramic sintered body using the same
Zhao et al. Continuously tunable wettability by using surface patterned shape memory polymers with giant deformability
JP6468021B2 (en) 3D modeling powder material, 3D modeling material set, 3D model, 3D model manufacturing method and manufacturing apparatus
JP2016112870A (en) 3d modeling powder material and 3d modeling set, and 3d modeled object producing method and producing apparatus
CN108503365B (en) Silicon carbide ceramic based on photocuring technology and preparation method thereof
TW505659B (en) Fluororesin powder liquid dispersion and a process for producing the same
CN102898141A (en) Preparation method of high-heat-conduction aluminum nitride ceramic shaped part
WO2018038031A1 (en) Method for molding ceramic material, method for producing ceramic article, and ceramic article
US12083557B2 (en) Surface properties modification of digitally manufactured articles via reactive silicon-containing precursor polymers
US20150328678A1 (en) Methods and compositions for formation of ceramic articles
CN105838315A (en) High-temperature-resistant benzoxazine resin adhesive and preparation method thereof
KR101904874B1 (en) Method For Preparing Fused Silica Sintered Material Using Gel-Casting Process
US20210394391A1 (en) Additive Manufacturing of Polymer Ceramics
Jiang et al. Preparation of high performance AlN/Hydantion composite by gelcasting and infiltration processes
JP2007261925A (en) Method for producing ceramic molding and method for producing ceramic sintered compact using the molding
JP2010228424A (en) Method for manufacturing ceramic molding, and method for manufacturing ceramic sintered body using the same
JP4946014B2 (en) Method for producing ceramic molded body and method for producing ceramic sintered body using the same
JP2011157222A (en) Method for producing ceramic molding
CN105086466B (en) The preparation method of acid and alkali-resistance molded silicon rubber
JP6386291B2 (en) Manufacturing method of ceramic molded body
US20170282401A1 (en) Casting Cores And Producing Slips
Park et al. Enhancing fracture strength of ceramic core using sodium silicate as the binder
JP3692682B2 (en) Manufacturing method of ceramic molded body
CN112341211B (en) Ceramic-based bionic material and preparation method and application thereof
JP2009234852A (en) Method of manufacturing ceramic molded boy and method of manufacturing ceramic sintered compact

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121112

R151 Written notification of patent or utility model registration

Ref document number: 5146010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees