JP5094888B2 - Manufacturing method of high strength and low specific gravity steel sheet with excellent ductility - Google Patents
Manufacturing method of high strength and low specific gravity steel sheet with excellent ductility Download PDFInfo
- Publication number
- JP5094888B2 JP5094888B2 JP2010003244A JP2010003244A JP5094888B2 JP 5094888 B2 JP5094888 B2 JP 5094888B2 JP 2010003244 A JP2010003244 A JP 2010003244A JP 2010003244 A JP2010003244 A JP 2010003244A JP 5094888 B2 JP5094888 B2 JP 5094888B2
- Authority
- JP
- Japan
- Prior art keywords
- specific gravity
- ductility
- less
- temperature
- low specific
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 57
- 239000010959 steel Substances 0.000 title claims description 57
- 230000005484 gravity Effects 0.000 title claims description 45
- 238000004519 manufacturing process Methods 0.000 title claims description 30
- 238000000137 annealing Methods 0.000 claims description 15
- 238000005098 hot rolling Methods 0.000 claims description 14
- 238000005096 rolling process Methods 0.000 claims description 12
- 238000004804 winding Methods 0.000 claims description 10
- 238000001816 cooling Methods 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 7
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 230000000694 effects Effects 0.000 description 25
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 17
- 239000013078 crystal Substances 0.000 description 10
- 229910052717 sulfur Inorganic materials 0.000 description 10
- 229910052761 rare earth metal Inorganic materials 0.000 description 9
- 229910052748 manganese Inorganic materials 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 7
- 229910052726 zirconium Inorganic materials 0.000 description 7
- 229910000859 α-Fe Inorganic materials 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 6
- 229910052749 magnesium Inorganic materials 0.000 description 6
- 238000001556 precipitation Methods 0.000 description 6
- 238000001953 recrystallisation Methods 0.000 description 6
- 238000005097 cold rolling Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 229910052791 calcium Inorganic materials 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- -1 carbon nitrides Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 235000021110 pickles Nutrition 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、自動車部品などに用いられる延性に優れた高強度低比重鋼板およびその製造方法に関するものである。 The present invention relates to a high-strength low specific gravity steel plate excellent in ductility and used for automobile parts and the like and a method for producing the same.
近年、環境問題への対応のため、炭酸ガス排出低減や燃費低減を目的に、自動車の軽量化が望まれている。自動車の軽量化のためには、鋼材の高強度化が有効な手段であるが、部材の剛性によって板厚が制限されている場合には、高強度化しても板厚を低減することができず、軽量化が困難であった。 In recent years, in order to cope with environmental problems, it has been desired to reduce the weight of automobiles for the purpose of reducing carbon dioxide emissions and reducing fuel consumption. Increasing the strength of steel is an effective means for reducing the weight of automobiles, but if the plate thickness is limited by the rigidity of the member, the plate thickness can be reduced even if the strength is increased. Therefore, it was difficult to reduce the weight.
上記の場合に軽量化を達成する手段としては、鋼材に比べて比重の低いアルミ合金板の使用が考えられるが、アルミ合金板は高価格であることに加え、鋼材に比べて加工性が劣っていることや、鋼板との溶接が困難である等の欠点があるために、自動車部材への適用は限定されたものとなっている。 As a means to achieve weight reduction in the above case, it is conceivable to use an aluminum alloy plate having a specific gravity lower than that of steel, but in addition to being expensive, aluminum alloy plate is inferior in workability compared to steel. In addition, there are drawbacks such as difficulty in welding with steel plates, and therefore, application to automobile members is limited.
そこで、鋼板とアルミ合金板の長所を兼ね備えたものとして、鉄にアルミを多量に添加した高Al含有鋼板が考えられ、例えば、特許文献1には、C:0.002〜0.1%、Al:3〜10%と、Ni、Co、Cuの1種又は2種以上を0.01〜7%、Mn:5%以下、2%以下のSiおよびTiの1種又は2種以上を0.1〜6%、O:0.0005〜0.04%、N:0.0002〜0.05%、残余Feおよび不可避的不純物からなる低比重の吸振合金が開示されている。 Then, as what has the merit of a steel plate and an aluminum alloy plate, the high Al content steel plate which added a large amount of aluminum to iron is considered, for example, in patent documents 1, C: 0.002-0.1%, Al: 3 to 10%, one or more of Ni, Co, and Cu are 0.01 to 7%, Mn: 5% or less, 2% or less of one or more of Si and Ti are 0 0.1-6%, O: 0.0005-0.04%, N: 0.0002-0.05%, low specific gravity vibration-absorbing alloy composed of residual Fe and inevitable impurities is disclosed.
しかし、このような高Al含有鋼板は、(i)製造性が劣ること(特に圧延時に割れが発生すること)、(ii)延性が低いこと、などの理由から、自動車用鋼板として適用することは困難であった。 However, such a high Al-containing steel sheet is applied as a steel sheet for automobiles because of (i) inferior productivity (particularly cracking during rolling) and (ii) low ductility. Was difficult.
また、多量のAlを含有すると延性、熱間加工性および冷間加工性が大幅に劣化し、特許文献1にあるように、比較的高温長時間の焼鈍(650〜1200℃で5〜600分加熱)により鋼板を製造する必要があり、通常の薄鋼板製造プロセス、例えば、連続焼鈍などで高Al含有鋼板を製造することや、良好な強度および延性レベルを確保することは困難であった。 In addition, when a large amount of Al is contained, ductility, hot workability and cold workability are greatly deteriorated, and as disclosed in Patent Document 1, annealing at a relatively high temperature for a long time (650 to 1200 ° C. for 5 to 600 minutes). It is necessary to produce a steel plate by heating), and it has been difficult to produce a high Al-containing steel plate by a normal thin steel plate production process, for example, continuous annealing, and to ensure a good strength and ductility level.
高Al含有鋼板の延性を向上させる技術として、例えば、特許文献2には、Al:4〜9.5%、Ti:0.5〜2.0%、Mo:0.5〜2%、Zr:0.1〜0.8%、C:0.01〜0.5%および残余Feを含有するアルミニウム含有鉄基合金の技術が提案されているが、低比重に関する言及はなく、重量元素であるMoやZrが必須となっており、低比重化に考慮しているとはいえない。 As a technique for improving the ductility of a high Al-containing steel sheet, for example, in Patent Document 2, Al: 4 to 9.5%, Ti: 0.5 to 2.0%, Mo: 0.5 to 2%, Zr : 0.1 to 0.8%, C: 0.01 to 0.5%, and the technology of an aluminum-containing iron-based alloy containing Fe is proposed, but there is no mention of low specific gravity, Certain Mo and Zr are essential, and it cannot be said that low specific gravity is considered.
また、製造性についても、鍛造することや温間圧延を行うこととしており、いわゆる、溶解から熱間圧延、冷間圧延へと至る広く工業的に行われている製造方法、製造設備を用いた製法とは異なる。また、本発明者らの試験では、大幅な延性の改善には至っていない。 In addition, for manufacturability, forging and warm rolling are carried out, so-called so-called widely industrialized manufacturing methods and manufacturing equipment from melting to hot rolling and cold rolling were used. It is different from the manufacturing method. Moreover, in the test of the present inventors, the ductility has not been improved significantly.
また、特許文献3には、C:0.05%以下、Si:0.1〜1%、Al:2〜8%、Y:0.01〜1%および残余Feを含有する耐酸化性の鉄合金が提案されているが、低比重に関する言及はなく、耐酸化性を向上させるために重量元素であるYが必須となっており、低比重化に考慮しているとはいえない。また、強度や延性に関する言及はなく、本発明者らの試験では、大幅な延性の改善には至っていない。 Patent Document 3 discloses oxidation resistance containing C: 0.05% or less, Si: 0.1 to 1%, Al: 2 to 8%, Y: 0.01 to 1%, and residual Fe. Although an iron alloy has been proposed, there is no mention of low specific gravity, and Y, which is a heavy element, is essential to improve oxidation resistance, and it cannot be said that low specific gravity is taken into consideration. In addition, there is no mention of strength and ductility, and in the tests by the present inventors, no significant improvement in ductility has been achieved.
また、特許文献4には、C:0.02〜0.1%、Si≦0.5、Mn:0.2〜2.0%、P≦0.05、S≦0.01、Al:0.5〜5%および残余Feを含有する鋼板が提案されているが、Al含有量が5%以下と小さいため、低比重化の効果が小さい。また、Alを5%を超えて添加した場合には、成形性や冷間加工性が大幅に劣化するため製造が困難であると記載されている。 In Patent Document 4, C: 0.02 to 0.1%, Si ≦ 0.5, Mn: 0.2 to 2.0%, P ≦ 0.05, S ≦ 0.01, Al: A steel sheet containing 0.5 to 5% and the remaining Fe has been proposed, but since the Al content is as small as 5% or less, the effect of reducing the specific gravity is small. Moreover, when Al is added exceeding 5%, it is described that manufacture is difficult because formability and cold workability are significantly deteriorated.
また、特許文献5には、Si<0.2%、Mn:0.03〜0.2%、Al:5〜9%、総計で1%以下のCu+Mo+W+Co+Cr+Ni、総計で0.1%以下のSc+Y+REMおよび残余Feを含有する鋼板が提案されており、特許文献6には、C:0.0036〜0.1%、Si<0.2%、Mn:0.03〜0.2%、Al:7〜9%、総計で1%以下のCu+Mo+W+Co+Cr+Ni、総計で0.1%以下のSc+Y+REMおよび残余Feを含有する鋼板が提案されているが、いずれも、成形性や製造性を改善するための製造技術はなんら提案されておらず、本発明者らの試験では、これらの成分の鋼板を通常の薄鋼板製造プロセスで製造することは困難であった。 In Patent Document 5, Si <0.2%, Mn: 0.03 to 0.2%, Al: 5 to 9%, Cu + Mo + W + Co + Cr + Ni of 1% or less in total, Sc + Y + REM of 0.1% or less in total And a steel sheet containing the remaining Fe has been proposed, and in Patent Document 6, C: 0.0036 to 0.1%, Si <0.2%, Mn: 0.03 to 0.2%, Al: Steel sheets containing 7 to 9%, Cu + Mo + W + Co + Cr + Ni of 1% or less in total, and 0.1% or less of Sc + Y + REM and residual Fe in total have been proposed, both of which are manufactured to improve formability and manufacturability No technology has been proposed, and it has been difficult to manufacture steel sheets having these components by a normal thin steel sheet manufacturing process in the tests of the present inventors.
また、特許文献7には、Al:6〜10%および残余Feを含有し、平均結晶粒径が300〜700μmの範囲内である制振合金材料が提案されているが、結晶粒径がこれほど大きいと、プレス加工時にオレンジピールと呼ばれる表面欠陥(肌荒れ)が生じるために、自動車部材への適用は困難である。また、成形性や製造性を改善するための製造技術は、なんら提案されていない。 Patent Document 7 proposes a vibration-damping alloy material containing Al: 6 to 10% and residual Fe and having an average crystal grain size in the range of 300 to 700 μm. If it is so large, a surface defect (rough skin) called orange peel occurs at the time of press working, so that it is difficult to apply to automobile members. In addition, no manufacturing technique for improving moldability and manufacturability has been proposed.
以上のように、従来の技術では、延性に優れた高強度低比重鋼板を工業規模で生産することは困難であった。 As described above, it has been difficult to produce a high-strength, low-specific gravity steel plate excellent in ductility on an industrial scale with the conventional technology.
本発明は、上記したような問題点を解決しようとするものであって、延性に優れた高強度低比重鋼板、および、その製造方法を提供することを目的とする。 The present invention is intended to solve the above-described problems, and an object of the present invention is to provide a high-strength low-specific gravity steel plate excellent in ductility and a method for manufacturing the same.
本発明者らは、鉄ベースで多量のAlを含有し、成分の異なる種々の素材について、延性、熱間加工性および冷間加工性を改善するための方法について、成分と製造法の両面から研究を重ねた結果、高Al含有鋼の延性、熱間加工性および冷間加工性の劣化は、粒界脆化によるものであり、Al含有量を5.0〜10.0%としたうえで、SおよびPを極低化し、さらに、極低C化により粒内に析出する炭窒化物を低減して粒界と粒内の強度差を低減し、さらに、熱延条件の適性化により熱延時にフェライトの再結晶を促進させ細粒化することにより、粒界強度を向上でき、延性、熱間加工性および冷間加工性を大幅に改善できることを知見した。 The inventors of the present invention have found a method for improving ductility, hot workability, and cold workability for various materials containing a large amount of Al on an iron base and having different components from both the component and production methods. As a result of repeated research, the deterioration of the ductility, hot workability and cold workability of the high Al content steel is due to grain boundary embrittlement, and the Al content is set to 5.0 to 10.0%. In addition, S and P are extremely reduced, and carbon nitrides precipitated in the grains are reduced by extremely low C, thereby reducing the difference in strength between the grain boundaries and the grains, and further by optimizing the hot rolling conditions. It was found that the grain boundary strength can be improved and the ductility, hot workability and cold workability can be greatly improved by promoting recrystallization of ferrite during hot rolling and making it finer.
さらに研究を進めた結果、S含有量が大きい場合でも、MnとSの添加量を、それぞれ、Mn:0.2超〜3.0%、S:0.02%以下と制限し、MnとSの添加比率(Mn/S)を20超とし、熱延条件の適性化と併せて、MnSの溶解・析出挙動を制御することにより、MnSを形成して固溶Sによる粒界脆化を抑制する効果が顕著に発揮され、延性、熱間加工性および冷間加工性を大幅に改善できることを知見した。 As a result of further research, even when the S content is large, the addition amounts of Mn and S are limited to Mn: more than 0.2 to 3.0% and S: 0.02% or less, respectively. The addition ratio of S (Mn / S) exceeds 20, and in combination with the optimization of hot rolling conditions, the dissolution / precipitation behavior of MnS is controlled, so that MnS is formed and grain boundary embrittlement due to solid solution S is caused. It was found that the inhibitory effect was remarkably exhibited and the ductility, hot workability and cold workability could be greatly improved.
本発明は、このような知見に基づいて構成されたものであり、その要旨は、以下のとおりである。 This invention is comprised based on such knowledge, and the summary is as follows.
(1)比重<7.2であり、引張強度が440MPa以上であり、伸びが25%以上である延性に優れた高強度低比重鋼板を製造する方法であって、質量%で、C:0.001〜0.01%、Si:3.0%以下、Mn:0.2超〜3.0%、P:0.02%以下、S:0.02%以下、Al:5.0〜10.0%、N:0.001〜0.05%を含有し、かつ、20<(Mn/S)を満足し、残部がFeおよび不可避的不純物からなる鋼スラブを1100℃以上1150℃以下の温度に加熱し、1000℃以上1100℃以下の温度で圧下率30%以上の大圧下を少なくとも1パス以上含みかつ800℃以上850℃以下の仕上げ圧延温度で熱間圧延し、600℃以上700℃以下の温度で巻き取ることを特徴とする延性に優れた高強度低比重鋼板の製造方法。 (1) A specific gravity <7.2, a tensile strength of 440 MPa or more, and a method of producing a high strength low specific gravity steel plate excellent in ductility and having an elongation of 25% or more. 0.001 to 0.01%, Si: 3.0% or less, Mn: more than 0.2 to 3.0%, P: 0.02% or less, S: 0.02% or less, Al: 5.0 to A steel slab containing 10.0%, N: 0.001 to 0.05% and satisfying 20 <(Mn / S), the balance being Fe and inevitable impurities is 1100 ° C. or higher and 1150 ° C. or lower. At a temperature of 1000 ° C. or higher and 1100 ° C. or lower, hot rolling at a finish rolling temperature of 800 ° C. or higher and 850 ° C. or lower, including at least one pass with a large reduction of 30% or higher. High strength and low strength with excellent ductility, characterized by winding at a temperature of ℃ or less Method of manufacturing a heavy steel plate.
(2)前記(1)記載の成分を含有し、さらに、質量%で、Ti:0.005〜0.3%、Nb:0.005〜0.3%の1種または2種を含有することを特徴とする前記(1)記載の延性に優れた高強度低比重鋼板の製造方法。 (2) Contains the component described in (1) above, and further contains one or two of Ti: 0.005 to 0.3% and Nb: 0.005 to 0.3% by mass%. The method for producing a high strength and low specific gravity steel sheet having excellent ductility as described in (1) above.
(3)前記(1)または(2)記載の成分を含有し、さらに、質量%で、Cr:0.05〜3.0%、Ni:0.05〜5.0%、Mo:0.05〜3.0%、Cu:0.1〜3.0%、B:0.0003〜0.01%、V:0.01〜0.5%の1種または2種以上を含有することを特徴とする前記(1)または(2)記載延性に優れた高強度低比重鋼板の製造方法。 (3) It contains the component described in the above (1) or (2), and further, in mass%, Cr: 0.05 to 3.0%, Ni: 0.05 to 5.0%, Mo: 0.00. Contains one or more of 05-3.0%, Cu: 0.1-3.0%, B: 0.0003-0.01%, V: 0.01-0.5% (1) or (2) A method for producing a high strength and low specific gravity steel sheet having excellent ductility.
(4)前記(1)〜(3)のいずれかに記載の成分を含有し、さらに、質量%で、Ca:0.001〜0.01%、Mg:0.0005〜0.01%、Zr:0.001〜0.05%、REM:0.001〜0.05%の1種または2種以上を含有することを特徴とする前記(1)〜(3)のいずれかに記載の延性に優れた高強度低比重鋼板の製造方法。 (4) It contains the component according to any one of (1) to (3), and further, by mass%, Ca: 0.001 to 0.01%, Mg: 0.0005 to 0.01%, One or more of Zr: 0.001 to 0.05% and REM: 0.001 to 0.05% are contained, according to any one of (1) to (3), A method for producing a high-strength, low-specific gravity steel sheet with excellent ductility.
(5)鋼板を巻き取った後、700℃以上1100℃以下の温度で焼鈍することを特徴とする前記(1)〜(4)のいずれかに記載の延性に優れた高強度低比重鋼板の製造方法。 (5) After winding up the steel sheet, the steel sheet is annealed at a temperature of 700 ° C. or higher and 1100 ° C. or lower. Production method.
(6)鋼板を巻き取った後、酸洗し、1パス目の圧下率を20%以下とする冷間圧延を行い、600℃以上1100℃以下の温度で焼鈍を行い、焼鈍後、20℃/秒以上の冷却速度で200℃以下の温度まで冷却することを特徴とする前記(1)〜(4)のいずれかに記載の延性に優れた高強度低比重鋼板の製造方法。 (6) After winding the steel sheet, pickling, cold rolling to reduce the reduction ratio of the first pass to 20% or less, annealing at a temperature of 600 ° C. or more and 1100 ° C. or less, and after annealing, 20 ° C. The method for producing a high strength and low specific gravity steel sheet excellent in ductility according to any one of the above (1) to (4), wherein the steel sheet is cooled to a temperature of 200 ° C. or less at a cooling rate of at least / sec.
本発明によれば、延性に優れた高強度低比重鋼板を得ることができる。 According to the present invention, it is possible to obtain a high-strength, low-specific gravity steel plate having excellent ductility.
以下に、本発明における各要件の意義および限定理由について、具体的に説明する。 Below, the significance of each requirement in the present invention and the reason for limitation will be specifically described.
まず、本発明における延性に優れた高強度低比重鋼板の成分限定理由について、説明する。なお、%は、質量%を意味する。 First, the reasons for limiting the components of the high-strength low specific gravity steel sheet having excellent ductility in the present invention will be described. In addition,% means the mass%.
C:Cは強度を向上させるために必須の元素であるが、0.001%未満ではその効果が発現せず、一方、0.01%を超える過剰の添加は、粒内への炭化物析出により粒界と粒内の強度差が拡大するために粒界脆化を促進する。したがって、C含有量は0.001〜0.01%とした。 C: C is an essential element for improving the strength. However, if it is less than 0.001%, the effect is not expressed. On the other hand, excessive addition exceeding 0.01% is caused by precipitation of carbide in the grains. Grain boundary embrittlement is promoted because the difference in strength between the grain boundaries and the grains increases. Therefore, the C content is set to 0.001 to 0.01%.
Si:Siは固溶強化により鋼板の強度を増大させるのに有用な元素であるが、3.0%を超える過剰の添加は、熱間加工性を低下させるとともに、熱間圧延で生じるスケールの剥離性や化成処理性を著しく劣化させる。したがって、Si含有量は3.0%以下とした。 Si: Si is an element useful for increasing the strength of a steel sheet by solid solution strengthening. However, excessive addition exceeding 3.0% decreases the hot workability and reduces the scale produced by hot rolling. The peelability and chemical conversion processability are significantly degraded. Therefore, the Si content is set to 3.0% or less.
Mn:MnはMnSを形成して、固溶Sによる粒界脆化を抑制するために有効な元素である。0.01%未満ではその効果が発現されず、3.0%を超える過剰の添加は、逆に、靭性を劣化させる。したがって、Mn含有量は0.01〜3.0%とした。 Mn: Mn is an element effective for forming MnS and suppressing grain boundary embrittlement due to S. If the content is less than 0.01%, the effect is not exhibited, and excessive addition exceeding 3.0% conversely deteriorates toughness. Therefore, the Mn content is set to 0.01 to 3.0%.
S含有量が大きい場合でも、Mnの粒界脆化抑制効果を十分に発揮させるために、より望ましくは0.2%超〜3.0%とする。また、S含有量を0.005%未満まで極低下できる場合には、逆に、MnSの析出を極力抑えることによって延性や加工性を改善できるので、Mn含有量は0.03%未満とすることが望ましい。 Even when the S content is large, in order to sufficiently exhibit the effect of suppressing grain boundary embrittlement of Mn, it is more preferably more than 0.2% to 3.0%. On the other hand, when the S content can be extremely reduced to less than 0.005%, on the contrary, ductility and workability can be improved by suppressing the precipitation of MnS as much as possible, so the Mn content is less than 0.03%. It is desirable.
P:Pは粒界に偏析して粒界強度を低下させ、靱性を劣化させる不純物元素であり、可及的低レベルが望ましいが、現状の精錬技術の到達可能レベルとコストを考慮して、上限を0.02%とした。 P: P is an impurity element that segregates at the grain boundary to lower the grain boundary strength and deteriorates toughness, and is preferably as low as possible, but considering the reachable level and cost of the current refining technology, The upper limit was made 0.02%.
S:Sは熱間加工性および靭性を劣化させる不純物元素であり、可及的低レベルが望ましいが、Mn:0.2超〜3.0%を含有し、MnとSの添加比率(Mn/S)を20超とした場合には、S含有量が大きい場合でも、Mnの粒界脆化抑制効果が十分に発揮されるので、Sの含有量の上限を0.02%まで高めることができる。 S: S is an impurity element that deteriorates the hot workability and toughness, as much as possible but the low level is desirable, M n: 0.2 containing ultra 3.0%, the addition ratio of Mn and S ( When Mn / S) exceeds 20, even when the S content is large, the effect of suppressing the grain boundary embrittlement of Mn is sufficiently exhibited, so the upper limit of the S content is increased to 0.02%. be able to.
また、Sの含有量を0.005%未満まで極低下できる場合には、同時に、Mn含有量を0.03%未満まで低減して、MnSの析出を極力抑えることにより、延性や加工性を改善できるので、Sの含有量の上限を0.005%未満としてもよい。 In addition, when the S content can be extremely reduced to less than 0.005%, at the same time, the Mn content is reduced to less than 0.03% to suppress the precipitation of MnS as much as possible, thereby reducing ductility and workability. Since this can be improved, the upper limit of the S content may be less than 0.005%.
Al:Alは低比重化を達成するための必須の元素である。5.0%未満では低比重化の効果が少ないので、下限を5.0%とした。一方、10.0%を超えると、金属間化合物の析出が顕著となり、延性、熱間加工性および冷間加工性が劣化するので、Alの含有量を5.0〜10.0%とした。低比重化の効果をできるだけ大きくするためには、Alの含有量を9.0超〜10.0%とすることが望ましい。 Al: Al is an essential element for achieving a low specific gravity. If it is less than 5.0%, the effect of lowering the specific gravity is small, so the lower limit was made 5.0%. On the other hand, if it exceeds 10.0%, precipitation of intermetallic compounds becomes remarkable, and ductility, hot workability and cold workability deteriorate, so the Al content is set to 5.0 to 10.0%. . In order to maximize the effect of lowering the specific gravity, the Al content is desirably more than 9.0 to 10.0%.
N:Nは窒化物を形成し結晶粒粗大化を抑制する効果があるが、0.001%未満ではその効果が発現されず、一方、0.05%を超えて添加すると、靭性が劣化するため、N含有量を0.001〜0.05%とした。 N: N has the effect of forming nitrides and suppressing crystal grain coarsening, but if less than 0.001%, the effect is not expressed, while if added over 0.05%, toughness deteriorates. Therefore, the N content is set to 0.001 to 0.05%.
以上が本発明の基本成分であり、通常は、上記以外は、Feおよび不可避的不純物からなるが、所望の強度レベルやその他の必要特性に応じて、Ti、Nb、Cr、Ni、Mo、Cu、B、V、Ca、Mg、Zr、REMの1種または2種以上を添加してもよい。 The above are the basic components of the present invention, and are usually composed of Fe and unavoidable impurities other than the above, but depending on the desired strength level and other necessary characteristics, Ti, Nb, Cr, Ni, Mo, Cu , B, V, Ca, Mg, Zr, or REM may be added.
Ti:TiはTiNを形成し結晶粒粗大化を抑制する効果があるが、0.005%未満ではそれらの効果が発現されず、一方、0.3%を超えて過剰添加すると、靭性が劣化するため、Tiの含有量を0.005〜0.3%とした。 Ti: Ti has the effect of suppressing the coarsening of grains by forming TiN, but if it is less than 0.005%, those effects are not expressed. On the other hand, if over 0.3% is added, toughness deteriorates. Therefore, the Ti content is set to 0.005 to 0.3%.
Nb:Nbは微細な炭窒化物を形成し結晶粒粗大化を抑制する効果があるが、0.005%未満ではその効果が発現されず、一方、0.3%を超えて過剰添加すると、靭性が劣化するため、Nbの含有量を0.005〜0.3%とした。 Nb: Nb has the effect of forming fine carbonitrides and suppressing crystal grain coarsening, but the effect is not expressed at less than 0.005%, on the other hand, excessive addition exceeding 0.3%, Since toughness deteriorates, the Nb content is set to 0.005 to 0.3%.
Cr:Crは延性および靭性を向上させる有効な元素である。この効果は0.05%未満では発現されず、一方、3.0%を超える過剰添加は靭性を劣化させる。したがって、Crの含有量を0.05〜3.0%とした。 Cr: Cr is an effective element that improves ductility and toughness. This effect is not manifested at less than 0.05%, while excessive addition exceeding 3.0% degrades toughness. Therefore, the Cr content is set to 0.05 to 3.0%.
Ni:Niは延性および靭性を向上させる有効な元素である。この効果は0.05%未満では発現されず、一方、5.0%を超える過剰添加は、靭性を劣化させる。したがって、Niの含有量を0.05〜5.0%とした。 Ni: Ni is an effective element that improves ductility and toughness. This effect is not manifested at less than 0.05%, while excessive addition exceeding 5.0% degrades toughness. Therefore, the Ni content is set to 0.05 to 5.0%.
Mo:Moは延性および靭性を向上させる有効な元素である。この効果は0.05%未満では発現されず、一方、3.0%を超える過剰添加は靭性を劣化させる。したがって、Moの含有量を0.05〜3.0%とした。 Mo: Mo is an effective element that improves ductility and toughness. This effect is not manifested at less than 0.05%, while excessive addition exceeding 3.0% degrades toughness. Therefore, the Mo content is set to 0.05 to 3.0%.
Cu:Cuは延性および靭性を向上させる有効な元素である。この効果は0.1%未満では発現せず、一方、3.0%を超える過剰添加は靭性を劣化させる。したがって、Cuの含有量を0.1〜3.0%とした。 Cu: Cu is an effective element that improves ductility and toughness. This effect does not appear at less than 0.1%, while excessive addition exceeding 3.0% degrades toughness. Therefore, the Cu content is set to 0.1 to 3.0%.
B:Bは自ら粒界に偏析することにより、粒界結合力を向上させるとともに、PおよびSの粒界偏析を抑制し、粒界強度を高め、延性、靭性、および、熱間加工性を向上させるのに有効な元素である。これらの効果は0.0003%未満では発現されず、一方、0.01%を超えて過剰添加すると、粒界に粗大な析出物が生成し熱間加工性が劣化するため、Bの含有量を0.0003〜0.01%とした。 B: B segregates at the grain boundary by itself, thereby improving the grain boundary bonding force, suppressing the grain boundary segregation of P and S, increasing the grain boundary strength, and improving ductility, toughness, and hot workability. It is an effective element to improve. These effects are not manifested at less than 0.0003%. On the other hand, excessive addition of more than 0.01% produces coarse precipitates at the grain boundaries and deteriorates hot workability. Was 0.0003 to 0.01%.
V:Vは微細な炭窒化物を形成し結晶粒粗大化を抑制する効果があるが、0.01%未満ではその効果が発現せず、一方、0.5%を超えて過剰添加すると靭性が劣化するため、Vの含有量を0.01〜0.5%とした。 V: V has the effect of forming fine carbonitrides and suppressing coarsening of crystal grains, but if less than 0.01%, the effect is not manifested. On the other hand, if over 0.5% is added, toughness Therefore, the content of V is set to 0.01 to 0.5%.
Ca、Mg、Zr、REM:Ca、Mg、Zr、REMは、いずれもSによる熱間加工性や靭性の劣化を抑制する有効な元素である。この効果はCaは0.001%未満、Mgは0.0005%未満、Zrは0.001%未満、REMは0.001%未満では発現せず、一方、Caは0.01%、Mgは0.01%、Zrは0.05%、REMは0.05%を超える過剰添加は、靭性を劣化させる。したがって、Caの含有量を0.001〜0.01%、Mgの含有量を0.0005〜0.01%、Zrの含有量を0.001〜0.05%、REMの含有量を0.001〜0.05%とした。 Ca, Mg, Zr, and REM: Ca, Mg, Zr, and REM are all effective elements that suppress hot workability and toughness deterioration due to S. This effect is not manifested when Ca is less than 0.001%, Mg is less than 0.0005%, Zr is less than 0.001%, and REM is less than 0.001%, while Ca is 0.01%, Mg is Excess addition exceeding 0.01%, Zr 0.05% and REM 0.05% deteriorates toughness. Therefore, the Ca content is 0.001 to 0.01%, the Mg content is 0.0005 to 0.01%, the Zr content is 0.001 to 0.05%, and the REM content is 0. 0.001 to 0.05%.
次に、特性値の限定理由について述べる。比重は、7.2以上では自動車用鋼板として通常使用されている鋼板の比重(鉄の比重7.86と同程度)と比較して、軽量化効果が小さいので、7.2未満とする。強度および延性については、自動車用鋼板として必要な特性を考慮して、引張強度440MPa以上、伸び25%以上とする。 Next, the reason for limiting the characteristic value will be described. When the specific gravity is 7.2 or more, the weight reduction effect is small compared to the specific gravity of a steel plate normally used as a steel plate for automobiles (same as the specific gravity of iron of 7.86), so the specific gravity is set to less than 7.2. Regarding the strength and ductility, the tensile strength is set to 440 MPa or more and the elongation is set to 25% or more in consideration of characteristics necessary for an automobile steel plate.
次に、製造条件の限定理由について述べる。 Next, the reasons for limiting the manufacturing conditions will be described.
Mn、S、Alなどの含有量を限定し、その成分に応じた最適条件で製造することにより、延性、熱間加工性および冷間加工性を向上させることができる。このような場合には、以下の製造条件にて製造する。 M n, S, the content of such Al is limited constant, by manufacturing under optimum conditions corresponding to the component, can be on ductility, the hot workability and cold workability direction. In such a case, it manufactures on the following manufacturing conditions.
前記(1)〜(4)のいずれかに係る本発明においては、前記(1)〜(4)の各成分からなる鋼スラブを1100℃以上1150℃以下の温度に加熱し、1000℃以上1100℃以下の温度で圧下率30%以上の大圧下を少なくとも1パス以上含みかつ800℃以上850℃以下の仕上げ圧延温度で熱間圧延し、600℃以上700℃以下の温度で巻き取る。 In this invention which concerns on either of said (1)-(4), the steel slab which consists of each component of said (1)-(4) is heated to the temperature of 1100 to 1150 degreeC, and 1000 to 1100 degreeC. Hot rolling is performed at a finish rolling temperature of 800 ° C. or higher and 850 ° C. or lower, including at least one pass at a temperature of 30 ° C. or lower and a large rolling reduction of 30% or higher, and wound at a temperature of 600 ° C. or higher and 700 ° C. or lower.
前記(1)に記載の成分においては、MnとSの含有量をそれぞれMn:0.2超〜3.0%、S:0.02%以下と制限し、MnとSの添加比率(Mn/S)を20超としているので、熱延条件を適性化することにより、MnSを形成して、固溶Sによる粒界脆化を抑制することができる。 In the component described in (1), the contents of Mn and S are limited to Mn: more than 0.2 to 3.0% and S: 0.02% or less, respectively, and the addition ratio of Mn and S (Mn Since / S) is more than 20, MnS can be formed by optimizing the hot rolling conditions, and grain boundary embrittlement due to the solid solution S can be suppressed.
スラブ加熱温度が1100℃未満であると、炭窒化物が十分に固溶せずに必要な強度や延性が得られないため、スラブ加熱温度の下限は1100℃とした。加熱温度が1150℃を超えると、MnSが再固溶し、固溶Sによる粒界脆化が生じるので、スラブ加熱温度の上限は1150℃とした。スラブ加熱温度の上限を1150℃とすることで、結晶粒の粗大化も防止できる。 If the slab heating temperature is less than 1100 ° C., the carbonitride is not sufficiently dissolved and the required strength and ductility cannot be obtained, so the lower limit of the slab heating temperature is 1100 ° C. When the heating temperature exceeds 1150 ° C., MnS re-dissolves and grain boundary embrittlement occurs due to the solid solution S, so the upper limit of the slab heating temperature is 1150 ° C. By setting the upper limit of the slab heating temperature to 1150 ° C., coarsening of crystal grains can be prevented.
熱延時に、フェライトの再結晶を促進させ細粒化するために、1000℃以上1100℃以下の温度で圧下率30%以上の大圧下を少なくとも1パス以上含むことが必要である。大圧下時の圧延温度が1000℃未満であるか、圧下率が30%未満であれば、フェライトの再結晶が進まず粗大なフェライト粒が残存し、良好な延性、熱間加工性および冷間加工性が得られない。また、大圧下時の圧延温度が1100℃を超えると、再結晶したフェライトの結晶粒が粗大化するため、良好な延性、熱間加工性および冷間加工性が得られない。 At the time of hot rolling, in order to promote recrystallization of ferrite and make it finer, it is necessary to include at least one pass of a large reduction with a reduction ratio of 30% or more at a temperature of 1000 ° C. or more and 1100 ° C. or less. If the rolling temperature at the time of large reduction is less than 1000 ° C. or the reduction ratio is less than 30%, the ferrite recrystallization does not proceed and coarse ferrite grains remain, and good ductility, hot workability and cold Workability cannot be obtained. On the other hand, when the rolling temperature under large pressure exceeds 1100 ° C., the recrystallized ferrite crystal grains are coarsened, so that good ductility, hot workability and cold workability cannot be obtained.
仕上げ圧延温度が800℃未満であると、熱間加工性が劣化し熱延中に割れが生じるため、仕上げ圧延温度の下限は800℃にした。仕上げ温度が850℃を超えると、圧延時の歪の蓄積が十分ではなく、後続の巻取りでの回復・再結晶が抑制されるため、仕上げ温度の上限を850℃にした。 If the finish rolling temperature is less than 800 ° C., the hot workability deteriorates and cracking occurs during hot rolling, so the lower limit of the finish rolling temperature is set to 800 ° C. When the finishing temperature exceeds 850 ° C., the accumulation of strain during rolling is not sufficient, and recovery / recrystallization in subsequent winding is suppressed, so the upper limit of the finishing temperature was set to 850 ° C.
巻き取り温度が600℃未満であると、フェライトの回復・再結晶が進まないので、巻き取り温度の下限は600℃とした。巻き取り温度が700℃を超えると、再結晶したフェライトの結晶粒が粗大化して、良好な延性、熱間加工性および冷間加工性が得られないので、巻き取り温度の上限は700℃とした。 If the winding temperature is less than 600 ° C., ferrite recovery / recrystallization does not proceed, so the lower limit of the winding temperature was set to 600 ° C. When the coiling temperature exceeds 700 ° C., the recrystallized ferrite crystal grains become coarse, and good ductility, hot workability and cold workability cannot be obtained. Therefore, the upper limit of the coiling temperature is 700 ° C. did.
前記(5)に係る本発明において、熱延板の延性を向上させるために、再結晶や炭化物析出制御の観点から、熱延板を巻き取った後、700℃以上1100℃以下の温度で焼鈍してもよい。 In this invention which concerns on said (5), in order to improve the ductility of a hot-rolled sheet, from a viewpoint of recrystallization and carbide precipitation control, after winding a hot-rolled sheet, it anneals at the temperature of 700 to 1100 degreeC. May be.
ここで、焼鈍温度が700℃未満ではその効果が小さく、1100℃を超えると、結晶粒が粗大化し粒界脆化が助長されるため、熱延板の焼鈍温度は700℃以上1100℃以下の温度範囲とした。 Here, if the annealing temperature is less than 700 ° C., the effect is small, and if it exceeds 1100 ° C., the crystal grains are coarsened and grain boundary embrittlement is promoted, so the annealing temperature of the hot-rolled sheet is 700 ° C. or more and 1100 ° C. or less. The temperature range.
前記(6)に係る本発明において、冷延鋼板を製造する場合には、鋼板を巻き取った後、酸洗し、1パス目の圧下率を20%以下とする冷間圧延を行い、600℃以上1100℃以下の温度で焼鈍を行い、焼鈍後、20℃/秒以上の冷却速度で200℃以下の温度まで冷却する。 In this invention which concerns on said (6), when manufacturing a cold-rolled steel plate, after winding up a steel plate, it pickles and performs cold rolling which makes the reduction rate of the 1st pass 20% or less, 600 Annealing is performed at a temperature of not lower than 1 ° C. and not higher than 1100 ° C., and after annealing, it is cooled to a temperature of not higher than 200 ° C. at a cooling rate of 20 ° C./second or higher.
冷間圧延時の割れを防止するため、1パス目の圧下率を20%以下とした。 In order to prevent cracking during cold rolling, the rolling reduction in the first pass was set to 20% or less.
焼鈍温度が600℃未満では、未再結晶・未回復となり十分な効果が得られず、一方、1100℃を超えると、結晶粒が粗大化し粒界脆化が助長されるため、冷延板の焼鈍温度は、600℃以上1100℃以下の温度範囲とした。 When the annealing temperature is less than 600 ° C., sufficient effects cannot be obtained because it is not recrystallized / recovered. On the other hand, when it exceeds 1100 ° C., the crystal grains become coarse and grain boundary embrittlement is promoted. The annealing temperature was set to a temperature range of 600 ° C. or higher and 1100 ° C. or lower.
焼鈍後の冷却速度が20℃/秒未満であるか、冷却停止温度が200℃超であれば、冷却中に粒成長が起こって結晶粒が粗大化するとともに、粒界へPなどの不純物元素が偏析して粒界脆化が起こり、延性が劣化するため、焼鈍後は、20℃/秒以上の冷却速度で200℃以下の温度まで冷却することにした。 If the cooling rate after annealing is less than 20 ° C./second or the cooling stop temperature is higher than 200 ° C., grain growth occurs during cooling and the crystal grains become coarse, and impurity elements such as P enter the grain boundary. Segregates, grain boundary embrittlement occurs, and ductility deteriorates. Therefore, after annealing, it was decided to cool to 200 ° C. or lower at a cooling rate of 20 ° C./second or higher.
以下、実施例により本発明とその効果を、さらに具体的に説明する。 Hereinafter, the present invention and its effects will be described more specifically by way of examples.
表1に示す組成を有する鋼を、表2に示す条件で熱間圧延し、冷間圧延した後、表2に示す条件で焼鈍した。 Steel having the composition shown in Table 1 was hot-rolled under the conditions shown in Table 2, cold-rolled, and then annealed under the conditions shown in Table 2.
熱間圧延後および冷間圧延後に、それぞれ、熱延板および冷延板における割れ発生状況を観察した。結果を表2に併せて示す。 After hot rolling and after cold rolling, the occurrence of cracks in the hot rolled sheet and cold rolled sheet was observed, respectively. The results are also shown in Table 2.
焼鈍後の板の比重および機械的特性を評価した。比重の測定はピクノメータを用いて行った。比重、降伏応力、引張強度および伸びを、表2に併せて示す。 The specific gravity and mechanical properties of the plate after annealing were evaluated. The specific gravity was measured using a pycnometer. Specific gravity, yield stress, tensile strength and elongation are also shown in Table 2.
本発明例(No.1〜4)では、比重<7.2を満たしており、引張強度は440MPa以上であり、延性に関しては30%以上の高い伸びが得られており、熱延板および冷延板の割れも発生していない。 In the inventive examples (Nos. 1 to 4), the specific gravity <7.2 is satisfied, the tensile strength is 440 MPa or more, and a high elongation of 30% or more is obtained in terms of ductility. There are no cracks in the plate.
一方、成分のいずれか一つ以上が本発明の成分限定範囲から逸脱している比較例(No.5、6、7)では、いずれも、伸びが20%以下であり、延性に劣ることがわかる。また、これらの比較例では、熱延板および冷延板の割れも発生しており、熱間加工性や冷間加工性にも劣ることがわかる。 On the other hand, in the comparative examples (No. 5, 6, 7) in which any one or more of the components deviate from the component-limited range of the present invention, the elongation is 20% or less and the ductility is inferior. Recognize. Moreover, in these comparative examples, the hot-rolled plate and the cold-rolled plate are also cracked, indicating that the hot workability and the cold workability are inferior.
また、製造条件が本発明の限定範囲から逸脱している比較例(No.8、9、10)では、いずれも、伸びが20%以下であり、かつ、熱延板および冷延板に割れが発生しており、延性や熱間加工性および冷間加工性に劣ることがわかる。 Moreover, in the comparative examples (Nos. 8, 9, and 10) in which the manufacturing conditions deviate from the limited range of the present invention, the elongation is 20% or less and the hot rolled sheet and the cold rolled sheet are cracked. It can be seen that ductility, hot workability and cold workability are poor.
また、表1に示す組成を有する鋼を、表2に示す条件で熱間圧延した熱延板についても比重および機械的特性を評価した。熱延板の比重、降伏応力、引張強度および伸びを、表3に示す。さらに、この熱延板について、表4に示す条件で熱延板焼鈍を行い熱延板焼鈍材についても、比重および機械的特性を評価した。熱延板焼鈍材の比重、降伏応力、引張強度および伸びを、表4に示す。 The specific gravity and mechanical properties of the hot-rolled sheet obtained by hot rolling steel having the composition shown in Table 1 under the conditions shown in Table 2 were also evaluated. Table 3 shows the specific gravity, yield stress, tensile strength and elongation of the hot-rolled sheet. Furthermore, this hot-rolled sheet was subjected to hot-rolled sheet annealing under the conditions shown in Table 4, and the specific gravity and mechanical properties of the hot-rolled sheet annealed material were also evaluated. Table 4 shows the specific gravity, yield stress, tensile strength and elongation of the hot-rolled sheet annealed material.
本発明例(No.1〜4)では、熱延板および熱延板焼鈍材のいずれも、比重<7.2を満たしており、引張強度は440MPa以上であり、延性に関しては30%以上の高い伸びが得られている。 In the present invention examples (Nos. 1 to 4), both the hot-rolled sheet and the hot-rolled sheet annealed material satisfy specific gravity <7.2, the tensile strength is 440 MPa or more, and the ductility is 30% or more. High elongation is obtained.
一方、成分のいずれか一つ以上が本発明の成分限定範囲から逸脱している比較例(No.5、6、7)では、いずれも、伸びが20%以下であり、延性に劣ることがわかる。また、熱延条件が本発明の限定範囲から逸脱している比較例(No.8、9、10)では、いずれも、伸びが20%以下であり、延性に劣ることがわかる。 On the other hand, in the comparative examples (No. 5, 6, 7) in which any one or more of the components deviate from the component-limited range of the present invention, the elongation is 20% or less and the ductility is inferior. Recognize. Moreover, in the comparative examples (No. 8, 9, 10) in which the hot rolling conditions deviate from the limited range of the present invention, it is understood that the elongation is 20% or less and the ductility is inferior.
以上より、鋼成分を本発明で示した範囲に特定し、本発明で示した条件で製造することにより、延性に優れた高強度低比重鋼板が得られることが明らかである。 From the above, it is clear that a high strength low specific gravity steel plate excellent in ductility can be obtained by specifying the steel components in the range shown in the present invention and producing them under the conditions shown in the present invention.
前述したように、本発明によれば延性に優れた高強度低比重鋼板を提供することができる。したがって、本発明は、鋼板利用産業上、利用可能性の高いものである。 As described above, according to the present invention, it is possible to provide a high-strength low specific gravity steel plate having excellent ductility. Therefore, the present invention is highly applicable in the steel plate utilization industry.
Claims (6)
C:0.001〜0.01%、
Si:3.0%以下、
Mn:0.2超〜3.0%、
P :0.02%以下、
S :0.02%以下、
Al:5.0〜10.0%、
N:0.001〜0.05%
を含有し、かつ、
20<(Mn/S)
を満足し、残部がFeおよび不可避的不純物からなる鋼スラブを1100℃以上1150℃以下の温度に加熱し、1000℃以上1100℃以下の温度で圧下率30%以上の大圧下を少なくとも1パス以上含みかつ800℃以上850℃以下の仕上げ圧延温度で熱間圧延し、600℃以上700℃以下の温度で巻き取ることを特徴とする延性に優れた高強度低比重鋼板の製造方法。 Specific gravity <7.2, tensile strength is 440 MPa or more, elongation is 25% or more is a method for producing a high strength low specific gravity steel plate excellent in ductility, in mass%,
C: 0.001 to 0.01%,
Si: 3.0% or less,
Mn: more than 0.2 to 3.0%,
P: 0.02% or less,
S: 0.02% or less,
Al: 5.0 to 10.0%,
N: 0.001 to 0.05%
Containing, and
20 <(Mn / S)
The steel slab consisting of Fe and inevitable impurities is heated to a temperature of 1100 ° C. or higher and 1150 ° C. or lower, and a large reduction with a reduction rate of 30% or higher at a temperature of 1000 ° C. or higher and 1100 ° C. or lower is at least 1 pass or higher. A method for producing a high strength low specific gravity steel sheet having excellent ductility, comprising hot rolling at a finish rolling temperature of 800 ° C. or higher and 850 ° C. or lower and winding at a temperature of 600 ° C. or higher and 700 ° C. or lower.
Ti:0.005〜0.3%、
Nb:0.005〜0.3%
の1種または2種を含有することを特徴とする請求項1記載の延性に優れた高強度低比重鋼板の製造方法。 Furthermore, in mass%,
Ti: 0.005 to 0.3%,
Nb: 0.005-0.3%
The manufacturing method of the high strength low specific gravity steel plate excellent in ductility of Claim 1 characterized by including 1 type or 2 types of these.
Cr:0.05〜3.0%、
Ni:0.05〜5.0%、
Mo:0.05〜3.0%、
Cu:0.1〜3.0%、
B :0.0003〜0.01%、
V :0.01〜0.5%
の1種または2種以上を含有することを特徴とする請求項1または2記載の延性に優れた高強度低比重鋼板の製造方法。 Furthermore, in mass%,
Cr: 0.05-3.0%,
Ni: 0.05-5.0%,
Mo: 0.05-3.0%
Cu: 0.1 to 3.0%,
B: 0.0003 to 0.01%
V: 0.01 to 0.5%
1 or 2 types or more of these are contained, The manufacturing method of the high strength low specific gravity steel plate excellent in ductility of Claim 1 or 2 characterized by the above-mentioned.
Ca:0.001〜0.01%、
Mg:0.0005〜0.01%、
Zr:0.001〜0.05%、
REM:0.001〜0.05%
の1種または2種以上を含有することを特徴とする請求項1〜3のいずれか1項に記載の延性に優れた高強度低比重鋼板の製造方法。 Furthermore, in mass%,
Ca: 0.001 to 0.01%,
Mg: 0.0005 to 0.01%,
Zr: 0.001 to 0.05%,
REM: 0.001 to 0.05%
The manufacturing method of the high strength low specific gravity steel plate excellent in ductility of any one of Claims 1-3 characterized by including 1 type (s) or 2 or more types of these.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010003244A JP5094888B2 (en) | 2003-06-18 | 2010-01-08 | Manufacturing method of high strength and low specific gravity steel sheet with excellent ductility |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003173251 | 2003-06-18 | ||
JP2003173251 | 2003-06-18 | ||
JP2010003244A JP5094888B2 (en) | 2003-06-18 | 2010-01-08 | Manufacturing method of high strength and low specific gravity steel sheet with excellent ductility |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004074914A Division JP4471688B2 (en) | 2003-06-18 | 2004-03-16 | High strength low specific gravity steel plate excellent in ductility and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010121213A JP2010121213A (en) | 2010-06-03 |
JP5094888B2 true JP5094888B2 (en) | 2012-12-12 |
Family
ID=40813419
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009026773A Expired - Lifetime JP4472015B2 (en) | 2003-06-18 | 2009-02-06 | High strength low specific gravity steel plate excellent in ductility and method for producing the same |
JP2010003244A Expired - Fee Related JP5094888B2 (en) | 2003-06-18 | 2010-01-08 | Manufacturing method of high strength and low specific gravity steel sheet with excellent ductility |
JP2010003233A Expired - Fee Related JP5094887B2 (en) | 2003-06-18 | 2010-01-08 | Manufacturing method of high strength and low specific gravity steel sheet with excellent ductility |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009026773A Expired - Lifetime JP4472015B2 (en) | 2003-06-18 | 2009-02-06 | High strength low specific gravity steel plate excellent in ductility and method for producing the same |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010003233A Expired - Fee Related JP5094887B2 (en) | 2003-06-18 | 2010-01-08 | Manufacturing method of high strength and low specific gravity steel sheet with excellent ductility |
Country Status (1)
Country | Link |
---|---|
JP (3) | JP4472015B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018181257A1 (en) | 2017-03-30 | 2018-10-04 | 新日鐵住金ステンレス株式会社 | Ferrite-based stainless steel sheet having low specific gravity and production method therefor |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5003785B2 (en) * | 2010-03-30 | 2012-08-15 | Jfeスチール株式会社 | High tensile steel plate with excellent ductility and method for producing the same |
PL2767602T3 (en) * | 2013-02-14 | 2019-10-31 | Thyssenkrupp Steel Europe Ag | Cold rolled steel flat product for deep drawing applications and method for its production |
EP2767601B1 (en) * | 2013-02-14 | 2018-10-10 | ThyssenKrupp Steel Europe AG | Cold rolled steel flat product for deep drawing applications and method for its production |
KR101889110B1 (en) * | 2013-10-23 | 2018-08-16 | 주식회사 포스코 | High strength ultra low carbon cold rolled steel sheet with low specific gravity and manufacturing method the same |
CN107217204B (en) * | 2017-05-02 | 2018-09-28 | 昆明理工大学 | A kind of preparation method of Fe-Mn-Al systems alloy |
CN113046644B (en) * | 2021-03-15 | 2022-07-22 | 鞍钢股份有限公司 | 980 MPa-grade light high-strength steel and preparation method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3386514B2 (en) * | 1993-06-16 | 2003-03-17 | 川崎製鉄株式会社 | Damping alloy steel sheet and method of manufacturing the same |
JP2001271148A (en) * | 2000-03-27 | 2001-10-02 | Nisshin Steel Co Ltd | HIGH Al STEEL SHEET EXCELLENT IN HIGH TEMPERATURE OXIDATION RESISTANCE |
-
2009
- 2009-02-06 JP JP2009026773A patent/JP4472015B2/en not_active Expired - Lifetime
-
2010
- 2010-01-08 JP JP2010003244A patent/JP5094888B2/en not_active Expired - Fee Related
- 2010-01-08 JP JP2010003233A patent/JP5094887B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018181257A1 (en) | 2017-03-30 | 2018-10-04 | 新日鐵住金ステンレス株式会社 | Ferrite-based stainless steel sheet having low specific gravity and production method therefor |
KR20190121799A (en) | 2017-03-30 | 2019-10-28 | 닛테츠 스테인레스 가부시키가이샤 | Low specific gravity ferritic stainless steel sheet and its manufacturing method |
US11242578B2 (en) | 2017-03-30 | 2022-02-08 | Nippon Steel Stainless Steel Corporation | Ferrite-based stainless steel sheet having low specific gravity and production method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP5094887B2 (en) | 2012-12-12 |
JP2010121213A (en) | 2010-06-03 |
JP2010133028A (en) | 2010-06-17 |
JP2009120962A (en) | 2009-06-04 |
JP4472015B2 (en) | 2010-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4464811B2 (en) | Manufacturing method of high strength and low specific gravity steel sheet with excellent ductility | |
JP4084733B2 (en) | High strength low specific gravity steel plate excellent in ductility and method for producing the same | |
JP4235077B2 (en) | High strength low specific gravity steel plate for automobile and its manufacturing method | |
EP2554699B1 (en) | Steel sheet with high tensile strength and superior ductility and method for producing same | |
JP4324072B2 (en) | Lightweight high strength steel with excellent ductility and its manufacturing method | |
JP2008528809A (en) | Austenitic steel having high strength and formability, method for producing the steel, and use thereof | |
JP2009545676A (en) | High manganese-type high-strength steel sheet with excellent impact characteristics and manufacturing method thereof | |
JP5094888B2 (en) | Manufacturing method of high strength and low specific gravity steel sheet with excellent ductility | |
CN110959049A (en) | Flat steel product with good aging resistance and method for the production thereof | |
KR20130107371A (en) | Ferritic stainless steel sheet having excellent heat resistance and processability, and method for producing same | |
JP7499243B2 (en) | High yield ratio cold rolled dual phase steel and its manufacturing method | |
JP6383368B2 (en) | Cold rolled flat steel product for applying deep drawing and method for producing the same | |
JP5042694B2 (en) | High strength low specific gravity steel plate excellent in ductility and workability and method for producing the same | |
JP4248430B2 (en) | High strength low specific gravity steel plate excellent in ductility and method for producing the same | |
JP4471688B2 (en) | High strength low specific gravity steel plate excellent in ductility and method for producing the same | |
JP5388577B2 (en) | Steel plate for galvanization excellent in workability and manufacturing method thereof | |
JP4833698B2 (en) | High strength steel plate for die quench | |
CN109804092B (en) | Cold-rolled steel sheet for flux-cored wire and method for manufacturing same | |
JP5257239B2 (en) | High strength low specific gravity steel plate excellent in ductility, workability and toughness, and method for producing the same | |
JP4299774B2 (en) | High strength low specific gravity steel sheet with excellent ductility and fatigue characteristics and method for producing the same | |
JP4430502B2 (en) | Method for producing low specific gravity steel sheet with excellent ductility | |
CN111527228B (en) | Cold-rolled steel sheet having excellent high-temperature characteristics and room-temperature workability, and method for producing same | |
EP3556895A1 (en) | High-carbon hot-rolled steel sheet having excellent surface quality and manufacturing method therefor | |
JP3280692B2 (en) | Manufacturing method of high strength cold rolled steel sheet for deep drawing | |
CN114040990A (en) | Austenitic stainless steel having improved strength and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120821 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120918 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5094888 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150928 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150928 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150928 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |