JP5130679B2 - Forward salient pole motor - Google Patents

Forward salient pole motor Download PDF

Info

Publication number
JP5130679B2
JP5130679B2 JP2006242227A JP2006242227A JP5130679B2 JP 5130679 B2 JP5130679 B2 JP 5130679B2 JP 2006242227 A JP2006242227 A JP 2006242227A JP 2006242227 A JP2006242227 A JP 2006242227A JP 5130679 B2 JP5130679 B2 JP 5130679B2
Authority
JP
Japan
Prior art keywords
pole
magnet
iron core
poles
salient pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006242227A
Other languages
Japanese (ja)
Other versions
JP2008067483A (en
Inventor
大器 松橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2006242227A priority Critical patent/JP5130679B2/en
Publication of JP2008067483A publication Critical patent/JP2008067483A/en
Application granted granted Critical
Publication of JP5130679B2 publication Critical patent/JP5130679B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

この発明は、磁石極と鉄心極の突極方向を揃えたPMモータである順突極モータに関するものである。   The present invention relates to a forward salient pole motor which is a PM motor in which the salient pole directions of a magnet pole and an iron core pole are aligned.

従来、高効率なモータとして永久磁石を用いたモータがあり、その一つに永久磁石をロータコアの内部に埋め込んだIPM(永久磁石埋め込み)モータがある。図4(a)はIPMモータの断面図を示し、1はロータ、2はステータであり、ロータ1においては鉄心3に永久磁石挿入孔4が設けられ、永久磁石挿入孔4には永久磁石5が挿入される。又、ステータ2には複数の歯部6が周設され、歯部6にはステータ巻線7が巻回される。ロータ1においては、磁極の中心がd軸、磁極と磁極の中間がq軸であり、換言すると、永久磁石5の中心とロータ1の中心とを結ぶ方向がd軸方向であり、d軸方向に対して電気角で90°回転した方向がq軸方向である。従って、鉄心3が突極となっているのはq軸方向であり、磁束はq軸方向に通り易くなっている。このため、IPMモータを駆動する際には、リラクタンストルクを活用する弱め界磁制御が行われ、起磁力相差角は90°よりも大きなところで運転される。即ち、図4(b)は起磁力相差角に対する磁石トルク、リラクタンストルク、及び合計トルクの関係を示し、磁石トルクは起磁力相差角が90°の時点で最大値を示し、90°を離れると小さくなり、180°で零となる。これに対して、リラクタンストルクは起磁力相差角が135°の時点で最大値を示す。従って、この両者を加えた合計トルクは起磁力相差角が115°付近で最大値を示し、運転範囲は黒丸間の弱め界磁領域となる。上記したIPMモータは、逆突極モータである。   Conventionally, there is a motor using a permanent magnet as a highly efficient motor, and one of them is an IPM (permanent magnet embedded) motor in which a permanent magnet is embedded in a rotor core. 4A shows a cross-sectional view of the IPM motor, where 1 is a rotor and 2 is a stator. In the rotor 1, a permanent magnet insertion hole 4 is provided in the iron core 3, and the permanent magnet insertion hole 4 has a permanent magnet 5. Is inserted. The stator 2 is provided with a plurality of teeth 6 around which a stator winding 7 is wound. In the rotor 1, the center of the magnetic pole is the d-axis, and the middle of the magnetic pole is the q-axis. In other words, the direction connecting the center of the permanent magnet 5 and the center of the rotor 1 is the d-axis direction. The q-axis direction is a direction rotated by 90 ° in terms of electrical angle. Therefore, the iron core 3 has a salient pole in the q-axis direction, and the magnetic flux easily passes in the q-axis direction. For this reason, when driving the IPM motor, field weakening control using reluctance torque is performed, and the motor is operated where the magnetomotive force phase difference angle is larger than 90 °. That is, FIG. 4B shows the relationship of the magnet torque, the reluctance torque, and the total torque with respect to the magnetomotive force phase difference angle. The magnet torque shows the maximum value when the magnetomotive force phase difference angle is 90 °, It becomes smaller and becomes zero at 180 °. In contrast, the reluctance torque exhibits a maximum value when the magnetomotive force phase difference angle is 135 °. Therefore, the total torque obtained by adding both of them shows a maximum value when the magnetomotive force phase difference angle is around 115 °, and the operation range is a field weakening region between black circles. The IPM motor described above is a reverse salient pole motor.

これに対して、順突極モータもあり、これは図5(a)に示すように、ロータ8において、磁石極の永久磁石9の中心に鉄心10の突極部10aを配置した構造を持つ。IPMモータにおいては、図4(b)に示すように永久磁石5に常に弱め磁束が加わるが、順突極モータにおいては、図5(b)に示すように起磁力相差角が90°より小さい強め界磁領域で最大トルクとなり、運転範囲は黒丸間の強め界磁領域から弱め界磁領域に跨っている。従って、運転中に永久磁石9に弱め磁束が加わる領域は少なく、かつその弱め磁束は突極部10aを通るため、永久磁石9に反磁界が加わって減磁する恐れは、IPMモータに比べて非常に小さいという利点を持つ。このように、順突極モータは減磁の心配が少ないことから、高回転領域で大きな弱め界磁電流を必要とする逆突極モータに比べて、可変速範囲を広く取るモータに向いていると考えられる。   On the other hand, there is also a forward salient pole motor, which has a structure in which the salient pole portion 10a of the iron core 10 is arranged at the center of the permanent magnet 9 of the magnet pole in the rotor 8, as shown in FIG. . In the IPM motor, a weak magnetic flux is always applied to the permanent magnet 5 as shown in FIG. 4B, but in the forward salient pole motor, the magnetomotive force phase difference angle is smaller than 90 ° as shown in FIG. 5B. The maximum torque is obtained in the strong field region, and the operating range extends from the strong field region between the black circles to the weak field region. Therefore, there are few areas where the weak magnetic flux is applied to the permanent magnet 9 during operation, and the weak magnetic flux passes through the salient pole portion 10a. It has the advantage of being very small. Thus, since the forward salient pole motor is less susceptible to demagnetization, it is suitable for a motor having a wide variable speed range compared to a reverse salient pole motor that requires a large field weakening current in a high rotation range. it is conceivable that.

なお、この出願の発明に関連する先行技術文献として、次のものがある。
特開2000−152538号公報 特開2004−96868号公報
As prior art documents related to the invention of this application, there are the following.
JP 2000-152538 A JP 2004-96868 A

上記したように、順突極モータは、可変速範囲を広く取ることができるという利点を持つが、反面、次のような欠点がある。即ち、図6(a)のイはIPM(逆突極)モータのロータ1とステータ2とのギャップにおける磁束密度分布を示し(ロは基本波)、図6(b)のハは順突極モータのロータ8とステータ2とのギャップにおける磁束密度分布を示し(ニは基本波)、順突極モータにおいては、d軸に永久磁石9と突極部10aの両方を配置するため、ギャップにおける磁束密度分布が大きく歪んでしまい、トルクリップルを増加させる原因となった。又、順突極モータにおいては、d軸中央に突極部10aが配置されているため、永久磁石9の磁束は中央部で小さくなり、トルクに有効な基本波成分は磁石量に比べて大きく取れなかった。   As described above, the forward salient pole motor has an advantage that the variable speed range can be widened, but has the following disadvantages. 6A shows the magnetic flux density distribution in the gap between the rotor 1 and the stator 2 of the IPM (reverse salient pole) motor (b is the fundamental wave), and c in FIG. 6B is the forward salient pole. The magnetic flux density distribution in the gap between the rotor 8 of the motor and the stator 2 is shown (d is the fundamental wave). In the forward salient pole motor, both the permanent magnet 9 and the salient pole portion 10a are arranged on the d axis. The magnetic flux density distribution was greatly distorted, causing torque ripple to increase. In the forward salient pole motor, the salient pole portion 10a is arranged at the center of the d-axis, so that the magnetic flux of the permanent magnet 9 is reduced at the center portion, and the fundamental wave component effective for torque is larger than the magnet amount. I couldn't get it.

この発明は上記のような課題を解決するために成されたものであり、トルクリップルを減少させることができるとともに、トルク発生に有効な磁束を多く発生させることができる順突極モータを得ることを目的とする。   The present invention has been made to solve the above-described problems, and provides a forward salient pole motor capable of reducing torque ripple and generating a large amount of magnetic flux effective for torque generation. With the goal.

この発明の請求項1に係る順突極モータは、突出した永久磁石を有するロータの磁石極と、磁石極の永久磁石と同じ径方向に突出した突極部を有するロータの鉄心極とを備え、磁石極と鉄心極とを軸方向に一体化して配置し、かつ磁石極は、同じ径方向の磁極が同じ磁極であるとともに、周方向にN極とS極を交互に配置し、磁石極と鉄心極のそれぞれに磁束の閉磁路を生じさせたものである。
また、請求項2に係る順突極モータは、モータのロータとステータ間のギャップにおける磁束密度分布を回転方向になだらかな分布となる鉄心極の突極部と磁石極の永久磁石の配置にしたものである。
また、請求項3に係る順突極モータは、前記鉄心極の突極部と磁石極の永久磁石とは軸方向に分かれて配置したものである。
A forward salient pole motor according to claim 1 of the present invention includes a rotor magnetic pole having a protruding permanent magnet, and a rotor core pole having a salient pole portion protruding in the same radial direction as the permanent magnet of the magnet pole. , arranged to integrate the magnet poles and iron poles in the axial direction, and the magnet poles, with the magnetic poles of the same radial have the same magnetic pole, are alternately arranged N and S poles in a circumferential direction, magnet poles And a closed magnetic circuit of magnetic flux is generated in each of the iron core poles .
Further, in the forward salient pole motor according to claim 2, the magnetic flux density distribution in the gap between the rotor and the stator of the motor is arranged such that the salient pole portion of the iron core pole and the permanent magnet of the magnet pole have a gentle distribution in the rotation direction. Is.
Further, in the forward salient pole motor according to claim 3, the salient pole portion of the iron core pole and the permanent magnet of the magnet pole are arranged separately in the axial direction.

請求項4に係る順突極モータは、磁石極を軸方向にn(n≧2)分割し、これらの磁石極をn個もしくはn−1個もしくはn+1個の鉄心極と軸方向に交互に配置して一体化したものである。 The forward salient pole motor according to claim 4 divides the magnet pole into n (n ≧ 2) in the axial direction, and alternately turns these magnet poles into n, n−1, or n + 1 iron core poles in the axial direction. Arranged and integrated.

以上のようにこの発明の請求項1によれば、突出した永久磁石を有するロータの磁石極と、磁石極の永久磁石と同じ径方向に突出した突極部を有するロータの鉄心極とを軸方向に一体化して配置しており、磁石極と鉄心極を軸方向に分けて配置したので、ロータとステータとの間のギャップにおける磁束密度分布は回転方向になだらかとなり、トルクリップルが格段に小さくなる。又、永久磁石をd軸の中心に配置できるので、トルク発生に有効な磁束を多く発生させることができる。   As described above, according to the first aspect of the present invention, the magnet pole of the rotor having the projecting permanent magnet and the iron core pole of the rotor having the salient pole projecting in the same radial direction as the permanent magnet of the magnet pole Since the magnet pole and iron core pole are arranged separately in the axial direction, the magnetic flux density distribution in the gap between the rotor and the stator becomes gentle in the rotational direction, and the torque ripple is remarkably small. Become. In addition, since the permanent magnet can be arranged at the center of the d-axis, a large amount of magnetic flux effective for torque generation can be generated.

又、請求項4によれば、磁石極を軸方向にn(n≧2)分割し、これらの磁石極をn個もしくはn−1個もしくはn+1個の鉄心極と軸方向に交互に配置して一体化しており、磁石極及び鉄心極を軸方向に細かく分割することにより、軸方向の磁場変動を小さく抑えることができ、鉄心の渦電流の発生を抑制することができ、鉄損を小さく抑えることができる。 According to claim 4 , the magnet poles are divided into n (n ≧ 2) in the axial direction, and these magnet poles are alternately arranged in the axial direction with n, n−1, or n + 1 iron core poles. By dividing the magnet pole and iron core pole finely in the axial direction, the magnetic field fluctuation in the axial direction can be suppressed to a small level, the generation of eddy currents in the core can be suppressed, and the iron loss can be reduced. Can be suppressed.

実施最良形態1
以下、この発明を実施するための最良の形態を図面とともに説明する。図1はこの発明の実施最良形態1による順突極モータのロータ16の斜視図を示し、図2(a),(b)はこのロータ16の鉄心極部分の断面図及び磁石極部分の断面図を示す。図において、11はロータ16の鉄心極であり、鉄心12の周囲に突極部12aが突出して設けられ、中心には回転軸13が取り付けられる。又、14はロータ16の磁石極であり、鉄心12の周囲に永久磁石15が突出して設けられるとともに、鉄心12の中心には回転軸13が取り付けられる。永久磁石15と突極部12aとは同じ径方向に突出している。鉄心極11と磁石極14とは軸方向に交互に配置され、回転軸13を介して一体化されている。磁石極14は周方向にN極とS極が交互に配置され、また磁石極14を複数設けた場合には、各磁石極14の同じ径方向の磁極は同じ磁極とする。鉄心12は積層鋼板により形成する。
Best Embodiment 1
The best mode for carrying out the present invention will be described below with reference to the drawings. 1 is a perspective view of a rotor 16 of a forward salient pole motor according to Embodiment 1 of the present invention. FIGS. 2 (a) and 2 (b) are a sectional view of an iron core pole portion and a sectional view of a magnet pole portion of the rotor 16. FIG. The figure is shown. In the figure, reference numeral 11 denotes an iron core pole of the rotor 16, a salient pole portion 12 a is provided so as to protrude around the iron core 12, and a rotating shaft 13 is attached to the center. A magnet pole 14 of the rotor 16 is provided with a permanent magnet 15 protruding around the iron core 12, and a rotating shaft 13 is attached to the center of the iron core 12. The permanent magnet 15 and the salient pole part 12a protrude in the same radial direction. The iron core poles 11 and the magnet poles 14 are alternately arranged in the axial direction, and are integrated via the rotating shaft 13. The magnet poles 14 are alternately arranged with N poles and S poles in the circumferential direction, and when a plurality of magnet poles 14 are provided, the magnetic poles in the same radial direction of the magnet poles 14 are the same. The iron core 12 is formed of a laminated steel plate.

実施最良形態1において、鉄心極11の突極部12aと磁石極14の永久磁石15とは同じ2次元平面上にはなく、軸方向に分かれて配置されているので、磁石極14の外周におけるロータ16とステータ2との間のギャップにおいては、通常のSPM(表面磁石構造)モータと同様に、磁束密度分布は回転方向になだらかな分布となる。このため、同じ2次元平面内に永久磁石15と突極部12aを配置した場合に比べて、トルクリップルが格段に小さくなる。又、永久磁石15をd軸の中心に配置できるので、トルク発生に有効な磁束を磁石量に比べて大きく発生させることができる。   In the first embodiment, the salient pole portion 12a of the iron core pole 11 and the permanent magnet 15 of the magnet pole 14 are not on the same two-dimensional plane, but are arranged separately in the axial direction. In the gap between the rotor 16 and the stator 2, the magnetic flux density distribution is a gentle distribution in the rotational direction, as in a normal SPM (surface magnet structure) motor. For this reason, compared with the case where the permanent magnet 15 and the salient pole part 12a are arrange | positioned in the same two-dimensional plane, a torque ripple becomes remarkably small. Further, since the permanent magnet 15 can be arranged at the center of the d-axis, a magnetic flux effective for generating torque can be generated larger than the magnet amount.

又、順突極モータの特徴である強め界磁や弱め界磁の制御による磁束は鉄心極11の突極部12aを通り、永久磁石15には通り難いので、永久磁石15に反磁界が加わって減磁する恐れは少なくなる。なお、鉄心極11と磁石極14の軸方向の長さは、モータの仕様(用途)に応じて決めればよく、大出力用には磁石極14の長さを長くし、広範囲定出力用には鉄心極11の長さを長くすればよい。 Further, since the magnetic flux by the control of the strong field and the weak field, which is a characteristic of the forward salient pole motor, passes through the salient pole portion 12a of the iron core pole 11 and is difficult to pass through the permanent magnet 15, a demagnetizing field is applied to the permanent magnet 15. This reduces the risk of demagnetization. The axial lengths of the iron core pole 11 and the magnet pole 14 may be determined according to the motor specification (application). For large output, the length of the magnet pole 14 is increased, and for a wide range of constant output. The length of the iron core pole 11 may be increased.

実施最良形態2
実施最良形態1においては、鉄心極11と磁石極14を軸方向に分けて配置したので、ロータ16とステータ2とのギャップにおける磁束密度分布は回転方向になだらかになったが、軸方向には鉄心極11の外周と磁石極14の外周とでは異なる磁束密度分布を持つようになる。、通常、鉄心12は軸方向に鋼板を積層しているので磁束は通り難く、渦電流の発生は大きな問題にはならないが、上記のように軸方向の磁束密度分布に差が生じると、軸方向の磁場が変動し、積層鋼板面内に渦電流が発生し、鉄損が増加する恐れがある。そこで、実施最良形態2においては、鉄損の増加を回避することを考えた。
Embodiment 2
In the first embodiment, since the iron core pole 11 and the magnet pole 14 are arranged separately in the axial direction, the magnetic flux density distribution in the gap between the rotor 16 and the stator 2 becomes gentle in the rotational direction. The outer periphery of the iron core pole 11 and the outer periphery of the magnet pole 14 have different magnetic flux density distributions. Usually, since the iron core 12 has laminated steel plates in the axial direction, magnetic flux does not easily pass through, and generation of eddy currents is not a big problem. However, when a difference occurs in the axial magnetic flux density distribution, The magnetic field in the direction fluctuates, eddy currents are generated in the laminated steel sheet surface, and iron loss may increase. Therefore, in the second embodiment, it was considered to avoid an increase in iron loss.

図3は実施最良形態2による順突極モータのロータ17の縦断面図を示し、ロータ17の磁石極14は図2(b)と同様に鉄心12の周囲に永久磁石15を突出して設け、またロータ17の鉄心極11も図2(a)に示すように鉄心12の周囲に突極部12aを永久磁石15と同じ径方向に突出して設け、鉄心極11と磁石極14とは軸方向に細かく分割して軸方向に交互に配置して一体化する。もちろん、各磁石極14は同じ径方向の磁極は同じ磁極であり、周方向にN極とS極が交互に配置される。   FIG. 3 shows a longitudinal sectional view of the rotor 17 of the forward salient pole motor according to the second embodiment, and the magnet pole 14 of the rotor 17 is provided with a permanent magnet 15 protruding around the iron core 12 like FIG. Further, as shown in FIG. 2A, the iron core pole 11 of the rotor 17 is provided with a salient pole portion 12a projecting in the same radial direction as the permanent magnet 15 around the iron core 12, and the iron core pole 11 and the magnet pole 14 are in the axial direction. Are divided into two pieces and arranged alternately in the axial direction. Of course, each magnet pole 14 is the same magnetic pole in the same radial direction, and N poles and S poles are alternately arranged in the circumferential direction.

実施最良形態2においては、鉄心極11と磁石極14を軸方向に細かく分割して軸方向に交互に配置したので、軸方向の磁場変動を小さく抑えることができ、鉄心12における渦電流の発生を抑制することができ、鉄損を通常のIPMモータ並みに小さく抑えることができる。その他、実施最良形態1と同様な効果を奏する。   In the second embodiment, since the iron core poles 11 and the magnet poles 14 are finely divided in the axial direction and alternately arranged in the axial direction, the magnetic field fluctuation in the axial direction can be suppressed, and eddy current is generated in the iron core 12. And iron loss can be kept as small as a normal IPM motor. In addition, the same effects as in the first embodiment are obtained.

なお、実施最良形態2においては、磁石極14と鉄心極11を軸方向に細かく分割して軸方向に交互に配置したが、種々の配置関係があるので、このことを一般的に表現すると、磁石極14を軸方向にn(n≧2)分割し、これらの磁石極14をn個もしくはn−1個もしくはn+1個の鉄心極11と軸方向に交互に配置して一体化したことになる。   In the second embodiment, the magnet poles 14 and the iron core poles 11 are finely divided in the axial direction and alternately arranged in the axial direction. However, since there are various arrangement relationships, this is generally expressed as The magnet poles 14 are divided into n (n ≧ 2) in the axial direction, and these magnet poles 14 are alternately arranged and integrated with the n, n−1, or n + 1 iron core poles 11 in the axial direction. Become.

この発明の実施最良形態1による順突極モータのロータの斜視図である。1 is a perspective view of a rotor of a forward salient pole motor according to Embodiment 1 of the present invention. 実施最良形態1による順突極モータのロータの鉄心極部分及び磁石極部分の断面図である。It is sectional drawing of the iron core pole part and magnet pole part of the rotor of the forward salient pole motor by Embodiment 1. FIG. 実施最良形態2による順突極モータのロータの縦断面図である。It is a longitudinal cross-sectional view of the rotor of the forward salient pole motor by Embodiment 2. IPMモータの断面図及び起磁力相差角とトルクとの関係図である。It is sectional drawing of an IPM motor, and a related figure of a magnetomotive force phase difference angle and a torque. 順突極モータの断面図及び起磁力相差角とトルクとの関係図である。It is sectional drawing of a forward salient-pole motor, and a related figure of a magnetomotive force phase difference angle and a torque. IPMモータ及び順突極モータの磁束密度分布図である。It is a magnetic flux density distribution map of an IPM motor and a forward salient pole motor.

符号の説明Explanation of symbols

2…ステータ
11…鉄心極
12…鉄心
12a…突極部
13…回転軸
14…磁石極
15…永久磁石
16,17…ロータ
DESCRIPTION OF SYMBOLS 2 ... Stator 11 ... Iron core pole 12 ... Iron core 12a ... Salient pole part 13 ... Rotating shaft 14 ... Magnet pole 15 ... Permanent magnet 16, 17 ... Rotor

Claims (4)

突出した永久磁石を有するロータの磁石極と、磁石極の永久磁石と同じ径方向に突出した突極部を有するロータの鉄心極とを備え、磁石極と鉄心極とを軸方向に一体化して配置し、かつ磁石極は、同じ径方向の磁極が同じ磁極であるとともに、周方向にN極とS極を交互に配置し、
磁石極と鉄心極のそれぞれに磁束の閉磁路を生じさせることを特徴とする順突極モータ。
A rotor magnetic pole having a protruding permanent magnet and a rotor core pole having a salient pole protruding in the same radial direction as the permanent magnet of the magnet pole, and the magnet pole and the iron core pole are integrated in the axial direction The magnetic poles are arranged so that the same radial magnetic poles are the same magnetic poles, and N poles and S poles are alternately arranged in the circumferential direction .
A forward salient pole motor characterized in that a closed magnetic path for magnetic flux is generated in each of a magnet pole and an iron core pole .
モータのロータとステータ間のギャップにおける磁束密度分布を回転方向になだらかな分布となる鉄心極の突極部と磁石極の永久磁石の配置にしたことを特徴とする請求項1記載の順突極モータ 2. The forward salient pole according to claim 1, wherein the magnetic flux density distribution in the gap between the rotor and the stator of the motor is arranged such that the salient pole part of the iron core pole and the permanent magnet of the magnet pole have a gentle distribution in the rotation direction. Motor . 前記鉄心極の突極部と磁石極の永久磁石とは軸方向に分かれて配置されていることを特徴とする請求項1または2記載の順突極モータ 3. The forward salient pole motor according to claim 1, wherein the salient pole portion of the iron core pole and the permanent magnet of the magnet pole are arranged separately in the axial direction . 磁石極を軸方向にn(n≧2)分割し、これらの磁石極をn個もしくはn−1個もしくはn+1個の鉄心極と軸方向に交互に配置して一体化したことを特徴とする請求項1乃至3記載の順突極モータ。 The magnet pole is divided into n (n ≧ 2) in the axial direction, and these magnet poles are integrated with n, n−1, or n + 1 iron core poles alternately arranged in the axial direction. forward salient pole motor according to claim 1 to 3, wherein.
JP2006242227A 2006-09-07 2006-09-07 Forward salient pole motor Expired - Fee Related JP5130679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006242227A JP5130679B2 (en) 2006-09-07 2006-09-07 Forward salient pole motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006242227A JP5130679B2 (en) 2006-09-07 2006-09-07 Forward salient pole motor

Publications (2)

Publication Number Publication Date
JP2008067483A JP2008067483A (en) 2008-03-21
JP5130679B2 true JP5130679B2 (en) 2013-01-30

Family

ID=39289682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006242227A Expired - Fee Related JP5130679B2 (en) 2006-09-07 2006-09-07 Forward salient pole motor

Country Status (1)

Country Link
JP (1) JP5130679B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132331A1 (en) * 2011-03-31 2012-10-04 ダイキン工業株式会社 Rotor and rotating electrical mechanism using same
CN109842257B (en) * 2019-03-04 2021-06-15 哈尔滨工业大学 Inverse salient pole type axial parallel multiphase permanent magnet fault-tolerant motor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06351206A (en) * 1993-04-14 1994-12-22 Meidensha Corp Hybrid excitation-type permanent-magnet synchronous rotating machine
JP3425369B2 (en) * 1997-09-24 2003-07-14 東芝テック株式会社 3 phase motor
JP2002354729A (en) * 2001-05-25 2002-12-06 Hitachi Ltd Permanent magnet electric rotating machine and air conditioner using the same

Also Published As

Publication number Publication date
JP2008067483A (en) 2008-03-21

Similar Documents

Publication Publication Date Title
JP5085071B2 (en) Permanent magnet type rotating electrical machine rotor
JP4640422B2 (en) Landel rotor type motor
US9716411B2 (en) Permanent-magnet-type rotating electric mechanism
WO2009104529A1 (en) Permanent magnet type dynamo electric machine, method for assembling permanent magnet type dynamo electric machine, method for disassembling permanent magnet type dynamo electric machine and permanent magnet motor drive system
JP5259927B2 (en) Permanent magnet rotating electric machine
JP2008104323A (en) Permanent magnet-assisted reluctance rotary electric machine
JP5061207B2 (en) Permanent magnet synchronous machine
JP2006304546A (en) Permanent magnet reluctance type rotary electric machine
JP6524818B2 (en) Variable flux type rotating electric machine
JP2008245406A (en) Rotor for surface-type permanent magnet synchronous machine, and synchronous machine using the same
JP2008199790A (en) Permanent magnet embedded rotor
JP2000333389A (en) Permanent magnet motor
JP4580683B2 (en) Permanent magnet type reluctance type rotating electrical machine
JP4491260B2 (en) Rotor for bearingless motor and bearingless motor
JP3703907B2 (en) Brushless DC motor
WO2019181001A1 (en) Rotary electric machine
JP3772819B2 (en) Coaxial motor rotor structure
WO2019187205A1 (en) Rotary electric machine
JP5556037B2 (en) Synchronous motor
JP5130679B2 (en) Forward salient pole motor
JP2009065803A (en) Magnet synchronous machine
US7388309B2 (en) Magnetic circuit structure for rotary electric machine
JP2008067574A (en) Embedded magnet type motor
JP2005210828A (en) Rotating electric machine and rotor therefor
JP2010246301A (en) Rotor for permanent magnet type motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5130679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees