JP5074673B2 - Method for molding fiber reinforced thermoplastic resin - Google Patents

Method for molding fiber reinforced thermoplastic resin Download PDF

Info

Publication number
JP5074673B2
JP5074673B2 JP2005146100A JP2005146100A JP5074673B2 JP 5074673 B2 JP5074673 B2 JP 5074673B2 JP 2005146100 A JP2005146100 A JP 2005146100A JP 2005146100 A JP2005146100 A JP 2005146100A JP 5074673 B2 JP5074673 B2 JP 5074673B2
Authority
JP
Japan
Prior art keywords
compound
mold
fiber
resin
molding method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005146100A
Other languages
Japanese (ja)
Other versions
JP2006321897A (en
Inventor
裕文 西田
紀夫 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagase Chemtex Corp
Nitto Boseki Co Ltd
Original Assignee
Nagase Chemtex Corp
Nitto Boseki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagase Chemtex Corp, Nitto Boseki Co Ltd filed Critical Nagase Chemtex Corp
Priority to JP2005146100A priority Critical patent/JP5074673B2/en
Publication of JP2006321897A publication Critical patent/JP2006321897A/en
Application granted granted Critical
Publication of JP5074673B2 publication Critical patent/JP5074673B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)

Description

本発明は、繊維強化熱可塑性樹脂の注入成形方法に関し、詳細には、直鎖状に重合する2官能化合物を型内で強化用繊維に含浸させ、そのまま型内で2官能化合物を重合させることにより繊維強化熱可塑性樹脂を成形する方法に関する。   The present invention relates to a method for injection molding of a fiber reinforced thermoplastic resin, and more specifically, impregnating a reinforcing fiber in a mold with a bifunctional compound that is linearly polymerized, and polymerizing the bifunctional compound in the mold as it is. Relates to a method for molding a fiber-reinforced thermoplastic resin.

繊維強化熱可塑性樹脂(FRTP)は、熱可塑性樹脂を強化用繊維で補強して強度を向上させた複合材であり、熱硬化性樹脂を強化用繊維で補強した繊維強化熱硬化性樹脂では困難なリユース、リサイクル及び2次加工が可能となること等から、近年、種々の用途に用いられている。このようなFRTPは、一般に熱可塑性樹脂と強化用繊維を混練する方法により成形され製造される(例えば、非特許文献1参照)。   Fiber Reinforced Thermoplastic Resin (FRTP) is a composite material in which the strength is improved by reinforcing a thermoplastic resin with a reinforcing fiber, which is difficult with a fiber reinforced thermosetting resin reinforced with a reinforcing fiber. In recent years, it has been used for various purposes because it can be reused, recycled and secondary processed. Such FRTP is generally formed and manufactured by a method of kneading a thermoplastic resin and reinforcing fibers (see, for example, Non-Patent Document 1).

しかしながら、熱可塑性樹脂と強化用繊維を混練する場合に、次のような問題が知られている。すなわち、高分子量の熱可塑性樹脂を強化用繊維に含浸させるために、高圧・高温で熱可塑性樹脂を溶融させて流動性や繊維との濡れ性を確保する必要がある。その結果、高圧・高温により、ガラス繊維等の強化用繊維が損傷して複合材中の強化用繊維は短繊維となり、損傷により繊維自体の強度も低下し、最終的にこの複合材を使用して成形したFRTPの強度特性の低下をもたらす。さらに、熱可塑性樹脂が高分子量であることにより、強化用繊維に熱可塑性樹脂が充分に含浸されず、熱可塑性樹脂と強化用繊維との界面にボイドが生じる。また、高温で長時間保持されることにより熱可塑性樹脂が分解又は劣化する不都合がある。さらに、熱硬化性樹脂と強化用繊維との複合体の製造と比較して、非常に大きな成形エネルギーが必要になる。また、すでに重合が終了した熱可塑性樹脂の段階で強化用繊維への含浸を行うことから、強化用繊維のカップリング剤等との化学反応が起こらず、強化用繊維と熱可塑性樹脂の界面での化学的接着が発生せず、複合化効率が大幅に低下してしまう。   However, the following problems are known when kneading a thermoplastic resin and reinforcing fibers. That is, in order to impregnate the reinforcing fiber with a high molecular weight thermoplastic resin, it is necessary to melt the thermoplastic resin at high pressure and high temperature to ensure fluidity and wettability with the fiber. As a result, the reinforcing fibers such as glass fibers are damaged by the high pressure and high temperature, and the reinforcing fibers in the composite material become short fibers, and the strength of the fiber itself decreases due to the damage, and this composite material is finally used. The strength characteristics of the molded FRTP are reduced. Further, since the thermoplastic resin has a high molecular weight, the reinforcing fiber is not sufficiently impregnated with the thermoplastic resin, and a void is generated at the interface between the thermoplastic resin and the reinforcing fiber. Further, there is a disadvantage that the thermoplastic resin is decomposed or deteriorated by being held at a high temperature for a long time. Furthermore, much larger molding energy is required as compared with the production of a composite of a thermosetting resin and reinforcing fibers. In addition, since the reinforcing fibers are impregnated at the stage of the thermoplastic resin that has already been polymerized, there is no chemical reaction with the coupling agent of the reinforcing fibers and the interface between the reinforcing fibers and the thermoplastic resin. The chemical bonding does not occur, and the composite efficiency is greatly reduced.

一方、注入成形法は、予め強化用繊維が内部に配置された成形型の内部の空間に液状樹脂を注入して樹脂を硬化させた後、脱型して成形体を得るものであり、大型或いは複雑な形状の成形物を含む種々の形状の成形物の製造に適用可能であり、繊維強化複合材を成形する際に精度の再現性が高い方法として知られている。注入成形法は、型内で強化用繊維に含浸させた状態で成形するため、注入樹脂は注入時に低粘度であることが望ましく、また、型内で固化させて成形体を脱型できることが望ましいことから、従来、不飽和ポリエステル樹脂、エポキシ樹脂、ビニルエステル樹脂、フェノール樹脂等の熱硬化性樹脂が使用されている。これは、熱硬化性樹脂が、成形型に注入する時には、非常に低粘度のモノマーの状態であり、繊維と含浸後に、重合・硬化して高分子の状態に変化できるからである。   On the other hand, the injection molding method is a method in which a liquid resin is injected into a space inside a molding die in which reinforcing fibers are arranged in advance, the resin is cured, and then demolded to obtain a molded body. Or it is applicable to manufacture of the molding of various shapes including a molding of a complicated shape, and when forming a fiber reinforced composite material, it is known as a method with high reproducibility of accuracy. In the injection molding method, molding is performed in a state in which the reinforcing fiber is impregnated in the mold. Therefore, it is desirable that the injection resin has a low viscosity at the time of injection, and that the molded body can be demolded by solidifying in the mold. Therefore, thermosetting resins such as unsaturated polyester resins, epoxy resins, vinyl ester resins, and phenol resins have been conventionally used. This is because the thermosetting resin is in a very low-viscosity monomer state when injected into the mold, and can be polymerized and cured to change into a polymer state after impregnation with the fiber.

反応性化合物を強化用繊維と混合してから重合することにより繊維強化された熱可塑性プラスチックを製造する方法が知られている(例えば、特許文献1参照。)。この技術では、まず、反応性化合物を含浸させて乾燥させたプリプレグを製造し、その後、これを熱プレスして重合反応を行い、成形体を製造している。また、重合性ラクタム溶融物を強化用繊維に含浸させてポリラクタム複合材を製造する方法も知られている(例えば、特許文献2、3参照。)。しかしながら、ラクタム類は本来、開環重合をするものであって、その反応機構の特性からして未反応モノマーが残存し易く、成形体の耐水性、耐溶剤性、耐薬品性を損なうのみならず、残存モノマーの経時脱離により成形体の経時劣化をもたらす。また、短時間に高分子量化させることが困難であり、成形時間が長くなりがちである。さらに、特許文献3の技術ではカプロラクタムの脱離を生じるので、注入成形には好ましくない。   A method for producing a fiber-reinforced thermoplastic by mixing a reactive compound with a reinforcing fiber and then polymerizing is known (for example, see Patent Document 1). In this technique, first, a prepreg impregnated with a reactive compound and dried is manufactured, and thereafter, this is hot-pressed to perform a polymerization reaction, thereby manufacturing a molded body. In addition, a method for producing a polylactam composite material by impregnating a reinforcing lactam melt into a reinforcing fiber is also known (see, for example, Patent Documents 2 and 3). However, lactams are inherently ring-opening polymerized, and unreacted monomers are likely to remain due to the characteristics of the reaction mechanism, and only deteriorate the water resistance, solvent resistance, and chemical resistance of the molded product. In addition, the molded body is deteriorated with time due to the desorption of the residual monomer with time. Further, it is difficult to increase the molecular weight in a short time, and the molding time tends to be long. Furthermore, since the technique of Patent Document 3 causes caprolactam detachment, it is not preferable for injection molding.

林 毅編 「複合材料工学」 株式会社日科技連出版社 (1971年)Satoshi Hayashi “Composite Materials Engineering” Nisshin Gijutsu Publishing Co., Ltd. (1971) 国際公開第2004/060981号パンフレットInternational Publication No. 2004/060981 Pamphlet 特開平9−208712号公報JP-A-9-208712 特開平5−178985号公報JP-A-5-178985

本発明の目的は、上述の現状に鑑みて、大型或いは複雑な形状の成形物を含む種々の形状の成形物の製造に適用可能であり、熱可塑性樹脂と強化用繊維との界面におけるボイドの発生を充分なレベルまで抑制することが可能で、かつ、高温・高圧力を必要とせずに成形が可能な、繊維強化熱可塑性樹脂の注入成形方法及び該方法で成形された繊維強化プラスチックを提供することにある。   The object of the present invention is applicable to the manufacture of molded products of various shapes, including molded products of large or complex shapes, in view of the above-mentioned current situation, and voids at the interface between the thermoplastic resin and the reinforcing fibers Provided is a fiber reinforced thermoplastic resin injection molding method that can suppress generation to a sufficient level and can be molded without the need for high temperature and high pressure, and a fiber reinforced plastic molded by the method. There is to do.

本発明は、1分子中にエポキシ基を2つ有する化合物(A)と、1分子中にフェノール性水酸基を2つ有する化合物(B)とを予め強化用繊維が内部に配置された型内に注入し、前記強化用繊維と混合する工程(I)、及び、前記強化用繊維と混合された前記化合物(A)と前記化合物(B)とを、前記型内において、前記化合物(A)と前記化合物(B)との重合触媒及び反応遅延剤を使用して重付加反応により直鎖状に重合させ、前記化合物(A)と前記化合物(B)とが重合してなる熱可塑性樹脂を成形する工程(II)を有することを特徴とする繊維強化熱可塑性樹脂の成形方法である。   In the present invention, the compound (A) having two epoxy groups in one molecule and the compound (B) having two phenolic hydroxyl groups in one molecule are placed in a mold in which reinforcing fibers are arranged in advance. Injecting and mixing with the reinforcing fiber (I), and the compound (A) and the compound (B) mixed with the reinforcing fiber are combined with the compound (A) in the mold. Using a polymerization catalyst and a reaction retarder for the compound (B), polymerization is performed in a linear form by polyaddition reaction, and a thermoplastic resin formed by polymerizing the compound (A) and the compound (B) is formed. And a step (II) of forming a fiber-reinforced thermoplastic resin.

本発明の成形方法は、上述の構成により、あらかじめ型内に配置された強化用繊維に低粘度の上記化合物(A)及び化合物(B)(本明細書中、合わせて単に反応性化合物ともういう。)を注入し、その後ポリマーにするため、低圧力で成形することができ、大きなプレス機や射出装置は必要ではない。このため、大型或いは複雑な形状の成形物を低エネルギーで成形でき、従来の射出成形や大型のプレス機を使用した熱可塑性樹脂の成形方法と比較すると、経済的にも、環境的にも、大きな優位性がある。すなわち、本発明では、エポキシ化合物を注入型内部で強化用繊維に混合・含浸させる時点では、低粘度の化合物(モノマー等)の状態を保持し、繊維への混合・含浸が十分に完了した後に、直鎖状に重付加反応のみが優先的に進行して実質的に3次元架橋を伴わないように反応性化合物(エポキシ化合物を含む)を選定することにより、非常に低いエネルギーで強化用繊維とエポキシ樹脂とが複合化でき、複合化レベルの高い高品質な熱可塑性複合材料を得ることが可能になる。
また、強化用繊維と複合される時には、反応性化合物が低粘度であるため、強化用繊維との濡れ性が極めて良好で、繊維束間にボイドが残存することがなく、高品質な複合材料が得られる。このため、ボイドの発生が問題となるような様々な複雑な形状の成形物を容易且つ欠陥なく製造することが可能になる。
According to the molding method of the present invention, with the above-described configuration, the low-viscosity compound (A) and compound (B) (in the present specification, the reactive compound and the other compound are added to the reinforcing fiber previously placed in the mold. ) And then into a polymer, it can be molded at low pressure, and no large press or injection device is required. For this reason, it is possible to form a large or complex shaped molded article with low energy, and economically and environmentally compared to the conventional injection molding and thermoplastic resin molding methods using large presses, There is a great advantage. That is, in the present invention, at the time when the epoxy compound is mixed and impregnated into the reinforcing fiber inside the injection mold, the state of the low-viscosity compound (monomer, etc.) is maintained, and the mixing and impregnation of the fiber is sufficiently completed By selecting reactive compounds (including epoxy compounds) so that only the polyaddition reaction proceeds linearly preferentially and does not substantially involve three-dimensional crosslinking, reinforcing fibers can be obtained with very low energy. And epoxy resin can be composited, and a high-quality thermoplastic composite material having a high composite level can be obtained.
In addition, when compounded with reinforcing fibers, the reactive compound has a low viscosity, so that the wettability with the reinforcing fibers is extremely good, and no voids remain between the fiber bundles. Is obtained. For this reason, it becomes possible to easily and easily produce moldings having various complicated shapes in which generation of voids becomes a problem.

さらに、低分子な状態の熱可塑性樹脂と強化用繊維が濡れた状態になり、その後、強化用繊維と熱可塑性樹脂とが濡れた状態のまま樹脂の重合が進むため、強化用繊維のカップリング剤との化学反応が十分に行われ、強固な結合が可能となる。
さらにまた、本発明では、熱可塑性樹脂を低分子な状態で強化用繊維と混合することで、従来のFRTPのような繊維の損傷による強度低下がなく、繊維と樹脂が濡れた状態で反応が進み界面の化学結合が強固になる。
本発明の成形方法では、3次元架橋反応をする熱硬化性樹脂を使用したFRPの一般的な注入成形法(RTM法、VARTM法、RTMV法、RRIM法等)を適用することができる。
In addition, the low molecular weight thermoplastic resin and the reinforcing fiber are in a wet state, and then the polymerization of the resin proceeds while the reinforcing fiber and the thermoplastic resin are in a wet state. The chemical reaction with the agent is sufficiently performed, and a strong bond is possible.
Furthermore, in the present invention, by mixing the thermoplastic resin with the reinforcing fiber in a low molecular state, there is no decrease in strength due to fiber damage as in the conventional FRTP, and the reaction occurs when the fiber and the resin are wet. Advancing chemical bonds at the interface become stronger.
In the molding method of the present invention, a general injection molding method (RTM method, VARTM method, RTMV method, RRIM method, etc.) of FRP using a thermosetting resin that undergoes a three-dimensional crosslinking reaction can be applied.

本発明においては、成形型(後述のとおり、通常、分離可能な一対の型からなり、これら一対の型によりその内部に成形材料を導入し得る空間が形成される。)の型内にあらかじめ強化用繊維を配置し、型を閉鎖したのち、適切な位置に設けた注入孔から型内に重合反応により熱可塑性エポキシ樹脂を形成する上記化合物(A)及び化合物(B)を、比較的低い圧力で注入し、上記反応性化合物が未だ実質的に重合していない状態で強化用繊維に混合・含浸させ(工程(I))、その後、そのまま型内において、強化用繊維に混合・含浸した上記化合物(A)及び化合物(B)の重合反応を生じせしめて、強化用繊維が配された熱可塑性樹脂を得る(工程(II))。   In the present invention, as described later, it is strengthened in advance in the mold of a mold (usually formed of a pair of separable molds, and a space into which a molding material can be introduced is formed by the pair of molds). After disposing the fibers and closing the mold, the compound (A) and the compound (B), which form a thermoplastic epoxy resin by polymerization reaction in the mold from the injection holes provided at appropriate positions, are subjected to a relatively low pressure. The reinforcing fiber is mixed and impregnated in the state where the reactive compound is not substantially polymerized (step (I)), and then the reinforcing fiber is mixed and impregnated in the mold as it is. A polymerization reaction of the compound (A) and the compound (B) is caused to obtain a thermoplastic resin in which reinforcing fibers are arranged (step (II)).

上記工程(I)において、上記化合物(A)及び化合物(B)を型に注入する際に、それぞれ溶融状態であることが好ましい。もっとも、上記化合物(A)及び化合物(B)は、少なくとも、上記工程(II)で重合する際に溶融状態にある必要があり、その際に充分に強化用繊維に含浸し得るので、注入可能であり強化用繊維に混合可能であるかぎり、上記工程(I)では必ずしも溶融状態である必要はない。   In the said process (I), when inject | pouring the said compound (A) and compound (B) into a type | mold, it is preferable that it is a molten state, respectively. However, the compound (A) and the compound (B) must be in a molten state at least when polymerized in the step (II), and can be sufficiently impregnated into the reinforcing fiber at that time, so that injection is possible. As long as it can be mixed with the reinforcing fiber, it is not necessarily in the molten state in the step (I).

また、型内を減圧して樹脂の注入を行なうことにより、より複合化レベルの高い成形品を得ることが可能となる。以下、順に工程を説明する。なお、本明細書中、熱可塑性エポキシ樹脂とは、エポキシ化合物又はエポキシ化合物と反応しうる化合物とエポキシ化合物との直鎖状の重合体又は共重合体をいう。   Moreover, it is possible to obtain a molded product with a higher composite level by reducing the pressure in the mold and injecting the resin. Hereinafter, steps will be described in order. In the present specification, the thermoplastic epoxy resin refers to a linear polymer or copolymer of an epoxy compound or an epoxy compound and a compound capable of reacting with the epoxy compound.

1分子中にエポキシ基を2つ有する化合物(A)としては、例えば、カテコールジグリシジルエーテル、レゾルシンジグリシジルエーテル、t−ブチルヒドロキノンジグリシジルエーテル、フタル酸ジグリシジルエーテル等のベンゼン環を1個有する一核体芳香族ジエポキシ化合物類、ジメチロールシクロヘキサンジグリシジルエーテル、3,4−エポキシシクロヘキセニルメチル−3,4−エポキシシクロヘキセニルカルボキシレート、リモネンジオキシド等の脂環式エポキシ化合物類、ビス(4−ヒドロキシフェニル)メタンジグリシジルエーテル、1,1−ビス(4−ヒドロキシフェニル)エタンジグリシジルエーテル、2,2−ビス(4−ヒドロキシフェニル)プロパンジグリシジルエーテル等のビスフェノール型エポキシ化合物及びこれらが部分縮合したオリゴマー混合物(ビスフェノール型エポキシ樹脂)、3,3′,5,5′−テトラメチルビス(4−ヒドロキシフェニル)メタンジグリシジルエーテル、3,3′,5,5′−テトラメチルビス(4−ヒドロキシフェニル)エーテルジグリシジルエーテル等が挙げられる。ヒドロキノンジグリシジルエーテル、メチルヒドロキノンジグリシジルエーテル、2、5−ジ−t−ブチルヒドロキノンジグリシジルエーテル、ビフェニル型又はテトラメチルビフェニル型エポキシ樹脂類、ビスフェノールフルオレン型又はビスクレゾールフルオレン型エポキシ樹脂等の、単独では結晶性を示し、室温で固形であっても200℃以下の温度で融解し液状となるエポキシ樹脂は使用することができる。   As the compound (A) having two epoxy groups in one molecule, for example, it has one benzene ring such as catechol diglycidyl ether, resorcin diglycidyl ether, t-butylhydroquinone diglycidyl ether, phthalic acid diglycidyl ether, etc. Mononuclear aromatic diepoxy compounds, dimethylolcyclohexanediglycidyl ether, 3,4-epoxycyclohexenylmethyl-3,4-epoxycyclohexenylcarboxylate, alicyclic epoxy compounds such as limonene dioxide, bis (4 -Hydroxyphenyl) methane diglycidyl ether, 1,1-bis (4-hydroxyphenyl) ethane diglycidyl ether, 2,2-bis (4-hydroxyphenyl) propane diglycidyl ether and the like bisphenol type epoxy compounds and Oligomer mixture (bisphenol type epoxy resin) in which these are partially condensed, 3,3 ', 5,5'-tetramethylbis (4-hydroxyphenyl) methane diglycidyl ether, 3,3', 5,5'-tetramethyl Examples thereof include bis (4-hydroxyphenyl) ether diglycidyl ether. Hydroquinone diglycidyl ether, methylhydroquinone diglycidyl ether, 2,5-di-t-butylhydroquinone diglycidyl ether, biphenyl type or tetramethylbiphenyl type epoxy resins, bisphenol fluorene type or biscresol fluorene type epoxy resin alone In an epoxy resin that exhibits crystallinity and melts at a temperature of 200 ° C. or lower even when it is solid at room temperature, it can be used.

1分子中にフェノール性水酸基を2つ有する化合物(B)としては、例えば、カテコール、レゾルシン、ヒドロキノン、メチルヒドロキノン、t−ブチルヒドロキノン、2,5−ジ−t−ブチルヒドロキノン等のベンゼン環1個を有する一核体芳香族ジヒドロキシ化合物類、2,2−ビス(4−ヒドロキシフェニル)プロパン(ビスフェノールA)、1,1−ビス(4−ヒドロキシフェニル)エタン(ビスフェノールAD)、ビス(ヒドロキシフェニル)メタン(ビスフェノールF)、ビスフェノールフルオレン、ビスクレゾールフルオレン等のビスフェノール類、ジヒドロキシナフタレン等の縮合環を有する化合物、ジアリルレゾルシン、ジアリルビスフェノールA、トリアリルジヒドロキシビフェニル等のアリル基を導入した2官能フェノール化合物等が挙げられる。   Examples of the compound (B) having two phenolic hydroxyl groups in one molecule include one benzene ring such as catechol, resorcin, hydroquinone, methylhydroquinone, t-butylhydroquinone, and 2,5-di-t-butylhydroquinone. Mononuclear aromatic dihydroxy compounds having 2, 2-bis (4-hydroxyphenyl) propane (bisphenol A), 1,1-bis (4-hydroxyphenyl) ethane (bisphenol AD), bis (hydroxyphenyl) Bifunctional phenols introduced with allyl groups such as bisphenols such as methane (bisphenol F), bisphenol fluorene and biscresol fluorene, compounds having a condensed ring such as dihydroxynaphthalene, diallyl resorcin, diallyl bisphenol A and triallyl dihydroxy biphenyl And the like.

化合物(A)の少なくとも一部及び/又は化合物(B)の少なくとも一部として、フルオレン骨格を有する化合物を使用することができ、この場合、重合された樹脂の溶融温度を調節して高温溶融性の樹脂とすることができる。   A compound having a fluorene skeleton can be used as at least a part of the compound (A) and / or at least a part of the compound (B). In this case, the melting temperature of the polymerized resin is adjusted to achieve high-temperature meltability. It can be set as resin.

前記化合物(A)と前記化合物(B)との配合量は、化合物(A)1モルに対して化合物(B)0.9〜1.1モルが好ましく、0.95〜1.05モルがより好ましい。   The compounding amount of the compound (A) and the compound (B) is preferably 0.9 to 1.1 mol, more preferably 0.95 to 1.05 mol with respect to 1 mol of the compound (A). More preferred.

本発明において用いられる強化用繊維は、アスペクト比が1000以上(更に好ましくは5000以上)であり、繊維編組物(織物、編物、組物)、チョップドストランドマット、連続繊維マットの形態を有する基材であることが好ましい。上記のような基材を用いることにより、熱可塑性樹脂の補強度を向上させることができ、優れた機械的特性を発揮する繊維強化熱可塑性樹脂の成形・製造が可能になる。   The reinforcing fiber used in the present invention has an aspect ratio of 1000 or more (more preferably 5000 or more), and a substrate having the form of a fiber braid (woven fabric, knitted fabric, braid), chopped strand mat, or continuous fiber mat. It is preferable that By using the base material as described above, the degree of reinforcement of the thermoplastic resin can be improved, and a fiber-reinforced thermoplastic resin exhibiting excellent mechanical properties can be molded and manufactured.

強化用繊維としては、例えば、アラミド繊維等の有機繊維や、ガラス繊維、炭素繊維等の無機繊維を用いることができるが、炭素繊維やガラス繊維を用いることが好ましい。   As the reinforcing fibers, for example, organic fibers such as aramid fibers, and inorganic fibers such as glass fibers and carbon fibers can be used, but it is preferable to use carbon fibers and glass fibers.

ガラス繊維としては、ガラス繊維モノフィラメント、ガラス繊維ストランド、ガラス繊維ロービング、ガラス繊維ヤーン等の長繊維;ガラス繊維チョップドストランド、ガラス繊維ロービングの切断物等のガラス繊維チョップド繊維等を用いることができ、ガラス繊維ミルドファイバー等を含んでいてもよい。   As glass fiber, glass fiber monofilament, glass fiber strand, glass fiber roving, glass fiber yarn and other long fibers; glass fiber chopped strands, glass fiber chopped fibers such as cut pieces of glass fiber roving, etc. can be used. Fiber milled fiber or the like may be included.

また、ガラス繊維織物、ガラス繊維組物、ガラス繊維編物、ガラス繊維不織布等のガラス繊維編組物をも適用可能である。なお、ガラス繊維はエポキシシランカップリング剤やアクリルシランカップリング剤等の表面処理剤で表面処理を行ったものでもよい。   Moreover, glass fiber braids, such as a glass fiber fabric, a glass fiber braid, a glass fiber braid, and a glass fiber nonwoven fabric, are also applicable. In addition, the glass fiber may have been subjected to a surface treatment with a surface treatment agent such as an epoxy silane coupling agent or an acrylic silane coupling agent.

ガラス繊維としては、ガラス繊維ロービングの切断物又はガラス繊維織物が好ましく、ガラス繊維ロービングの切断物は、直径3〜100μmのガラス繊維モノフィラメントが100〜2000本束ねられたガラス繊維束を、10〜200本更に束ねたものであって、繊維長が10cm以上(より好ましくは、50cm以上)のものが好ましい。   As the glass fiber, a cut product of glass fiber roving or a glass fiber fabric is preferable, and the cut product of glass fiber roving is a glass fiber bundle in which 100 to 2000 glass fiber monofilaments having a diameter of 3 to 100 μm are bundled. It is further bundled, and the fiber length is preferably 10 cm or more (more preferably 50 cm or more).

ガラス繊維織物としては、5〜500TEX(好ましくは22〜68TEX)のガラス繊維束を経糸及び緯糸として用い、織り密度が、経方向で16〜64本/25mm、緯方向で15〜60本/25mmになるように織られたものであることが好ましい。そして、ガラス繊維織物を構成するガラス繊維束は、ガラス繊維モノフィラメント(フィラメント径は3〜23μmが好ましい)が50〜1200本集束されてなるものが好ましい。   As the glass fiber fabric, a glass fiber bundle of 5 to 500 TEX (preferably 22 to 68 TEX) is used as warp and weft, and the weave density is 16 to 64/25 mm in the warp direction and 15 to 60/25 mm in the weft direction. It is preferable that it is woven so that it becomes. And as for the glass fiber bundle which comprises a glass fiber fabric, the thing by which 50-1200 glass fiber monofilaments (filament diameter is preferable 3-23 micrometers) is bundled is preferable.

上記ガラス繊維のガラス組成としては、例えば、Eガラス、Sガラス、Cガラス等が挙げられ、なかでもEガラスが好ましい。また、ガラス繊維モノフィラメントの断面は円形でも、楕円形等の扁平形状でもよい。   As a glass composition of the said glass fiber, E glass, S glass, C glass etc. are mentioned, for example, E glass is especially preferable. Further, the cross section of the glass fiber monofilament may be circular or flat such as elliptical.

上記炭素繊維はコールタールピッチや石油ピッチを原料にした「ピッチ系」と、ポリアクリロニトリルを原料とする「PAN系」と、セルロース繊維を原料とする「レーヨン系」の3種類があり、どの炭素繊維でも本発明に用いることができる。   There are three types of carbon fiber: “pitch-type” made from coal tar pitch or petroleum pitch, “PAN-type” made from polyacrylonitrile, and “rayon-type” made from cellulose fiber. Even fibers can be used in the present invention.

本発明の注入成形方法においては、樹脂の注入・混合・含浸に先駆け、所定の混合割合・所定形態の繊維強化材を、均一にかつ設定された方向に型内に配置する。この工程は強化繊維の賦形工程になる。この時の強化材の配置には、2次元的、3次元的な配置が可能である。また、注入成形法では強化材の賦形だけを先行させ、強化材を予備加工したプリフォームを使用してもよい。   In the injection molding method of the present invention, prior to the injection, mixing, and impregnation of the resin, the fiber reinforcing material having a predetermined mixing ratio and a predetermined shape is arranged in the mold in a uniform and set direction. This step is a reinforcing fiber shaping step. In this case, the reinforcing material can be arranged in a two-dimensional or three-dimensional manner. In addition, in the injection molding method, a preform in which the reinforcing material is preliminarily processed may be used by preceding the shaping of the reinforcing material.

成形体における強化用繊維の配合比率は、繊維の種類により異なり得るが、例えば、ガラス繊維の場合には、成形体に対して、強化用繊維10〜75重量%が好ましく、25〜70重量%がより好ましい。強化用繊維の量が10重量%未満であると、成形品の物性が低くなったり、そりやうねりが大きくなる傾向にあり、75重量%を超すと、繊維に樹脂が未含浸となる傾向にある。他の種類の強化用繊維についても、上記配合量を参考にしつつ、当業者に知られている配合を容易に用いることができる。   The blending ratio of the reinforcing fibers in the molded body may vary depending on the type of fiber. For example, in the case of glass fibers, the reinforcing fibers are preferably 10 to 75% by weight, and preferably 25 to 70% by weight. Is more preferable. If the amount of reinforcing fiber is less than 10% by weight, the physical properties of the molded product tend to be low or warpage and undulation tend to increase. If the amount exceeds 75% by weight, the fiber tends to become unimpregnated with resin. is there. For other types of reinforcing fibers, the blending known to those skilled in the art can be easily used while referring to the blending amount.

注入圧力としては、原料混合物を、好ましくは溶融状態で、注入可能な圧力であればよく、型内を減圧するか否かにも依存するが、一般には、型内を減圧しない場合は、例えば、0.01MPa〜1MPa程度の注入圧力を使用でき、また、減圧下に注入する場合は10KPa〜100KPa程度を使用できる。   As the injection pressure, the raw material mixture is preferably a pressure that can be injected, preferably in a molten state, and depends on whether or not the inside of the mold is decompressed. An injection pressure of about 0.01 MPa to 1 MPa can be used, and about 10 KPa to 100 KPa can be used for injection under reduced pressure.

注入成形型としては、樹脂の注入、成形、成形体の脱型の過程を経て成形体を得るものであればよく、通常、分離可能な一対の型からなり、これら一対の型によりその内部に成形材料を導入し得る空間が形成される。本発明においては、予め強化用繊維をその内部に配置しておき、型を閉鎖して樹脂の注入に備える。型は、高剛性のもの、又は、低剛性のものであり得、高剛性のものは内圧を生じる条件で使用可能である。低剛性のものは減圧下の注入・成形に使用可能であり、例えば、第一の型及び第二の型を有しており、上記第一の型及び第二の型のいずれかが樹脂(例えば、PVA、ナイロン等)又はゴムのフィルムからなる型は、上記第一の型及び第二の型で囲まれた型の内部を減圧した状態で化合物(A)と化合物(B)とを注入する。注入型には、化合物(A)と化合物(B)の重合を進行させ、また重合後成形品を冷却して脱型を行ないやすくするために、加熱及び冷却のための温度制御機能が具備されていることが望ましい。また、熱硬化性樹脂を使用したFRPの一般的な注入成形法(RTM法、VARTM法、RTMV法、RRIM法等)を適用することができる。   The injection mold is not particularly limited as long as the molded body can be obtained through resin injection, molding, and demolding of the molded body, and usually consists of a pair of separable molds. A space into which the molding material can be introduced is formed. In the present invention, reinforcing fibers are arranged in advance in the interior, and the mold is closed to prepare for resin injection. The mold can be high-rigidity or low-rigidity, and the high-rigidity can be used under conditions that generate internal pressure. The low rigidity can be used for injection and molding under reduced pressure. For example, it has a first mold and a second mold, and either of the first mold and the second mold is a resin ( For example, a mold made of a film of PVA, nylon, etc.) or rubber is injected with compound (A) and compound (B) in a state where the inside of the mold surrounded by the first mold and the second mold is decompressed. To do. The injection mold has a temperature control function for heating and cooling in order to allow the polymerization of the compound (A) and the compound (B) to proceed and to cool the molded product after polymerization to facilitate demolding. It is desirable that In addition, a general injection molding method (RTM method, VARTM method, RTMV method, RRIM method, etc.) of FRP using a thermosetting resin can be applied.

上記化合物(A)と化合物(B)とは、次に例示するように重付加反応により直鎖状に重合することができる。直鎖状に重合したことは、溶剤への可溶性、熱溶融性等で確かめることができる。なお、本発明の目的を阻害しないかぎり、一部に架橋構造が存在することを排除するものではない。   The compound (A) and the compound (B) can be linearly polymerized by a polyaddition reaction as exemplified below. The linear polymerization can be confirmed by the solubility in a solvent and the heat melting property. In addition, as long as the objective of this invention is not inhibited, it does not exclude that a crosslinked structure exists in part.

Figure 0005074673
Figure 0005074673

この反応には重合触媒を使用することができる。上記重合触媒としては、リン系触媒の他、1,2−アルキレンベンズイミダゾール(TBZ)、及び2−アリール−4,5−ジフェニルイミダゾール(NPZ)が挙げられる。これらは、1種または2種以上を組み合わせて用いられる。リン系触媒は、再流動性を向上させるので好適である。   A polymerization catalyst can be used for this reaction. Examples of the polymerization catalyst include phosphorus catalysts, 1,2-alkylenebenzimidazole (TBZ), and 2-aryl-4,5-diphenylimidazole (NPZ). These are used alone or in combination of two or more. Phosphorus catalysts are preferred because they improve reflowability.

上記リン系触媒としては、ジシクロヘキシルフェニルホスフィン、トリ−o−トリルホスフィン、トリ−m−トリルホスフィン、トリ−p−トリルホスフィン、シクロヘキシルジフェニルホスフィン、トリフェニルホスフィン、トリフェニルホスフィン−トリフェニルボラン錯体、トリ−m−トリルホスフィン−トリフェニルボラン錯体等が挙げられる。これらの中では、トリ−o−トリルホスフィン、トリ−m−トリルホスフィン−トリフェニルボラン錯体が好ましい。   Examples of the phosphorus catalyst include dicyclohexylphenylphosphine, tri-o-tolylphosphine, tri-m-tolylphosphine, tri-p-tolylphosphine, cyclohexyldiphenylphosphine, triphenylphosphine, triphenylphosphine-triphenylborane complex, tri -M-tolylphosphine-triphenylborane complex etc. are mentioned. Among these, tri-o-tolylphosphine and tri-m-tolylphosphine-triphenylborane complex are preferable.

重合触媒の使用量は、通常は、上記化合物(A)100重量部に対して、0.1〜10重量部、更には0.4〜6重量部、特には1〜5重量部であるのが、短時間重合性と可使時間とのバランスが優れている点から好ましい。   The amount of the polymerization catalyst used is usually 0.1 to 10 parts by weight, more preferably 0.4 to 6 parts by weight, and particularly 1 to 5 parts by weight with respect to 100 parts by weight of the compound (A). However, it is preferable from the viewpoint of excellent balance between short-time polymerization and pot life.

上記化合物(A)、化合物(B)及び重合触媒の混合物が室温で液状であると強化用繊維への含浸工程において加温を必要としないか、あるいは混合物の重合開始に伴う増粘を著しく引き起こさない程度の加温により、十分粘度が低下して強化用繊維への含浸が容易になる点から好ましい。   When the mixture of the compound (A), the compound (B) and the polymerization catalyst is in a liquid state at room temperature, heating is not required in the impregnation step into the reinforcing fiber, or the thickening accompanying the start of polymerization of the mixture is remarkably caused. It is preferable from the point that the viscosity is sufficiently lowered and impregnation into the reinforcing fiber is facilitated by heating to a certain extent.

また、上記化合物(A)及び化合物(B)がそれぞれ単独で固形であっても、上記化合物(A)、化合物(B)及び重合触媒の混合物が200℃以下の温度で加温した場合の粘度が1000mPa・s以下となるような組み合わせは、加温できるタンクとスタティックミキサーとを備えた2液混合装置を用いることにより、本発明に適用できる。   Further, even when the compound (A) and the compound (B) are each solid alone, the viscosity when the mixture of the compound (A), the compound (B) and the polymerization catalyst is heated at a temperature of 200 ° C. or less. Can be applied to the present invention by using a two-component mixing apparatus equipped with a tank capable of heating and a static mixer.

本発明にはまた、反応遅延剤を用いることができる。2液混合及び強化用繊維への含浸工程では、樹脂を均一液状化するとともに粘度をできるだけ低下させる必要性から、しばしば加温されるため、強化用繊維への樹脂の含浸が完了する前に重合反応が開始され、粘度が上昇し、含浸不良を引き起こす可能性がある。それを防止するために、粘度低下のための加温時には反応を遅らせ、含浸後の重合反応の際には反応を阻害しない反応遅延剤が好適に使用される。そのような遅延剤としては、トリ−n−ブチルボレート、トリ−n−オクチルボレート、トリ−n−ドデシルボレート等のトリアルキルボレート類、トリフェニルボレート等のトアリールボレート類が使用できる。これらは、1種または2種以上を組み合わせて用いられる。これらの中では、室温で液状であるため混和性に優れ、且つ80℃以下での反応を著しく遅延する点から、トリ−n−オクチルボレートが好ましい。   A reaction retarder can also be used in the present invention. In the two-component mixing and impregnation process for reinforcing fibers, the resin is uniformly liquefied and the viscosity is reduced as much as possible, so it is often heated, so polymerization is performed before the resin is impregnated into the reinforcing fibers. The reaction is initiated, the viscosity increases, and poor impregnation can occur. In order to prevent this, a reaction retarding agent that delays the reaction during heating for decreasing the viscosity and does not inhibit the reaction during the polymerization reaction after the impregnation is suitably used. As such a retarder, trialkyl borates such as tri-n-butyl borate, tri-n-octyl borate and tri-n-dodecyl borate, and triaryl borates such as triphenyl borate can be used. These are used alone or in combination of two or more. Among these, tri-n-octyl borate is preferable because it is liquid at room temperature and has excellent miscibility and significantly delays the reaction at 80 ° C. or lower.

反応遅延剤の使用量は、リン系触媒のリン原子1モルに対しホウ酸エステルのホウ素原子が0.1〜2.0モルとなるように、更には0.5〜1.2モル、特には0.7〜1.0モルであるのが、含浸可能時間が長く且つ短時間重合が可能である点から好ましい。   The amount of the reaction retarder used is such that the boron atom of the boric acid ester is 0.1 to 2.0 mol, more preferably 0.5 to 1.2 mol, especially 1 mol of the phosphorus atom of the phosphorus catalyst. Is preferably from 0.7 to 1.0 mol because the impregnation time is long and the polymerization is possible for a short time.

本発明においては、更に、任意の添加成分として、有機パウダーや水酸化アルミ等の無機パウダーによる充填材や公知の難燃剤等を添加してもよい。また、本発明の目的を阻害しない範囲で溶剤を、例えば、粘度調節等の目的で、使用してもよい。上記溶剤としては、例えば、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、シクロヘキサノン等のケトン類、メチルセロソルブ、エチレングリコールジブチルエーテル等のエーテル類がある。これらの中では、アセトンが重合時に飛びやすい点から好ましい。使用量は樹脂成分100重量部に対し0.1〜15重量部が好ましく、より好ましくは4〜8重量部である。少なすぎるとフェノール類が析出し、多すぎると重合後も樹脂中に溶剤が残留することによる物性低下が大きくなる。   In the present invention, a filler made of inorganic powder such as organic powder or aluminum hydroxide, a known flame retardant, or the like may be added as an optional additive component. Moreover, you may use a solvent in the range which does not inhibit the objective of this invention, for the objective of viscosity adjustment etc., for example. Examples of the solvent include ketones such as acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), and cyclohexanone, and ethers such as methyl cellosolve and ethylene glycol dibutyl ether. Among these, acetone is preferable because it can easily fly during polymerization. The amount used is preferably 0.1 to 15 parts by weight, more preferably 4 to 8 parts by weight, based on 100 parts by weight of the resin component. When the amount is too small, phenols are precipitated, and when the amount is too large, deterioration of physical properties due to the solvent remaining in the resin after polymerization becomes large.

上記重合触媒、反応遅延剤、添加剤等は、予め型に注入する以前に反応性化合物のいずれか、又は、両方に、添加しておくことができる。   The polymerization catalyst, reaction retarder, additive and the like can be added to either or both of the reactive compounds before being injected into the mold in advance.

本発明の成形方法における重合反応においては、樹脂の注入後、含浸及び重合は型内で進行するため、型の設定温度近傍での重合条件となる。型の温度は温水加熱などによる80℃程度から蒸気加熱、電気加熱ヒーター等による200℃程度までが一般的である。使用する反応性化合物、重合触媒、反応遅延剤の種類にしたがって、重合反応を生じさせる温度域が異なるが、通常、重合温度としては、100〜200℃、重合時間としては、3分〜20分程度である。また、樹脂が型内部に注入されてから重合が進み始める時間は、注入樹脂の型内部充填時間よりも長いことが好ましい。この場合の重合が進み始める目安は、注入時の樹脂粘度が2倍に増加するまでの時間が目安となる。すなわち、樹脂が注入されてから、樹脂の粘度が2倍に増加する間に、すべての樹脂の注入が終了していることが望ましい。   In the polymerization reaction in the molding method of the present invention, since the impregnation and polymerization proceed in the mold after the resin is injected, the polymerization conditions are set near the set temperature of the mold. The mold temperature is generally from about 80 ° C. by hot water heating or the like to about 200 ° C. by steam heating, electric heater or the like. Depending on the type of reactive compound, polymerization catalyst, and reaction retarder used, the temperature range for causing the polymerization reaction is different. Usually, the polymerization temperature is 100 to 200 ° C., and the polymerization time is 3 to 20 minutes. Degree. Moreover, it is preferable that the time when the polymerization starts after the resin is injected into the mold is longer than the filling time of the injected resin into the mold. In this case, the standard for starting the polymerization is the standard time for the resin viscosity at the time of injection to double. That is, it is desirable that the injection of all the resins has been completed while the viscosity of the resin has doubled since the injection of the resin.

重合反応工程(II)において得られる繊維強化熱可塑性エポキシ樹脂成形体は、重合温度近傍のTgを有しているため、冷却工程を経て脱型されるか、あるいは重合終了後直ぐに脱型する場合には、成形品形状に近似した形状保持冶具等で固定し、成形品の温度が下がるまで保持することが望ましい。   When the fiber-reinforced thermoplastic epoxy resin molded product obtained in the polymerization reaction step (II) has a Tg near the polymerization temperature, it is demolded after the cooling step or demolded immediately after the completion of the polymerization. In this case, it is desirable to fix it with a shape-holding jig or the like that approximates the shape of the molded product and hold it until the temperature of the molded product decreases.

以下、実施例により本発明をさらに具体的に説明するが、以下の記載は専ら説明のためであって、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, the following description is only for description and the present invention is not limited to these Examples.

実施例1
まず、以下の表1に示す使用原料を同表記載の重量部にて混合して、反応性化合物の混合物(以下、ベースCという)を得た。なお、得られた混合物は、混合物作製時及び室温に保管している状態では重合反応を生じなかった。表1中の略号の意味は以下のとおり。
AER260 旭化成社製ビスフェノール型液状エポキシ樹脂(エポキシ当量:190g/eq)
BPA−M 三井化学社製ビスフェノールA(水酸基当量:114g/eq)
TOTP 北興化学工業社製トリ−o−トリルホスフィン(分子量:304)
トリ−n−オクチルボレート 東京化成社製(分子量:398)
Example 1
First, raw materials shown in Table 1 below were mixed in parts by weight shown in the same table to obtain a mixture of reactive compounds (hereinafter referred to as base C). The obtained mixture did not undergo a polymerization reaction when the mixture was prepared and stored at room temperature. The meanings of the abbreviations in Table 1 are as follows.
AER260 Asahi Kasei Co., Ltd. bisphenol type liquid epoxy resin (epoxy equivalent: 190 g / eq)
BPA-M Mitsui Chemicals bisphenol A (hydroxyl equivalent: 114 g / eq)
TOTP Tri-o-tolylphosphine manufactured by Hokuko Chemical Co., Ltd. (molecular weight: 304)
Tri-n-octyl borate manufactured by Tokyo Chemical Industry Co., Ltd. (molecular weight: 398)

Figure 0005074673
Figure 0005074673

120℃に均一に加熱保持した金型13の内部(雄雌型のクリアランスt=4.0mm)に、強化用繊維である炭素繊維織物(平織りカーボンクロス、東レ株式会社製C06343、厚さ:0.25mm、重量:195g/m2)を18枚セットし、型締めを行なった。上記で得られたベースCを図1に示す加温樹脂槽01に充填し、100℃に保った。加温樹脂槽03にはBPA−Mのみを充填し、BPA−Mの融点(155℃)を超える160℃に保ち、完全に融解した状態とした。加温樹脂槽01からの加熱したベースC及び加温樹脂槽03からのBPA−Mを配合比率が重量比で107.93:60になるように流量計09、10で調整し、ギアポンプ04、05により、樹脂配管06、08を通してスタティックミキサー11に送り込み、ベースCとBPA−Mを混合した後、金型13の注入口12から金型内部に注入した。注入圧力は0.1MPaで、注入は約5分で完了した。注入終了後、型温度を160℃に上げ、10分間160℃で保持した後に冷却工程に移行した。冷却は水冷で行い、約10分で型の内部温度が80℃まで冷却され脱型を行なった。   A carbon fiber fabric (plain weave carbon cloth, C06343 manufactured by Toray Industries, Inc., thickness: 0) is placed inside the mold 13 that is heated and held uniformly at 120 ° C. (male and female clearance t = 4.0 mm). 18 sheets of .25 mm, weight: 195 g / m2) were set and clamped. The base C obtained above was filled in the heated resin tank 01 shown in FIG. The warming resin tank 03 was filled only with BPA-M and kept at 160 ° C., which exceeded the melting point of BPA-M (155 ° C.), so that it was completely melted. The heated base C from the warming resin tank 01 and the BPA-M from the warming resin tank 03 were adjusted with the flow meters 09 and 10 so that the blending ratio was 107.93: 60, and the gear pump 04, In 05, the resin was fed into the static mixer 11 through the resin pipes 06 and 08, and the base C and BPA-M were mixed and then injected into the mold from the injection port 12 of the mold 13. The injection pressure was 0.1 MPa and the injection was completed in about 5 minutes. After the completion of the injection, the mold temperature was raised to 160 ° C. and held at 160 ° C. for 10 minutes, and then the cooling process was started. The cooling was performed by water cooling, and the mold was cooled to 80 ° C. in about 10 minutes and demolded.

脱型して得られた炭素繊維強化熱可塑性エポキシ樹脂成形体のガラス繊維含有率は50体積%であり、表面や断面には気泡等は観察されず、美麗な面状態であった。なお、この成形体は、160〜180℃で1分間加熱させるだけで再溶融したため、容易に曲げ加工が可能であり、架橋構造を有さない直鎖状ポリマーであることが確認できた。   The carbon fiber reinforced thermoplastic epoxy resin molding obtained by demolding had a glass fiber content of 50% by volume, and no bubbles were observed on the surface or cross section, and the surface was beautiful. In addition, since this molded object was remelted only by heating at 160-180 degreeC for 1 minute, it was able to bend easily and it has confirmed that it was a linear polymer which does not have a crosslinked structure.

次に、得られた炭素繊維強化熱可塑性エポキシ樹脂成形体(以下「熱可塑CFRP」という。)の平坦部から幅300mm×長さ300mm×厚み4mmに平板をカットし、曲げ試験と動的粘弾性試験の測定を行った。   Next, a flat plate was cut from the flat portion of the obtained carbon fiber reinforced thermoplastic epoxy resin molded body (hereinafter referred to as “thermoplastic CFRP”) into a width of 300 mm × length of 300 mm × thickness of 4 mm, and a bending test and dynamic viscosity were determined. Elasticity test measurements were taken.

比較例1
熱硬化性エポキシ樹脂を母材としたCFRP、以下、「RefCFRP」という。)の粘弾性特性、曲げ強度を測定し比較した。RefCFRPの詳細な成形条件と材料仕様は下記のとおりである。
油化シェルエポキシ株式会社製(株)製ビスフェノールA型液状エポキシ樹脂(商品名:エピコート828):新日本理化株式会社製液状メチルテトラヒドロフタル酸無水物(商品名:MT−500TZ):化薬アクゾ株式会社製2,4,6−トリス(ジメチルアミノメチル)フェノールオクチル酸塩(商品名:S−Cure661)を重量部で100:80:1の比率で混合・攪拌し、その混合液をHLU法にてドライの状態の炭素繊維織物(平織りカーボンクロス、東レ株式会社製C06343、厚さ:0.25mm、重量:195g/m2)18枚に含浸・積層し、平板をセットした加熱プレスにて、100℃にて1時間、その後、150℃にて3時間、成形圧力1.0MPaでプレス成形を行った。RefCFRP積層板の仕上がり寸法と繊維体積含有率は、プレス時に4mmのスペーサーを挟んでプレスすることで、実施例1の注入成形法で成形した熱可塑CFRPと同じになるように調整した。厚さt=4mm、繊維体積含有率は50%であった。
Comparative Example 1
CFRP using a thermosetting epoxy resin as a base material, hereinafter referred to as “RefCFRP”. ) Were measured and compared. Detailed molding conditions and material specifications of RefCFRP are as follows.
Bisphenol A type liquid epoxy resin (trade name: Epicoat 828) manufactured by Yuka Shell Epoxy Co., Ltd .: Liquid methyltetrahydrophthalic anhydride (trade name: MT-500TZ) manufactured by Shin Nippon Rika Co., Ltd .: Kayaku Akzo 2,4,6-Tris (dimethylaminomethyl) phenol octylate (trade name: S-Cure 661) manufactured by Co., Ltd. was mixed and stirred at a ratio of 100: 80: 1 by weight, and the mixture was mixed with HLU method. In a dry carbon fiber fabric (plain weave carbon cloth, C06343 manufactured by Toray Industries, Inc., thickness: 0.25 mm, weight: 195 g / m 2) Press molding was performed at 100 ° C. for 1 hour and then at 150 ° C. for 3 hours at a molding pressure of 1.0 MPa. The finished dimensions and fiber volume content of the RefCFRP laminate were adjusted to be the same as the thermoplastic CFRP molded by the injection molding method of Example 1 by pressing with a 4 mm spacer during pressing. The thickness t = 4 mm and the fiber volume content was 50%.

粘弾性試験:
測定は、JIS K7244−5に準じた動的粘弾性試験にて行った。試験片形状は、厚みh=4mm、幅b=10mm、長さl=20mmである。試験機は動的粘弾性測定機DMS−6100(セイコーインスツルメンツ製)を用い、両端部を完全固定とし、試料中央部を5mm幅でクランプし曲げによる正弦的ひずみを加えた。試験条件は、測定温度−50〜250℃とし、昇温速度を2℃/min、加振周波数は1Hzで測定を行った。
曲げ試験:
静的な曲げ強度と弾性率の測定は、JIS K 7017に準じて3点曲げ試験を行った。試験片形状は、高さh=4mm、幅b=15mm、長さl=80mmで曲げスパンは60mmである。測定温度は25℃である。
Viscoelasticity test:
The measurement was performed by a dynamic viscoelasticity test according to JIS K7244-5. The test piece has a thickness h = 4 mm, a width b = 10 mm, and a length l = 20 mm. A dynamic viscoelasticity measuring machine DMS-6100 (manufactured by Seiko Instruments Inc.) was used as a test machine, both ends were completely fixed, a sample central part was clamped with a width of 5 mm, and sinusoidal strain due to bending was applied. The test conditions were a measurement temperature of −50 to 250 ° C., a temperature increase rate of 2 ° C./min, and an excitation frequency of 1 Hz.
Bending test:
The static bending strength and elastic modulus were measured by a three-point bending test according to JIS K 7017. The test piece has a height h = 4 mm, a width b = 15 mm, a length l = 80 mm, and a bending span of 60 mm. The measurement temperature is 25 ° C.

貯蔵弾性率(E’)の測定結果とtanδの測定結果を図3(実施例1)、図4(比較例1)に示す。貯蔵弾性率(E’)については、実施例1の熱可塑CFRPと比較例1のRefCFRPはほぼ同程度の値を示し、E’が急激に低下する温度(概ねTgに相当する)はRefCFRPが若干高い値を示した。   The measurement results of the storage elastic modulus (E ′) and the measurement results of tan δ are shown in FIG. 3 (Example 1) and FIG. 4 (Comparative Example 1). Regarding the storage elastic modulus (E ′), the thermoplastic CFRP of Example 1 and the RefCFRP of Comparative Example 1 show substantially the same value, and the temperature at which E ′ decreases rapidly (corresponding to Tg) is the value of RefCFRP. A slightly high value was shown.

損失(tanδ)の温度分散結果からは、RefCFRPの場合、通常の熱硬化性樹脂が示すとおり、Tgに達するとtanδが急激に増大し、Tg以上では元の低い値に復帰した(図4)のに対し、熱可塑CFRPの場合、Tgに達するとtanδが急激に増大するが、それ以上の高温になっても若干低下するものの元のtanδ値に復帰することなく高い値を維持した(図3)。これは、熱可塑CFRPが母材のTg以上で粘性的性質が大きくなり、溶融(再液状化)していることを示している。   From the temperature dispersion result of the loss (tan δ), in the case of RefCFRP, tan δ increased rapidly when Tg was reached, as shown by a normal thermosetting resin, and returned to the original low value above Tg (FIG. 4). On the other hand, in the case of thermoplastic CFRP, tan δ increases rapidly when Tg is reached, but maintains a high value without returning to the original tan δ value although it slightly decreases even at higher temperatures. 3). This indicates that when the thermoplastic CFRP is equal to or higher than the Tg of the base material, the viscous property increases and is melted (reliquefied).

また、表2に3点曲げ試験の結果を示す。この結果より、本発明の繊維強化熱可塑性エポキシ樹脂は、3次元架橋する熱硬化性エポキシ樹脂をマトリックスとするRefCFRPと比較しても、非常に高い機械的特性を有していることが判明した。   Table 2 shows the results of the three-point bending test. From these results, it was found that the fiber-reinforced thermoplastic epoxy resin of the present invention has very high mechanical properties compared to RefCFRP using a thermosetting epoxy resin that is three-dimensionally crosslinked as a matrix. .

Figure 0005074673
Figure 0005074673

本発明の成形方法で製造される複合材は、常温付近(例えば、20℃〜100℃)では、熱硬化性樹脂をマトリックス樹脂とした繊維強化樹脂(FRP)と同等の機械的特性を示しながら、高温(例えば、160℃以上)では容易に液状化し、2次加工やリユース、リサイクルが可能な繊維強化熱可塑性エポキシ樹脂成形体を得ることができる。また、化合物(A)の少なくとも一部及び/又は化合物(B)の少なくとも一部として、フルオレン骨格を有する化合物を使用することにより耐熱性を向上させた繊維強化熱可塑性エポキシ樹脂成形体を得ることができ、自動車用途、例えば、プラットフォーム、ボンネット、バンパー、ドア、ルーフ、シート、スポイラー、トラック運転室屋根のスポイラー、バス車体等に適用することができる。   The composite material produced by the molding method of the present invention exhibits mechanical properties equivalent to a fiber reinforced resin (FRP) using a thermosetting resin as a matrix resin at around room temperature (for example, 20 ° C. to 100 ° C.). A fiber-reinforced thermoplastic epoxy resin molded body that can be easily liquefied at a high temperature (for example, 160 ° C. or higher) and can be subjected to secondary processing, reuse, and recycling can be obtained. Moreover, the fiber reinforced thermoplastic epoxy resin molding which improved heat resistance is obtained by using the compound which has a fluorene skeleton as at least one part of a compound (A) and / or at least one part of a compound (B). It can be applied to automobile applications such as platforms, bonnets, bumpers, doors, roofs, seats, spoilers, truck cab roof spoilers, bus bodies, and the like.

実施例1の繊維強化熱可塑性エポキシ樹脂の注入成形装置を示す図である。It is a figure which shows the injection molding apparatus of the fiber reinforced thermoplastic epoxy resin of Example 1. FIG. 実施例1の本発明の繊維強化熱可塑性樹脂(熱可塑CFRP)の粘弾性試験結果を示す図である。It is a figure which shows the viscoelasticity test result of the fiber reinforced thermoplastic resin (thermoplastic CFRP) of Example 1 of this invention. 比較例1のRefCFRPの粘弾性試験結果を示す図である。It is a figure which shows the viscoelastic test result of RefCFRP of the comparative example 1.

符号の説明Explanation of symbols

01、03 加温樹脂槽
02 洗浄タンク
06、08 樹脂配管
07 洗浄剤配管
04、05 ギヤポンプ
09、10 流量計
11 スタティックミキサー
12 注入口
13 金型
01, 03 Heating resin tank 02 Cleaning tank 06, 08 Resin piping 07 Cleaning agent piping 04, 05 Gear pump 09, 10 Flow meter 11 Static mixer 12 Inlet 13 Mold

Claims (9)

1分子中にエポキシ基を2つ有する化合物(A)と、1分子中にフェノール性水酸基を2つ有する化合物(B)とを予め強化用繊維が内部に配置された型内に注入し、前記強化用繊維と混合する工程(I)、及び、前記強化用繊維と混合された前記化合物(A)と前記化合物(B)とを、前記型内において、前記化合物(A)と前記化合物(B)との重合触媒及び反応遅延剤を使用して重付加反応により直鎖状に重合させ、前記化合物(A)と前記化合物(B)とが重合してなる熱可塑性樹脂を成形する工程(II)を有することを特徴とする繊維強化熱可塑性樹脂の成形方法。 Injecting a compound (A) having two epoxy groups in one molecule and a compound (B) having two phenolic hydroxyl groups in one molecule into a mold in which reinforcing fibers are arranged in advance, The step (I) of mixing with the reinforcing fiber, and the compound (A) and the compound (B) mixed with the reinforcing fiber are combined in the mold with the compound (A) and the compound (B). ) And a polymerization catalyst and a reaction retarder to form a linear polymer by a polyaddition reaction to form a thermoplastic resin obtained by polymerizing the compound (A) and the compound (B) (II) And a method for forming a fiber-reinforced thermoplastic resin. 化合物(A)と化合物(B)とを重合させる温度は、100〜200℃である請求項1記載の成形方法。 The molding method according to claim 1, wherein the temperature at which the compound (A) and the compound (B) are polymerized is 100 to 200 ° C. 工程(I)において、化合物(A)と化合物(B)とを、それぞれ溶融状態で、予め強化用繊維が内部に配置された型内に注入し、前記強化用繊維に含浸させる請求項1又は2記載の成形方法。 In the step (I), the compound (A) and the compound (B) are injected into a mold in which reinforcing fibers are arranged in advance in a molten state and impregnated in the reinforcing fibers. 2. The molding method according to 2. リン系重合触媒とホウ酸エステル系反応遅延剤とを使用する請求項1〜3のいずれか記載の成形方法。 The molding method according to any one of claims 1 to 3, wherein a phosphorus polymerization catalyst and a borate ester reaction retarder are used. 化合物(A)の少なくとも一部及び/又は化合物(B)の少なくとも一部が、フルオレン骨格を有する化合物である請求項1〜4のいずれか記載の成形方法。 The molding method according to claim 1, wherein at least a part of the compound (A) and / or at least a part of the compound (B) is a compound having a fluorene skeleton. 化合物(A)を第1の樹脂槽で加熱溶融し、化合物(B)を第2の樹脂槽で加熱溶融し、第1の樹脂槽から供給される化合物(A)と第2の樹脂槽から供給される化合物(B)とを型内に注入する直前に混合してから注入する請求項3〜5のいずれか記載の成形方法。 The compound (A) is heated and melted in the first resin tank, the compound (B) is heated and melted in the second resin tank, and the compound (A) supplied from the first resin tank and the second resin tank are used. The molding method according to claim 3, wherein the compound (B) to be supplied is mixed and then injected immediately before being injected into the mold. 化合物(A)と化合物(B)とを、内部が減圧された型内に注入する請求項1〜6のいずれか記載の成形方法。 The molding method according to any one of claims 1 to 6, wherein the compound (A) and the compound (B) are injected into a mold whose inside is decompressed. 前記型は、第一の型及び第二の型を有しており、前記第一の型及び第二の型のいずれかが樹脂又はゴムのフィルムからなり、前記第一の型及び第二の型で囲まれた型の内部を減圧した状態で化合物(A)と化合物(B)とを注入する請求項7記載の成形方法。 The mold includes a first mold and a second mold, and either the first mold or the second mold is made of a resin or rubber film, and the first mold and the second mold The molding method according to claim 7, wherein the compound (A) and the compound (B) are injected while the inside of the mold surrounded by the mold is decompressed. 強化用繊維は、ガラス繊維、炭素繊維又はアラミド繊維である請求項1〜8のいずれか記載の成形方法。
The molding method according to claim 1, wherein the reinforcing fiber is a glass fiber, a carbon fiber, or an aramid fiber.
JP2005146100A 2005-05-18 2005-05-18 Method for molding fiber reinforced thermoplastic resin Active JP5074673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005146100A JP5074673B2 (en) 2005-05-18 2005-05-18 Method for molding fiber reinforced thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005146100A JP5074673B2 (en) 2005-05-18 2005-05-18 Method for molding fiber reinforced thermoplastic resin

Publications (2)

Publication Number Publication Date
JP2006321897A JP2006321897A (en) 2006-11-30
JP5074673B2 true JP5074673B2 (en) 2012-11-14

Family

ID=37541803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005146100A Active JP5074673B2 (en) 2005-05-18 2005-05-18 Method for molding fiber reinforced thermoplastic resin

Country Status (1)

Country Link
JP (1) JP5074673B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9745412B2 (en) 2009-01-09 2017-08-29 Nagase Chemtex Corporation Process for production of thermoplastic cured epoxy resin with transparency to visible light, and thermoplastic epoxy resin composition
CN102272191B (en) 2009-01-09 2014-12-31 长濑化成株式会社 Process for production of thermoplastic cured epoxy resin with transparency to visible light, and thermoplastic epoxy resin composition
JPWO2015064551A1 (en) * 2013-10-28 2017-03-09 ナガセケムテックス株式会社 MATRIX COMPOSITION FOR FIBER-REINFORCED COMPOSITE MATERIAL, FIBER-REINFORCED COMPOSITE AND METHOD FOR PRODUCING FIBER-REINFORCED COMPOSITE
EP3175979B1 (en) * 2014-07-31 2020-03-04 KOMATSU MATERE Co., Ltd. Molded object and process for producing same
EP3385314A4 (en) 2015-12-01 2019-07-31 Nippon Steel & Sumikin Materials Co., Ltd. In situ polymerization type thermoplastic prepreg, thermoplastic composite and method for producing same
WO2017110533A1 (en) 2015-12-25 2017-06-29 東レ株式会社 Method for producing structure
JP6176691B1 (en) * 2016-10-07 2017-08-09 サンコロナ小田株式会社 Unidirectional prepreg and fiber reinforced thermoplastic resin sheet
WO2020115937A1 (en) * 2018-12-04 2020-06-11 サンコロナ小田株式会社 Fiber-reinforced thermoplastic resin sheet, molded body of fiber-reinforced thermoplastic resin sheet and method for producing fiber-reinforced thermoplastic resin sheet
JP2021187917A (en) * 2020-05-28 2021-12-13 石川県 Composite resin composition and fiber-reinforced composite material and method for producing the same
JP7531354B2 (en) 2020-09-18 2024-08-09 株式会社カネカ Epoxy resin composition and adhesive
TW202328311A (en) * 2021-12-03 2023-07-16 日商日鐵化學材料股份有限公司 Tow prepreg and method of producing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0370740A (en) * 1989-08-09 1991-03-26 Mitsubishi Kasei Corp Preparation of fiber-reinforced resin molded product
JPH07223271A (en) * 1993-12-16 1995-08-22 Toray Ind Inc Bent pipe and method and apparatus for producing the same
JP4461340B2 (en) * 1998-09-18 2010-05-12 ナガセケムテックス株式会社 Repairable composition and outer bump reinforcing agent using the same
JP2002284852A (en) * 2001-01-19 2002-10-03 Toray Ind Inc Epoxy resin composition, prepreg, and fiber reinforced composite material
JP4839523B2 (en) * 2001-04-17 2011-12-21 東レ株式会社 Manufacturing method of fiber reinforced resin
JP2004018615A (en) * 2002-06-14 2004-01-22 Sumitomo Bakelite Co Ltd Resin composition, prepreg and laminate
WO2004060981A1 (en) * 2002-12-27 2004-07-22 Nitto Boseki Co., Ltd. Method for producing fiber-reinforced thermoplastic plastic and fiber-reinforced thermoplastic prastic
JP4639575B2 (en) * 2003-05-14 2011-02-23 日東紡績株式会社 Fiber-reinforced adhesive sheet, method for producing the same, and method for temporarily fixing the adherend

Also Published As

Publication number Publication date
JP2006321897A (en) 2006-11-30

Similar Documents

Publication Publication Date Title
JP5280681B2 (en) Method for producing fiber reinforced hot melt epoxy resin
KR101642616B1 (en) Fiber-reinforced resin composite material and process for producing same
JPWO2011021516A1 (en) RESIN COMPOSITION FOR FIBER-REINFORCED COMPOSITE MATERIAL, CURED PRODUCT, FIBER-REINFORCED COMPOSITE MATERIAL, FIBER-REINFORCED RESIN MOLDED ARTICLE, AND METHOD FOR PRODUCING THE SAME
JP5074673B2 (en) Method for molding fiber reinforced thermoplastic resin
JP5074672B2 (en) Drawing method of fiber reinforced thermoplastic resin
EP2774939A1 (en) Two-pack type epoxy resin composition for fiber-reinforced composite materials, and fiber-reinforced composite material
US9228083B1 (en) Multifunctional additives in engineering thermoplastics
JP4708797B2 (en) Process for producing fiber reinforced thermoplastic and fiber reinforced thermoplastic
JP5904521B2 (en) Fiber reinforced resin composite and method for producing the same
US11225560B2 (en) Preform for fiber-reinforced composite material, thermosetting resin composition, fiber-reinforced composite material, and method of producing fiber-reinforced composite material
JP5590372B2 (en) Manufacturing method of fiber reinforced resin composite material
JP6012653B2 (en) Manufacturing method of fiber reinforced plastic molding
JP5590371B2 (en) Sandwich structure molding
JP6493633B1 (en) Thermosetting resin composition for fiber reinforced composite material, preform, fiber reinforced composite material and method for producing fiber reinforced composite material
Reuss et al. Manufacture of thick cross-section composites using a pre-catalyzed fabric technique
JP2006274110A (en) Prepreg and fiber-reinforced composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120725

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120824

R150 Certificate of patent or registration of utility model

Ref document number: 5074673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250