JP5134783B2 - Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same - Google Patents
Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same Download PDFInfo
- Publication number
- JP5134783B2 JP5134783B2 JP2006138044A JP2006138044A JP5134783B2 JP 5134783 B2 JP5134783 B2 JP 5134783B2 JP 2006138044 A JP2006138044 A JP 2006138044A JP 2006138044 A JP2006138044 A JP 2006138044A JP 5134783 B2 JP5134783 B2 JP 5134783B2
- Authority
- JP
- Japan
- Prior art keywords
- battery
- ionic liquid
- formula
- general formula
- ionic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Primary Cells (AREA)
- Secondary Cells (AREA)
Description
本発明は、電池用非水電解液及びそれを備えた非水電解液電池に関し、特にカチオン部にリン及び窒素を含むイオン液体を含有し、発火・引火の危険性がなく安全な電池用非水電解液に関するものである。 The present invention relates to a non-aqueous electrolyte for a battery and a non-aqueous electrolyte battery including the same, and particularly includes an ionic liquid containing phosphorus and nitrogen in a cation portion, and is safe from non-ignition / flammability. It relates to a water electrolyte.
近年、電気自動車や燃料電池自動車の主電源若しくは補助電源として、又は小型電子機器の電源として、軽量且つ長寿命で、高エネルギー密度の電池が求められている。これに対し、リチウムを負極活物質とする非水電解液電池は、リチウムの電極電位が金属中で最も低く、単位体積当りの電気容量が大きいために、エネルギー密度の高い電池の一つとして知られており、1次電池・2次電池を問わず多くの種類のものが活発に研究され、一部が実用化し市場に供給されている。例えば、非水電解液1次電池は、カメラ、電子ウォッチ及び各種メモリーバックアップ用電源として用いられている。また、非水電解液2次電池は、ノート型パソコン及び携帯電話等の駆動電源として用いられており、更には、電気自動車や燃料電池自動車の主電源若しくは補助電源として用いることが検討されている。 In recent years, there has been a demand for a lightweight, long-life, high-energy-density battery as a main power source or auxiliary power source for electric vehicles and fuel cell vehicles, or as a power source for small electronic devices. In contrast, a non-aqueous electrolyte battery using lithium as a negative electrode active material is known as one of batteries having a high energy density because the electrode potential of lithium is the lowest among metals and the electric capacity per unit volume is large. Many types of batteries, whether primary batteries or secondary batteries, have been actively researched, and some have been put into practical use and supplied to the market. For example, non-aqueous electrolyte primary batteries are used as power sources for cameras, electronic watches, and various memory backups. In addition, non-aqueous electrolyte secondary batteries are used as drive power sources for notebook computers and mobile phones, and are also being considered for use as main power sources or auxiliary power sources for electric vehicles and fuel cell vehicles. .
これらの非水電解液電池においては、負極活物質のリチウムが水及びアルコール等の活性プロトンを有する化合物と激しく反応するため、該電池に使用される電解液は、エステル化合物及びエーテル化合物等の非プロトン性有機溶媒に限られている。しかしながら、上記非プロトン性有機溶媒は、負極活物質のリチウムとの反応性が低いものの、例えば、電池の短絡時等に大電流が急激に流れ、電池が異常に発熱した際に、気化・分解してガスを発生したり、発生したガス及び熱により電池の破裂・発火を引き起こしたり、短絡時に生じる火花が引火する等の危険性が高い。 In these non-aqueous electrolyte batteries, lithium as the negative electrode active material reacts violently with compounds having active protons such as water and alcohol, so that the electrolyte used in the batteries is non-ester compounds and ether compounds. Limited to protic organic solvents. However, although the aprotic organic solvent has low reactivity with the lithium of the negative electrode active material, for example, when a battery is short-circuited, a large current flows suddenly, and when the battery abnormally generates heat, it is vaporized and decomposed. Therefore, there is a high risk of generating gas, causing the battery to rupture or ignite due to the generated gas and heat, and sparks generated during a short circuit.
一方、1992年のWilkesらの報告以来、常温で液体であり、イオン伝導性に優れた物質として、イオン液体が注目を集めている。該イオン液体は、陽イオンと陰イオンが静電気的引力で結合しており、イオンキャリア数が非常に多く、更には粘度も比較的低いため、イオンの移動度が常温でも高く、従って、イオン伝導性が非常に高いという特性を有する。また、イオン液体は、陽イオンと陰イオンのみで構成されているため、沸点が高く、液体状態を保持できる温度範囲が非常に広い。更に、該イオン液体は、蒸気圧が殆どないため、引火性が低く、熱的安定性も非常に優れている(非特許文献1及び2参照)。これら様々な利点を有するため、イオン液体は、昨今、非水電解液2次電池の電解液への適用が検討されている(特許文献1及び2参照)。 On the other hand, since the report of Wilkes et al. In 1992, an ionic liquid has attracted attention as a substance that is liquid at room temperature and has excellent ionic conductivity. In the ionic liquid, the cation and the anion are combined by electrostatic attraction, the number of ion carriers is very large, and the viscosity is relatively low, so that the ion mobility is high even at room temperature. It has the characteristic that the property is very high. In addition, since the ionic liquid is composed only of cations and anions, the boiling point is high and the temperature range in which the liquid state can be maintained is very wide. Furthermore, since the ionic liquid has almost no vapor pressure, it has low flammability and excellent thermal stability (see Non-Patent Documents 1 and 2). Due to these various advantages, application of ionic liquids to the electrolytes of non-aqueous electrolyte secondary batteries has recently been studied (see Patent Documents 1 and 2).
上述のように、従来のイオン液体は、引火性が低いものの、常温で液体であるために通常有機基を含むため、燃焼の危険性があり、従来のイオン液体を添加しても、非水電解液の発火・引火の危険性を十分に低減できないことが分った。 As described above, the conventional ionic liquid has low flammability, but since it is a liquid at room temperature and usually contains an organic group, there is a risk of combustion. It was found that the risk of ignition and ignition of the electrolyte could not be reduced sufficiently.
そこで、本発明の目的は、上記従来技術の問題を解決し、発火・引火の危険性がなく安全な電池用非水電解液を提供することにある。また、本発明の他の目的は、かかる電解液を備え、安全性が高い、非水電解液電池を提供することにある。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art and provide a safe non-aqueous electrolyte for a battery without the risk of ignition and ignition. Another object of the present invention is to provide a non-aqueous electrolyte battery having such an electrolyte and having high safety.
本発明者らは、上記目的を達成するために鋭意検討した結果、カチオン部にリン及び窒素を含むイオン液体を電解液に添加したり或いは該イオン液体と支持塩のみから電解液を構成することで、非水電解液の燃焼の危険性を大幅に低減でき、更に、該電解液を非水電解液電池に適用することで、非水電解液電池の安全性が大幅に改善されることを見出し、本発明を完成させるに至った。 As a result of intensive studies to achieve the above object, the present inventors have added an ionic liquid containing phosphorus and nitrogen in the cation part to the electrolytic solution, or constituted the electrolytic solution only from the ionic liquid and a supporting salt. The risk of non-aqueous electrolyte combustion can be greatly reduced, and the safety of the non-aqueous electrolyte battery can be greatly improved by applying the electrolyte to the non-aqueous electrolyte battery. The headline and the present invention have been completed.
即ち、本発明の電池用非水電解液は、カチオン部及びアニオン部からなるイオン液体と、支持塩とを含有し、前記イオン液体のカチオン部がリンと窒素を含有し、前記イオン液体が、下記一般式(I):
(NPR1 2)n ・・・ (I)
[式中、R1は、それぞれ独立してハロゲン元素又は一価の置換基で、少なくとも一つのR1は、下記一般式(II):
−N+R2 3X- ・・・ (II)
(式中、R2は、それぞれ独立して一価の置換基又は水素で、但し、少なくとも一つのR2は水素ではなく、また、R2は互いに結合して環を形成してもよく;X-は一価のアニオンを表す)で表されるイオン性置換基であり;nは3である]で表されることを特徴とする。
That is, the battery non-aqueous electrolyte of the present invention contains an ionic liquid composed of a cation part and an anion part and a supporting salt, the cation part of the ionic liquid contains phosphorus and nitrogen, and the ionic liquid contains The following general formula (I):
(NPR 1 2 ) n ... (I)
[Wherein R 1 is independently a halogen element or a monovalent substituent, and at least one R 1 is represented by the following general formula (II):
-N + R 2 3 X - ··· (II)
Wherein R 2 is each independently a monovalent substituent or hydrogen, provided that at least one R 2 is not hydrogen and R 2 may be bonded to each other to form a ring; X - is be ionic substituent represented by represents a monovalent anion); n is characterized by being represented by a 3].
本発明の電池用非水電解液の好適例は、前記イオン液体及び支持塩のみからなることが好ましい。 A preferred example of the non-aqueous electrolyte for a battery of the present invention is preferably composed only of the ionic liquid and a supporting salt.
本発明の電池用非水電解液は、更に、非プロトン性有機溶媒を含有してもよい。ここで、本発明の電池用非水電解液が非プロトン性有機溶媒を含む場合、該電池用非水電解液は、前記イオン液体を5体積%以上含有することが好ましい。 The battery non-aqueous electrolyte of the present invention may further contain an aprotic organic solvent. Here, when the nonaqueous electrolytic solution for battery of the present invention contains an aprotic organic solvent, the nonaqueous electrolytic solution for battery preferably contains 5% by volume or more of the ionic liquid.
また、前記一般式(I)中のR1は、少なくとも一つが前記一般式(II)で表されるイオン性置換基で、その他がフッ素であることが好ましい。 Further, R 1 in the general formula (I), at least one of an ionic substituent represented by the general formula (II), it is preferable others are fluorine.
また、本発明の非水電解液電池は、上記電池用非水電解液と、正極と、負極とを備えることを特徴とする。 Moreover, the non-aqueous electrolyte battery of the present invention comprises the above-described non-aqueous electrolyte for a battery, a positive electrode, and a negative electrode.
本発明によれば、カチオン部にリン及び窒素を含み且つ前記一般式(I)で表されるイオン液体を含有し、燃焼の危険性が低い電池用非水電解液を提供することができる。また、かかる電解液を備え、安全性が高い、非水電解液電池を提供することができる。 According to the present invention, it is possible to contain the ionic liquid represented by phosphorus and nitrogen only contains and Formula cation portion (I), to provide a low risk of burning the battery for a non-aqueous electrolyte solution . In addition, a non-aqueous electrolyte battery having such an electrolyte and having high safety can be provided.
<電池用非水電解液>
以下に、本発明の電池用非水電解液を詳細に説明する。本発明の電池用非水電解液は、カチオン部及びアニオン部からなるイオン液体と、支持塩とを含有し、前記イオン液体のカチオン部がリンと窒素を含有し、前記イオン液体が前記一般式(I)で表されることを特徴とする。本発明の電池用非水電解液に含まれるイオン液体のカチオン部は、分解して、窒素ガスやリン酸エステル等を発生するため、発生した窒素ガスの作用によって、電解液が燃焼する危険性が低減されると共に、発生したリン酸エステル等の作用によって、電池を構成する高分子材料の連鎖分解が抑制されるため、電池の発火・引火の危険性を効果的に低減することができる。また、上記イオン液体のカチオン部がハロゲンを含む場合、万が一の燃焼時にはハロゲンが活性ラジカルの捕捉剤として機能し、電解液の燃焼の危険性を低減する。更に、上記イオン液体のカチオン部が有機置換基を含む場合、燃焼時にセパレーター上に炭化物(チャー)を生成するため酸素の遮断効果もある。
<Non-aqueous electrolyte for batteries>
Below, the non-aqueous electrolyte for batteries of the present invention will be described in detail. The non-aqueous electrolyte for a battery of the present invention contains an ionic liquid composed of a cation part and an anion part and a supporting salt, the cation part of the ionic liquid contains phosphorus and nitrogen, and the ionic liquid is the above general formula It is represented by (I) . Since the cation part of the ionic liquid contained in the nonaqueous electrolyte for a battery of the present invention is decomposed to generate nitrogen gas, phosphate ester, etc., there is a risk that the electrolyte will burn by the action of the generated nitrogen gas In addition, the chain decomposition of the polymer material constituting the battery is suppressed by the action of the generated phosphoric acid ester and the like, so that the risk of ignition and ignition of the battery can be effectively reduced. Further, when the cation portion of the ionic liquid contains halogen, the halogen functions as an active radical scavenger in the unlikely event of combustion, reducing the risk of combustion of the electrolyte. Further, when the cation portion of the ionic liquid contains an organic substituent, it produces a carbide (char) on the separator at the time of combustion, and has an oxygen blocking effect.
本発明の電池用非水電解液を構成するイオン液体は、少なくとも融点が50℃以下であり、融点が20℃以下であることが好ましい。また、該イオン液体は、カチオン部及びアニオン部からなり、該カチオン部及びアニオン部が静電気的引力で結合している。ここで、該イオン液体は、カチオン部にリン−窒素間二重結合を有し、上記一般式(I)で表されるイオン性化合物である。 The ionic liquid constituting the nonaqueous electrolyte for a battery of the present invention has at least a melting point of 50 ° C. or lower and preferably a melting point of 20 ° C. or lower. The ionic liquid is composed of a cation part and an anion part, and the cation part and the anion part are bonded by electrostatic attraction. Wherein the ionic liquid, phosphorus cation - have a nitrogen double bond, an ionic compound represented by the general formula (I).
上記一般式(I)の化合物は、リン−窒素間二重結合を複数有する環状ホスファゼン化合物の一種であるため、高い燃焼抑制効果を有すると共に、R1の少なくとも一つが上記式(II)のイオン性置換基であるため、イオン性を有する。 Since the compound of the general formula (I) is a kind of cyclic phosphazene compound having a plurality of phosphorus-nitrogen double bonds, it has a high combustion suppressing effect, and at least one of R 1 is an ion of the formula (II). Since it is an ionic substituent, it has ionicity.
上記一般式(I)中のR1は、それぞれ独立してハロゲン元素又は一価の置換基であり、但し、少なくとも一つのR1は、上記一般式(II)で表されるイオン性置換基である。ここで、R1におけるハロゲン元素としては、フッ素、塩素、臭素等が好適に挙げられ、これらの中でも、フッ素が特に好ましい。また、R1における一価の置換基としては、アルコキシ基、アルキル基、アリールオキシ基、アリール基、カルボキシル基、アシル基等が挙げられる。上記アルコキシ基としては、メトキシ基、エトキシ基、メトキシエトキシ基、プロポキシ基等や、二重結合を含むアリルオキシ基やビニルオキシ基等、更にはメトキシエトキシ基、メトキシエトキシエトキシ基等のアルコキシ置換アルコキシ基等が挙げられ、上記アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基等が挙げられ、上記アリールオキシ基としては、フェノキシ基、メチルフェノキシ基、メトキシフェノキシ基等が挙げられ、上記アリール基としては、フェニル基、トリル基、ナフチル基等が挙げられ、上記アシル基としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基等が挙げられる。なお、上記一価の置換基中の水素元素は、ハロゲン元素で置換されていることが好ましく、該ハロゲン元素としては、フッ素、塩素、臭素等が好適に挙げられる。 R 1 in the general formula (I) is independently a halogen element or a monovalent substituent, provided that at least one R 1 is an ionic substituent represented by the general formula (II). It is. Here, preferred examples of the halogen element in R 1 include fluorine, chlorine, bromine and the like, and among these, fluorine is particularly preferred. Examples of the monovalent substituent in R 1 include an alkoxy group, an alkyl group, an aryloxy group, an aryl group, a carboxyl group, and an acyl group. Examples of the alkoxy group include a methoxy group, an ethoxy group, a methoxyethoxy group, a propoxy group, an allyloxy group containing a double bond, a vinyloxy group, and the like, and an alkoxy-substituted alkoxy group such as a methoxyethoxy group and a methoxyethoxyethoxy group. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group. Examples of the aryloxy group include a phenoxy group, a methylphenoxy group, and a methoxyphenoxy group. Examples of the aryl group include a phenyl group, a tolyl group, and a naphthyl group. Examples of the acyl group include a formyl group, an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, and a valeryl group. Note that the hydrogen element in the monovalent substituent is preferably substituted with a halogen element, and preferred examples of the halogen element include fluorine, chlorine, bromine and the like.
上記一般式(I)のnは、原料物質の入手容易性の観点から、3である。 N in the above general formula (I), from the viewpoint of easy availability of raw materials, it is 3.
上記一般式(II)で表される置換基は、−NR2 3とXとが主として静電気的引力によって結合してなる。そのため、式(II)のイオン性置換基を有する式(I)の化合物は、イオン性を有する。 The substituent represented by the general formula (II) is formed by bonding —NR 2 3 and X mainly by electrostatic attraction. Therefore, the compound of formula (I) having an ionic substituent of formula (II) has ionicity.
上記一般式(II)中のR2は、それぞれ独立して一価の置換基又は水素であり、但し、少なくとも一つのR2は水素ではなく、また、R2は互いに結合して環を形成してもよい。ここで、R2における一価の置換基としては、アルキル基、アリール基等が挙げられる。上記アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基等が挙げられ、上記アリール基としては、フェニル基、トリル基、ナフチル基等が挙げられる。また、複数のR2が互いに結合して環を形成する場合において、3つのR2のいずれか2つが結合して形成する環としては、アジリジン環、アゼチジン環、ピロリジン環、ピペリジン環等のアザシクロアルカン環や、該アザシクロアルカン環のメチレン基がカルボニル基に置き換わった構造のアザシクロアルカノン環等が挙げられ、3つのR2が結合して形成する環としては、ピリジン環等が挙げられる。なお、上記一価の置換基中の水素元素は、ハロゲン元素等で置換されていてもよい。 R 2 in the above general formula (II) is each independently a monovalent substituent or hydrogen, provided that at least one R 2 is not hydrogen and R 2 is bonded to each other to form a ring. May be. Here, examples of the monovalent substituent in R 2 include an alkyl group and an aryl group. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group. Examples of the aryl group include a phenyl group, a tolyl group, and a naphthyl group. In addition, when a plurality of R 2 are bonded to each other to form a ring, any two of the three R 2 are bonded to form an aziridine ring, azetidine ring, pyrrolidine ring, piperidine ring or the like. Examples thereof include a cycloalkane ring and an azacycloalkanone ring having a structure in which a methylene group of the azacycloalkane ring is replaced with a carbonyl group. Examples of the ring formed by combining three R 2 include a pyridine ring. It is done. Note that the hydrogen element in the monovalent substituent may be substituted with a halogen element or the like.
上記一般式(II)中のX-は一価のアニオンを表す。式(II)のX-における一価のアニオンとしては、F-、Cl-、Br-、I-、BF4 -、PF6 -、AsF6 -、SbF6 -、CF3SO3 -、(CF3SO2)2N-、(C2F5SO2)2N-、(C3F7SO2)2N-、(CF3SO2)(C2F5SO2)N-、(CF3SO2)(C3F7SO2)N-、(C2F5SO2)(C3F7SO2)N-等が挙げられる。 X − in the general formula (II) represents a monovalent anion. As the monovalent anion in X − of the formula (II), F − , Cl − , Br − , I − , BF 4 − , PF 6 − , AsF 6 − , SbF 6 − , CF 3 SO 3 − , ( CF 3 SO 2 ) 2 N − , (C 2 F 5 SO 2 ) 2 N − , (C 3 F 7 SO 2 ) 2 N − , (CF 3 SO 2 ) (C 2 F 5 SO 2 ) N − , (CF 3 SO 2 ) (C 3 F 7 SO 2 ) N − , (C 2 F 5 SO 2 ) (C 3 F 7 SO 2 ) N − and the like.
上記式(I)のイオン性化合物において、R1は、少なくとも一つが上記式(II)のイオン性置換基であるが、イオン性化合物の不燃性の観点から、その他がフッ素であることが好ましい。 In the ionic compound of the above formula (I), at least one R 1 is an ionic substituent of the above formula (II), but the other is preferably fluorine from the viewpoint of nonflammability of the ionic compound. .
上記イオン性化合物の製造方法は、特に限定されない。例えば、下記一般式(III):
(NPR3 2)n ・・・ (III)
[式中、R3は、それぞれ独立してハロゲン元素又は一価の置換基で、少なくとも一つのR3は塩素であり;nは3である]で表される環状ホスファゼン化合物と、下記一般式(IV):
NR2 3 ・・・ (IV)
[式中、R2は、上記と同義である]で表される1級、2級又は3級のアミンとを反応させることで、下記一般式(V):
(NPR4 2)n ・・・ (V)
[式中、R4は、それぞれ独立してハロゲン元素又は一価の置換基で、少なくとも一つのR4は、下記一般式(VI):
−N+R2 3Cl- ・・・ (VI)
(式中、R2は上記と同義である)で表されるイオン性置換基であり;nは上記と同義である]で表されるイオン性化合物(即ち、上記一般式(I)で表され、上記一般式(II)中のX-がCl-であるイオン性化合物)を生成させることができる。
The method for producing the ionic compound is not particularly limited. For example, the following general formula (III):
(NPR 3 2 ) n ... (III)
Wherein R 3 is independently a halogen element or a monovalent substituent, and at least one R 3 is chlorine; n is 3 , and a cyclic phosphazene compound represented by the following general formula: (IV):
NR 2 3 ... (IV)
[In the formula, R 2 is as defined above] By reacting with a primary, secondary or tertiary amine represented by the following general formula (V):
(NPR 4 2 ) n ... (V)
[Wherein, R 4 is independently a halogen element or a monovalent substituent, and at least one R 4 is represented by the following general formula (VI):
-N + R 2 3 Cl - ··· (VI)
(Wherein R 2 is as defined above); n is as defined above] (ie, represented by formula (I) above). And an ionic compound in which X − in the general formula (II) is Cl 2 − can be generated.
更に、上記一般式(V)で表されるイオン性化合物の塩素イオンは、適宜他の一価のアニオンと置換することができ、例えば、上記一般式(V)で表されるイオン性化合物と下記一般式(VII):
A+X- ・・・ (VII)
[式中、A+は一価の陽イオンを表し、X-は一価のアニオンを表す]で表される塩(イオン交換剤)とを反応(イオン交換反応)させることで、上記一般式(I)で表されるイオン性化合物を生成させることができる。
Furthermore, the chlorine ion of the ionic compound represented by the general formula (V) can be appropriately substituted with another monovalent anion, for example, the ionic compound represented by the general formula (V) The following general formula (VII):
A + X - ··· (VII)
[Wherein A + represents a monovalent cation, and X − represents a monovalent anion] is reacted (ion exchange reaction) with a salt represented by the above general formula. An ionic compound represented by (I) can be produced.
なお、上記一般式(III)で表される環状ホスファゼン化合物と上記一般式(IV)で表されるアミンとを単に混合するだけでも、上記一般式(V)で表されるイオン性化合物を生成させることができるが、生成した式(V)のイオン性化合物が不安定で単離が難しいことがあるため、水相及び有機相からなる二相系に、上記一般式(III)で表される環状ホスファゼン化合物と、上記一般式(IV)で表されるアミンとを加え、反応させて、上記一般式(V)で表されるイオン性化合物を生成させることが好ましい。この方法では、式(III)の環状ホスファゼン化合物及び式(IV)のアミンは有機相に主として存在し、一方、生成する式(V)の化合物はイオン性を有するため主として水相に存在する。そのため、水相と有機相とを分離した後、水相の水を公知の方法で乾燥させることで、式(V)のイオン性化合物を単離することができ、単離された式(V)のイオン性化合物は、大気下でも安定に存在する。 Note that the ionic compound represented by the general formula (V) can be produced simply by mixing the cyclic phosphazene compound represented by the general formula (III) and the amine represented by the general formula (IV). However, since the produced ionic compound of formula (V) may be unstable and difficult to isolate, a two-phase system composed of an aqueous phase and an organic phase is represented by the above general formula (III). It is preferable that the cyclic phosphazene compound and the amine represented by the general formula (IV) are added and reacted to produce the ionic compound represented by the general formula (V). In this method, the cyclic phosphazene compound of formula (III) and the amine of formula (IV) are mainly present in the organic phase, while the resulting compound of formula (V) is mainly present in the aqueous phase due to its ionic nature. Therefore, after separating the aqueous phase and the organic phase, the ionic compound of formula (V) can be isolated by drying the water of the aqueous phase by a known method, and the isolated formula (V The ionic compound of) exists stably even in the atmosphere.
上記一般式(III)において、R3は、それぞれ独立してハロゲン元素又は一価の置換基で、少なくとも一つのR3は塩素である。ここで、式(III)中のR3が塩素である部分に式(IV)のアミンが付加するため、出発物質である式(III)の環状ホスファゼン化合物の骨格のリンに結合する塩素の数を調整することで、式(V)のイオン性化合物中の式(VI)で表されるイオン性置換基の導入数をコントロールすることができる。 In the general formula (III), each R 3 is independently a halogen element or a monovalent substituent, and at least one R 3 is chlorine. Here, since the amine of the formula (IV) is added to the portion of the formula (III) where R 3 is chlorine, the number of chlorines bonded to the phosphorus of the skeleton of the cyclic phosphazene compound of the formula (III) as the starting material By adjusting, the number of introduced ionic substituents represented by the formula (VI) in the ionic compound of the formula (V) can be controlled.
上記一般式(III)のR3において、ハロゲン元素としては、塩素の他に、フッ素、臭素等が好適に挙げられ、これらの中でも、塩素及びフッ素が好ましい。一方、R3における一価の置換基としては、R1における一価の置換基の項で例示したものを同様に挙げることができる。また、式(III)において、nは、入手容易性の観点から、3である。 In R 3 of the general formula (III), examples of the halogen element include fluorine, bromine and the like in addition to chlorine, and among these, chlorine and fluorine are preferable. On the other hand, as the monovalent substituent in R 3 , those exemplified in the section of the monovalent substituent in R 1 can be similarly exemplified. Further, in formula (III), n, from the viewpoint of easy availability, a 3.
上記一般式(III)で表される環状ホスファゼン化合物は、例えば、式(III)中のR3が総て塩素である市販のホスファゼン化合物を出発物質として、総ての塩素をフッ素化剤によりフッ素化した後、目的とする塩素置換部位にアルコキシ基やアミン基等を導入した後、HClやホスゲン等の塩素化剤により再び塩素化を行う方法や、使用する式(III)中のR3が総て塩素である市販のホスファゼン化合物に対して導入するフッ素の当量を計算した上で、必要量のフッ素化剤を添加する方法等で合成することができる。ここで、再塩素化における塩素化剤やフッ素化におけるフッ素化剤の使用量や反応条件を変えることで、式(III)のR3における塩素数をコントロールすることができる。 The cyclic phosphazene compound represented by the general formula (III) is, for example, a commercially available phosphazene compound in which R 3 in the formula (III) is all chlorine as a starting material. Then, after introducing an alkoxy group, an amine group or the like into the target chlorine substitution site, chlorinating again with a chlorinating agent such as HCl or phosgene, or R 3 in the formula (III) to be used is It can be synthesized by a method of adding a necessary amount of a fluorinating agent after calculating the equivalent amount of fluorine to be introduced to commercially available phosphazene compounds which are all chlorine. Here, the number of chlorine in R 3 in the formula (III) can be controlled by changing the amount of chlorinating agent used in rechlorination, the amount of the fluorinating agent used in fluorination, and the reaction conditions.
上記一般式(IV)において、R2は、上記一般式(II)中のR2と同義で、それぞれ独立して一価の置換基又は水素であり、但し、少なくとも一つのR2は水素ではなく、また、該R2は互いに結合して環を形成してもよい。式(IV)のR2における一価の置換基としては、式(II)のR2における一価の置換基の項で例示したものを同様に挙げることができ、また、式(IV)の3つのR2のいずれか2つが結合して形成する環及び3つのR2が結合して形成する環としては、式(II)の3つのR2のいずれか2つが互いに結合して形成する環及び3つのR2が結合して形成する環の項で例示したものを同様に挙げることができる。式(IV)で表されるアミンとして、具体的には、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン等の脂肪族3級アミン、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン等の環状3級アミン、ジメチルアニリン等のジアルキル置換アニリンやピリジン等の芳香族3級アミン、アニリン等の芳香族1級アミン等が挙げられ、これらの中でも、3級アミンが好ましい。 In the general formula (IV), R 2 is a R 2 as defined in the above formula (II), are each independently a monovalent substituent or hydrogen, provided that at least one R 2 is hydrogen And R 2 may be bonded to each other to form a ring. Examples of the monovalent substituent in R 2 of formula (IV), can similarly be illustrated those which have been exemplified in the section of the monovalent substituent in R 2 of Formula (II), also, the formula (IV) any two of the three R 2 as the ring ring and three R 2 formed by the bonding formed by combining any two of the three R 2 of formula (II) is formed by bonding What was illustrated by the term of the ring formed by combining a ring and three R < 2 > can be mentioned similarly. Specific examples of the amine represented by the formula (IV) include aliphatic tertiary amines such as trimethylamine, triethylamine, tripropylamine, and tributylamine, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, and the like. And cyclic tertiary amines, dialkyl-substituted anilines such as dimethylaniline, aromatic tertiary amines such as pyridine, and aromatic primary amines such as aniline. Among these, tertiary amines are preferred.
上記一般式(V)において、R4は、それぞれ独立してハロゲン元素又は一価の置換基で、少なくとも一つのR4は、上記一般式(VI)で表されるイオン性置換基である。R4におけるハロゲン元素としては、フッ素、塩素、臭素等が挙げられる。なお、式(IV)のアミンの使用量等を調整することで、R4の一部を塩素とすることができる。一方、R4における一価の置換基としては、R1における一価の置換基の項で例示したものを同様に挙げることができる。また、式(V)中のnは、原料の入手容易性の観点から、3である。 In the general formula (V), each R 4 is independently a halogen element or a monovalent substituent, and at least one R 4 is an ionic substituent represented by the general formula (VI). Examples of the halogen element in R 4 include fluorine, chlorine, bromine and the like. In addition, a part of R 4 can be changed to chlorine by adjusting the amount of the amine of the formula (IV). On the other hand, as the monovalent substituent in R 4 , those exemplified in the section of the monovalent substituent in R 1 can be similarly exemplified. Further, n in formula (V), from the viewpoint of availability of raw material, which is 3.
上記一般式(VI)において、R2は、上記一般式(II)中のR2と同義で、それぞれ独立して一価の置換基又は水素であり、但し、少なくとも一つのR2は水素ではなく、また、該R2は互いに結合して環を形成してもよい。式(VI)のR2における一価の置換基としては、式(II)のR2における一価の置換基の項で例示したものを同様に挙げることができ、また、式(VI)の3つのR2のいずれか2つが結合して形成する環及び3つのR2が結合して形成する環としては、式(II)の3つのR2のいずれか2つが互いに結合して形成する環及び3つのR2が結合して形成する環の項で例示したものを同様に挙げることができる。 In the general formula (VI), R 2 is, by R 2 as defined in the above formula (II), are each independently a monovalent substituent or hydrogen, provided that at least one R 2 is hydrogen And R 2 may be bonded to each other to form a ring. Examples of the monovalent substituent in R 2 of formula (VI), can similarly be illustrated those which have been exemplified in the section of the monovalent substituent in R 2 of Formula (II), also, the formula (VI) any two of the three R 2 as the ring ring and three R 2 formed by the bonding formed by combining any two of the three R 2 of formula (II) is formed by bonding What was illustrated by the term of the ring formed by combining a ring and three R < 2 > can be mentioned similarly.
式(V)のイオン性化合物の製造にあたって、式(IV)のアミンの使用量は、目的とするアミンの導入量に応じて適宜選択でき、例えば、式(III)の環状ホスファゼン化合物中のR3における塩素1molあたり、1〜2.4molの範囲が好ましい。 In the production of the ionic compound of the formula (V), the amount of the amine of the formula (IV) can be appropriately selected according to the amount of the amine introduced, for example, R in the cyclic phosphazene compound of the formula (III) The range of 1 to 2.4 mol per mol of chlorine in 3 is preferred.
また、式(III)の環状ホスファゼン化合物と式(IV)のアミンとの反応における反応温度は、特に制限されるものではないが、20℃〜80℃の範囲が好ましく、室温でも十分に反応が進行する。また、反応圧力も特に限定されず、大気圧下で実施することができる。 Further, the reaction temperature in the reaction of the cyclic phosphazene compound of the formula (III) and the amine of the formula (IV) is not particularly limited, but is preferably in the range of 20 ° C to 80 ° C, and the reaction is sufficiently performed even at room temperature. proceed. Further, the reaction pressure is not particularly limited, and the reaction can be performed under atmospheric pressure.
上記水相及び有機相からなる二相系において、有機相に使用する有機溶媒としては、水に対して混和性が無く、式(III)の環状ホスファゼン化合物と式(IV)のアミンを溶解できるものが好ましく、具体的には、クロロホルム、トルエン等の極性の低い溶媒が好ましい。また、上記水相及び有機相の使用量は、特に限定されるものではなく、水相の体積は、式(III)の環状ホスファゼン化合物1mLに対して0.2〜5mLの範囲が好ましく、有機相の体積は、式(III)の環状ホスファゼン化合物1mLに対して2〜5mLの範囲が好ましい。 In the two-phase system composed of the aqueous phase and the organic phase, the organic solvent used in the organic phase is not miscible with water and can dissolve the cyclic phosphazene compound of formula (III) and the amine of formula (IV). Those having low polarity such as chloroform and toluene are preferred. The amount of the aqueous phase and the organic phase used is not particularly limited, and the volume of the aqueous phase is preferably in the range of 0.2 to 5 mL with respect to 1 mL of the cyclic phosphazene compound of the formula (III). The volume is preferably in the range of 2 to 5 mL with respect to 1 mL of the cyclic phosphazene compound of the formula (III).
上記一般式(VII)において、A+は一価の陽イオンを表し、X-は一価の陰イオンを表す。式(VII)のA+における一価の陽イオンとしては、Ag+、Li+等が挙げられる。また、式(VII)のX-における一価の陰イオンとしては、Cl-以外の一価の陰イオン、具体的には、BF4 -、PF6 -、AsF6 -、SbF6 -、CF3SO3 -の他、(CF3SO2)2N-、(C2F5SO2)2N-、(C3F7SO2)2N-、(CF3SO2)(C2F5SO2)N-、(CF3SO2)(C3F7SO2)N-、(C2F5SO2)(C3F7SO2)N-等のイミドイオンが挙げられる。ここで、A+がLi+である場合、X-としてはイミドイオンが好ましい。小さなイオン半径を有するLi+とは対照的に、上記イミドイオンは大きなイオン半径を有するため、陽イオンと陰イオンとのイオン半径の違いによる影響(ソフト・ハード塩基・酸の関係)で良好に反応し、置換反応が進むからである。一方、A+がAg+である場合は、ほぼ総ての陰イオンを使用することができる。式(VII)の塩としてAg+X-を使用した場合、AgClが沈降するため、不純物の除去も簡単に行うことができる。
In the general formula (VII), A + represents a monovalent cation, and X − represents a monovalent anion. Examples of the monovalent cation in A + in the formula (VII) include Ag + and Li + . Further, as the monovalent anion in X − of the formula (VII), monovalent anions other than Cl − , specifically, BF 4 − , PF 6 − , AsF 6 − , SbF 6 − , CF 3 SO 3 - other, (CF 3 SO 2) 2 N -, (C 2
式(I)のイオン性化合物の製造にあたって、式(VII)の塩の使用量は、式(V)のイオン性化合物の塩素イオンの量に応じて適宜選択でき、例えば、式(V)のイオン性化合物の塩素イオン1molあたり、1〜1.5molの範囲が好ましい。 In the production of the ionic compound of the formula (I), the amount of the salt of the formula (VII) used can be appropriately selected according to the amount of chlorine ions of the ionic compound of the formula (V). The range of 1 to 1.5 mol is preferable per 1 mol of chloride ions of the ionic compound.
また、式(V)のイオン性化合物と式(VII)の塩との反応における反応温度は、特に制限されるものではないが、室温〜50℃の範囲が好ましく、室温でも十分に反応が進行する。また、反応圧力も特に限定されず、大気圧下で実施することができる。 The reaction temperature in the reaction of the ionic compound of formula (V) and the salt of formula (VII) is not particularly limited, but is preferably in the range of room temperature to 50 ° C., and the reaction proceeds sufficiently even at room temperature. To do. Further, the reaction pressure is not particularly limited, and the reaction can be performed under atmospheric pressure.
上記式(V)のイオン性化合物と式(VII)の塩との反応は、水相で行うことが好ましい。なお、上記式(V)のイオン性化合物と、式(VII)で表され且つA+がAg+である銀塩との反応では、副生成物として塩化銀が生成するが、該塩化銀は、水に対する溶解度が非常に低いため、反応を水相で行う場合、副生成物の分離が容易となる。目的物質である式(I)のイオン性化合物の水相からの単離は、水相の水を公知の方法で蒸発させればよい。上記水相の体積は、特に限定されるものではないが、式(V)のイオン性化合物1mLに対して2〜5mLの範囲が好ましい。 The reaction of the ionic compound of formula (V) with the salt of formula (VII) is preferably carried out in an aqueous phase. In the reaction of the ionic compound of the above formula (V) with the silver salt represented by the formula (VII) and A + is Ag + , silver chloride is produced as a by-product, Since the solubility in water is very low, by-products can be easily separated when the reaction is carried out in an aqueous phase. Isolation from the aqueous phase of the ionic compound of formula (I), which is the target substance, may be carried out by evaporating the water in the aqueous phase by a known method. The volume of the aqueous phase is not particularly limited, but is preferably in the range of 2 to 5 mL with respect to 1 mL of the ionic compound of the formula (V).
本発明の電池用非水電解液に用いられる支持塩としては、リチウムイオンのイオン源となる支持塩が好ましい。該支持塩としては、特に制限はないが、例えば、LiClO4、LiBF4、LiPF6、LiCF3SO3、LiAsF6、LiC4F9SO3、Li(CF3SO2)2N及びLi(C2F5SO2)2N等のリチウム塩が好適に挙げられる。これら支持塩は、1種単独で使用してもよく、2種以上を併用してもよい。本発明の電池用非水電解液中の支持塩の濃度としては、0.2〜1.5mol/L(M)の範囲が好ましく、0.5〜1mol/Lの範囲が更に好ましい。支持塩の濃度が0.2mol/L未満では、電解液の導電性を充分に確保することができず、電池の放電特性及び充電特性に支障をきたすことがあり、1.5mol/Lを超えると、電解液の粘度が上昇し、リチウムイオンの移動度を充分に確保できないため、前述と同様に電解液の導電性を充分に確保できず、電池の放電特性及び充電特性に支障をきたすことがある。 As the supporting salt used in the nonaqueous electrolytic solution for a battery of the present invention, a supporting salt serving as an ion source of lithium ions is preferable. The supporting salt is not particularly limited, and for example, LiClO 4 , LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiAsF 6 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N and Li ( Preferable examples include lithium salts such as C 2 F 5 SO 2 ) 2 N. These supporting salts may be used alone or in combination of two or more. The concentration of the supporting salt in the battery non-aqueous electrolyte of the present invention is preferably in the range of 0.2 to 1.5 mol / L (M), more preferably in the range of 0.5 to 1 mol / L. If the concentration of the supporting salt is less than 0.2 mol / L, the conductivity of the electrolyte cannot be sufficiently ensured, and the discharge characteristics and charging characteristics of the battery may be hindered. Since the viscosity of the electrolytic solution increases and the mobility of lithium ions cannot be ensured sufficiently, the conductivity of the electrolytic solution cannot be sufficiently ensured in the same manner as described above, which may hinder battery discharge characteristics and charge characteristics. .
本発明の電池用非水電解液は、前記イオン液体及び支持塩のみからなることが好ましいが、目的に応じて、電池用非水電解液に使用される公知の添加剤等を含有することができる。具体的には、本発明の電池用非水電解液は、非プロトン性有機溶媒を含有することができる。該非プロトン性有機溶媒としては、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジフェニルカーボネート、エチルメチルカーボネート(EMC)、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、γ-ブチロラクトン(GBL)、γ-バレロラクトン、メチルフォルメート(MF)等のエステル類、1,2-ジメトキシエタン(DME)、テトラヒドロフラン(THF)等のエーテル類が好適に挙げられる。これらの中でも、1次電池の非水電解液用の非プロトン性有機溶媒としては、プロピレンカーボネート、1,2-ジメトキシエタン及びγ-ブチロラクトンが好ましく、一方、2次電池の非水電解液用の非プロトン性有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート及びメチルフォルメートが好ましい。なお、環状のエステル類は、比誘電率が高く支持塩の溶解性に優れる点で好適であり、一方、鎖状のエステル類及び鎖状のエーテル類は、低粘度であるため、電解液の低粘度化の点で好適である。これら非プロトン性有機溶媒は、1種単独で使用してもよく、2種以上を併用してもよい。ここで、電解液中の上記イオン液体の含有量は、電解液の安全性の観点から、5体積%以上が好ましい。 The battery non-aqueous electrolyte of the present invention preferably comprises only the ionic liquid and the supporting salt, but may contain known additives used for the battery non-aqueous electrolyte depending on the purpose. it can. Specifically, the nonaqueous electrolytic solution for a battery of the present invention can contain an aprotic organic solvent. Examples of the aprotic organic solvent include dimethyl carbonate (DMC), diethyl carbonate (DEC), diphenyl carbonate, ethyl methyl carbonate (EMC), ethylene carbonate (EC), propylene carbonate (PC), γ-butyrolactone (GBL), γ Preferred examples include esters such as valerolactone and methyl formate (MF), and ethers such as 1,2-dimethoxyethane (DME) and tetrahydrofuran (THF). Among these, propylene carbonate, 1,2-dimethoxyethane, and γ-butyrolactone are preferable as the aprotic organic solvent for the non-aqueous electrolyte of the primary battery, while for the non-aqueous electrolyte of the secondary battery. As the aprotic organic solvent, ethylene carbonate, propylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate and methyl formate are preferable. Cyclic esters are preferred in that they have a high relative dielectric constant and excellent solubility of the supporting salt, while chain esters and chain ethers have low viscosity, so It is suitable in terms of lowering the viscosity. These aprotic organic solvents may be used alone or in combination of two or more. Here, the content of the ionic liquid in the electrolytic solution is preferably 5% by volume or more from the viewpoint of the safety of the electrolytic solution.
<非水電解液電池>
次に、本発明の非水電解液電池を詳細に説明する。本発明の非水電解液電池は、上述の電池用非水電解液と、正極と、負極とを備え、必要に応じて、セパレーター等の非水電解液電池の技術分野で通常使用されている他の部材を備えることができ、1次電池であっても、2次電池であってもよい。
<Nonaqueous electrolyte battery>
Next, the nonaqueous electrolyte battery of the present invention will be described in detail. The non-aqueous electrolyte battery of the present invention includes the above-described non-aqueous electrolyte for a battery, a positive electrode, and a negative electrode, and is usually used in the technical field of non-aqueous electrolyte batteries such as a separator as necessary. Other members may be provided, and the primary battery or the secondary battery may be used.
本発明の非水電解液電池の正極活物質は1次電池と2次電池で一部異なり、例えば、非水電解液1次電池の正極活物質としては、フッ化黒鉛[(CFx)n]、MnO2(電気化学合成であっても化学合成であってもよい)、V2O5、MoO3、Ag2CrO4、CuO、CuS、FeS2、SO2、SOCl2、TiS2等が好適に挙げられ、これらの中でも、高容量で安全性が高く、更には放電電位が高く電解液の濡れ性に優れる点で、MnO2、フッ化黒鉛が好ましい。これら正極活物質は、1種単独で使用してもよく、2種以上を併用してもよい。 The positive electrode active material of the non-aqueous electrolyte battery of the present invention is partially different between the primary battery and the secondary battery. For example, as the positive electrode active material of the non-aqueous electrolyte primary battery, fluorinated graphite [(CF x ) n ], MnO 2 (which may be electrochemical synthesis or chemical synthesis), V 2 O 5 , MoO 3 , Ag 2 CrO 4 , CuO, CuS, FeS 2 , SO 2 , SOCl 2 , TiS 2, etc. Among these, MnO 2 and fluorinated graphite are preferable from the viewpoints of high capacity and high safety, and high discharge potential and excellent wettability of the electrolytic solution. These positive electrode active materials may be used individually by 1 type, and may use 2 or more types together.
一方、非水電解液2次電池の正極活物質としては、V2O5、V6O13、MnO2、MnO3等の金属酸化物、LiCoO2、LiNiO2、LiMn2O4、LiFeO2及びLiFePO4等のリチウム含有複合酸化物、TiS2、MoS2等の金属硫化物、ポリアニリン等の導電性ポリマー等が好適に挙げられる。上記リチウム含有複合酸化物は、Fe、Mn、Co及びNiからなる群から選択される2種又は3種の遷移金属を含む複合酸化物であってもよく、この場合、該複合酸化物は、LiFexCoyNi(1-x-y)O2(式中、0≦x<1、0≦y<1、0<x+y≦1)、あるいはLiMnxFeyO2-x-y等で表される。これらの中でも、高容量で安全性が高く、更には電解液の濡れ性に優れる点で、LiCoO2、LiNiO2、LiMn2O4が特に好適である。これら正極活物質は、1種単独で使用してもよく、2種以上を併用してもよい。 On the other hand, as the positive electrode active material of the non-aqueous electrolyte secondary battery, metal oxides such as V 2 O 5 , V 6 O 13 , MnO 2 , MnO 3 , LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiFeO 2 are used. Preferable examples include lithium-containing composite oxides such as LiFePO 4 , metal sulfides such as TiS 2 and MoS 2 , and conductive polymers such as polyaniline. The lithium-containing composite oxide may be a composite oxide containing two or three transition metals selected from the group consisting of Fe, Mn, Co, and Ni. In this case, the composite oxide includes: LiFe x Co y Ni (wherein, 0 ≦ x <1,0 ≦ y <1,0 <x + y ≦ 1) (1-xy) O 2, or represented by LiMn x Fe y O 2-xy like. Among these, LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 are particularly preferable in terms of high capacity, high safety, and excellent electrolyte wettability. These positive electrode active materials may be used individually by 1 type, and may use 2 or more types together.
本発明の非水電解液電池の負極活物質は1次電池と2次電池で一部異なり、例えば、非水電解液1次電池の負極活物質としては、リチウム金属自体の他、リチウム合金等が挙げられる。リチウムと合金をつくる金属としては、Sn、Pb、Al、Au、Pt、In、Zn、Cd、Ag、Mg等が挙げられる。これらの中でも、埋蔵量の多さ、毒性の観点からAl、Zn、Mgが好ましい。これら負極活物質は、1種単独で使用してもよく、2種以上を併用してもよい。 The negative electrode active material of the nonaqueous electrolyte battery of the present invention is partially different between the primary battery and the secondary battery. For example, as the negative electrode active material of the nonaqueous electrolyte primary battery, lithium metal itself, lithium alloy, etc. Is mentioned. Examples of the metal that forms an alloy with lithium include Sn, Pb, Al, Au, Pt, In, Zn, Cd, Ag, and Mg. Among these, Al, Zn, and Mg are preferable from the viewpoints of rich reserves and toxicity. These negative electrode active materials may be used individually by 1 type, and may use 2 or more types together.
一方、非水電解液2次電池の負極活物質としては、リチウム金属自体、リチウムとAl、In、Sn、Si、Pb又はZn等との合金、リチウムをドープした黒鉛等の炭素材料等が好適に挙げられ、これらの中でも安全性がより高く、電解液の濡れ性に優れる点で、黒鉛等の炭素材料が好ましく、黒鉛が特に好ましい。ここで、黒鉛としては、天然黒鉛、人造黒鉛、メソフェーズカーボンマイクロビーズ(MCMB)等、広くは易黒鉛化カーボンや難黒鉛化カーボンが挙げられる。これら負極活物質は、1種単独で使用してもよく、2種以上を併用してもよい。 On the other hand, as the negative electrode active material of the non-aqueous electrolyte secondary battery, lithium metal itself, an alloy of lithium and Al, In, Sn, Si, Pb, Zn, or the like, or a carbon material such as graphite doped with lithium is preferable. Among these, carbon materials such as graphite are preferable, and graphite is particularly preferable in that it is higher in safety and excellent in wettability of the electrolytic solution. Here, examples of graphite include natural graphite, artificial graphite, mesophase carbon microbeads (MCMB), and the like, and widely include graphitizable carbon and non-graphitizable carbon. These negative electrode active materials may be used individually by 1 type, and may use 2 or more types together.
上記正極及び負極には、必要に応じて導電剤、結着剤を混合することができ、導電剤としてはアセチレンブラック等が挙げられ、結着剤としてはポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、スチレン・ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)等が挙げられる。これらの添加剤は、従来と同様の配合割合で用いることができる。 The positive electrode and the negative electrode can be mixed with a conductive agent and a binder as necessary. Examples of the conductive agent include acetylene black, and the binder includes polyvinylidene fluoride (PVDF) and polytetrafluoro. Examples include ethylene (PTFE), styrene / butadiene rubber (SBR), carboxymethyl cellulose (CMC), and the like. These additives can be used at a blending ratio similar to the conventional one.
また、上記正極及び負極の形状としては、特に制限はなく、電極として公知の形状の中から適宜選択することができる。例えば、シート状、円柱形状、板状形状、スパイラル形状等が挙げられる。 Moreover, there is no restriction | limiting in particular as a shape of the said positive electrode and a negative electrode, It can select suitably from well-known shapes as an electrode. For example, a sheet shape, a columnar shape, a plate shape, a spiral shape, and the like can be given.
本発明の非水電解液電池に使用できる他の部材としては、非水電解液電池において、正負極間に、両極の接触による電流の短絡を防止する役割で介在させるセパレーターが挙げられる。セパレーターの材質としては、両極の接触を確実に防止し得、且つ電解液を通したり含んだりできる材料、例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、セルロース系、ポリブチレンテレフタレート、ポリエチレンテレフタレート等の合成樹脂製の不織布、薄層フィルム等が好適に挙げられる。これらの中でも、厚さ20〜50μm程度のポリプロピレン又はポリエチレン製の微孔性フィルム、セルロース系、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のフィルムが特に好適である。本発明では、上述のセパレーターの他にも、通常電池に使用されている公知の各部材が好適に使用できる。 Other members that can be used in the non-aqueous electrolyte battery of the present invention include a separator that is interposed between positive and negative electrodes in a role of preventing current short-circuiting due to contact between both electrodes in the non-aqueous electrolyte battery. As the material of the separator, it is possible to reliably prevent contact between the two electrodes and to allow the electrolyte to pass through or to contain, for example, synthesis of polytetrafluoroethylene, polypropylene, polyethylene, cellulose, polybutylene terephthalate, polyethylene terephthalate, etc. Preferred examples include resin non-woven fabrics and thin layer films. Of these, polypropylene or polyethylene microporous films having a thickness of about 20 to 50 μm, cellulose-based films, polybutylene terephthalate, polyethylene terephthalate, and the like are particularly suitable. In the present invention, in addition to the separators described above, known members that are normally used in batteries can be suitably used.
以上に説明した本発明の非水電解液電池の形態としては、特に制限はなく、コインタイプ、ボタンタイプ、ペーパータイプ、角型又はスパイラル構造の円筒型電池等、種々の公知の形態が好適に挙げられる。ボタンタイプの場合は、シート状の正極及び負極を作製し、該正極及び負極でセパレーターを挟む等して、非水電解液電池を作製することができる。また、スパイラル構造の場合は、例えば、シート状の正極を作製して集電体を挟み、これに、シート状の負極を重ね合わせて巻き上げる等して、非水電解液電池を作製することができる。 The form of the non-aqueous electrolyte battery of the present invention described above is not particularly limited, and various known forms such as a coin-type, button-type, paper-type, square-type or spiral-type cylindrical battery are suitable. Can be mentioned. In the case of the button type, a non-aqueous electrolyte battery can be produced by preparing a sheet-like positive electrode and negative electrode and sandwiching a separator between the positive electrode and the negative electrode. In the case of a spiral structure, for example, a non-aqueous electrolyte battery can be manufactured by preparing a sheet-like positive electrode, sandwiching a current collector, and stacking and winding a sheet-like negative electrode on the current collector. it can.
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
(イオン液体合成例1)
水 5gとクロロホルム 5gからなる二相系を調製し、該二相系にトリエチルアミン 5mLと、上記一般式(III)で表され、式中のnが3であって、6つのR3のうち1つが塩素で且つ5つがフッ素である環状ホスファゼン化合物 5mLとを順次滴下した。該二相系をスターラーで撹拌すると、反応に伴って発熱が観測された。3分間の撹拌の後に、水相を採取し、水を蒸発させたところ白色結晶が生成し、更に減圧乾燥して白色結晶 5.2g(収率 53%)を得た。次に、得られた白色結晶 2g及びAgBF4 2.2gを水 20mLに溶解させ、30分間の撹拌の後に、水相を採取し、水を蒸発させたところ透明の液体が残留し、更に減圧乾燥してイオン液体A 1.8g(収率 79%)を得た。得られたイオン液体Aを重水に溶解させて、1H-NMR、31P-NMR及び19F-NMRで分析したところ、該イオン液体Aは、上記一般式(I)で表され、式中のnが3であって、6つのR1のうち5つがフッ素で且つ1つが−N+(CH2CH2)3BF4 -であることを確認した。生成物の1H-NMRの結果を図1に、31P-NMRの結果を図2に、19F-NMRの結果を図3に、反応スキームを下記に示す。
(Ionic liquid synthesis example 1)
A two-phase system consisting of 5 g of water and 5 g of chloroform was prepared, and the two-phase system was represented by 5 mL of triethylamine and the above general formula (III), where n was 3, and 1 of 6
(イオン液体合成例2)
水 5gとクロロホルム 5gからなる二相系を調製し、該二相系にN-メチル-2-ピロリドン 5mLと、上記一般式(III)で表され、式中のnが3であって、6つのR3のうち1つが塩素で且つ5つがフッ素である環状ホスファゼン化合物 5mLとを順次滴下した。該二相系をスターラーで撹拌すると、反応に伴って発熱が観測された。3分間の撹拌の後に、水相を採取し、水を蒸発させたところ白色結晶が生成し、更に減圧乾燥して白色結晶 3.6g(収率 35.7%)を得た。次に、得られた白色結晶 2g及びAgBF4 2.3gを水 20mLに溶解させ、30分間の撹拌の後に、水相を採取し、水を蒸発させたところ透明の液体が残留し、更に減圧乾燥してイオン液体B 1.21g(収率 53.3%)を得た。得られたイオン液体Bを重水に溶解させて、1H-NMRで分析したところ、該イオン液体Bは、上記一般式(I)で表され、式中のnが3であって、6つのR1のうち5つがフッ素で且つ1つが上記一般式(II)で表されるイオン性置換基で、式(II)中のX-がBF4 -で、R2の一つがメチル基で、他の二つのR2が互いに結合して窒素原子と共に2-アザシクロペンタノン環を形成しているイオン性化合物であることを確認した。生成物の1H-NMRの結果を図4に、31P-NMRの結果を図5に、反応スキームを下記に示す。
(Ionic liquid synthesis example 2)
A two-phase system consisting of 5 g of water and 5 g of chloroform was prepared, and the two-phase system was represented by 5 mL of N-methyl-2-pyrrolidone and the above general formula (III), where n was 3, 5 mL of a cyclic phosphazene compound in which one of the three R 3 s is chlorine and five are fluorine was successively added dropwise. When the two-phase system was stirred with a stirrer, an exotherm was observed with the reaction. After stirring for 3 minutes, the aqueous phase was collected and the water was evaporated to form white crystals, which were further dried under reduced pressure to obtain 3.6 g of white crystals (yield 35.7%). Next, 2 g of the obtained white crystals and 2.3 g of AgBF 4 were dissolved in 20 mL of water, and after stirring for 30 minutes, the aqueous phase was collected and evaporated to leave a transparent liquid, which was further dried under reduced pressure. As a result, 1.21 g (yield 53.3%) of ionic liquid B was obtained. When the obtained ionic liquid B was dissolved in heavy water and analyzed by 1 H-NMR, the ionic liquid B was represented by the above general formula (I), where n was 3, Five of R 1 are fluorine and one is an ionic substituent represented by the above general formula (II), X − in formula (II) is BF 4 − , and one of R 2 is a methyl group, It was confirmed that the other two R 2 were bonded to each other to form a 2-azacyclopentanone ring together with the nitrogen atom. The result of 1 H-NMR of the product is shown in FIG. 4, the result of 31 P-NMR is shown in FIG. 5, and the reaction scheme is shown below.
(イオン液体合成例3)
水 15mLとクロロホルム 15mLからなる二相系を調製し、該二相系にピリジン5mLと、上記一般式(III)で表され、式中のnが3であって、6つのR3のうち1つが塩素で且つ5つがフッ素である環状ホスファゼン化合物 5mLとを順次滴下した。その後、該二相系を冷却しながら撹拌すると、クロロホルム相に白色結晶が沈殿した。常温に戻して撹拌すると該白色結晶は消えた。なお、クロロホルム相は、反応前は無色であったが、反応後は白濁した。ピペットを用いて水相を採取し、エバポレートした後、真空ポンプを用いて水を留去したところ、白色結晶 5.2g(収率 57%)を得た。次に、得られた白色結晶 2g及びAgBF4 2.3gを水 20mLに溶解させ、30分間の撹拌の後に、水相を採取し、水を蒸発させたところ透明の液体が残留し、更に減圧乾燥してイオン液体C 1.4g(収率 60%)を得た。得られたイオン液体Cを重水に溶解させて、1H-NMRで分析したところ、該イオン液体Cは、上記一般式(I)で表され、式中のnが3であって、6つのR1のうち5つがフッ素で且つ一つが−N+C5H5BF4 -であることを確認した。生成物の1H-NMRの結果を図6に、31P-NMRの結果を図7に、反応スキームを下記に示す。
(Ionic liquid synthesis example 3)
A two-phase system consisting of 15 mL of water and 15 mL of chloroform was prepared, and the two-phase system was represented by 5 mL of pyridine and the above general formula (III), where n was 3 and 1 of 6
(イオン液体合成例4)
水 15mLとクロロホルム 15mLからなる二相系を調製し、該二相系にアニリン5mLと、上記一般式(III)で表され、式中のnが3であって、6つのR3のうち1つが塩素で且つ5つがフッ素である環状ホスファゼン化合物 5mLとを順次滴下した。その後、該二相系を冷却しながら撹拌すると、クロロホルム相に白色結晶が沈殿した。常温に戻して撹拌すると該白色結晶は消えた。なお、クロロホルム相は、反応前は無色であったが、反応後は白濁した。ピペットを用いて水相を採取し、エバポレートした後、真空ポンプを用いて水を留去したところ、白色結晶 4.8g(収率 54%)を得た。次に、得られた白色結晶 2g及びAgBF4 2.3gを水 20mLに溶解させ、30分間の撹拌の後に、水相を採取し、水を蒸発させたところ透明の液体が残留し、更に減圧乾燥してイオン液体D 1.6g(収率 72%)を得た。得られたイオン液体Dを重水に溶解させて、1H-NMRで分析したところ、該イオン液体Dは、上記一般式(I)で表され、式中のnが3であって、6つのR1のうち5つがフッ素で且つ一つが−N+H2C6H5BF4 -であることを確認した。生成物の1H-NMRの結果を図8に、31P-NMRの結果を図9に、反応スキームを下記に示す。
(Ionic liquid synthesis example 4)
A two-phase system consisting of 15 mL of water and 15 mL of chloroform was prepared, and the two-phase system was represented by 5 mL of aniline and the above general formula (III), where n was 3, and 1 of 6
(イオン液体合成例5)
水 15mLとクロロホルム 15mLからなる二相系を調製し、該二相系にジメチルアニリン5mLと、上記一般式(III)で表され、式中のnが3であって、6つのR3のうち1つが塩素で且つ5つがフッ素である環状ホスファゼン化合物 5mLとを順次滴下した。その後、該二相系を冷却しながら撹拌すると、クロロホルム相に白色結晶が沈殿した。常温に戻して撹拌すると該白色結晶は消えた。なお、クロロホルム相は、反応前は無色であったが、反応後は白濁した。ピペットを用いて水相を採取し、エバポレートした後、真空ポンプを用いて水を留去したところ、白色結晶 5.1g(収率 52%)を得た。次に、得られた白色結晶 2g及びAgBF4 2.3gを水 20mLに溶解させ、30分間の撹拌の後に、水相を採取し、水を蒸発させたところ透明の液体が残留し、更に減圧乾燥してイオン液体E 1.5g(収率 65%)を得た。得られたイオン液体Eを重水に溶解させて、1H-NMRで分析したところ、該イオン液体Eは、上記一般式(I)で表され、式中のnが3であって、6つのR1のうち5つがフッ素で且つ一つが−N+(CH3)2C6H5BF4 -であることを確認した。生成物の1H-NMRの結果を図10に、31P-NMRの結果を図11に、反応スキームを下記に示す。
(Ionic liquid synthesis example 5)
The two-phase system consisting of water 15mL of chloroform 15mL prepared, and dimethylaniline 5mL in the two-phase system, represented by the general formula (III), a wherein n is 3, among the six
(イオン液体合成例6)
上記イオン液体合成例1と同様にして合成した、トリエチルアミンと、上記一般式(III)で表され、式中のnが3であって、6つのR3のうち1つが塩素で且つ5つがフッ素である環状ホスファゼン化合物との反応物 2gにLiCF3SO3を1.5g反応させ、更に1g反応させた後、ろ過してイオン液体F[上記一般式(I)で表され、式中のnが3であって、6つのR1のうち5つがフッ素で且つ1つが−N+(CH2CH2)3・CF3SO3 -であるイオン液体]1.54g(収率 61%)を得た。
(Ionic liquid synthesis example 6)
Triethylamine synthesized in the same manner as in the above ionic liquid synthesis example 1 and represented by the above general formula (III), wherein n is 3, 1 of 6 R 3 is chlorine and 5 are fluorine 1 g of LiCF 3 SO 3 is reacted with 2 g of the reaction product with the cyclic phosphazene compound, and 1 g of the reaction product is filtered, followed by filtration to obtain an ionic liquid F [represented by the above general formula (I), where n is 3 and 5 out of 6 R 1 are fluorine and one is —N + (CH 2 CH 2 ) 3 .CF 3 SO 3 — ], 1.54 g (yield 61%) was obtained. .
(イオン液体合成例7)
AgBF4の代わりにAgPF6を用いる以外は上記イオン液体合成例1と同様にして、イオン液体Gを得た。得られたイオン液体Gを1H-NMRで分析し、上記一般式(I)で表され、式中のnが3であって、6つのR1のうち5つがフッ素で且つ1つが−N+(CH2CH2)3PF6 -である化合物であることを確認した。
(Ionic liquid synthesis example 7)
An ionic liquid G was obtained in the same manner as in the ionic liquid synthesis example 1 except that AgPF 6 was used instead of AgBF 4 . The obtained ionic liquid G was analyzed by 1 H-NMR, represented by the above general formula (I), wherein n is 3, 5 out of 6 R 1 are fluorine and 1 is —N. + (CH 2 CH 2) 3 PF 6 - was identified as those compounds.
(イオン液体合成例8)
AgBF4の代わりにAgPF6を用いる以外は上記イオン液体合成例4と同様にして、イオン液体Hを得た。得られたイオン液体Hを1H-NMRで分析し、上記一般式(I)で表され、式中のnが3であって、6つのR1のうち5つがフッ素で且つ1つが−N+H2C6H5PF6 -である化合物であることを確認した。
(Ionic liquid synthesis example 8)
But using AgPF 6 in place of AgBF 4 in the same manner as the ion liquid Synthesis Example 4, to give the ionic liquid H. The obtained ionic liquid H is analyzed by 1 H-NMR, represented by the above general formula (I), wherein n is 3, 5 of 6 R 1 are fluorine and 1 is —N. + H 2 C 6 H 5 PF 6 - it was identified as those compounds.
(イオン液体合成例9)
AgBF4の代わりにAgPF6を用いる以外は上記イオン液体合成例5と同様にして、イオン液体Iを得た。得られたイオン液体Iを1H-NMRで分析し、上記一般式(I)で表され、式中のnが3であって、6つのR1のうち5つがフッ素で且つ1つが−N+(CH3)2C6H5PF6 -である化合物であることを確認した。
(Ionic liquid synthesis example 9)
An ionic liquid I was obtained in the same manner as in the above ionic liquid synthesis example 5 except that AgPF 6 was used instead of AgBF 4 . The obtained ionic liquid I was analyzed by 1 H-NMR, represented by the above general formula (I), wherein n is 3, 5 of 6 R 1 are fluorine and 1 is —N. + (CH 3) 2 C 6 H 5 PF 6 - it was identified as those compounds.
(実施例1)
上記のようにして合成したイオン液体Aに、LiPF6(支持塩)を1mol/L(M)になるように溶解させ、非水電解液を調製した。得られた非水電解液に対して、下記の方法で安全性を評価した。結果を表1に示す。
Example 1
LiPF 6 (supporting salt) was dissolved to 1 mol / L (M) in the ionic liquid A synthesized as described above to prepare a nonaqueous electrolytic solution. The safety of the obtained nonaqueous electrolytic solution was evaluated by the following method. The results are shown in Table 1.
(1)電解液の安全性
UL(アンダーライティングラボラトリー)規格のUL94HB法をアレンジした方法で、大気環境下において着火した炎の燃焼挙動から電解液の安全性を評価した。その際、着火性、燃焼性、炭化物の生成、二次着火時の現象についても観察した。具体的には、UL試験基準に基づき、不燃性石英ファイバーに電解液 1.0mLを染み込ませて、127mm×12.7mmの試験片を作製して行った。ここで、試験炎が試験片に着火しない場合(燃焼長:0mm)を「不燃性」、着火した炎が25mmラインまで到達せず且つ落下物にも着火が認められない場合を「難燃性」、着火した炎が25〜100mmラインで消火し且つ落下物にも着火が認められない場合を「自己消火性」、着火した炎が100mmラインを超えた場合を「燃焼性」と評価した。
(1) Electrolyte Safety The safety of the electrolyte was evaluated from the combustion behavior of flames ignited in an atmospheric environment by the method of arranging UL94HB method of UL (Underwriting Laboratory) standard. At that time, ignitability, combustibility, formation of carbides, and secondary ignition phenomena were also observed. Specifically, based on the UL test standard, a nonflammable quartz fiber was impregnated with 1.0 mL of an electrolytic solution, and a test piece of 127 mm × 12.7 mm was produced. Here, when the test flame does not ignite the test piece (combustion length: 0 mm), it is “non-flammable”, and when the ignited flame does not reach the 25 mm line and the fallen object is not ignited, “flame retardant” The case where the ignited flame was extinguished on the 25 to 100 mm line and the fallen object was not ignited was evaluated as “self-extinguishing”, and the case where the ignited flame exceeded the 100 mm line was evaluated as “combustible”.
<リチウム二次電池の作製>
次に、正極活物質としでリチウムコバルト複合酸化物(LiCoO2)又はリチウムマンガン複合酸化物(LiMn2O4)を用い、該複合酸化物と、導電剤であるアセチレンブラックと、結着剤であるフッ素樹脂とを、質量比で90:5:5で混合し、これをN-メチルピロリドンに分散させてスラリーとしたものを、正極集電体としてのアルミニウム箔に塗布・乾燥した後、φ16mmの円板状に打ち抜いて、正極を作製した。一方、負極としては、リチウム箔(厚さ0.5mm)をφ16mmに打ち抜いたものを負極とした。次いで、正極端子を兼ねたステンレスケース内に、正極と負極とを、電解液を含浸したセパレーター(微孔性フィルム:ポリプロピレン製)を介して重ねて収容し、ポリプロピレン製ガスケットを介して負極端子を兼ねるステンレス製封口板で密封して、容量が4mAhのCR2016型のコイン型電池(リチウム二次電池)を作製した。得られた電池の初期放電容量、10サイクル後の放電容量を下記の方法で測定し、表1に示す結果を得た。
<Production of lithium secondary battery>
Next, lithium cobalt composite oxide (LiCoO 2 ) or lithium manganese composite oxide (LiMn 2 O 4 ) is used as the positive electrode active material, and the composite oxide, acetylene black as a conductive agent, and a binder are used. After mixing a certain fluororesin with a mass ratio of 90: 5: 5, dispersing this in N-methylpyrrolidone and applying it to an aluminum foil as a positive electrode current collector, and drying it, φ16mm This was punched into a disc shape to produce a positive electrode. On the other hand, the negative electrode was a lithium foil (thickness 0.5 mm) punched out to φ16 mm. Next, the positive electrode and the negative electrode are stacked and accommodated in a stainless steel case that also serves as a positive electrode terminal via a separator (microporous film: made of polypropylene) impregnated with an electrolytic solution, and the negative electrode terminal is inserted through a polypropylene gasket. It was sealed with a stainless steel sealing plate that also serves as a CR2016 type coin-type battery (lithium secondary battery) having a capacity of 4 mAh. The initial discharge capacity of the obtained battery and the discharge capacity after 10 cycles were measured by the following method, and the results shown in Table 1 were obtained.
(2)初期及び10サイクル後の放電容量
20℃の環境下で、上限電圧4.2V、下限電圧3.0V、放電電流50mA、充電電流50mAの条件で充放電を行い、この時の放電容量を既知の電極重量で除することにより初期放電容量(mAh/g)を求めた。更に、同様の充放電条件で10サイクルまで充放電を繰り返して、10サイクル後の放電容量を求めた。
(2) Discharge capacity at the initial stage and after 10 cycles
Under an environment of 20 ° C, charge and discharge are performed under the conditions of an upper limit voltage of 4.2 V, a lower limit voltage of 3.0 V, a discharge current of 50 mA, and a charge current of 50 mA, and the initial discharge capacity is obtained by dividing the discharge capacity at this time by the known electrode weight. (MAh / g) was determined. Furthermore, charge / discharge was repeated up to 10 cycles under the same charge / discharge conditions, and the discharge capacity after 10 cycles was determined.
(実施例2〜6)
上記のようにして合成したイオン液体B〜Fに、LiPF6(支持塩)を1mol/L(M)になるように溶解させ、非水電解液を調製した。得られた非水電解液に対して、上記の方法で安全性を評価した。また、該非水電解液を用いて、実施例1と同様にしてリチウム二次電池を作製し、初期及び10サイクル後の放電容量を測定した。結果を表1に示す。
(Examples 2 to 6)
LiPF 6 (supporting salt) was dissolved in the ionic liquids B to F synthesized as described above so as to be 1 mol / L (M) to prepare a nonaqueous electrolytic solution. The safety of the obtained nonaqueous electrolytic solution was evaluated by the above method. Further, using the non-aqueous electrolyte, a lithium secondary battery was produced in the same manner as in Example 1, and the discharge capacity at the initial stage and after 10 cycles was measured. The results are shown in Table 1.
(比較例1)
エチレンカーボネート(EC)50体積%と、ジエチルカーボネート(DEC)50体積%からなる混合溶媒に、LiPF6を1mol/Lになるように溶解させて非水電解液を調製した。得られた非水電解液に対して、上記の方法で安全性を評価した。また、該非水電解液を用いて、実施例1と同様にしてリチウム二次電池を作製し、初期及び10サイクル後の放電容量を測定した。結果を表1に示す。
(Comparative Example 1)
LiPF 6 was dissolved in a mixed solvent composed of 50% by volume of ethylene carbonate (EC) and 50% by volume of diethyl carbonate (DEC) so as to be 1 mol / L to prepare a nonaqueous electrolytic solution. The safety of the obtained nonaqueous electrolytic solution was evaluated by the above method. Further, using the non-aqueous electrolyte, a lithium secondary battery was produced in the same manner as in Example 1, and the discharge capacity at the initial stage and after 10 cycles was measured. The results are shown in Table 1.
表1から明らかなように、カチオン部にリン及び窒素を含み且つ前記一般式(I)で表されるイオン液体と支持塩からなる電解液は、安全性が非常に高く、更に、該電解液をリチウム二次電池に用いることで、電池のサイクル特性を改善できることが分る。 As apparent from Table 1, electrolytic solution comprising an ionic liquid and a support salt represented by unrealized and Formula phosphorus and nitrogen in the cation moiety (I) are safety is very high, further, electrolytic It turns out that the cycling characteristics of a battery can be improved by using a liquid for a lithium secondary battery.
(実施例7〜16及び比較例2)
表2に示す配合の溶媒に、LiPF6を1mol/Lになるように溶解させて、非水電解液を調製した。なお、表2中、EC/PC/DMCは、エチレンカーボネート(EC)とプロピレンカーボネート(PC)とジメチルカーボネート(DMC)とを体積比1/1/3で含む混合有機溶媒を示す。得られた非水電解液に対して、上記の方法で安全性を評価した。また、該非水電解液を用いて、実施例1と同様にしてリチウム二次電池を作製し、初期及び20サイクル後の放電容量を測定した。結果を表2に示す。
(Examples 7 to 16 and Comparative Example 2)
LiPF 6 was dissolved in a solvent having the composition shown in Table 2 so as to be 1 mol / L to prepare a nonaqueous electrolytic solution. In Table 2, EC / PC / DMC represents a mixed organic solvent containing ethylene carbonate (EC), propylene carbonate (PC), and dimethyl carbonate (DMC) at a volume ratio of 1/3. The safety of the obtained nonaqueous electrolytic solution was evaluated by the above method. Further, using the non-aqueous electrolyte, a lithium secondary battery was produced in the same manner as in Example 1, and the discharge capacity at the initial stage and after 20 cycles was measured. The results are shown in Table 2.
表2から、非プロトン性有機溶媒を含む場合、イオン液体の含有量が5体積%以上で電解液の安全性が非常に高くなることが分る。 From Table 2, it can be seen that when an aprotic organic solvent is contained, the safety of the electrolytic solution becomes very high when the content of the ionic liquid is 5% by volume or more.
(実施例17)
上記のようにして合成したイオン液体Aに、LiBF4(支持塩)を1mol/L(M)になるように溶解させ、非水電解液を調製した。得られた非水電解液に対して、上記の方法で安全性を評価した。結果を表3に示す。
(Example 17)
LiBF 4 (supporting salt) was dissolved to 1 mol / L (M) in the ionic liquid A synthesized as described above to prepare a nonaqueous electrolytic solution. The safety of the obtained nonaqueous electrolytic solution was evaluated by the above method. The results are shown in Table 3.
<リチウム1次電池の作製>
MnO2(正極活物質)と、アセチレンブラック(導電剤)と、ポリフッ化ビニリデン(結着剤)とを8:1:1の割合(質量比)で混合・混錬し、該混練物をドクターブレードで塗工した後、熱風乾燥(100〜120℃)して得たものを、φ16mm打ち抜き機で切り出すことにより正極を作製した。なお、正極の質量は20mgである。また、負極には、リチウム箔(厚さ0.5mm)をφ16mmに打ち抜いたものを使用し、集電体にはニッケル箔を使用した。セルロースセパレーター[日本高度紙工業社製TF4030]を介して上記正負極を対座させ、上記電解液を注入して封口し、CR2016型のリチウム1次電池(非水電解液1次電池)を作製した。得られた電池に対して、25℃の環境下、下限電圧1.5Vで、0.2C放電を行い、放電容量を測定した。また、上記と同様にして作製した電池を120℃で60時間保存し、保存後の常温放電容量を上記と同様に測定した。更に、120℃で60時間保存した後の常温放電容量を製造直後の常温放電容量で除して、高温保存後の放電容量残存率を計算した。結果を表2に示す。
<Production of lithium primary battery>
MnO 2 (positive electrode active material), acetylene black (conductive agent), and polyvinylidene fluoride (binder) were mixed and kneaded at a ratio (mass ratio) of 8: 1: 1, and the kneaded product was doctored. After coating with a blade, what was obtained by hot-air drying (100 to 120 ° C.) was cut out with a φ16 mm punch to produce a positive electrode. The mass of the positive electrode is 20 mg. The negative electrode was a lithium foil (thickness 0.5 mm) punched out to φ16 mm, and the current collector was nickel foil. The positive and negative electrodes were placed facing each other through a cellulose separator [TF4030 manufactured by Nippon Kogyo Paper Industries Co., Ltd.], the electrolyte was injected and sealed, and a CR2016 type lithium primary battery (nonaqueous electrolyte primary battery) was produced. . The obtained battery was discharged at 0.2 C at a lower limit voltage of 1.5 V in an environment of 25 ° C., and the discharge capacity was measured. Further, the battery produced in the same manner as described above was stored at 120 ° C. for 60 hours, and the room temperature discharge capacity after storage was measured in the same manner as described above. Further, the room temperature discharge capacity after storage at 120 ° C. for 60 hours was divided by the room temperature discharge capacity immediately after production to calculate the discharge capacity remaining rate after storage at high temperature. The results are shown in Table 2.
(実施例18〜21)
上記のようにして合成したイオン液体B〜Eに、LiBF4(支持塩)を1mol/L(M)になるように溶解させ、非水電解液を調製した。得られた非水電解液に対して、上記の方法で安全性を評価した。また、該非水電解液を用いて、実施例17と同様にしてリチウム1次電池を作製し、製造直後及び高温保存後の放電容量を測定し、更に高温保存後の放電容量残存率を計算した。結果を表3に示す。
(Examples 18 to 21)
LiBF 4 (supporting salt) was dissolved to 1 mol / L (M) in the ionic liquids B to E synthesized as described above to prepare a nonaqueous electrolytic solution. The safety of the obtained nonaqueous electrolytic solution was evaluated by the above method. Further, using the non-aqueous electrolyte, a lithium primary battery was produced in the same manner as in Example 17, the discharge capacity immediately after production and after storage at high temperature was measured, and the discharge capacity remaining rate after storage at high temperature was further calculated. . The results are shown in Table 3.
(比較例3)
プロピレンカーボネート(PC)50体積%と、1,2-ジメトキシエタン(DME)50体積%からなる混合溶媒に、LiBF4を1mol/Lになるように溶解させて非水電解液を調製した。得られた非水電解液に対して、上記の方法で安全性を評価した。また、該非水電解液を用いて、実施例17と同様にしてリチウム1次電池を作製し、製造直後及び高温保存後の放電容量を測定し、更に高温保存後の放電容量残存率を計算した。結果を表3に示す。
(Comparative Example 3)
A nonaqueous electrolytic solution was prepared by dissolving LiBF 4 in a mixed solvent consisting of 50% by volume of propylene carbonate (PC) and 50% by volume of 1,2-dimethoxyethane (DME) to 1 mol / L. The safety of the obtained nonaqueous electrolytic solution was evaluated by the above method. Further, using the non-aqueous electrolyte, a lithium primary battery was produced in the same manner as in Example 17, the discharge capacity immediately after production and after storage at high temperature was measured, and the discharge capacity remaining rate after storage at high temperature was further calculated. . The results are shown in Table 3.
表3から明らかなように、カチオン部にリン及び窒素を含み且つ前記一般式(I)で表されるイオン液体及び支持塩からなる電解液は、安全性が非常に高く、更に、該電解液をリチウム1次電池に用いることで、電池の高温保存後の常温放電容量が向上し、電池の高温保存特性を改善できることが分る。 As apparent from Table 3, the electrolytic solution comprising an ionic liquid and a supporting salt represented by unrealized and Formula phosphorus and nitrogen in the cation moiety (I) are safety is very high, further, electrolytic It can be seen that by using the liquid in a lithium primary battery, the room temperature discharge capacity of the battery after high temperature storage is improved and the high temperature storage characteristics of the battery can be improved.
Claims (6)
前記イオン液体のカチオン部がリンと窒素を含有し、
前記イオン液体が、下記一般式(I):
(NPR1 2)n ・・・ (I)
[式中、R1は、それぞれ独立してハロゲン元素又は一価の置換基で、少なくとも一つのR1は、下記一般式(II):
−N+R2 3X- ・・・ (II)
(式中、R2は、それぞれ独立して一価の置換基又は水素で、但し、少なくとも一つのR2は水素ではなく、また、R2は互いに結合して環を形成してもよく;X-は一価のアニオンを表す)で表されるイオン性置換基であり;nは3である]で表される
ことを特徴とする電池用非水電解液。 In a non-aqueous electrolyte for a battery containing an ionic liquid composed of a cation part and an anion part, and a supporting salt,
The cation portion of the ionic liquid contains phosphorus and nitrogen,
The ionic liquid has the following general formula (I):
(NPR 1 2 ) n ... (I)
[Wherein R 1 is independently a halogen element or a monovalent substituent, and at least one R 1 is represented by the following general formula (II):
-N + R 2 3 X - ··· (II)
Wherein R 2 is each independently a monovalent substituent or hydrogen, provided that at least one R 2 is not hydrogen and R 2 may be bonded to each other to form a ring; X - is be ionic substituent represented by represents a monovalent anion); n is a non-aqueous electrolyte battery characterized by being represented by a 3].
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006138044A JP5134783B2 (en) | 2005-12-26 | 2006-05-17 | Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same |
US12/159,036 US7951495B2 (en) | 2005-12-26 | 2006-12-01 | Non-aqueous electrolyte for battery and non-aqueous electrolyte battery comprising the same as well as electrolyte for electric double layer capacitor and electric double layer capacitor comprising the same |
EP06833874.8A EP1970990B1 (en) | 2005-12-26 | 2006-12-01 | Non-aqueous electrolyte solution for battery, non-aqueous electrolyte battery comprising the same, electrolyte solution for electric double layer capacitor and electric double layer capacitor comprising the same |
CN2006800517897A CN101336495B (en) | 2005-12-26 | 2006-12-01 | Nonaqueous electrolyte solution for battery, nonaqueous electrolyte battery comprising same, electrolyte solution for electric double layer capacitor and electric double layer capacitor comprising sam |
PCT/JP2006/324104 WO2007074609A1 (en) | 2005-12-26 | 2006-12-01 | Nonaqueous electrolyte solution for battery, nonaqueous electrolyte battery comprising same, electrolyte solution for electric double layer capacitor and electric double layer capacitor comprising same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005372178 | 2005-12-26 | ||
JP2005372178 | 2005-12-26 | ||
JP2006138044A JP5134783B2 (en) | 2005-12-26 | 2006-05-17 | Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007200832A JP2007200832A (en) | 2007-08-09 |
JP5134783B2 true JP5134783B2 (en) | 2013-01-30 |
Family
ID=38455215
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006138044A Expired - Fee Related JP5134783B2 (en) | 2005-12-26 | 2006-05-17 | Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5134783B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5781386B2 (en) * | 2011-07-12 | 2015-09-24 | 大塚化学株式会社 | Non-aqueous electrolyte and non-aqueous electrolyte battery |
US9206210B2 (en) * | 2011-10-05 | 2015-12-08 | Battelle Energy Alliance, Llc | Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids |
EP2997620A1 (en) * | 2013-05-14 | 2016-03-23 | Mason K. Harrup | Fluorinated phosphazenes for use as electrolyte additives and co-solvents in lithium ion batteries |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1205998A2 (en) * | 2000-11-10 | 2002-05-15 | MERCK PATENT GmbH | Electrolytes |
KR100656724B1 (en) * | 2002-06-19 | 2006-12-13 | 가부시키가이샤 브리지스톤 | Supporting electrolyte for cell comprising a lithium salt of a phosphazene derivative, method for production thereof, and cell using the same |
JP4815127B2 (en) * | 2003-12-19 | 2011-11-16 | 関東電化工業株式会社 | Method for producing room temperature molten salt |
JP4599107B2 (en) * | 2004-07-28 | 2010-12-15 | 三井化学株式会社 | Ionic liquid |
WO2006117872A1 (en) * | 2005-04-28 | 2006-11-09 | Kanto Denka Kogyo Co., Ltd. | Ionic fluid containing phosphonium cation and process for producing the same |
JP4939836B2 (en) * | 2005-11-08 | 2012-05-30 | 株式会社ブリヂストン | Ionic compounds |
-
2006
- 2006-05-17 JP JP2006138044A patent/JP5134783B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007200832A (en) | 2007-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5314885B2 (en) | Non-aqueous electrolyte and non-aqueous electrolyte secondary power source including the same | |
US7951495B2 (en) | Non-aqueous electrolyte for battery and non-aqueous electrolyte battery comprising the same as well as electrolyte for electric double layer capacitor and electric double layer capacitor comprising the same | |
JP2008053212A (en) | Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it | |
JP4911888B2 (en) | Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the same | |
JP4450732B2 (en) | Battery supporting salt, method for producing the same, and battery | |
JP2008053211A (en) | Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it | |
JP2007200605A (en) | Nonaqueous electrolyte solution and nonaqueous electrolyte solution battery equipped with it | |
JP2008041296A (en) | Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with same | |
JP2008041413A (en) | Nonaqueous electrolyte for battery and nonaqueous electrolyte battery having the same | |
JP2010050021A (en) | Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having the same | |
JP4671693B2 (en) | Non-aqueous electrolyte additive for secondary battery and non-aqueous electrolyte secondary battery | |
JP2005190873A (en) | Nonaqueous electrolyte for battery, and nonaqueous electrolyte battery equipped with it | |
JP2007335394A (en) | Nonaqueous electrolyte for battery and nonaqueous electrolyte battery having the same | |
JP2004006301A (en) | Positive electrode for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery having the same | |
JP2008300125A (en) | Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with the same | |
JP5134783B2 (en) | Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same | |
JP2008112681A (en) | Nonaqueous electrolyte solution for battery and nonaqueous electrolyte solution battery equipped with it | |
JP2010015717A (en) | Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it | |
JP5093992B2 (en) | Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery provided with the same | |
JP4785735B2 (en) | Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same | |
JP2010015720A (en) | Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it | |
JP2008052988A (en) | Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it | |
JP2008123898A (en) | Nonaqueous electrolyte for battery and nonaqueous electrolyte battery equipped with it | |
JP2008112617A (en) | Nonaqueous electrolyte solution for battery and nonaqueous electrolyte solution battery equipped with the same | |
JP2008123708A (en) | Nonaqueous electrolyte for battery and nonaqueous electrolyte battery equipped with it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090501 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20090501 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20090501 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090605 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120515 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120710 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120731 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120910 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121016 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121112 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151116 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |