JP5145562B2 - Fine particles and method for producing the fine particles - Google Patents
Fine particles and method for producing the fine particles Download PDFInfo
- Publication number
- JP5145562B2 JP5145562B2 JP2007536447A JP2007536447A JP5145562B2 JP 5145562 B2 JP5145562 B2 JP 5145562B2 JP 2007536447 A JP2007536447 A JP 2007536447A JP 2007536447 A JP2007536447 A JP 2007536447A JP 5145562 B2 JP5145562 B2 JP 5145562B2
- Authority
- JP
- Japan
- Prior art keywords
- fine particles
- general formula
- copolymer
- containing monomer
- fluorine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010419 fine particle Substances 0.000 title claims description 68
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 239000000178 monomer Substances 0.000 claims description 52
- 229920001577 copolymer Polymers 0.000 claims description 38
- 229920000642 polymer Polymers 0.000 claims description 35
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 30
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 26
- 229910052731 fluorine Inorganic materials 0.000 claims description 26
- 239000011737 fluorine Substances 0.000 claims description 26
- 239000002253 acid Substances 0.000 claims description 25
- 150000001412 amines Chemical class 0.000 claims description 23
- 239000001569 carbon dioxide Substances 0.000 claims description 15
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 15
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 15
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 9
- 238000004132 cross linking Methods 0.000 claims description 7
- 125000000217 alkyl group Chemical group 0.000 claims description 6
- 150000007524 organic acids Chemical class 0.000 claims description 5
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 4
- 125000003709 fluoroalkyl group Chemical group 0.000 claims description 3
- -1 acryl group Chemical group 0.000 claims description 2
- 125000003342 alkenyl group Chemical group 0.000 claims description 2
- 239000002245 particle Substances 0.000 description 20
- 238000006243 chemical reaction Methods 0.000 description 13
- 150000001875 compounds Chemical class 0.000 description 12
- 238000000034 method Methods 0.000 description 10
- 239000002904 solvent Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000000126 substance Substances 0.000 description 6
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 4
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 229920005604 random copolymer Polymers 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000007334 copolymerization reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229920002313 fluoropolymer Polymers 0.000 description 3
- 239000004811 fluoropolymer Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- 229910021642 ultra pure water Inorganic materials 0.000 description 3
- 239000012498 ultrapure water Substances 0.000 description 3
- 239000010887 waste solvent Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000000635 electron micrograph Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- ZQBFAOFFOQMSGJ-UHFFFAOYSA-N hexafluorobenzene Chemical compound FC1=C(F)C(F)=C(F)C(F)=C1F ZQBFAOFFOQMSGJ-UHFFFAOYSA-N 0.000 description 2
- 239000000976 ink Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 241000287463 Phalacrocorax Species 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000010539 anionic addition polymerization reaction Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 238000012662 bulk polymerization Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000010538 cationic polymerization reaction Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004332 deodorization Methods 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 238000000651 laser trapping Methods 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000010557 suspension polymerization reaction Methods 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/22—Esters containing halogen
- C08F220/24—Esters containing halogen containing perhaloalkyl radicals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/34—Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/54—Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Description
【技術分野】
本発明は、高分子の集合体からなる微粒子及びその微粒子の製造方法に関する。
【背景技術】
以前から、電子写真や印刷用および塗料の分野で用いられる高分子微粒子の製造方法としては、水もしくは有機溶剤を媒体とした懸濁重合法や乳化重合法が用いられてきた。すなわち、溶媒に重合性モノマーおよび着色剤、ワックス等を分散させ、開始剤を加えて重合後、溶媒を除去し、形成された高分子微粒子を洗浄、捕集、乾燥して高分子微粒子を得る方法である。
しかし、従来の高分子微粒子の製造法では、以下のような難点が生じ、結果として、高画質化できないとか、環境に対する負荷が大きいなどの不都合が生じる。
(1)10マイクロメートル以下の高分子微粒子を製造することが困難
(2)粒径分布の範囲が広く、分級による粒度調整が必要
(3)微粒子から溶媒を除去するための溶媒除去工程が必要
(4)廃水処理もしくは廃溶剤処理工程が必要
(5)高分子微粒子にモノマーが残留する
下記特許文献1に見られるように、従来法で得られた高分子粒子塊を機械式粉砕機とか圧縮空気を使用する高速ジェットミルで粉砕して高分子微粒子を得ることも行なわれるが、一般に高分子塊から機械的な粉砕手段で数百マイクロメートル、例えば、100マイクロメートル以下のいわゆる微粒子を得るのは困難である。
【特許文献1】
特開平8−1669号公報
【特許文献2】
特開2005−181489号公報
【非特許文献1】
新高分子実験化学2;高分子の合成―反応(1);付加系高分子の合成、高分子学会編―共立出版1995
【発明の開示】
【発明が解決しようとする課題】
本発明は、従来の高分子微粒子の製造法では困難であった粒径が10マイクロメートル以下好ましくは粒径が5マイクロメートル以下で、かつ粒度分布を調整するための分級工程が不要な程度に粒度の揃った高分子微粒子を提供する。これにより、高分子微粒子を電子写真の現像材、印刷用インク、塗料等の構成材料として使用する上で不可欠な、高分子微粒子の低粒度化あるいは所望の粒度調整を可能にする。さらに、本発明は、高分子微粒子の形成過程において、溶媒として水あるいは有機溶剤を用いないことで、高分子微粒子形成後の溶媒除去工程ならびに廃溶媒処理工程が不要な球状の高分子微粒子の製造方法を提供する。これにより、高分子微粒子の製造工程を簡素化すると共に、環境負荷の少ない製造方法を提供することを目指す。
【課題を解決するための手段】
〔1〕微粒子において、下記一般式(1)で示されるフッ素含有モノマーと下記一般式(2)で示されるアミン含有モノマーの共重合体を多官能性酸で非共有結合的に架橋することを特徴とする。
【化3】
ここで、上記一般式(1)中、R1 は水素原子またはメチル基、xは1〜4の整数、yは5〜15の整数である。
【化4】
ここで、上記一般式(2)中、R2 は水素原子またはメチル基、R3 、R4 は水素原子またはアルキル基、zは1〜4の整数である。
〔2〕上記〔1〕記載の共重合体からなる微粒子の表面が、前記一般式(1)で示されるフッ素含有モノマーのフッ素含有セグメントに被われ、且つ微粒子の内部が、主に前記一般式(2)で示されるアミン含有セグメント又は多官能性酸で架橋されているアミン含有セグメント、及びフッ素を含有しない主ポリマー鎖からなる微粒子であることを特徴とする。
〔3〕上記〔1〕又は〔2〕記載の微粒子は、球状であることを特徴とする。
〔4〕超臨界ないし亜臨界二酸化炭素に上記〔1〕記載の共重合体及び多官能性酸を投入し、処理することによって製造された架橋共重合体からなる微粒子であることを特徴とする。
〔5〕架橋共重合体からなる微粒子の製造方法であって、超臨界ないし亜臨界二酸化炭素で共重合体及び多官能性酸を投入し、処理することを特徴とする。
〔6〕上記〔1〕記載の微粒子において、前記フッ素含有モノマーと前記アミン含有モノマーの割合を、モル比で9:1〜5:5にすることを特徴とする。
〔7〕上記〔1〕記載の微粒子であって、前記多官能性酸は下記一般式(3)で示される有機酸であることを特徴とする。
HOOC−R5 −COOH …(3)
ここで、一般式(3)中、R5 はアルキル基、アルケニル基、アクリール基もしくはフロロアルキル基である。
〔8〕上記〔7〕記載の架橋共重合体からなる微粒子であって、前記多官能性酸が前記一般式(3)で示される有機酸であることを特徴とする。
本発明者らは鋭意検討した結果、超臨界ないし亜臨界二酸化炭素中で、フッ素含有モノマーとアミン含有モノマーの共重合体に、多官能性酸を付加することにより、該共重合体を非共有結合的に架橋することで、5マイクロメートル以下の球状高分子微粒子が得られることを見出し、本発明を完成した。なお、本発明で言う微粒子とは粒径が5マイクロメートル以下の粒子もしくは粒子群を指す。
すなわち、本発明においは、下記一般式(1)で示されるフッ素含有モノマーと下記一般式(2)で示されるアミン含有モノマーの共重合体を得る。この共重合体に、超臨界二酸化炭素中で、多官能性酸を作用させることにより、高分子の集合体からなる球状微粒子が形成される。
【化5】
上記一般式(1)中、R1 は水素原子またはメチル基、xは1〜4の整数、yは5〜15の整数である。
【化6】
上記 一般式(2)中、R2 は水素原子またはメチル基、R3 、R4 は水素原子またはアルキル基、zは1〜4の整数である。
さらに、本発明においては、上記一般式(1)で示されるフッ素含有モノマーと上記一般式(2)で示されるアミン含有モノマーの共重合体に、超臨界二酸化炭素中で、下記一般式(3)で示される有機酸、もしくは燐酸または硫酸を作用させることにより、高分子の集合体からなる球状微粒子が形成される。
HOOC−R5 −COOH …(3)
上記一般式(3)中、R5 はアルキル基、アリール基、もしくはフロロアルキル基である。
また、本発明は、超臨界二酸化炭素中で、上記一般式(1)で示されるフッ素含有モノマーと上記一般式(2)で示されるアミン含有モノマーの共重合体に、上記一般式(3)で示される多官能性酸を作用させることにより高分子の集合体からなる球状微粒子を製造する方法を提供する。
【発明の効果】
本発明によれば、比較的粒径の揃った5マイクロメートル以下の高分子の集合体からなる球状微粒子を製造することができる。また超臨界ないし亜臨界二酸化炭素中で高分子の微粒子化を行うため、常温常圧では二酸化炭素が気体に戻り、いわゆる溶媒除去工程が不要であるという利点を有する。したがって廃水乃至は廃溶剤の処理工程も不要である。さらに本発明はモノマー成分の重合により直接高分子微粒子を得る製造法ではないので、残存モノマーの心配がないなど、環境にやさしい技術を提供することができる。
【発明を実施するための最良の形態】
以下、本発明を図1に従って詳細に説明する。図1は本発明に基づいて構成された設備の1例であり、本発明に基づく高分子微粒子の製造設備はこれに限るものではない。前記一般式(1)で示されるフッ素含有モノマーと前記一般式(2)で示されるアミン含有モノマーの共重合体と、該共重合体に非共有結合架橋を形成するための多官能性酸を、温度制御装置5のついた高圧反応セル6に入れて蓋8をした後、ボンベ1に詰められた二酸化炭素を加圧用ポンプを経由して高圧反応セル6に供給する。高圧反応セル6内を所定の温度(20〜65℃、好ましくは35〜50℃)および所定の圧力(7〜30MPa、好ましくは10〜20MPa)に保つ。温度制御は温度制御装置5を使って行う。また圧力は圧力計を参照しながら加圧用ポンプ2、バルブ9を操作して所定値に保つ。この際、高圧反応セル6内は攪拌子等の手段により攪拌されるのが望ましい。所定の温度・圧力に5〜10分間保った後、バルブ10を開放して減圧するとともに、二酸化炭素とともに噴射される生成した球状の高分子微粒子を捕集する。
ここで、該球状の高分子微粒子が生成されるメカニズムを図2に基づいて説明する。前記一般式(1)で示されるフッ素含有モノマーと前記一般式(2)で示されるアミン含有モノマーの共重合体の側鎖はパーフルオロアルキル基とアミノ基である。これに多官能性酸(図2の例ではジカルボン酸が示されているが、多官能性酸であればこれに限るものではない)を超臨界二酸化炭素中で作用させると、アミノ基とアミノ基がジカルボン酸で非共有的に結合し、高分子間の架橋が生じる。一方、架橋にかかわらないパーフロロアルキル基は外側に位置するので図2に示すような球状の高分子凝集体となる。このようにパーフロロアルキル基で覆われた球状の微粒子には強固な撥水性があり、電子写真の現像材、印刷用インク、塗料等の構成材料として用いられた場合、水に濡れてもにじまない印刷物等が得られるメリットがある。さらにパーフロロアルキル基には耐油性もあり、より恒常的な用途も考えられる。
さらに本発明は、高分子に多官能性酸を作用させて高分子間に架橋を生じさせることにより微粒子を形成するもので、モノマー成分の重合により直接得た高分子微粒子ではないこと、また該架橋は非共有的結合によって形成されるものであり、共有結合による架橋ではない点が従来の高分子微粒子と異なる。
本発明で製造される高分子微粒子は目的に応じて、共重合体を構成するモノマーの種類や組成比を選択することができるばかりでなく、非共有結合架橋を形成する多官能性酸の種類を選択することもできる。すなわち、反応性および機能性官能基の異なる多官能性酸を用いることで、幅広い機能を有した高分子微粒子を合成することができる。例えば、触媒、接着、吸着、脱臭、光エネルギー変換・蓄積、光捕集、磁性、伝導性など、さまざまな機能性物質に応用できる高分子微粒子を該多官能性酸の官能基を選ぶことにより形成できる。
前記一般式(1)で示されるフッ素含有モノマーと前記一般式(2)で示されるアミン含有モノマーの共重合体にはランダム共重合体、ブロック共重合体、グラフト共重合体、グループトランスファー共重合体による共重合体等があげられる。これらの共重合体の重合方法は、たとえばラジカル重合、アニオン重合、カチオン重合、グループトランスファー重合等すでに公知の方法により可能である。(上記非文献文献1:新高分子実験化学2;高分子の合成―反応(1);付加系高分子の合成、高分子学会編―共立出版1995/06/15初版1刷発行)また前記一般式(1)で示されるフッ素含有モノマーと前記一般式(2)で示されるアミン含有モノマーの割合は、生成する高分子微粒子の粒度調整の観点から、モル比で9:1〜5:5が望ましい。ここで、前記一般式(1)で示されるフッ素含有モノマーの割合が大きいほど生成する高分子微粒子の粒度は小さくなる。さらに、反応条件としては前記一般式(2)で示されるアミン含有モノマーの割合が大きいほど高い反応圧力を必要とする。該フッ素含有モノマーの割合が9:1より多くなると、微粒子形成に支障をきたす。また5:5より少ないと過大な反応圧力が必要となり望ましくない。
前記一般式(1)で示されるフッ素含有モノマーにおけるCH2 基の数xは、1〜4が適当であるが、好ましくは1あるいは2である。xが5以上になると超臨界二酸化炭素中への溶解が悪くなり、前記架橋反応に支障をきたす。またCF2 基の数yは5〜15の整数が適当であるが、好ましくは7〜10である。5より小さいと十分な粒子形成が得られず、15より大きいと共重合体をつくる際、溶媒への溶解性が悪くなるので不都合を生じる。
前記一般式(2)で示されるアミン含有モノマーにおけるCH2 基の数zは、1〜4が適当であるが、好ましくは1あるいは2である。4より大きいと高分子間の凝集が十分ではなくなり、微粒子体が形成されにくくなる。
さらに、前記一般式(1)、(2)で示されるモノマーと、前記一般式(3)で示される多官能性酸の具体例としては以下のものが挙げられるが本発明はこれに限るものではない。
一般式(1)で示されるモノマーの具体例は次のとおりである。
【表1】
一般式(2)で示されるモノマーの具体例は次の通りである。
【表2】
一般式(3)で示される多官能性酸の具体例は次の通りである。
【表3】
【実施例】
【実施例1】
前記一般式(1)で示されるフッ素含有モノマーにおいて、R1 が水素原子、xが2、yが7の化合物、すなわち前記化合物No.7と、前記一般式(2)で示されるアミン含有モノマーにおいてR2 が水素原子、R3 、R4 がメチル基、zが2の化合物、すなわち前記化合物No.41とを、モル比で7:3の割合でラジカル共重合させて得られたランダム共重合体30ミリグラムと、前記一般式(3)でR5 がC7 F 14基であるジカルボン酸、すなわち前記化合物No.72、6ミリグラム及び攪拌子を、図1に示すのと同型の内容量10ml圧反応セルに仕込み、冷却した二酸化炭素を封入した。つづいて温度を35℃、圧力を15〜20MPa程度に上げ、5〜10分間撹拌した。その後、バルブ10からガスを抜いて圧力を下げるとともに生成物を捕集した。得られた生成物を走査型電子顕微鏡で観察した結果を図3に示す。図3は本発明により数マイクロメートル以下の球状高分子微粒子が得られたことを示す。
【実施例2】
前記一般式(1)で示されるフッ素含有モノマーにおいて、R1 が水素原子、xが2、yが7の化合物、すなわち前記化合物No.7と、前記一般式(2)で示されるアミン含有モノマーにおいてR2 が水素原子、R3 、R4 がメチル基、zが2の化合物、すなわち前記化合物No.41とを、モル比で9:1の割合でラジカル共重合させて得られたランダム共重合体30ミリグラムと、前記一般式(3)でR5 がC7 F14基であるジカルボン酸、すなわち前記化合物No.72、2ミリグラム及び攪拌子を、図1に示すのと同型の内容量10mlの高圧反応セルに仕込み、冷却した二酸化炭素を封入した。つづいて温度を35℃、圧力を15〜20MPa程度に上げ、5〜10分間撹拌した。その後、バルブ10からガスを抜いて圧力を下げるとともに生成物を捕集した。得られた生成物を走査型電子顕微鏡で観察した結果を図4に示す。図4は本発明により数マイクロメートル以下の球状高分子微粒子が得られたことを示す。
次に、本発明の共重合体の合成方法について、図5を参照しながら説明する。 図5は本発明の共重合体の合成方法を示しており、フッ素含有モノマー1.64グラムとアミン含有モノマー0.198グラムを混合し、重合開始剤としてのAIBN(アゾビスイソブチロニトル)を7.4ミリグラム添加して脱気封管後、60℃で5〜10分間、塊状重合した。生成物をヘキサフルオロベンゼンに溶解させ、ヘキサンに沈殿させると、右側に示すように、本発明のモノマーの共重合体を合成することができる。
【実施例3】
図6は本発明にかかるフッ素系高分子の接触角と転落角の特性を示す図、表1はその諸元を示す。
次に、本発明にかかるフッ素系高分子の接触角と転落角の測定方法を説明する。前記一般式(1)で示されるフッ素含有モノマーにおいて、R1 が水素原子、xが2、yが7の化合物、すなわち前記化合物No.7と、前記一般式(2)で示されるアミン含有モノマーにおいてR2 が水素原子、R3 、R4 がメチル基、zが2の化合物、すなわち前記化合物No.41とを、モル比で7:3の割合でラジカル共重合させて得られたランダム共重合体30ミリグラムと、前記一般式(3)でR5 がC7 F14基であるジカルボン酸、すなわち前記化合物No.72、5.5ミリグラムを用いて、実施例2の方法で得られた球状高分子微粒子を、縦2.6センチメートル、横7.6センチメートルのスライドガラス上に貼り付けたカーボンテープに一面に塗布した。その球状高分子微粒子の粉末が塗布されたカーボンテープ上に、10マイクロリットルの超純水を滴下し、水平方向からカメラで作成した(図6(d))。その接触角を測定し、164.9°という値を得た。(図6(d)にはこの<下記表4、サンプル4の>接触角の測定を具体的に示している。)一方、転落角は、スライドガラスの右端から5ミリメートルの地点に同量の超純水を滴下し、スライドガラスの左端を軸にして右端を上げていき、超純水の水滴が転落し始めた角度を測定して、15.0°の値を得た。
【表4】
この表4から明らかなように、サンプル1はテフロン(登録商標)であり、接触角は118.5°、転落角は69.0°、サンプル2は共重合体(cast)(ガラス板上にキャスト)であり、接触角は96.5°、転落角は90°より大きい、サンプル3は共重合体(CO2 )であり、接触角は161.5°、転落角は22.6、サンプル4は共重合体(CO2 )であり、架橋剤はHOOC(CF2 )7 COOH(パーフルオロアゼライン酸)、接触角は164.9°、転落角15.0°、サンプル5は共重合体(CO2 )であり、架橋剤はHOOCCH=CHCOOH(マレイン酸)、接触角は165.5°、転落角16.0°、サンプル6はカーボンテープであり、接触角は80.6°、転落角は90°より大きい、サンプル7はガラス板であり、接触角は16.0°、転落角は44.0°であり、これらそれぞれの態様を図6(a)〜(f)に示している。
なお、ここでは、共重合体は、化1(フッ素モノマーユニット)、化2(アミンモノマーユニット)であり、その割合は、7:3である。
図6から明らかなように、特に、本発明にかかる共重合体を用いた図6(c)〜(e)(サンプル3〜5)の接触角が大きく、転落角が小さく、撥水性が高いことが明らかである。
【産業上の利用可能性】
本発明の微粒子及びその微粒子の製造方法は、残存モノマーの心配がないなど、環境にやさしい微粒子及びその微粒子の製造方法として利用可能である。
【図面の簡単な説明】
【図1】本発明に基づいて高分子微粒子を製造する装置の例を示す図である。
【図2】高分子微粒子が生成されるメカニズムを説明する図である。
【図3】高分子微粒子の電子顕微鏡写真(実施例1)(図面代用写真)である。
【図4】高分子微粒子の電子顕微鏡写真(実施例2)(図面代用写真)である。
【図5】本発明の共重合体の合成方法を示す図である。
【図6】本発明にかかるフッ素系高分子の接触角の特性を示す図である。【Technical field】
The present invention relates to a fine particle comprising a polymer aggregate and a method for producing the fine particle.
[Background]
For a long time, as a method for producing polymer fine particles used in the fields of electrophotography, printing, and paint, suspension polymerization and emulsion polymerization using water or an organic solvent as a medium have been used. That is, a polymerizable monomer, a colorant, wax, and the like are dispersed in a solvent, an initiator is added, and after polymerization, the solvent is removed, and the formed polymer fine particles are washed, collected, and dried to obtain polymer fine particles. Is the method.
However, the conventional method for producing polymer fine particles has the following disadvantages. As a result, there are disadvantages such as an inability to improve the image quality and a heavy load on the environment.
(1) Difficult to produce polymer fine particles of 10 micrometers or less (2) Wide range of particle size distribution and particle size adjustment by classification is required (3) Solvent removal step for removing solvent from fine particles is necessary (4) Waste water treatment or waste solvent treatment step is required (5) Monomer remains in polymer fine particles As seen in Patent Document 1 below, polymer particle mass obtained by the conventional method is compressed by a mechanical crusher or the like fast jet mill is also carried out to obtain a polymer fine particles, typically a few hundreds of micrometers in mechanical pulverization means a polymer mass, for example, fine particles Ru so-called less than 100 micrometers using air Is difficult to get.
[Patent Document 1]
JP-A-8-1669 [Patent Document 2]
JP 2005-181489 A [Non-Patent Document 1]
New Polymer Experimental Chemistry 2; Synthesis of Polymers-Reaction (1); Synthesis of Addition Polymers, edited by Polymer Society of Japan-Kyoritsu Shuppan 1995
DISCLOSURE OF THE INVENTION
[Problems to be solved by the invention]
The present invention has a particle size of 10 micrometers or less, preferably a particle diameter of 5 micrometers or less, and a classification step for adjusting the particle size distribution, which has been difficult with conventional polymer fine particle production methods. to provide a high-molecular fine particles having a uniform particle size. This makes it possible to reduce the particle size of the polymer particles or to adjust the desired particle size, which is indispensable for using the polymer particles as a constituent material for electrophotographic developers, printing inks, paints and the like. Furthermore, the present invention provides a process of forming the high-molecular fine particles, by not using water or an organic solvent as a solvent, a high-molecular solvent removal step and a waste solvent treatment step is unnecessary spherical after the fine grain formation higher to provide a method of manufacturing a molecular fine particles. This aims to simplify the manufacturing process of the polymer fine particles and provide a manufacturing method with less environmental impact.
[Means for Solving the Problems]
[1] In a fine particle, a copolymer of a fluorine-containing monomer represented by the following general formula (1) and an amine-containing monomer represented by the following general formula (2) is crosslinked non-covalently with a polyfunctional acid. Features.
[Chemical 3 ]
Here, in the above general formula (1), R 1 is a hydrogen atom or a methyl group, x is an integer from 1 to 4, y is an integer of 5-15.
[Chemical 4 ]
Here, in the above general formula (2), R 2 is a hydrogen atom or a methyl group, R 3, R 4 is a hydrogen atom or an alkyl group, z is an integer of 1 to 4.
[2] the surface of the fine particles composed of a copolymer of [1] Symbol mounting is covered with a fluorine-containing segment in the fluorine-containing monomer represented by the general formula (1), and the interior of the particles, mainly the general characterized in that it is a fine particle mainly composed port Rimmer chain containing no amine-containing segment, and a fluorine crosslinked with amine-containing segment or a multifunctional acid represented by formula (2).
[3] particles according to [1] or [2], wherein is characterized by a spherical shape.
[4] and wherein the supercritical or a copolymer及beauty polyfunctional acid described in [1] in the subcritical carbon dioxide was introduced, a fine particles of manufacturing cross-linked copolymer by treating To do .
[5] A method of manufacturing a fine particle comprising a crosslinked copolymer, was charged with the copolymer and a polyfunctional acid in supercritical or subcritical carbon dioxide, characterized by processing.
[6] In the particulate described in [1], the ratio of the amine-containing monomer and the fluorine-containing monomer, in a molar ratio of 9: 1 to 5: characterized by a 5.
[7] A particulate described in [1], wherein the polyfunctional acid is an organic acid represented by the following general formula (3).
HOOC-R 5 —COOH (3)
Here, in the general formula (3), R 5 is an alkyl group, an alkenyl group, an acryl group or a fluoroalkyl group.
[8] A fine particle comprising a crosslinked copolymer according to [7], wherein, wherein the polyfunctional acid is an organic acid represented by the general formula (3).
As a result of intensive studies, the present inventors have found that the copolymer is non-covalent by adding a polyfunctional acid to the copolymer of fluorine-containing monomer and amine-containing monomer in supercritical or subcritical carbon dioxide. by combining crosslinked, it found that 5 micrometers or less spherical high content child fine particles are obtained, and have completed the present invention. The particle size is a word cormorants fine particles in the present invention refers to a 5 micron or smaller particles or particle groups.
That is, in the present invention, a copolymer of a fluorine-containing monomer represented by the following general formula (1) and an amine-containing monomer represented by the following general formula (2) is obtained. This copolymer, in supercritical carbon dioxide, by the action of polyfunctional acids, spherical shaped fine particles comprising an aggregate of a polymer is formed.
[Chemical formula 5 ]
In the general formula (1), R 1 is a hydrogen atom or a methyl group, x is an integer from 1 to 4, y is an integer of 5-15.
[Chemical 6 ]
In the general formula (2), R 2 is a hydrogen atom or a methyl group, R 3, R 4 is a hydrogen atom or an alkyl group, z is an integer of 1 to 4.
Furthermore, in the present invention, a copolymer of the fluorine-containing monomer represented by the general formula (1) and the amine-containing monomer represented by the general formula (2) is added to the following general formula (3) in supercritical carbon dioxide. organic acid represented by), or by the action of phosphoric acid or sulfuric acid, spherical shaped fine particles comprising an aggregate of a polymer is formed.
HOOC-R 5 —COOH (3)
In the general formula (3), R 5 is an alkyl group, an aryl group, or a fluoroalkyl group.
Further, the present invention provides a copolymer of the fluorine-containing monomer represented by the general formula (1) and the amine-containing monomer represented by the general formula (2) in supercritical carbon dioxide, the general formula (3) to provide a method for producing a spherical-shaped fine particles comprising an aggregate of a polymer by the action of a polyfunctional acid represented in.
【Effect of the invention】
According to the present invention, it is possible to produce a spherical shape fine particles comprising an aggregate of 5 micrometers or less of a polymer having a uniform relatively particle size. Also for performing the fine particles of the polymer in the supercritical or subcritical carbon dioxide, back to carbon dioxide is gaseous at normal temperature and pressure, has the advantage that so-called solvent removal step is unnecessary. Therefore, no waste water or waste solvent treatment process is required. Furthermore, since the present invention is not a production method for directly obtaining polymer fine particles by polymerization of monomer components, it is possible to provide an environmentally friendly technique such as no concern about residual monomers.
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to FIG. Figure 1 is one example of equipment constructed in accordance with the present invention, production equipment of a high content child fine particles according to the present invention is not limited thereto. A copolymer of a fluorine-containing monomer represented by the general formula (1) and an amine-containing monomer represented by the general formula (2), and a polyfunctional acid for forming a non-covalent bond in the copolymer. After putting in the high pressure reaction cell 6 with the temperature control device 5 and closing the lid 8, the carbon dioxide packed in the cylinder 1 is supplied to the high pressure reaction cell 6 via the pressurizing pump. The inside of the high-pressure reaction cell 6 is maintained at a predetermined temperature (20 to 65 ° C., preferably 35 to 50 ° C.) and a predetermined pressure (7 to 30 MPa, preferably 10 to 20 MPa). The temperature control is performed using the temperature control device 5. The pressure is maintained at a predetermined value by operating the pressurizing pump 2 and the valve 9 while referring to the pressure gauge. At this time, the inside of the high-pressure reaction cell 6 is desirably stirred by means such as a stirring bar. After keeping for 5 to 10 minutes at a predetermined temperature and pressure, as well as reduced pressure by opening the valve 10, to collect a high amount child fine spherical particles produced is injected with carbon dioxide.
Here, a description will be given of a mechanism that spherical high content child fine particles are produced in Fig. The side chain of the copolymer of the fluorine-containing monomer represented by the general formula (1) and the amine-containing monomer represented by the general formula (2) is a perfluoroalkyl group and an amino group. When a polyfunctional acid (dicarboxylic acid is shown in the example of FIG. 2 but not limited to this as long as it is a polyfunctional acid) is allowed to act in supercritical carbon dioxide, an amino group and an amino group Groups are bonded non-covalently with dicarboxylic acids, resulting in cross-linking between polymers. On the other hand, since the perfluoroalkyl group not involved in crosslinking is located on the outside, a spherical polymer aggregate as shown in FIG. 2 is obtained. The spherical fine particles covered with perfluoroalkyl groups as described above have strong water repellency, and when used as a constituent material for electrophotographic developers, printing inks, paints, etc., they will bleed even when wet. There is an advantage that no printed matter can be obtained. In addition, perfluoroalkyl groups have oil resistance and may be used more regularly.
Further, the present invention forms fine particles by causing a polyfunctional acid to act on a polymer to cause cross-linking between the polymers, and is not a polymer fine particle obtained directly by polymerization of a monomer component. crosslinking is intended to be formed by the noncovalent, points not covalent cross differs from conventional high content child fine particles.
High-molecular fine particles produced in the present invention depending on the purpose, it is possible not only to select the type and composition ratio of the monomers constituting the copolymer, polyfunctional acids which form non-covalent cross-linking You can also select the type. In other words, by using different polyfunctional acid reactive and functional group can be synthesized high-molecular fine particles having a wide range of functions. Select example, catalysts, adhesion, adsorption, deodorization, light energy conversion and storage, optical trapping, magnetic, etc. conductivity, the functional groups of the polyfunctional acid high-molecular fine particles that can be applied to a variety of functional materials Can be formed.
The copolymer of the fluorine-containing monomer represented by the general formula (1) and the amine-containing monomer represented by the general formula (2) includes a random copolymer, a block copolymer, a graft copolymer, and a group transfer copolymer. Examples thereof include a copolymer obtained by combination. These copolymers can be polymerized by known methods such as radical polymerization, anionic polymerization, cationic polymerization, and group transfer polymerization. (Non-patent Document 1: New Polymer Experimental Chemistry 2; Synthesis of Polymers-Reaction (1); Synthesis of Addition Polymers, edited by the Society of Polymer Sciences-Kyoritsu Shuppan 1995/06/15, first edition issued) The ratio of the fluorine-containing monomer represented by the formula (1) and the amine-containing monomer represented by the general formula (2) is 9: 1 to 5: 5 in terms of molar ratio from the viewpoint of adjusting the particle size of the polymer fine particles to be produced. desirable. Here, the larger the proportion of the fluorine-containing monomer represented by the general formula (1), the smaller the particle size of the polymer fine particles produced. Furthermore, as the reaction conditions, the higher the proportion of the amine-containing monomer represented by the general formula (2), the higher the reaction pressure is required. When the ratio of the fluorine-containing monomer is more than 9: 1, the formation of fine particles is hindered. If it is less than 5: 5, an excessive reaction pressure is required, which is not desirable.
The number x of CH 2 groups in the fluorine-containing monomer represented by the general formula (1) is suitably 1 to 4, preferably 1 or 2. When x is 5 or more, dissolution in supercritical carbon dioxide deteriorates, which hinders the crosslinking reaction. The number y of CF 2 groups is suitably an integer of 5 to 15, preferably 7 to 10. If it is smaller than 5, sufficient particle formation cannot be obtained, and if it is larger than 15, the solubility in a solvent is deteriorated when a copolymer is produced.
The number z of CH 2 groups in the amine-containing monomer represented by the general formula (2) is suitably 1 to 4, preferably 1 or 2. When the ratio is larger than 4, the aggregation between the polymers is not sufficient, and the fine particles are hardly formed.
Further, specific examples of the monomers represented by the general formulas (1) and (2) and the polyfunctional acid represented by the general formula (3) include the following, but the present invention is not limited thereto. is not.
Specific examples of the monomer represented by the general formula (1) are as follows.
[ Table 1 ]
Specific examples of the monomer represented by the general formula (2) are as follows.
[ Table 2 ]
Specific examples of the polyfunctional acid represented by the general formula (3) are as follows.
[ Table 3 ]
【Example】
[Example 1]
In the fluorine-containing monomer represented by the general formula (1), a compound in which R 1 is a hydrogen atom, x is 2 and y is 7, that is, the compound No. 1 is used. 7 and the amine-containing monomer represented by the general formula (2), wherein R 2 is a hydrogen atom, R 3 and R 4 are methyl groups, and z is 2, that is, the compound No. 1 And 41 mg of a random copolymer obtained by radical copolymerization at a molar ratio of 7: 3 and a dicarboxylic acid in which R 5 is a C 7 F 14 group in the general formula (3), Compound No. 1 72, 6 milligrams and a stir bar were charged into a 10 ml internal pressure reaction cell of the same type as shown in FIG. 1 and cooled carbon dioxide was enclosed. Subsequently, the temperature was raised to 35 ° C., the pressure was raised to about 15 to 20 MPa, and the mixture was stirred for 5 to 10 minutes. Thereafter, gas was removed from the valve 10 to reduce the pressure and collect the product. The result of observing the obtained product with a scanning electron microscope is shown in FIG. Figure 3 shows that the number micrometers spherical high content child fine particles were obtained by the present invention.
[Example 2]
In the fluorine-containing monomer represented by the general formula (1), a compound in which R 1 is a hydrogen atom, x is 2 and y is 7, that is, the compound No. 1 is used. 7 and the amine-containing monomer represented by the general formula (2), wherein R 2 is a hydrogen atom, R 3 and R 4 are methyl groups, and z is 2, that is, the compound No. 1 41, a random copolymer obtained by radical copolymerization at a molar ratio of 9: 1, and a dicarboxylic acid in which R 5 is a C 7 F 14 group in the general formula (3), Compound No. 1 72, 2 milligrams and a stirrer were charged into a high-pressure reaction cell of the same type as shown in FIG. Subsequently, the temperature was raised to 35 ° C., the pressure was raised to about 15 to 20 MPa, and the mixture was stirred for 5 to 10 minutes. Thereafter, gas was removed from the valve 10 to reduce the pressure and collect the product. The result of observing the obtained product with a scanning electron microscope is shown in FIG. Figure 4 shows that the number micrometers spherical high content child fine particles were obtained by the present invention.
Next, a method for synthesizing the copolymer of the present invention will be described with reference to FIG. FIG. 5 shows a method for synthesizing the copolymer of the present invention, in which 1.64 g of a fluorine-containing monomer and 0.198 g of an amine-containing monomer are mixed, and AIBN (azobisisobutyronitrile) as a polymerization initiator is mixed. 7.4 milligrams was added and degassed and sealed, and then bulk polymerization was performed at 60 ° C. for 5 to 10 minutes. When the product is dissolved in hexafluorobenzene and precipitated in hexane, a copolymer of the monomer of the present invention can be synthesized as shown on the right side.
[Example 3]
FIG. 6 is a diagram showing the contact angle and sliding angle characteristics of the fluoropolymer according to the present invention, and Table 1 shows its specifications.
Next, a method for measuring the contact angle and the falling angle of the fluoropolymer according to the present invention will be described. In the fluorine-containing monomer represented by the general formula (1), a compound in which R 1 is a hydrogen atom, x is 2 and y is 7, that is, the compound No. 1 is used. 7 and the amine-containing monomer represented by the general formula (2), wherein R 2 is a hydrogen atom, R 3 and R 4 are methyl groups, and z is 2, that is, the compound No. 1 And 41 mg of a random copolymer obtained by radical copolymerization at a molar ratio of 7: 3, and a dicarboxylic acid in which R 5 is a C 7 F 14 group in the general formula (3), Compound No. 1 Using 72,5.5 mg, carbon tape spherical high content child fine particles obtained by the method of Example 2, vertical 2.6 cm, was stuck on a glass slide of the horizontal 7.6 cm It was applied to one side. In that the spherical high content child of fine particles is coated on a carbon tape, ultrapure water was dropped in 10 microliters, was created by the camera from the horizontal direction (FIG. 6 (d)). The contact angle was measured and a value of 164.9 ° was obtained. (FIG. 6 (d) specifically shows the measurement of the contact angle of <Table 4 below and Sample 4>.) On the other hand, the falling angle is the same amount at a point of 5 mm from the right end of the slide glass. Ultrapure water was dropped, the right end was raised with the left end of the slide glass as an axis, and the angle at which the ultrapure water droplets started to fall was measured to obtain a value of 15.0 °.
[Table 4 ]
As apparent from Table 4 , sample 1 is Teflon (registered trademark) , the contact angle is 118.5 °, the falling angle is 69.0 °, and sample 2 is a copolymer (on a glass plate). Cast), the contact angle is 96.5 °, the falling angle is larger than 90 °, the sample 3 is a copolymer (CO 2 ), the contact angle is 161.5 °, the falling angle is 22.6, the sample 4 is a copolymer (CO 2 ), the crosslinking agent is HOOC (CF 2 ) 7 COOH (perfluoroazeline acid), the contact angle is 164.9 °, the falling angle is 15.0 °, and the sample 5 is a copolymer (CO 2 ), the crosslinking agent is HOOCCH═CHCOOH (maleic acid), the contact angle is 165.5 °, the falling angle is 16.0 °, the sample 6 is carbon tape, the contact angle is 80.6 °, the falling angle Angle is greater than 90 °, Sample 7 is a glass plate That is, the contact angle is 16.0 ° and the falling angle is 44.0 °, and these modes are shown in FIGS. 6 (a) to (f).
In addition, a copolymer is Chemical formula 1 (fluorine monomer unit) and chemical formula 2 (amine monomer unit) here, and the ratio is 7: 3.
As is clear from FIG. 6, in particular, the contact angles of FIGS. 6 (c) to 6 (e) (samples 3 to 5) using the copolymer according to the present invention are large, the falling angle is small, and the water repellency is high. It is clear.
[Industrial applicability]
The fine particles and the method for producing the fine particles of the present invention can be used as environment-friendly fine particles and a method for producing the fine particles, such as no concern about residual monomers.
[Brief description of the drawings]
Is a diagram illustrating an example of an apparatus for producing high-molecular fine particles on the basis of the present invention; FIG.
2 is a diagram for explaining the mechanism of high-molecular fine particles are produced.
3 is an electron micrograph of the high-molecular fine particles (Example 1) (drawing-substituting photograph).
4 is an electron micrograph of the high-molecular fine particles (Example 2) (drawing-substituting photograph).
FIG. 5 is a view showing a method for synthesizing a copolymer of the present invention.
FIG. 6 is a graph showing the contact angle characteristics of the fluoropolymer according to the present invention.
Claims (8)
HOOC−R5 −COOH …(3)
上記一般式(3)中、R5 はアルキル基、アルケニル基、アクリール基もしくはフロロアルキル基である。The fine particles according to claim 1 , wherein the polyfunctional acid is an organic acid represented by the following general formula (3).
HOOC-R 5 —COOH (3)
In the general formula (3), R 5 represents an alkyl group, an alkenyl group, an acryl group or a fluoroalkyl group.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007536447A JP5145562B2 (en) | 2005-09-21 | 2006-09-08 | Fine particles and method for producing the fine particles |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005274599 | 2005-09-21 | ||
JP2005274599 | 2005-09-21 | ||
JP2007536447A JP5145562B2 (en) | 2005-09-21 | 2006-09-08 | Fine particles and method for producing the fine particles |
PCT/JP2006/317816 WO2007034688A1 (en) | 2005-09-21 | 2006-09-08 | Copolymer comprising polymer aggregate, microparticle thereof, and method for production of the microparticle |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2007034688A1 JPWO2007034688A1 (en) | 2009-03-19 |
JP5145562B2 true JP5145562B2 (en) | 2013-02-20 |
Family
ID=37888739
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007536447A Active JP5145562B2 (en) | 2005-09-21 | 2006-09-08 | Fine particles and method for producing the fine particles |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5145562B2 (en) |
WO (1) | WO2007034688A1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000290137A (en) * | 1999-04-02 | 2000-10-17 | Daikin Ind Ltd | Cosmetic powder treated with reactive fluorine-based (meth)acrylate copolymer |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60112404A (en) * | 1983-11-24 | 1985-06-18 | Dai Ichi Kogyo Seiyaku Co Ltd | Granulation of powdered material |
JPS60147412A (en) * | 1984-01-12 | 1985-08-03 | Sumitomo Chem Co Ltd | Aqueous dispersion |
JP4504629B2 (en) * | 2002-08-28 | 2010-07-14 | 積水化学工業株式会社 | Method for producing resin fine particles |
JP4403355B2 (en) * | 2002-09-13 | 2010-01-27 | Dic株式会社 | Color resist composition |
-
2006
- 2006-09-08 JP JP2007536447A patent/JP5145562B2/en active Active
- 2006-09-08 WO PCT/JP2006/317816 patent/WO2007034688A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000290137A (en) * | 1999-04-02 | 2000-10-17 | Daikin Ind Ltd | Cosmetic powder treated with reactive fluorine-based (meth)acrylate copolymer |
Also Published As
Publication number | Publication date |
---|---|
JPWO2007034688A1 (en) | 2009-03-19 |
WO2007034688A1 (en) | 2007-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tiarks et al. | Encapsulation of carbon black by miniemulsion polymerization | |
WO2008015870A1 (en) | Process for producing fine polymer particle | |
JP2008530306A (en) | Modified carbon particles | |
JP2010527395A (en) | Composite particles and methods for their preparation | |
RU2683747C2 (en) | Graphenic carbon particle co-dispersions and methods of making same | |
Islam et al. | Synthesis and characterization of poly (HEMA‐co‐MMA)‐g‐POSS nanocomposites by combination of reversible addition fragmentation chain transfer polymerization and click chemistry | |
Tan et al. | Monodisperse highly cross-linked “living” microspheres prepared via photoinitiated RAFT dispersion polymerization | |
Kim et al. | Synthesis of polystyrene/poly (butyl acrylate) core–shell latex and its surface morphology | |
Erkoc et al. | Photocurable pentaerythritol triacrylate/lithium phenyl‐2, 4, 6‐trimethylbenzoylphosphinate‐based ink for extrusion‐based 3D printing of magneto‐responsive materials | |
Chen et al. | Facile synthesis of nanocapsules and hollow nanoparticles consisting of fluorinated polymer shells by interfacial RAFT miniemulsion polymerization | |
Maiti et al. | Encapsulation of carbon black by surfactant free emulsion polymerization process | |
JP5169623B2 (en) | Method for producing nano-particle composite | |
Dong et al. | Diblock fluoroacrylate copolymers from two initiators: synthesis, self-assembly and surface properties | |
JP5145562B2 (en) | Fine particles and method for producing the fine particles | |
Xiao et al. | Transitioning from Photoinitiation to Thermal Initiation in RAFT Dispersion Polymerization via a Small Modification of the Macro-RAFT Agent: A Scalable Approach for Monodisperse Surface-Functional Polymeric Microspheres | |
TW202239888A (en) | Carbon material dispersion | |
Geng et al. | Grafting polyisoprene onto surfaces of kaolin by spray drying technology and modification of styrene–butadiene rubber | |
Yin et al. | Nitroxide-mediated polymerization of pentafluorostyrene initiated by PS–DEPN through the surface of APTMS modified fumed silica: towards functional nanohybrids | |
He et al. | Double‐Hydrophilic Polymer Brushes: Synthesis and Application for Crystallization Modification of Calcium Carbonate | |
JP2008144104A (en) | Production method of spherical macromolecule particulate using autoagglutination force | |
Zhang et al. | pH-and Temperature-Induced Micellization of the Dual Hydrophilic Block Copolymer Poly (methacrylate acid)-b-poly (N-(2-methacryloylxyethyl) pyrrolidone) in Aqueous Solution | |
JP2008088421A (en) | Spherical fine particle composed of polymer aggregate and manufacturing process of the fine particle | |
JPH06228225A (en) | Production of crosslinked polymer particle | |
Park et al. | Novel approach to chemically amplified resist materials for next generation of lithography | |
JP2640155B2 (en) | Liquid developer for electrostatic photography |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090821 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120731 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120918 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121030 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |