JP5071146B2 - Heat source system and operation method thereof - Google Patents

Heat source system and operation method thereof Download PDF

Info

Publication number
JP5071146B2
JP5071146B2 JP2008041993A JP2008041993A JP5071146B2 JP 5071146 B2 JP5071146 B2 JP 5071146B2 JP 2008041993 A JP2008041993 A JP 2008041993A JP 2008041993 A JP2008041993 A JP 2008041993A JP 5071146 B2 JP5071146 B2 JP 5071146B2
Authority
JP
Japan
Prior art keywords
cooling water
temperature
cooling
cooling tower
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008041993A
Other languages
Japanese (ja)
Other versions
JP2009198123A (en
Inventor
直宏 永井
和彦 角田
晶 飯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2008041993A priority Critical patent/JP5071146B2/en
Publication of JP2009198123A publication Critical patent/JP2009198123A/en
Application granted granted Critical
Publication of JP5071146B2 publication Critical patent/JP5071146B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Description

本発明は、熱源システム及びその運転方法に関する。より詳しくは、熱源システムにおいて冷却水の温度を制御する技術に関する。   The present invention relates to a heat source system and an operation method thereof. More specifically, the present invention relates to a technique for controlling the temperature of cooling water in a heat source system.

近年、環境負荷低減及び運転コスト削減の観点から、エネルギー効率の高い熱源システムが求められている。そこで、従来、成績係数(Coefficient Performance:COP)に基づいて、熱源システムの各設備を制御する方法が提案されている(例えば、特許文献1参照。)。   In recent years, a heat source system with high energy efficiency has been demanded from the viewpoint of reducing environmental burden and operating cost. Therefore, conventionally, a method of controlling each facility of the heat source system based on a coefficient of performance (COP) has been proposed (see, for example, Patent Document 1).

図6は特許文献1に記載の従来の制御方法を示すブロック図である。図6に示すように、特許文献1に記載の冷凍機の冷却水制御方法では、冷凍機101の消費電力(瞬時電力)、冷却水ポンプ102の消費電力(瞬時電力)、冷却塔103のファンの消費電力(瞬時電力)及び冷水ポンプ104の消費電力(瞬時電力)を、電力計106〜109で測定すると共に、温度センサーにより冷凍機101の出口側及び入口側の冷水温度を測定し、更に、流量センサーで冷凍機の入り口側の冷水流量を測定する。   FIG. 6 is a block diagram showing a conventional control method described in Patent Document 1. In FIG. As shown in FIG. 6, in the cooling water control method of the refrigerator described in Patent Document 1, the power consumption (instantaneous power) of the refrigerator 101, the power consumption (instantaneous power) of the cooling water pump 102, and the fan of the cooling tower 103 Power consumption (instantaneous power) and power consumption (instantaneous power) of the chilled water pump 104 are measured by the wattmeters 106 to 109, and the temperature of the chilled water at the outlet side and the inlet side of the refrigerator 101 is measured by the temperature sensor. The flow rate sensor measures the cold water flow rate at the inlet side of the refrigerator.

そして、コントローラ105において、熱源総合消費電力{=冷凍機消費電力(kW)+冷水ポンプ消費電力(kW)+冷却水ポンプ消費電力(kW)+冷却塔ファン消費電力(kW)}と、冷凍機生産熱量{=冷凍機出口冷水温度(℃)−冷凍機入口冷水温度(℃)×冷水流量(リットル/時間)÷860}とから、熱源総合COP(冷凍機生産熱量(瞬時値)/熱源総合消費電力)を算出し、更に、この総合COPの値が大きくなるように、冷却水ポンプ102及び冷却塔103のファンを制御して、冷却水量及び冷却塔の風力を調節している。   In the controller 105, the heat source total power consumption {= refrigerator power consumption (kW) + chilled water pump power consumption (kW) + cooling water pump power consumption (kW) + cooling tower fan power consumption (kW)} Production heat quantity {= chiller outlet cold water temperature (° C)-freezer inlet cold water temperature (° C) x cold water flow rate (liter / hour) ÷ 860}, heat source total COP (refrigerator production heat (instantaneous value) / heat source total The power consumption of the cooling tower and the wind power of the cooling tower are adjusted by controlling the cooling water pump 102 and the fan of the cooling tower 103 so that the total COP value is increased.

この特許文献1の技術を適用した場合、ポンプやファンの消費電力は大きくなるが、冷却水温度をシステム上で可能な限り冷やすことができるため、冷凍機の運転効率が向上し、システム全体として消費電力を低下させることができる。   When the technology of Patent Document 1 is applied, the power consumption of the pump and fan increases, but the cooling water temperature can be cooled as much as possible on the system, so that the operating efficiency of the refrigerator is improved and the entire system is Power consumption can be reduced.

また、冷却水の温度が低い程、熱源システムの効率が高くなり、能力も向上するという特性を活かし、冷却塔出口における冷却水温度を固定設定せず、冷却水温度設定を自動で変更する制御方法も提案されている(特許文献2参照。)。この特許文献2に記載の技術では、冷却水が自動設定された値になるように、冷却塔のファンの発停制御又はインバーター制御等を行っている。   Also, taking advantage of the fact that the lower the cooling water temperature, the higher the efficiency of the heat source system and the higher the capacity, the control that automatically changes the cooling water temperature setting without fixing the cooling water temperature at the cooling tower outlet. A method has also been proposed (see Patent Document 2). In the technique described in Patent Document 2, on / off control of the cooling tower fan or inverter control is performed so that the cooling water automatically has a set value.

2005−257221号公報2005-257221 2007−240131号公報No. 2007-240131

しかしながら、前述した従来の技術には、以下に示す問題点がある。即ち、特許文献1に記載の冷却水制御方法は、一定周期で熱源総合COPを算出するため、全ての制御関係にタイムラグが生じるという問題点がある。   However, the conventional techniques described above have the following problems. That is, the cooling water control method described in Patent Document 1 has a problem that a time lag occurs in all control relationships because the heat source total COP is calculated at a constant period.

また、特許文献2に記載の制御方法は、外気湿球温度のみに基づいて冷温水温度を設定し、この設定値になるように冷却塔のファンを制御しているため、冷却水出口温度と冷却水入口温度とに差が無い場合でも、冷却塔のファンが稼働し、消費電力が増加してしまうという問題点がある。   In addition, the control method described in Patent Document 2 sets the cold / hot water temperature based only on the outside air wet bulb temperature, and controls the cooling tower fan so as to have this set value. Even when there is no difference between the cooling water inlet temperature and the cooling tower fan, there is a problem that power consumption increases.

そこで、本発明は、効率的に冷却水の温度を制御し、システム全体の省エネルギー化を実現することができる熱源システム及びその運転方法を提供することを主目的とする。   Then, this invention makes it the main objective to provide the heat source system which can control the temperature of a cooling water efficiently, and can implement | achieve energy saving of the whole system, and its operating method.

本発明に係る熱源システムは、少なくとも、冷媒を圧縮する圧縮機、及び前記圧縮機で圧縮された冷媒を凝縮すると共に冷却水により前記冷媒を凝縮する際に発生した凝縮熱を除去する凝縮機を備えた熱源機と、外気との熱交換により前記冷却水を冷却するものであり、前記熱交換を促進するためのファンを備えた冷却塔と、前記冷却塔の入口における冷却水の温度TIN及び前記冷却塔の出口における冷却水の温度TOUTを測定する水温測定装置と、前記水温測定装置及び前記ファンと接続され、前記冷却塔の入口における冷却水の温度TINと前記冷却塔の出口における冷却水の温度TOUTとの差ΔT(=TIN−TOUT)に基づいて、前記ファンの稼働を制御する制御部と、を有し、前記制御部は、前記冷却塔の出口における冷却水の温度T OUT が設定値以上のときは前記ファンが連続稼働し、前記冷却塔の出口における冷却水の温度T OUT が設定値未満のときは、前記冷却塔の入口における冷却水の温度T IN と前記冷却塔の出口における冷却水の温度T OUT との差ΔTが0よりも大きいときにのみ前記ファンが稼働するように前記ファンの稼働を制御する。
この熱源システムでは、前記冷却塔と前記凝縮機との間には、前記冷却塔で冷却された冷却水を前記凝機に供給するための冷却水往路と、前記冷却水を前記凝機から前記冷却塔に還送するための冷却水環管路とが設けられ、前記冷却塔と前記凝機とは前記冷却水往路及び前記冷却水環管路を介して連通していてもよい。
更に、前記熱源機としては、例えば冷凍機を使用することができる。
A heat source system according to the present invention includes at least a compressor that compresses a refrigerant, and a condenser that condenses the refrigerant compressed by the compressor and removes heat of condensation generated when the refrigerant is condensed by cooling water. A cooling tower provided with a fan for promoting the heat exchange; and a temperature T IN of the cooling water at the inlet of the cooling tower. And a water temperature measuring device for measuring the temperature T OUT of the cooling water at the outlet of the cooling tower, the water temperature measuring device and the fan, connected to the cooling tower temperature T IN at the inlet of the cooling tower and the outlet of the cooling tower. based on the difference ΔT (= T iN -T OUT) between the temperature T OUT of the cooling water in, have a, and a control unit for controlling the operation of the fan, the control unit may put the outlet of the cooling tower When the cooling water temperature T OUT is equal to or higher than the set value, the fan is continuously operated. When the cooling water temperature T OUT at the outlet of the cooling tower is lower than the set value, the cooling water at the inlet of the cooling tower is set. The operation of the fan is controlled so that the fan operates only when the difference ΔT between the temperature T IN and the temperature T OUT of the cooling water at the outlet of the cooling tower is greater than zero .
This heat source system, the during the cooling tower and the condenser, the cooling tower cooling water forward conduit of the cooled cooling water to be supplied to the coagulation compressor in the coagulation of the cooling water It provided a cooling water ring pipe for Drying the cooling tower from compressor, wherein the cooling tower and the coagulation compressor communicates through the cooling water forward pipe and the cooling water ring line It may be.
Further, as the heat source machine, for example, a refrigerator can be used.

本発明に係る熱源システムの運転方法は、少なくとも、冷媒を圧縮する圧縮機、及び前記圧縮機で圧縮された冷媒を凝縮すると共に冷却水により前記冷媒を凝縮する際に発生した凝縮熱を除去する凝縮機を備えた熱源機と、外気との熱交換により前記冷却水を冷却するものであり、前記熱交換を促進するためのファンを備えた冷却塔と、前記ファンの稼働を制御する制御部と、を有する熱源システムの運転方法であって、前記制御部によって、前記冷却塔の出口における冷却水の温度T OUT が設定値以上のときは前記ファンを連続稼働させ、前記冷却塔の出口における冷却水の温度T OUT が設定値未満のときは、前記冷却塔の入口における冷却水の温度T IN と前記冷却塔の出口における冷却水の温度T OUT との差ΔTが0よりも大きいときにのみ前記ファンを稼働させる
この熱源システムの運転方法では、前記冷却塔と前記凝縮機との間に冷却水往路及び冷却水環管路を設け、前記冷却塔で冷却された冷却水前記冷却水往路を介して前記凝機に供給、前記凝機の冷却水前記冷却水環管路を介して前記冷却塔に還送してもよい。
た、前記熱源機は、例えば冷凍機である。
The operation method of the heat source system according to the present invention includes at least a compressor that compresses the refrigerant, and condenses the refrigerant compressed by the compressor and removes the heat of condensation generated when the refrigerant is condensed by cooling water. A heat source device including a condenser and the cooling water that cools the cooling water by heat exchange with outside air, a cooling tower that includes a fan for promoting the heat exchange, and a control unit that controls the operation of the fan And when the temperature T OUT of the cooling water at the outlet of the cooling tower is equal to or higher than a set value by the control unit, the fan is continuously operated, and at the outlet of the cooling tower. when the temperature T OUT of the cooling water is less than the set value, larger than a difference ΔT is 0 and the temperature T OUT of the cooling water at the outlet of the cooling water temperature T iN and the cooling tower at the inlet of the cooling tower Only to run the fan to Itoki.
In the operating method of the heat source system, a cooling water forward tube Michi及beauty cooling water ring line is provided between the front Symbol cooling tower and the condenser, the cooling water cooling water cooled by the cooling tower is supplied to the coagulation compressor via the forward line, the cooling water of the coagulation compressor may be sent instead of the cooling tower through the cooling water ring line.
In addition, the heat source machine is, for example, a refrigerator.

本発明によれば、冷却塔の出口と入口の水温差により冷却塔のファンの稼働状態を調節しているため、簡便な方法で効率的に冷却水温度を制御することができると共に、冷却水の温度を冷却可能な下限値まで低下させているため、熱源の運転効率が向上し、システム全体の省エネルギー化を実現することができる。   According to the present invention, since the operating state of the cooling tower fan is adjusted by the difference in water temperature between the outlet and the inlet of the cooling tower, the cooling water temperature can be efficiently controlled by a simple method. Since the temperature of the heat source is lowered to a lower limit value that can be cooled, the operating efficiency of the heat source is improved, and energy saving of the entire system can be realized.

以下、本発明を実施するための最良の形態について、添付の図面を参照して詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。図1は本発明の実施形態に係る熱源システムの構成を示すブロック図である。図1に示すように、本実施形態の熱源システム1には、冷凍機及びコンプレッサー等の熱源機2、この熱源機2で使用する冷却水を冷却するための冷却塔3、及び冷却塔3のファン9の稼働状態を調節するための制御部4が設けられている。   The best mode for carrying out the present invention will be described below in detail with reference to the accompanying drawings. Note that the present invention is not limited to the embodiments described below. FIG. 1 is a block diagram showing a configuration of a heat source system according to an embodiment of the present invention. As shown in FIG. 1, the heat source system 1 of the present embodiment includes a heat source device 2 such as a refrigerator and a compressor, a cooling tower 3 for cooling the cooling water used in the heat source device 2, and a cooling tower 3. A control unit 4 for adjusting the operating state of the fan 9 is provided.

この熱源システム1における熱源機2は、冷媒を圧縮する圧縮機5と、圧縮機5で圧縮された冷媒を凝縮する凝縮機6とを備えている。また、この凝縮機6では、冷却水を使用して、冷媒が凝縮する際に生じた凝縮熱を除去する。このため、凝縮機6は、冷却水往管路7及び冷却水環管路8を介して冷却塔3と連通されており、冷却塔3で冷却された冷却水が冷却水往管路7を通って凝縮機6に供給されると共に、凝縮熱除去後の冷却水が、冷却水環管路8を通って冷却塔3に還送されるようになっている。なお、これら冷却水往管路7及び冷却水環管路8には、必要に応じて、冷却水を通流させるためのポンプ及び冷媒の流量を調節するための調節弁等を設けることもできる。   The heat source apparatus 2 in the heat source system 1 includes a compressor 5 that compresses the refrigerant, and a condenser 6 that condenses the refrigerant compressed by the compressor 5. The condenser 6 uses cooling water to remove condensation heat generated when the refrigerant condenses. For this reason, the condenser 6 is communicated with the cooling tower 3 via the cooling water forward line 7 and the cooling water ring line 8, and the cooling water cooled by the cooling tower 3 passes through the cooling water forward line 7. In addition to being supplied to the condenser 6, the cooling water after removing the condensation heat is returned to the cooling tower 3 through the cooling water ring line 8. In addition, the cooling water forward pipeline 7 and the cooling water ring pipeline 8 may be provided with a pump for passing the cooling water, a regulating valve for adjusting the flow rate of the refrigerant, and the like as necessary. .

一方、冷却塔3は、外気との熱交換により冷却水を冷却するものであり、その上部に、冷却水と外気との熱交換を促進するためのファン9が配設されている。また、冷却塔3の冷却水入口及び出口には、それぞれ温度センサー等の水温測定装置10,11が配置されている。そして、温度測定装置10,11及びファン9は、温度測定装置10,11の測定結果に基づいて、ファン9の稼働状態を制御する制御部4に接続されている。   On the other hand, the cooling tower 3 cools the cooling water by exchanging heat with the outside air, and a fan 9 for accelerating the heat exchange between the cooling water and the outside air is disposed above the cooling tower 3. Further, water temperature measuring devices 10 and 11 such as a temperature sensor are disposed at the cooling water inlet and the outlet of the cooling tower 3, respectively. The temperature measuring devices 10 and 11 and the fan 9 are connected to the control unit 4 that controls the operating state of the fan 9 based on the measurement results of the temperature measuring devices 10 and 11.

次に、本実施形態の熱源システム1の動作、即ち、熱源システム1の運転方法について説明する。本実施形態の熱源システム1においては、熱源機2の圧縮機5で冷媒を圧縮し、更に、圧縮された冷媒を凝縮機6で凝縮する。このとき、冷媒を凝縮する際に凝縮熱が発生するため、凝縮機6において、冷媒から発せられる凝縮熱を冷却水によって除去する。その際使用する冷却水は、冷却塔3から冷却水管路を介して供給される。また、凝縮熱除去に使用され、温度が上昇した冷却水は、冷却水環管路8を通って冷却塔3に還送される。 Next, the operation of the heat source system 1 of the present embodiment, that is, the operation method of the heat source system 1 will be described. In the heat source system 1 of the present embodiment, the refrigerant is compressed by the compressor 5 of the heat source device 2, and further, the compressed refrigerant is condensed by the condenser 6. At this time, since condensation heat is generated when the refrigerant is condensed, the condensation heat generated from the refrigerant is removed by the cooling water in the condenser 6. Cooling water used at that time is supplied from the cooling tower 3 through the cooling water forward conduit 7. Further, the cooling water that has been used for removing heat of condensation and whose temperature has risen is returned to the cooling tower 3 through the cooling water ring pipe 8.

また、本実施形態の熱源システム1においては、冷却塔3の冷却水入口に設置された温度測定装置10により、凝縮機6から排出され、冷却塔3に流入する冷却水の温度(以下、冷却塔入口温度TINという。)を測定すると共に、冷却塔3の冷却水出口に設置された温度測定装置11により、冷却塔3で冷却され、凝縮機6に送液される冷却水の温度(以下、冷却塔出口温度TOUTという。)を測定する。その結果は制御部4に送られる。そして、制御部4では、これらの冷却水温度の差(以下、水温差ΔT(=TIN−TOUT)という。)を求め、その値に基づいて、冷却塔4の各ファン9の稼働状態を決定し、各ファンを動作させる。 Further, in the heat source system 1 of the present embodiment, the temperature of the cooling water discharged from the condenser 6 and flowing into the cooling tower 3 (hereinafter referred to as cooling) by the temperature measuring device 10 installed at the cooling water inlet of the cooling tower 3. that the tower inlet temperature T iN.) as well as measuring, by the temperature measuring device 11 installed in the cooling water outlet of the cooling tower 3 is cooled in the cooling tower 3, the cooling water is fed to the condenser 6 temperature ( Hereinafter, the cooling tower outlet temperature T OUT is measured. The result is sent to the control unit 4. Then, the control unit 4 obtains a difference between these cooling water temperatures (hereinafter referred to as a water temperature difference ΔT (= T IN −T OUT )), and the operating state of each fan 9 of the cooling tower 4 based on the value. And operate each fan.

具体的には、水温差ΔTが0よりも大きい場合は、例えばファン9を「ON」にする。一方、例えば冷凍機であれば冷水を作らずに待機している状態のように、冷却水ポンプのみが駆動している状態のときは、水温差ΔTが0となるため、ファン9を「OFF」にする。これにより、冷却塔3では、常に、外気湿球温度と冷却塔の能力で決まる冷却可能な最低温度(以下、最大冷却温度という。)にまで、冷却水温度を下げることができる。   Specifically, when the water temperature difference ΔT is larger than 0, for example, the fan 9 is turned “ON”. On the other hand, for example, in the case of a refrigerator, when only the cooling water pump is driven, such as in a standby state without making cold water, the water temperature difference ΔT becomes 0, so the fan 9 is turned off. " Thus, in the cooling tower 3, the cooling water temperature can always be lowered to the lowest coolable temperature (hereinafter referred to as the maximum cooling temperature) determined by the outside air wet bulb temperature and the cooling tower capacity.

図2は横軸に冷却水温度をとり、縦軸に冷凍機の消費電力をとって、1000RTの圧縮式冷凍機入口における冷却水温度とその冷凍機の消費電力との関係を示すグラフ図である。図2に示すように、冷凍機等の熱源機2の消費電力は、冷却水の温度が低い程少なくなり、例えば、冷却水の温度を1℃下げると、熱源機2の消費電力は2〜3%程度減少する。これは、冷却水の温度が低くなるに従い熱源機2の効率が向上するためであり、例えばターボ冷凍機の場合、冷却水の温度が低い程、冷媒を低い圧力で圧縮することができ、その結果、圧力動力を低下させることができる。このため、本実施形態の熱源システム1のように、冷却水の温度を最大限低下させると、熱源機2の消費電力が大幅に低減し、熱源システム全体の消費エネルギーを削減することが可能となる。   FIG. 2 is a graph showing the relationship between the cooling water temperature at the 1000 rt compression refrigerator inlet and the power consumption of the refrigerator, with the cooling water temperature on the horizontal axis and the power consumption of the refrigerator on the vertical axis. is there. As shown in FIG. 2, the power consumption of the heat source unit 2 such as a refrigerator decreases as the temperature of the cooling water decreases. For example, when the temperature of the cooling water is lowered by 1 ° C., the power consumption of the heat source unit 2 is 2 to 2. Decrease by about 3%. This is because the efficiency of the heat source device 2 improves as the temperature of the cooling water decreases. For example, in the case of a turbo refrigerator, the lower the temperature of the cooling water, the more the refrigerant can be compressed at a lower pressure. As a result, pressure power can be reduced. For this reason, like the heat source system 1 of this embodiment, when the temperature of the cooling water is reduced to the maximum, the power consumption of the heat source unit 2 is greatly reduced, and the energy consumption of the entire heat source system can be reduced. Become.

なお、本実施形態の熱源システム1の運転方法においては、ファン9のON/OFF以外にも、水温差ΔTの値に応じて、ファンの回転数の変更、及び複数のファンを備えている場合にはその稼働台数の調節等を行ってもよい。   In addition, in the operating method of the heat source system 1 of the present embodiment, in addition to turning on / off the fan 9, a change in the number of rotations of the fan and a plurality of fans are provided according to the value of the water temperature difference ΔT. The number of operating units may be adjusted.

また、本実施形態の熱源システム1では、必要に応じて、冷却塔出口温度TOUTによる制御と、水温差ΔTによる制御とを併用することもできる。例えば、冷却塔出口温度TOUTが設定以上の場合は冷却塔3のファン9を連続的に稼働し、水温差ΔTが0よりも大きい場合のみファン9を稼働するようにしてもよい。 Moreover, in the heat source system 1 of this embodiment, the control based on the cooling tower outlet temperature T OUT and the control based on the water temperature difference ΔT can be used together as necessary. For example, when the cooling tower outlet temperature T OUT is equal to or higher than the setting, the fan 9 of the cooling tower 3 may be continuously operated, and the fan 9 may be operated only when the water temperature difference ΔT is greater than zero.

具体的には、例えば、冷却塔出口温度TOUTが32℃以上の場合は、水温差ΔTの値にかかわらず冷却塔3のファン9を連続的に稼働させ、冷却塔出口温度TOUTが20℃以上32℃未満の場合には、水温差ΔTが0よりも大きく、例えば3℃以上ときにのみ冷却塔3のファン9を稼働させる。そして、冷却塔出口温度TOUTが20℃未満のときは、水温差ΔTの値にかかわらず、冷却塔3のファン9は稼働させず、停止させておく。これにより、効率良く、より低温の冷却水を得ることができるため、システム全体での省エネルギー化を促進することができる。 Specifically, for example, when the cooling tower outlet temperature T OUT is 32 ° C. or higher, the fan 9 of the cooling tower 3 is continuously operated regardless of the value of the water temperature difference ΔT, and the cooling tower outlet temperature T OUT is 20 When the temperature is not lower than 32 ° C. and the temperature difference ΔT is larger than 0, for example, the fan 9 of the cooling tower 3 is operated only when the temperature is 3 ° C. or higher. When the cooling tower outlet temperature T OUT is less than 20 ° C., the fan 9 of the cooling tower 3 is not operated and is stopped regardless of the value of the water temperature difference ΔT. As a result, it is possible to efficiently obtain lower-temperature cooling water, and thus energy saving in the entire system can be promoted.

更に、本実施形態においては、冷却塔入口温度TINと冷却塔出口温度TOUTとの水温差ΔTに基づいてファンの稼働を制御しているが、ここでいう冷却塔出口温度TOUTは熱源入口における冷却水温度と同等であり、冷却塔入口温度TINは熱源入口における冷却水温度と同等であるため、熱源入口及び出口での冷却水温度を測定し、その差を水温差ΔTとしてファンの稼働制御を行ってもよい。 Furthermore, in this embodiment, the fan operation is controlled based on the water temperature difference ΔT between the cooling tower inlet temperature T IN and the cooling tower outlet temperature T OUT , but the cooling tower outlet temperature T OUT here is the heat source. is equivalent to the cooling water temperature at the inlet, the cooling tower inlet temperature T iN is equivalent to the cooling water temperature at the heat source inlet, measures the coolant temperature in the heat source inlet and outlet, a fan the difference as temperature difference ΔT The operation control may be performed.

上述の如く、本実施形態の熱源システムにおいては、制御部により、冷却塔入口温度TINと冷却塔出口温度TOUTの差である水温差ΔTが0よりも大きい場合は、冷却塔のファンを稼働するようにしている。これにより、従来よりも簡便な方法で、最大冷却温度の冷却水を得ることができる。その結果、熱源機の消費電力を大幅に低減することができる。また、従来は一般に、冷却水の流量を調整することで、熱源に供給させる冷却水の温度を制御していたが、本実施形態の熱源システムでは、冷却塔のファンの稼働状態を調整することで冷却水温度を制御するため、大がかりな設備が不要である。なお、本実施形態の熱源システムでは、従来ファンを稼働させていない状態においても、ファンを稼働させることになるため、冷却塔の消費電力は増加するが、その増加分以上に熱源機の消費電力を低減することができるため、熱源システム全体としては省エネルギー化される。 As described above, in the heat source system of the present embodiment, when the water temperature difference ΔT, which is the difference between the cooling tower inlet temperature T IN and the cooling tower outlet temperature T OUT , is larger than 0 by the control unit, the cooling tower fan is turned on. It is supposed to work. Thereby, the cooling water of the maximum cooling temperature can be obtained by a simpler method than before. As a result, the power consumption of the heat source device can be greatly reduced. Further, conventionally, the temperature of the cooling water supplied to the heat source is generally controlled by adjusting the flow rate of the cooling water. However, in the heat source system of this embodiment, the operating state of the cooling tower fan is adjusted. In order to control the cooling water temperature, no large-scale equipment is required. In the heat source system of the present embodiment, the power consumption of the cooling tower increases because the fan is operated even in the state where the conventional fan is not operated, but the power consumption of the heat source machine exceeds the increase. Therefore, the heat source system as a whole can save energy.

以下、本発明の実施例及び比較例を挙げて、本発明の効果について具体的に説明する。先ず、本発明の本実施例として、前述した実施例の方法により熱源システムを運転したときの熱源機の消費電力を測定した。具体的には、熱源機には1000RTのターボ冷凍機を使用し、冷却塔出口温度TOUTが32℃以上の場合は冷却塔のファンを連続的に稼働し、冷却塔出口温度TOUTが20℃以上32℃未満の場合は、水温差ΔTが3℃以上の場合のときのみファンを稼働する設定にして、制御部によりファンの稼働を制御し、その際のターボ冷凍機の消費電力を測定した。図3は横軸に外気湿球温度をとり、縦軸に冷却塔入口又は出口における冷却水温度(TIN又はTOUT)をとって、本発明の実施例の方法で運転した場合の冷却水温度制御状況を示すグラフ図である。 Hereinafter, the effects of the present invention will be specifically described with reference to Examples and Comparative Examples of the present invention. First, as the present embodiment of the present invention, the power consumption of the heat source machine when the heat source system was operated by the method of the above-described embodiment was measured. Specifically, a 1000 RT turbo refrigerator is used as the heat source unit, and when the cooling tower outlet temperature T OUT is 32 ° C. or higher, the cooling tower fan is continuously operated, and the cooling tower outlet temperature T OUT is 20 If it is ℃ or more and less than 32 ℃, set the fan to operate only when the water temperature difference ΔT is 3 ℃ or more, control the operation of the fan by the control unit, and measure the power consumption of the turbo chiller at that time did. In FIG. 3, the horizontal axis represents the outside air wet bulb temperature, and the vertical axis represents the cooling water temperature (T IN or T OUT ) at the inlet or outlet of the cooling tower. It is a graph which shows a temperature control condition.

また、本発明の比較例として、冷却塔入口温度TOUTが32℃以上の場合はファン9を連続的に稼働し、32℃未満の場合は冷却塔のファンを稼働しない設定して熱源システムを運転し、熱源機である1000RTのターボ冷凍機の消費電力を測定した。図4は横軸に外気湿球温度をとり、縦軸に冷却塔入口又は出口における冷却水温度(TIN又はTOUT)をとって、本発明の比較例の方法で運転した場合の冷却水温度制御状況を示すグラフ図である。これら実施例及び比較例の測定結果を下記表1にまとめて示す。 Further, as a comparative example of the present invention, the fan 9 is continuously operated when the cooling tower inlet temperature T OUT is 32 ° C. or higher, and the cooling tower fan is not operated when the cooling tower inlet temperature T OUT is lower than 32 ° C. The power consumption of a 1000 RT turbo chiller, which is a heat source machine, was measured. In FIG. 4, the outside water wet bulb temperature is taken on the horizontal axis, and the cooling water temperature (T IN or T OUT ) at the inlet or outlet of the cooling tower is taken on the vertical axis. It is a graph which shows a temperature control condition. The measurement results of these examples and comparative examples are summarized in Table 1 below.

上記表1に示すように、図3に示す実施例の方法で運転した場合、冷却塔出口温度TOUTは徐々に低下し、それに伴い冷凍機の消費電力も減少した。一方、図4に示す比較例の方法で運転した場合は、冷却塔出口温度TOUTは32℃で一定であるため、冷凍機の消費電力も一定であった。 As shown in Table 1 above, when operated by the method of the embodiment shown in FIG. 3, the cooling tower outlet temperature T OUT gradually decreased, and accordingly, the power consumption of the refrigerator also decreased. On the other hand, when operated by the method of the comparative example shown in FIG. 4, the cooling tower outlet temperature T OUT is constant at 32 ° C., so the power consumption of the refrigerator is also constant.

次に、上述した実施例及び比較例の方法で1年間運転したときの熱源システム全体の消費電力をシミュレーションにより求めた。その際、熱源機は600kWの1000RTターボ冷凍機、冷却塔は7.5kWの1000RT冷却塔とした。その結果を下記表2に示す。また、図5は横軸に運転月、縦軸に冷却水送水温度をとって、実施例及び比較例の方法で1年間運転したときの冷却水温度の変化を示すグラフ図である。   Next, the power consumption of the entire heat source system when operated for one year by the methods of the above-described Examples and Comparative Examples was obtained by simulation. At that time, the heat source machine was a 600 kW 1000 RT turbo refrigerator, and the cooling tower was a 7.5 kW 1000 RT cooling tower. The results are shown in Table 2 below. Further, FIG. 5 is a graph showing changes in the cooling water temperature when the horizontal axis represents the operating month and the vertical axis represents the cooling water supply temperature, and the operation is performed for one year by the methods of the examples and comparative examples.

上記表2及び図5に示すように、本発明の実施例の方法は、比較例である従来の運転の方法に比べて、消費電力を1年間で110,844kW少なくすることができ、4.0%の削減が可能であるという結果が得られた。以上の結果から、本発明の方法で熱源システムを運転することにより、従来の運転方法に比べて消費電力を低減できることが確認された。   As shown in Table 2 and FIG. 5, the method according to the embodiment of the present invention can reduce the power consumption by 110,844 kW in one year as compared with the conventional operation method as a comparative example. The result is that 0% reduction is possible. From the above results, it was confirmed that the power consumption can be reduced by operating the heat source system by the method of the present invention compared to the conventional operation method.

本発明の実施形態に係る熱源システムの構成を示すブロック図である。It is a block diagram which shows the structure of the heat source system which concerns on embodiment of this invention. 横軸に冷却水温度をとり、縦軸に消費電力をとって、圧縮式冷凍機入口における冷却水温度と冷凍機の消費電力との関係を示すグラフ図である。It is a graph which shows the relationship between the cooling water temperature in a compression-type refrigerator inlet, and the power consumption of a refrigerator, taking a cooling water temperature on a horizontal axis and taking power consumption on a vertical axis | shaft. 横軸に外気湿球温度をとり、縦軸に冷却塔入口又は出口における冷却水温度(TIN又はTOUT)をとって、本発明の実施例の方法で運転した場合の冷却水温度制御状況を示すグラフ図である。Cooling water temperature control situation when operating by the method of the embodiment of the present invention with the horizontal axis representing the outside air wet bulb temperature and the vertical axis representing the cooling water temperature (T IN or T OUT ) at the cooling tower inlet or outlet. FIG. 横軸に外気湿球温度をとり、縦軸に冷却塔入口又は出口における冷却水温度(TIN又はTOUT)をとって、本発明の比較例の方法で運転した場合の冷却水温度制御状況を示すグラフ図である。Cooling water temperature control status when operated by the method of the comparative example of the present invention, with the horizontal axis representing the outside air wet bulb temperature and the vertical axis representing the cooling water temperature (T IN or T OUT ) at the cooling tower inlet or outlet. FIG. 横軸に運転月、縦軸に冷却水送水温度をとって、実施例及び比較例の方法で運転したときの冷却水温度の変化を示すグラフ図である。It is a graph which shows the change of a cooling water temperature when driving | operation is carried out by the method of an Example and a comparative example, taking an operation month on a horizontal axis and taking a cooling water feed temperature on a vertical axis | shaft. 特許文献1に記載の従来の制御方法を示すブロック図である。It is a block diagram which shows the conventional control method of patent document 1. FIG.

符号の説明Explanation of symbols

1 熱源システム
2 熱源機
3、103 冷却塔
4 制御部
5 圧縮機
6 凝
7 冷却水往管路
8 冷却水環管路
9 ファン
10、11 水温測定装置
101 冷凍機
102 冷却水ポンプ
104 冷水ポンプ
105 コントローラ
106〜109 電力計
1 heat source system 2 heat source equipment 3,103 cooling tower 4 controller 5 compressor 6 coagulation compressor 7 coolant往管channel 8 cooling water ring line 9 fans 10, 11 temperature measuring device 101 refrigerator 102 a cooling water pump 104 cold Pump 105 Controller 106-109 Wattmeter

Claims (6)

少なくとも、冷媒を圧縮する圧縮機、及び前記圧縮機で圧縮された冷媒を凝縮すると共に冷却水により前記冷媒を凝縮する際に発生した凝縮熱を除去する凝縮機を備えた熱源機と、
外気との熱交換により前記冷却水を冷却するものであり、前記熱交換を促進するためのファンを備えた冷却塔と、
前記冷却塔の入口における冷却水の温度TIN及び前記冷却塔の出口における冷却水の温度TOUTを測定する水温測定装置と、
前記水温測定装置及び前記ファンと接続され、前記冷却塔の入口における冷却水の温度TINと前記冷却塔の出口における冷却水の温度TOUTとの差ΔT(=TIN−TOUT)に基づいて、前記ファンの稼働を制御する制御部と、を有し、
前記制御部は、前記冷却塔の出口における冷却水の温度T OUT が設定値以上のときは前記ファンが連続稼働し、前記冷却塔の出口における冷却水の温度T OUT が設定値未満のときは、前記冷却塔の入口における冷却水の温度T IN と前記冷却塔の出口における冷却水の温度T OUT との差ΔTが0よりも大きいときにのみ前記ファンが稼働するように前記ファンの稼働を制御することを特徴とする熱源システム。
At least a compressor that compresses the refrigerant, and a heat source device that includes a condenser that condenses the refrigerant compressed by the compressor and removes the heat of condensation generated when the refrigerant is condensed by cooling water;
The cooling water is cooled by heat exchange with outside air, and a cooling tower provided with a fan for promoting the heat exchange;
A water temperature measuring device for measuring the temperature T IN of the cooling water at the inlet of the cooling tower and the temperature T OUT of the cooling water at the outlet of the cooling tower;
Based on a difference ΔT (= T IN −T OUT ) between the temperature T IN of the cooling water at the inlet of the cooling tower and the temperature T OUT of the cooling water at the outlet of the cooling tower, connected to the water temperature measuring device and the fan. Te, have a, and a control unit for controlling the operation of said fan,
The control unit continuously operates the fan when the cooling water temperature T OUT at the outlet of the cooling tower is equal to or higher than a set value, and when the cooling water temperature T OUT at the outlet of the cooling tower is lower than the set value. The fan is operated so that the fan operates only when the difference ΔT between the temperature T IN of the cooling water at the inlet of the cooling tower and the temperature T OUT of the cooling water at the outlet of the cooling tower is larger than zero. A heat source system characterized by controlling .
前記冷却塔と前記凝縮機との間には、前記冷却塔で冷却された冷却水を前記凝機に供給するための冷却水往路と、前記冷却水を前記凝機から前記冷却塔に還送するための冷却水環管路とが設けられ、前記冷却塔と前記凝機とは前記冷却水往路及び前記冷却水環管路を介して連通していることを特徴とする請求項1に記載の熱源システム。 Wherein between the cooling tower and the condenser, the cooling from the cooling tower cooling water forward conduit of the cooled cooling water to be supplied to the coagulation compressor, the said cooling water coagulation compressor It provided a cooling water ring pipe for Drying the tower, wherein the cooling tower and the coagulation compressor communicates through the cooling water forward pipe and the cooling water ring line The heat source system according to claim 1 . 前記熱源機は、冷凍機であることを特徴とする請求項1又は2に記載の熱源システム。 The heat source machine, a heat source system according to claim 1 or 2, characterized in that a refrigerator. 少なくとも、冷媒を圧縮する圧縮機、及び前記圧縮機で圧縮された冷媒を凝縮すると共に冷却水により前記冷媒を凝縮する際に発生した凝縮熱を除去する凝縮機を備えた熱源機と、
外気との熱交換により前記冷却水を冷却するものであり、前記熱交換を促進するためのファンを備えた冷却塔と、
前記ファンの稼働を制御する制御部と、を有する熱源システムの運転方法であって、
前記制御部によって、前記冷却塔の出口における冷却水の温度T OUT が設定値以上のときは前記ファンを連続稼働させ、前記冷却塔の出口における冷却水の温度T OUT が設定値未満のときは、前記冷却塔の入口における冷却水の温度T IN と前記冷却塔の出口における冷却水の温度T OUT との差ΔTが0よりも大きいときにのみ前記ファンを稼働させる熱源システムの運転方法。
At least a compressor that compresses the refrigerant, and a heat source device that includes a condenser that condenses the refrigerant compressed by the compressor and removes the heat of condensation generated when the refrigerant is condensed by cooling water;
The cooling water is cooled by heat exchange with outside air, and a cooling tower provided with a fan for promoting the heat exchange;
A control unit for controlling the operation of the fan, and a method for operating the heat source system,
When the temperature T OUT of the cooling water at the outlet of the cooling tower is equal to or higher than a set value by the control unit, the fan is continuously operated. When the temperature T OUT of the cooling water at the outlet of the cooling tower is lower than the set value, The operation method of the heat source system in which the fan is operated only when the difference ΔT between the temperature T IN of the cooling water at the inlet of the cooling tower and the temperature T OUT of the cooling water at the outlet of the cooling tower is larger than zero .
前記冷却塔と前記凝縮機との間には冷却水往路及び冷却水環管路が設けられており、前記冷却塔で冷却された冷却水前記冷却水往路を介して前記凝機に供給、前記凝機の冷却水前記冷却水環管路を介して前記冷却塔に還送することを特徴とする請求項に記載の熱源システムの運転方法。 The cooling water forward tube Michi及beauty cooling water ring line is provided between the cooling tower and the condenser, the cooling water cooled by the cooling tower through the cooling water forward conduit heat source system method of operating according to claim 4, characterized in that supplying said coagulation compressor and Drying the cooling water of the coagulation compressor to the cooling tower through the cooling water ring conduit Te. 前記熱源機が、冷凍機であることを特徴とする請求項4又は5に記載の熱源システムの運転方法。 The operation method of the heat source system according to claim 4 , wherein the heat source device is a refrigerator.
JP2008041993A 2008-02-22 2008-02-22 Heat source system and operation method thereof Active JP5071146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008041993A JP5071146B2 (en) 2008-02-22 2008-02-22 Heat source system and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008041993A JP5071146B2 (en) 2008-02-22 2008-02-22 Heat source system and operation method thereof

Publications (2)

Publication Number Publication Date
JP2009198123A JP2009198123A (en) 2009-09-03
JP5071146B2 true JP5071146B2 (en) 2012-11-14

Family

ID=41141807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008041993A Active JP5071146B2 (en) 2008-02-22 2008-02-22 Heat source system and operation method thereof

Country Status (1)

Country Link
JP (1) JP5071146B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6020714B2 (en) * 2013-04-08 2016-11-02 富士電機株式会社 Control device for cooling system
JP2016125771A (en) * 2015-01-05 2016-07-11 アズビル株式会社 Power force optimization system
KR102325379B1 (en) * 2021-04-14 2021-11-10 경상국립대학교산학협력단 Operation Control Method for High Temperature Difference and Low Condenser Water Temperature on Cooling Towers

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029596A (en) * 1983-07-27 1985-02-14 Osaka Gas Co Ltd Automatic temperature control for circulating type water cooling tower
JP4028502B2 (en) * 2004-03-15 2007-12-26 東洋熱工業株式会社 Cooling water control method for refrigerator
JP4630702B2 (en) * 2005-03-28 2011-02-09 三機工業株式会社 Heat source system optimum operation control device
JP2007240131A (en) * 2006-03-03 2007-09-20 Es Systems Kk Optimization control of heat source unit and accessory

Also Published As

Publication number Publication date
JP2009198123A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
KR101508448B1 (en) Heat source system and number-of-machines control method for heat source system
JP6334230B2 (en) Refrigerator system
CN101881498B (en) Multiple connected air conditioning system and control method thereof
US10174986B2 (en) Heat source machine and control method therefor
US9175889B2 (en) Heat source system and control method thereof
JP2007240131A (en) Optimization control of heat source unit and accessory
JP4920654B2 (en) Air conditioner
CN104126098A (en) Heat source system, device for controlling same, and method for controlling same
JP6644559B2 (en) Heat source control system, control method and control device
JP2012247146A (en) Heat pump steam generator
JP2016006355A (en) Control method and control apparatus for integrated type heat source system
JP6117078B2 (en) Heat source system
JP5071146B2 (en) Heat source system and operation method thereof
JP2012141098A (en) Heat source system and its control method
CN105823282A (en) Discharge pressure control method used for optimized operation of carbon dioxide heat pump system
CN109654887A (en) A kind of circulating water cooling system and its autocontrol method
JP2011226680A (en) Cooling water producing facility
WO2013111577A1 (en) Air-cooling condenser and power generation device equipped with same
JP6301784B2 (en) CONTROL DEVICE USED FOR HEAT SOURCE SYSTEM AND HEAT SOURCE SYSTEM HAVING THE CONTROL DEVICE
JP2007127321A (en) Cold water load factor controller for refrigerator
JP6126020B2 (en) Estimated value deriving method, estimated value deriving device, and program
CN107191359A (en) A kind of air compressor cooling means and system
JP6586182B2 (en) CONTROL DEVICE USED FOR HEAT SOURCE SYSTEM AND HEAT SOURCE SYSTEM HAVING THE CONTROL DEVICE
CN116772471B (en) Optimal control method for cooling water system of water chilling unit and cooling water system
JP2013068405A (en) Heat pump system and method of operating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120806

R150 Certificate of patent or registration of utility model

Ref document number: 5071146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250