JP5071125B2 - High-strength cold-rolled steel sheet excellent in square tube drawing formability and shape freezing property, manufacturing method thereof, and automotive parts excellent in product shape - Google Patents

High-strength cold-rolled steel sheet excellent in square tube drawing formability and shape freezing property, manufacturing method thereof, and automotive parts excellent in product shape Download PDF

Info

Publication number
JP5071125B2
JP5071125B2 JP2008018287A JP2008018287A JP5071125B2 JP 5071125 B2 JP5071125 B2 JP 5071125B2 JP 2008018287 A JP2008018287 A JP 2008018287A JP 2008018287 A JP2008018287 A JP 2008018287A JP 5071125 B2 JP5071125 B2 JP 5071125B2
Authority
JP
Japan
Prior art keywords
value
steel sheet
less
rolling
square tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008018287A
Other languages
Japanese (ja)
Other versions
JP2009179832A (en
Inventor
裕美 吉田
健太郎 佐藤
毅 藤田
英尚 川邉
金晴 奥田
靖 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008018287A priority Critical patent/JP5071125B2/en
Publication of JP2009179832A publication Critical patent/JP2009179832A/en
Application granted granted Critical
Publication of JP5071125B2 publication Critical patent/JP5071125B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、主として自動車の内板、足回り部材、構造部材および構造部材の補強部品としての用途に供して好適な角筒絞り成形性と形状凍結性に優れた高強度冷延鋼板およびその製造方法に関するものである。
また、本発明に、上記の角筒絞り成形性と形状凍結性に優れた高強度冷延鋼板に角筒絞り成形を施して得た製品形状に優れた自動車用部品に関するものである。
The present invention mainly provides a high-strength cold-rolled steel sheet excellent in rectangular tube drawing formability and shape freezing property, which is suitable for use as an inner plate of an automobile, an underbody member, a structural member, and a reinforcing part of the structural member, and its manufacture It is about the method.
Further, the present invention relates to an automotive part having an excellent product shape obtained by subjecting the above-described high strength cold-rolled steel sheet excellent in square tube drawing formability and shape freezing property to square tube drawing.

内板、足回り部材、構造部材および構造部材の補強部品等のいわゆる箱もの部品を始めとする自動車用部材は、深絞りや曲げ、張出し等を伴ったプレス加工を施して目標とする製品形状に成形されることから、その素材としては深絞り用鋼板が多用されている。また非時効性も自動車部材用素材の重要な要求特性であることから、完全非時効性を兼ね備えた極低炭素Ti添加アルミキルド冷延鋼板が自動車用部材の代表的素材である。   Automotive parts, including so-called box parts such as inner plates, underbody members, structural members and structural member reinforcement parts, are subjected to press working with deep drawing, bending, overhanging, etc. Therefore, deep drawing steel plates are often used as the material. In addition, since non-aging is an important required characteristic of materials for automobile parts, an ultra-low carbon Ti-added aluminum killed cold-rolled steel sheet having complete non-aging properties is a typical material for automobile parts.

上記した自動車用部材のうち、特に補強部品や箱もの部品には角筒成形性も要求される。そのためには、従来、深絞り性の指標となるランクフォード値(r値)が高いだけでなく、r値の面内異方性(Δr値)が小さいことが重要とされ、特許文献1のような、r値が高く、かつΔr値を制御した鋼板が開示されている。しかしながら、上記した鋼板はいずれもTSが340MPa以下の軟鋼板である。
特開2006-70339号公報
Among the above-described automotive members, particularly, reinforcing parts and box parts are required to have square tube formability. For that purpose, conventionally, it is important that not only the Rankford value (r value), which is an index of deep drawability, is high, but also that the in-plane anisotropy (Δr value) of the r value is small. Such a steel sheet having a high r value and a controlled Δr value is disclosed. However, all of the above steel plates are mild steel plates having a TS of 340 MPa or less.
JP 2006-70339 A

また、同様に高r値(平均r値≧2.7)化と共に、Δr値に関しては、むしろΔr値が大きい方が角筒成形には有利であるとして、D方向(圧延方向と45°をなす方向)のr値を、L方向(圧延方向)やC方向(圧延方向と90°をなす方向)よりも低くすることで、Δr値≧0.67として成形性を改善する技術が、特許文献2に開示されている。しかしながら、この鋼板も、TSは具体的に開示されていないものの、成分的には極低炭素IF鋼であり、添加されている合金元素量からも、軟鋼板と推定される。また、この技術では、高r値を得るために、熱間圧延をAr3変態点以下〜500℃の温度域で潤滑圧延で行うが、これはIF鋼特有の技術であり、この方法を通常の低炭素鋼板に適用すると、圧延負荷が高くなり圧延時のトラブルを誘発し易いという問題がある。
特許第3460525号公報
Similarly, with increasing r value (average r value ≧ 2.7), regarding the Δr value, it is rather advantageous that the larger Δr value is advantageous for forming the rectangular tube, and the D direction (the direction that forms 45 ° with the rolling direction). Is disclosed in Patent Document 2 by improving the formability with Δr value ≧ 0.67 by lowering the r value of L) in the L direction (rolling direction) and the C direction (direction forming 90 ° with the rolling direction). Has been. However, although this steel sheet is not specifically disclosed, TS is an extremely low carbon IF steel in terms of components, and is estimated to be a mild steel sheet from the amount of alloy elements added. Moreover, in this technique, in order to obtain a high r value, hot rolling is performed by lubrication rolling in a temperature range from the Ar 3 transformation point to 500 ° C. This is a technique peculiar to IF steel, and this method is usually used. When applied to the low carbon steel sheet, there is a problem that the rolling load becomes high and troubles during rolling are easily induced.
Japanese Patent No. 3460525

ところで、近年では、自動車車体の高強度化に伴い、引張強度(TS)が440MPa以上の高強度鋼板がプレス部品に多用されるようになってきた。そのため、高強度で角筒成形性に優れる鋼板の需要が高まりつつある。
しかも、鋼板を素材とする自動車部品の多くは、前述したとおりプレス成形によって製造されるため、鋼板には優れたプレス成形性が必要とされるる他、高強度鋼板を適用した場合には特に、優れた形状性(寸法精度)が併せて要求される。
By the way, in recent years, high strength steel sheets having a tensile strength (TS) of 440 MPa or more have been frequently used for press parts as the strength of automobile bodies increases. Therefore, the demand for steel sheets having high strength and excellent square tube formability is increasing.
Moreover, since many of the automotive parts made of steel plates are manufactured by press forming as described above, the steel plates need excellent press formability, especially when high strength steel plates are applied, Excellent formability (dimensional accuracy) is also required.

従来、高強度冷延鋼板の成形性と形状性のうち、特に形状性については、鋼板の降伏比YS/TS(YSは降伏強度)を低くすることが有利とされ、そのためには主としてフェライト相とマルテンサイト相を含む複合組織(Dual-Phase,DP)鋼板が有効とされている。
特許文献3は、DP鋼板の製造方法に関するものであるが、この方法では、焼鈍時の冷却に水冷却設備を必須とする不利がある。
また、特許文献4は、体積分率で25%以下のマルテンサイトを含むDP鋼で、(A){100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値を4.0以上、(B){554}<225>、{111}<112>および{111}<110>の3つの結晶方位のX線ランダム強度比の平均値を3.0以上、(A)/(B)≦4.0を満足させ、圧延方向かそれと直角方向のr値のうち少なくとも1つを0.7以上、r値の平均値を0.8以上とすることにより、加工性と形状凍結性に優れた高強度冷延鋼板を得ようとするものであるが、上記(A)を4.0以上にすると、平均r値が低く、従って深絞り性が低下する点で問題が残る。
特開2006−233318号公報 特開2004−124123号公報
Conventionally, among the formability and formability of high-strength cold-rolled steel sheets, particularly with respect to formability, it has been advantageous to lower the yield ratio YS / TS (YS is the yield strength) of the steel sheet. And multi-structure (Dual-Phase, DP) steel sheets containing martensite phase are considered effective.
Although patent document 3 is related with the manufacturing method of DP steel plate, in this method, there exists a disadvantage which requires water cooling equipment for cooling at the time of annealing.
Patent Document 4 is a DP steel containing martensite with a volume fraction of 25% or less, and (A) the average value of the X-ray random intensity ratio of {100} <011> to {223} <110> orientation groups. 4.0 or more, (B) the average value of the X-ray random intensity ratio of three crystal orientations of {554} <225>, {111} <112> and {111} <110> is 3.0 or more, (A) / ( B) Satisfies ≦ 4.0, at least one of the r values in the rolling direction or the direction perpendicular thereto is 0.7 or more, and the average value of r values is 0.8 or more. An attempt is made to obtain a cold-rolled steel sheet. However, if the above (A) is set to 4.0 or more, the average r value is low, and thus the problem remains in that the deep drawability is lowered.
JP 2006-233318 A JP 2004-124123 A

その他、特許文献5には、平均r値を1.2以上とし、Δrの絶対値を0.3以下と小さくした高強度鋼板の製造方法が開示されている。
しかしながら、この方法では、形状性の良好な鋼板を得ることは難しかった。
特開2005−120471号公報
In addition, Patent Document 5 discloses a method for producing a high-strength steel sheet in which the average r value is 1.2 or more and the absolute value of Δr is as small as 0.3 or less.
However, with this method, it has been difficult to obtain a steel sheet with good shape.
JP 2005-120471 A

本発明は、上記の問題を有利に解決するもので、TSが440MPa以上の高強度であっても、優れた角筒絞り成形性および形状性(形状凍結性)を有する高強度冷延鋼板を、その有利な製造方法と共に提案することを目的とする。   The present invention advantageously solves the above problems, and provides a high-strength cold-rolled steel sheet having excellent rectangular tube drawability and shape (shape freezing property) even when TS has a high strength of 440 MPa or more. The object is to propose it together with its advantageous manufacturing method.

さて、発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、次の述べる知見を得た。
すなわち、角筒絞り成形性や形状凍結性を向上させるためには、単に平均r値を高くするだけでなく、角筒のコーナー部に当たる鋼板のD方向のr値を、L方向およびC方向のそれよりも高くするのが有効であること、しかも特に500MPa以上の高強度鋼板では、従来の知見とは異なり、鋼板の面内異方性を負側に大きい鋼板とすることで、角筒絞り成形性が有利に向上するとの新規知見を得た。
また、形状凍結性を向上させるには、従来の低降伏比型とは逆に、複合組織鋼板であっても高降伏比とすることが有利であるとの知見を得た。
本発明は、上記の知見に立脚するものである。
As a result of intensive studies to solve the above problems, the inventors have obtained the following knowledge.
That is, in order to improve the rectangular tube drawing formability and the shape freezing property, not only simply increasing the average r value, but also reducing the r value in the D direction of the steel sheet that hits the corner portion of the square tube in the L direction and the C direction. It is effective to make it higher than that, and especially for high-strength steel sheets of 500 MPa or more, unlike the conventional knowledge, by making the steel sheet with a large in-plane anisotropy on the negative side, New findings have been obtained that the moldability is advantageously improved.
Moreover, in order to improve the shape freezing property, it was found that it is advantageous to use a high yield ratio even for a composite structure steel plate, contrary to the conventional low yield ratio type.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、
C:0.010〜0.050%、
Si:1.0%以下、
Mn:1.5〜3.0%、
P:0.1%以下、
S:0.01%以下、
Al:0.005〜0.5%、
Ti:0.005〜0.05%、
Nb:0.01〜0.3%および
N:0.01%以下
を含み、かつ
Mo:0.01〜0.5%、
Cr:0.05〜0.8%および
V:0.01〜0.2%
のうちから選んだ一種または二種以上を、
M=[%Mn]+3[%Mo]+1.3[%Cr]+0.5[%V]≧2
を満足する範囲で含有し、残部はFeおよび不可避的不純物の組成になり、フェライト相を主相とし、体積分率で15%以下のマルテンサイト相を含む混合組織からなる鋼組織を有し、圧延方向と45°をなす方向のr値(rD)が1.2以上で、かつ下記式で示される面内異方性(Δr値)が−1.0≦Δr値≦−0.3の範囲を満足することを特徴とする角筒絞り成形性と形状凍結性に優れた高強度冷延鋼板。

Δr値=(rL−2×rD+rC)/2
但し、rL:圧延方向のr値
D:圧延方向と45°をなす方向のr値
C:圧延方向と90°をなす方向のr値
That is, the gist configuration of the present invention is as follows.
1. % By mass
C: 0.010 to 0.050%
Si: 1.0% or less,
Mn: 1.5-3.0%
P: 0.1% or less,
S: 0.01% or less,
Al: 0.005-0.5%
Ti: 0.005-0.05%
Nb: 0.01 to 0.3% and N: 0.01% or less, and
Mo: 0.01-0.5%
Cr: 0.05-0.8% and V: 0.01-0.2%
One or more selected from
M = [% Mn] +3 [% Mo] +1.3 [% Cr] +0.5 [% V] ≧ 2
The balance is the composition of Fe and inevitable impurities, the ferrite phase is the main phase, and has a steel structure consisting of a mixed structure containing a martensite phase with a volume fraction of 15% or less, The r value (rD) in the direction forming 45 ° with the rolling direction is 1.2 or more, and the in-plane anisotropy (Δr value) represented by the following formula satisfies the range of −1.0 ≦ Δr value ≦ −0.3. A high-strength cold-rolled steel sheet with excellent square tube drawability and shape freezing characteristics.
Record
Δr value = (r L −2 × r D + r C ) / 2
Where r L : r value in the rolling direction
r D : r value in the direction of 45 ° with the rolling direction
r C : r value in the direction of 90 ° with the rolling direction

2.降伏比が0.6を超えることを特徴とする上記1に記載の角筒絞り成形性と形状凍結性に優れた高強度冷延鋼板。 2. 2. A high strength cold-rolled steel sheet excellent in square tube drawing formability and shape freezing property as described in 1 above, wherein the yield ratio exceeds 0.6.

3.鋼板表面にめっき層を有することを特徴とする上記1または2に記載の角筒絞り成形性と形状凍結性に優れた高強度冷延鋼板。 3. 3. The high-strength cold-rolled steel sheet having excellent square-drawing formability and shape freezing property as described in 1 or 2 above, wherein the steel sheet surface has a plating layer.

4.質量%で、
C:0.010〜0.050%、
Si:1.0%以下、
Mn:1.5〜3.0%、
P:0.1%以下、
S:0.01%以下、
Al:0.005〜0.5%、
Ti:0.005〜0.05%、
Nb:0.01〜0.3%および
N:0.01%以下
を含み、かつ
Mo:0.01〜0.5%、
Cr:0.05〜0.8%および
V:0.01〜0.2%
のうちから選んだ一種または二種以上を、
M=[%Mn]+3[%Mo]+1.3[%Cr]+0.5[%V]≧2
を満足する範囲で含有し、残部はFeおよび不可避的不純物の組成になる鋼スラブを、仕上圧延温度:910〜800℃で熱間圧延したのち、550〜700℃の温度でコイルに巻取り、圧下率:55〜80%で冷間圧延後、少なくとも300〜700℃の温度域を10℃/s以上の速度で加熱し、800〜900℃の温度域に120s以上滞留させるヒートサイクルで連続焼鈍することを特徴とする角筒絞り成形性と形状凍結性に優れた高強度冷延鋼板の製造方法。
4). % By mass
C: 0.010 to 0.050%
Si: 1.0% or less,
Mn: 1.5-3.0%
P: 0.1% or less,
S: 0.01% or less,
Al: 0.005-0.5%
Ti: 0.005-0.05%
Nb: 0.01 to 0.3% and N: 0.01% or less, and
Mo: 0.01-0.5%
Cr: 0.05-0.8% and V: 0.01-0.2%
One or more selected from
M = [% Mn] +3 [% Mo] +1.3 [% Cr] +0.5 [% V] ≧ 2
The steel slab that contains Fe and the inevitable impurities composition is hot rolled at a finish rolling temperature of 910 to 800 ° C, and then wound into a coil at a temperature of 550 to 700 ° C. Reduction ratio: After cold rolling at 55-80%, continuous annealing in a heat cycle in which at least 300-700 ° C temperature range is heated at a rate of 10 ° C / s or more and stays in the 800-900 ° C temperature range for 120s or more. A method for producing a high-strength cold-rolled steel sheet excellent in square tube drawing formability and shape freezeability.

5.上記1〜3のいずれか1項に記載の高強度冷延鋼板に、角筒絞り成形を施して得たことを特徴とする製品形状に優れた自動車用部品。 5). An automotive part having an excellent product shape, which is obtained by subjecting the high-strength cold-rolled steel sheet according to any one of 1 to 3 above to square tube drawing.

本発明によれば、TS≧440MPaという高強度冷延鋼板において、優れた角筒絞り成形性と形状凍結性を得ることができる。
また、本発明によれば、上記した高強度冷延鋼板を角筒絞り成形することにより、製品形状に優れた自動車用部品を得ることができる。
According to the present invention, in a high-strength cold-rolled steel sheet with TS ≧ 440 MPa, excellent rectangular tube drawing formability and shape freezing property can be obtained.
Moreover, according to this invention, the automotive component excellent in the product shape can be obtained by carrying out square tube drawing of the above-mentioned high-strength cold-rolled steel sheet.

以下、本発明を具体的に説明する。
まず、本発明において、冷延鋼板の成分組成を前記の範囲に限定した理由について説明する。なお、成分に関する「%」表示は特に断らない限り質量%を意味するものとする。
C:0.010〜0.050%
最終組織を複合組織の鋼板とするためには、少なくとも0.010%のCを必要とする。しかしながら、C量が多いとr値には好ましくないため、Cの上限値は0.050%とした。
Hereinafter, the present invention will be specifically described.
First, the reason why the component composition of the cold-rolled steel sheet is limited to the above range in the present invention will be described. Unless otherwise specified, “%” in relation to ingredients means mass%.
C: 0.010 to 0.050%
In order to make the final structure a steel sheet having a composite structure, at least 0.010% of C is required. However, since a large amount of C is not preferable for the r value, the upper limit value of C is set to 0.050%.

Si:1.0%以下
Siは、固溶強化作用により、鋼材の高強度化に寄与するので、所望とする強度に応じて必要量を添加する。固溶強化の効果を得るには、0.01%以上含有させることが好ましい。しかしながら、1.0%を超えて含有されると、r値がrD≦rCの関係になる傾向があり、rDが小さくなって面内異方性Δrが適正範囲から外れてしまうだけでなく、熱間圧延時に赤スケールが発生し鋼板表面外観を損うおそれが大きいので、Siは1.0%以下で含有させるものとした。
Si: 1.0% or less
Since Si contributes to increasing the strength of the steel material by the solid solution strengthening action, the necessary amount is added according to the desired strength. In order to obtain the effect of solid solution strengthening, it is preferable to contain 0.01% or more. However, if the content exceeds 1.0%, the r value tends to be in the relationship of r D ≦ r C , and not only does rD decrease and the in-plane anisotropy Δr deviates from the appropriate range, Since red scale is generated during hot rolling and the appearance of the steel sheet surface is likely to be impaired, Si is contained at 1.0% or less.

Mn:1.5〜3.0%
Mnは、連続鋳造時の割れ発生(Sによる熱間割れ)を防止する効果もあるが、本発明では、主として鋼材の高強度化を図るために、固溶強化と共に、組織強化を得るため焼鈍冷却中にマルテンサイト相の形成を促進させる(マルテンサト相が得られる臨界冷却速度を遅延させる)効果を利用する。また、Mnは、冷却時のフェライト変態を遅延させるため、熱間圧延時のオーステナイト相域での圧延温度範囲の拡大に寄与すると共に、Nb添加による再結晶遅延効果と併せて、未再結晶オーステナイト相中に蓄積される歪量を増大させることによって、鋼板の面内異方性に影響を与えていると推測される。鋼板強度と面内異方性の双方の観点から、Mnは1.5%以上含有させるものとした。一方、過剰なMnの添加は、深絞り性や溶接性の劣化を招くため、上限を3.0%とした。
Mn: 1.5-3.0%
Mn also has the effect of preventing cracking during continuous casting (hot cracking due to S). However, in the present invention, in order to increase the strength of the steel material, it is annealed to obtain structural strengthening as well as solid solution strengthening. The effect of promoting the formation of the martensite phase during cooling (delaying the critical cooling rate at which the martensate phase is obtained) is utilized. In addition, since Mn delays the ferrite transformation during cooling, it contributes to the expansion of the rolling temperature range in the austenite phase region during hot rolling, and in addition to the recrystallization delay effect due to the addition of Nb, unrecrystallized austenite It is presumed that the in-plane anisotropy of the steel sheet is affected by increasing the amount of strain accumulated in the phase. From the viewpoint of both steel plate strength and in-plane anisotropy, Mn is contained in an amount of 1.5% or more. On the other hand, excessive addition of Mn causes deterioration of deep drawability and weldability, so the upper limit was made 3.0%.

P:0.1%以下
Pは、固溶強化作用によって鋼材の高強度化に寄与するので、所望とする強度に応じて必要量を添加する。固溶強化の効果を得るには、0.005%以上含有させることが好ましい。また、製鋼工程における脱燐コストの観点からもPは0.005%以上、好ましくは0.01%以上含有させることが望ましい。しかしながら、Pは、粒界に偏析し易く、耐二次加工脆性や溶接性を劣化させるだけでなく、過剰な添加はr値がrD≦rCとなる傾向が高いため、Pは0.1%以下に限定した。
P: 0.1% or less P contributes to increasing the strength of the steel material by the solid solution strengthening action, so the necessary amount is added according to the desired strength. In order to obtain the effect of solid solution strengthening, it is preferable to contain 0.005% or more. Further, from the viewpoint of dephosphorization cost in the steel making process, P is preferably 0.005% or more, preferably 0.01% or more. However, P is easily segregated at the grain boundary, not only deteriorates the secondary work brittleness resistance and weldability, but excessive addition tends to cause the r value to be r D ≦ r C , so P is 0.1%. Limited to:

S:0.01%以下
Sは、不純物元素であり、連続鋳造時の熱間割れの原因になるだけでなく、鋼中で介在物を形成し鋼板の諸成形性を劣化させるので、できるだけ低減することが好ましい。そのためSは0.01%以下に規制した。
S: 0.01% or less S is an impurity element that not only causes hot cracking during continuous casting, but also forms inclusions in the steel and degrades the formability of the steel sheet. Is preferred. Therefore, S is regulated to 0.01% or less.

Al:0.005〜0.5%
Alは、製鋼工程で鋼の脱酸剤として有用な元素である。十分な脱酸効果を得るためには、sol.Alとして0.005%以上を含有させる必要がある。また、Alはフェライト変態促進元素として、主として焼鈍時にフェライト域での再結晶集合組織発達の観点から変態点調整にも有用である。しかしながら、過剰なAl添加は合金コストの増加を招くだけでなく、鋼中のAl系介在物を増加させて諸成形性を劣化させるため、上限を0.5%とした。
Al: 0.005-0.5%
Al is an element useful as a deoxidizer for steel in the steel making process. In order to obtain a sufficient deoxidation effect, it is necessary to contain 0.005% or more as sol.Al. Further, Al is a ferrite transformation promoting element, and is also useful for adjusting the transformation point mainly from the viewpoint of recrystallization texture development in the ferrite region during annealing. However, excessive addition of Al not only increases the alloy cost but also increases Al inclusions in the steel and degrades the formability, so the upper limit was made 0.5%.

Ti:0.005〜0.05%
Tiは、後述するNbと同様、再結晶を遅延させる効果があり、この作用を通じて鋼板の面内異方性の改善に寄与する。また、鋼中でNと優先的に結合する他、Cを析出固定する作用があり、耐時効性に寄与すると共に、成形性の向上にも寄与する。また、Alと同様、脱酸剤としての効果もあるため、脱酸剤として添加することでもできる。このような視点から、Tiは0.005%以上の含有が必要となるが、過剰な添加はr値がrD≦rCとなる傾向が高いため、上限は0.05%とした。
Ti: 0.005-0.05%
Ti, like Nb described later, has the effect of delaying recrystallization, and contributes to the improvement of the in-plane anisotropy of the steel sheet through this action. In addition to preferentially bonding with N in steel, there is an action of precipitating and fixing C, which contributes to aging resistance and contributes to improvement of formability. Moreover, since it also has an effect as a deoxidizing agent like Al, it can also be added as a deoxidizing agent. From such a viewpoint, Ti needs to be contained in an amount of 0.005% or more. However, since excessive addition tends to have an r value of r D ≦ r C , the upper limit was made 0.05%.

Nb:0.01〜0.3%
Nbは、上述したTiと同様、再結晶遅延効果があり、熱間圧延の仕上圧延時に、未再結晶オーステナイト状態で歪を十分蓄積してからのフェライト変態を促進し、熱延板組織の微細化を図る上で、有用な元素である。また、Nbは、蓄積歪量に影響を及ぼし、圧下スタンド間での再結晶を遅延させることによって蓄積歪量を増大させる。この点についての詳細はまだ定かではないが、実験経験的には、この未再結晶オーステナイトでの蓄積歪量が最終特性のr値の面内異方性に何らかの影響を与えているものと推測される。熱延板組織の微細化は、焼鈍後組織をも微細することにつながり、さらにNbは粒界に沿って偏析する傾向があり、粒界に粗大なセメントタイトが析出するのを抑制するため、これらの作用によって粒界を強化し、ひいては耐二次加工脆性を改善させる効果がある。これらの観点から、Nbは0.01%以上含有させる。しかしながら、過剰な添加は、延性を劣化させる傾向があるだけでなく、IF鋼になってしまうと、面内異方性が正となる傾向があるため、Nbの上限は0.3%とした。
Nb: 0.01-0.3%
Nb, like Ti described above, has a recrystallization delay effect, promotes ferrite transformation after sufficiently accumulating strain in the non-recrystallized austenite state during finish rolling of hot rolling, and has a fine hot rolled sheet structure. It is a useful element when trying to make it easier. Nb affects the amount of accumulated strain and increases the amount of accumulated strain by delaying recrystallization between the rolling stands. Although details on this point are not yet clear, experimental experience suggests that the amount of strain accumulated in the unrecrystallized austenite has some influence on the in-plane anisotropy of the r value of the final characteristics. Is done. Refinement of the hot-rolled sheet structure leads to further refinement of the structure after annealing, and Nb tends to segregate along the grain boundary, in order to suppress the precipitation of coarse cementite at the grain boundary, These effects have the effect of strengthening the grain boundaries and thus improving the secondary work brittleness resistance. From these viewpoints, Nb is contained in an amount of 0.01% or more. However, excessive addition not only tends to degrade the ductility, but if IF steel is used, the in-plane anisotropy tends to be positive, so the upper limit of Nb was set to 0.3%.

N:0.01%以下
Nは、多すぎると耐常温時効性を劣化させ、また多量の介在物発生や炭窒化物形成を助長し、諸成形性に悪影響を与える。そのため、製造コストが許容する範囲で、できるだけ低減することが望ましく、成形性とコストのバランスから、上限を0.01%に規制した。
N: 0.01% or less If N is too much, the normal temperature aging resistance is deteriorated, a large amount of inclusions and carbonitride formation are promoted, and various moldability is adversely affected. Therefore, it is desirable to reduce it as much as possible within the range allowed by the manufacturing cost, and the upper limit is regulated to 0.01% from the balance between moldability and cost.

Mo:0.01〜0.5%、Cr:0.05〜0.8%およびV:0.01〜0.2%のうちから選んだ一種または二種以上
Mo,Crは、鋼材の高強度化に低温変態相による組織強化を活用する場合、Mnと同様、マルテンサイト相が得られる臨界冷却速度を遅延させる効果がある有用元素である。また、Vは、Nを析出固定するのに有用なだけでなく、V系炭化物は析出強化に有効に寄与する。これらの元素は、それぞれ単独で添加しても複合して添加しても効果に差異はない。さらに、Mo,Vは、Nb同様、粒界に沿って偏析する傾向があり、高r値化の妨げとなる熱延組織粒界での粗大なセメンタイト析出を抑制すると共に、耐二次加工脆性を改善する効果がある。しかしながら、いずれも、添加量が下限に満たないとその添加効果に乏しく、一方過剰な添加は鋼材コストの上昇を招く他、鋼材のΔr値を正にする傾向があるため、それぞれ上記の範囲で含有させるものとした。
One or more selected from Mo: 0.01-0.5%, Cr: 0.05-0.8% and V: 0.01-0.2%
Mo and Cr are useful elements that have the effect of delaying the critical cooling rate at which a martensite phase can be obtained, similar to Mn, when utilizing structural strengthening by a low-temperature transformation phase to increase the strength of steel materials. V is not only useful for precipitation fixing of N, but V-based carbides effectively contribute to precipitation strengthening. There is no difference in effect even if these elements are added alone or in combination. Furthermore, Mo and V, like Nb, tend to segregate along the grain boundary, and suppress coarse grainite precipitation at the hot-rolled grain boundary that hinders the increase of the r value, and are resistant to secondary work brittleness. There is an effect to improve. However, in any case, when the addition amount is less than the lower limit, the effect of addition is poor. On the other hand, excessive addition leads to an increase in the steel material cost and also tends to make the Δr value of the steel material positive. It was supposed to be included.

M=[%Mn]+3[%Mo]+1.3[%Cr]+0.5[%V]≧2
上記した構成成分のうち、Mnと、Mo,CrおよびVについては、上掲式で規定されるMの値が2以上を満足する範囲で含有させる必要がある。
というのは、M値が2未満だと、焼鈍後の冷却過程でマルテンサイトが形成されず、十分な強度を得ることができないからである。なお、M値の上限は特に限定されないが、あまりに大きいと合金添加コストが上昇するだけでなく、圧延負荷が大きくなるので、M値は3.5以下程度とするのが好ましい。
M = [% Mn] +3 [% Mo] +1.3 [% Cr] +0.5 [% V] ≧ 2
Among the above-described constituent components, Mn, Mo, Cr and V need to be contained in a range where the value of M defined by the above formula satisfies 2 or more.
This is because if the M value is less than 2, martensite is not formed in the cooling process after annealing, and sufficient strength cannot be obtained. The upper limit of the M value is not particularly limited, but if it is too large, not only will the alloy addition cost increase, but also the rolling load will increase, so the M value is preferably about 3.5 or less.

次に、本発明において、鋼組織を前記のように限定した理由について説明する。
本発明では、TS:440MPa以上好ましくは500MPa以上の高強度化のために、固溶強化に頼らず、組織強化を有効活用する。そのためには、鋼組織は、フェライト相を主相とし、組織全体に対する体積分率で15%以下のマルテンサイト相を含む混合組織とすることが重要である。
マルテンサイト相以外の相としては、べイナイトや残留オーステナイト、パーライト等が考えられるが、これらの相が存在していても、その比率がマルテンサイト相の体積分率を超えない範囲で存在する分には何等問題はない。
Next, the reason why the steel structure is limited as described above in the present invention will be described.
In the present invention, in order to increase the strength of TS: 440 MPa or more, preferably 500 MPa or more, the structure strengthening is effectively used without relying on the solid solution strengthening. For that purpose, it is important that the steel structure is a mixed structure containing a martensite phase having a ferrite phase as a main phase and a volume fraction of 15% or less with respect to the entire structure.
As phases other than the martensite phase, bainite, retained austenite, pearlite, and the like can be considered, but even if these phases are present, the ratio of the phases does not exceed the volume fraction of the martensite phase. There is no problem.

高強度化の観点からは、マルテンサイト相は組織全体に対する分率で1%以上好ましくは3%以上とすることが望ましい。しかしながら、この分率が、15%を超えると、低降伏比型(YR≦0.6)となり、また母地の軟質なフェライト相と硬質な第二相(ここではマルテンサイト、ベイナイト、残留オーステナイト、パーライト相等を指す)界面での塑性変形に悪影響を与え、r値を低下させるため、その上限を15%とした。   From the viewpoint of increasing the strength, it is desirable that the martensite phase is 1% or more, preferably 3% or more, as a fraction of the entire structure. However, if this fraction exceeds 15%, a low yield ratio type (YR ≦ 0.6) is obtained, and the soft ferrite phase and the hard second phase (here, martensite, bainite, retained austenite, pearlite). In order to adversely affect plastic deformation at the interface and reduce the r value, the upper limit was made 15%.

従来のように、固溶強化によってTS:500MPa以上の高強度化を図ろうとすると、必然的に合金元素添加量が多くなり、表面外観を損なう他、めっき性の劣化、そして何よりもr値が劣化する。この点、本発明のように組織強化を用いれば、合金添加量を抑制することができ、かつ鋼板の表面性状も良好に保つことができる。   When trying to increase the strength of TS: 500 MPa or more by solid solution strengthening as before, the amount of alloying elements inevitably increases, the surface appearance is impaired, the plating property is deteriorated, and above all, the r value is to degrade. In this respect, if the structure strengthening is used as in the present invention, the amount of alloy addition can be suppressed, and the surface properties of the steel sheet can be kept good.

rD≧1.2で、かつ−1.0≦Δr値≦−0.3
ここに、Δr値=(rL−2×rD+rC)/2
但し、rL:圧延方向のr値
D:圧延方向と45°をなす方向のr値
C:圧延方向と直角方向のr値
発明者らの研究によれば、TS≧500MPaの高強度鋼板における角筒絞り成形性について検討した結果、従来の軟鋼板に比べて平均r値は低くても、角筒のコーナー部に当たる、鋼板のD方向のr値(rD)を1.2以上にすれば、角筒コーナー部の割れを回避できることが判明した。
また、面内異方性については、上掲式で算出したΔr値が−1を下回るほどになると、逆に各方向の流入バランスが崩れ、かえって成形性が悪くなるため、Δr値の下限は−1とした。一方、Δr値が−0.3より大きくなると、角筒コーナー部の材料の流入が相対的に悪くなり、プレス割れが生じ易くなるので、Δr値の上限は−0.3とした。
rD ≧ 1.2 and −1.0 ≦ Δr value ≦ −0.3
Here, Δr value = (r L −2 × r D + r C ) / 2
Where r L : r value in the rolling direction
r D : r value in the direction of 45 ° with the rolling direction
r C : r value in the direction perpendicular to the rolling direction According to the study by the inventors, as a result of studying the rectangular tube drawing formability of a high strength steel plate of TS ≧ 500 MPa, the average r value is lower than that of a conventional mild steel plate. However, it has been found that if the r value (r D ) in the D direction of the steel sheet, which hits the corner portion of the square tube, is 1.2 or more, cracking of the corner portion of the square tube can be avoided.
As for the in-plane anisotropy, when the Δr value calculated by the above equation is less than −1, the inflow balance in each direction is reversed and the formability is deteriorated. Therefore, the lower limit of the Δr value is It was set to -1. On the other hand, when the Δr value is larger than −0.3, the inflow of the material at the corner portion of the rectangular tube is relatively deteriorated and press cracking is likely to occur. Therefore, the upper limit of the Δr value is set to −0.3.

次に、本発明の製造方法について説明する。
本発明の高強度冷延圧延鋼板は、所定の成分組成に調整した鋼スラブを、仕上圧延出側温度が910〜800℃となるように熱間圧延して熱延鋼板とする工程と、熱延板を550〜700℃の温度で巻取る工程と、巻取り後の熱延鋼板を55〜80%の圧下率で冷間圧延して冷延鋼板とする工程と、冷延鋼板を少なくとも300〜700℃の温度域について平均昇温速度:10℃/s以上で昇温し、800〜900℃の温度域に120s以上滞留させるヒートサイクルで再結晶焼鈍する工程とにより製造することができる。
以下、各製造工程順に説明する。
Next, the manufacturing method of this invention is demonstrated.
The high-strength cold-rolled steel sheet of the present invention is a hot-rolled steel sheet obtained by hot rolling a steel slab adjusted to a predetermined component composition so that the finish rolling exit temperature is 910 to 800 ° C. A step of winding the rolled sheet at a temperature of 550 to 700 ° C, a step of cold rolling the rolled hot-rolled steel sheet at a rolling reduction of 55 to 80% to obtain a cold-rolled steel sheet, and at least 300 cold-rolled steel sheets In the temperature range of ˜700 ° C., the average temperature increase rate is 10 ° C./s or higher, and the step of recrystallization annealing is performed in a heat cycle in which the temperature is kept at 800 ° C. to 900 ° C. for 120 s or more.
Hereinafter, it demonstrates in order of each manufacturing process.

本発明では、まず前記した好適成分組成に調整した鋼スラブを製造する。スラブの製造法としては、成分のマクロ偏析を防止する上では連続鋳造法が望ましいが、造塊法や薄スラブ鋳造法で製造することもできる。   In the present invention, first, a steel slab adjusted to the above-described preferred component composition is produced. As a method for producing a slab, a continuous casting method is desirable for preventing macro segregation of components, but it can also be produced by an ingot-making method or a thin slab casting method.

ついで、鋼スラブを熱間圧延するには、鋼スラブを一旦室温まで冷却し、その後再加熱して圧延する従来法に加え、連続鋳造後直ちに熱間圧延する方法、あるいは室温まで冷却せず温片のままで加熱炉に装入してから圧延する方法などの省エネルギープロセスも問題なく適用することができる。
ここに、スラブ加熱温度は、熱間圧延時における圧延荷重の増大や、それに伴うトラブル発生の危険性を回避するためには1000℃以上とすることが好ましく、一方酸化重量の増加に伴うスケールロスの増大を防止するためには1300℃以下とすることが好適である。
加熱後のスラブは、粗圧延によりシートバーとされる。粗圧延の条件は、特に規定されることはなく、常法に従って行えばよい。なお、スラブの加熱温度を低目にした場合には、圧延時のトラブルを防止するという観点から、シートバーヒーターを活用してシートバーを加熱することが好ましい。
Next, in order to hot-roll steel slabs, in addition to the conventional method of cooling steel slabs to room temperature and then reheating and rolling them, hot rolling is performed immediately after continuous casting, or the temperature is not cooled to room temperature. An energy saving process such as a method of rolling a piece as it is after charging it into a heating furnace can be applied without any problem.
Here, the slab heating temperature is preferably set to 1000 ° C. or higher in order to avoid an increase in rolling load during hot rolling and the risk of troubles associated therewith, while scale loss accompanying an increase in oxidized weight. In order to prevent this increase, it is preferable that the temperature be 1300 ° C. or lower.
The slab after heating is made into a sheet bar by rough rolling. The conditions for rough rolling are not particularly specified, and may be performed according to a conventional method. When the heating temperature of the slab is lowered, it is preferable to heat the sheet bar using a sheet bar heater from the viewpoint of preventing troubles during rolling.

シートバーは、仕上圧延により熱延板とされる。このとき、圧延時の負荷が高くならないように、また未再結晶オーステナイト状態で圧延による歪を蓄積させるために、仕上温度(FT)は、800℃以上 910℃以下にする必要がある。また、圧延荷重を低減し、鋼板の形状や特性の均一化を図るために、仕上圧延の一部または全部のパスを潤滑圧延とすることもできる。潤滑圧延時の摩擦係数は0.10〜0.25程度とすることが好ましい。さらに、熱間圧延の操業安定性の観点から、シートバー同士を接合して連続的に圧延する連続圧延プロセスを適用することは有利である。   The sheet bar is a hot-rolled sheet by finish rolling. At this time, the finishing temperature (FT) needs to be set to 800 ° C. or more and 910 ° C. or less in order not to increase the load during rolling and to accumulate strain due to rolling in the non-recrystallized austenite state. Further, in order to reduce the rolling load and make the shape and characteristics of the steel plate uniform, a part or all of the finishing rolling can be lubricated. The friction coefficient during lubrication rolling is preferably about 0.10 to 0.25. Furthermore, from the viewpoint of operational stability of hot rolling, it is advantageous to apply a continuous rolling process in which sheet bars are joined and continuously rolled.

熱間圧延後の巻取温度(CT)は、適切なサイズのNbC(MoやVとの複合炭化物を形成している場合もある)を析出させるために550〜700℃とする必要がある。CTが700℃を超えると、析出物が粗大化する傾向にあり、熱延板の結晶粒が粗大化し、その結果、冷延焼鈍後の組織も粗大化しやすくなり、強度低下や表面性状の劣化を招くおそれがある。一方、CTが550℃未満では、NbCの析出が起こりにくく深絞り性を確保することが困難になる他、低温では比較的微細な炭化物が析出するため熱延板強度を上昇させて冷間圧延時の圧延負荷が高まる不利がある。好ましいCTは580〜680℃の範囲である。   The coiling temperature (CT) after hot rolling needs to be 550 to 700 ° C. in order to precipitate an appropriately sized NbC (which may form a composite carbide with Mo or V). When CT exceeds 700 ° C, precipitates tend to become coarse, and the crystal grains of the hot-rolled sheet become coarse. As a result, the structure after cold-rolling annealing also tends to become coarse, resulting in reduced strength and deterioration of surface properties. May be incurred. On the other hand, if the CT is less than 550 ° C., precipitation of NbC hardly occurs and it is difficult to ensure deep drawability, and since relatively fine carbides precipitate at low temperature, the hot-rolled sheet strength is increased and cold rolling is performed. There is a disadvantage that the rolling load at the time increases. The preferred CT is in the range of 580-680 ° C.

巻取り後の熱延板は、酸洗によりスケールを除去したのち、冷間圧延により冷延板とされる。冷延時の圧下率は、深絞り性の向上の観点から少なくとも55%とする必要がある。焼鈍板特性におけるr値の異方性の観点からは60%以上とすることが好ましい。一方、圧下率が80%超になるとD方向のr値の顕著な増加が見られなくなる他、変形抵抗を高める傾向があるNbを添加している本発明鋼では圧延負荷を高める懸念がある。このため、冷間圧延における圧下率は55〜80%の範囲に限定した。なお、本発明では、圧下率の上限を80%としたが、設備能力によっては、これ以上の圧下率で圧延しても特に問題はない。   The hot-rolled sheet after winding is made into a cold-rolled sheet by cold rolling after removing the scale by pickling. The rolling reduction during cold rolling needs to be at least 55% from the viewpoint of improving deep drawability. From the viewpoint of the anisotropy of the r value in the annealing plate characteristics, it is preferably 60% or more. On the other hand, when the rolling reduction exceeds 80%, there is no appreciable increase in the r value in the D direction, and there is a concern of increasing the rolling load in the steel of the present invention to which Nb, which tends to increase the deformation resistance, is added. For this reason, the rolling reduction in cold rolling is limited to the range of 55 to 80%. In the present invention, the upper limit of the rolling reduction is set to 80%. However, depending on the equipment capacity, there is no particular problem even when rolling at a rolling reduction higher than this.

冷延板は、少なくとも300〜700℃の温度域については平均昇温速度:10℃/s以上の速度で昇温し、800〜900℃で再結晶焼鈍を施す。300℃から700℃までの温度域の昇温速度は、本発明のポイントの一つであるr値の異方性の観点から重要で、この温度域での平均昇温速度が10℃/s未満では所望するr値の異方性が得られない。従って、本発明では、箱焼鈍(バッチ焼鈍)は好ましくなく、連続焼鈍ラインを使用することが必須となる。
ここに、300℃から700℃までの温度域での昇温速度は、再結晶と変態の進行具合に影響を与えると考えられ、結果として、従来のDP鋼に比べて、より微細で少量のマルテンサイト相を均一に形成することができ、形状性を向上させるものと考えられる。特に、Nb添加による再結晶遅延がその後の2相域焼鈍におけるα−γ変態に何らかの影響を及ぼした結果と推測されるが、詳細は不明である。
なお、平均昇温速度は、30℃/sを超えると設備への負荷が大きくなるので、30℃/s以下とすることが好ましい。より好ましくは25℃/s以下である。
The cold-rolled plate is heated at an average temperature increase rate of 10 ° C./s or more in a temperature range of at least 300 to 700 ° C., and is subjected to recrystallization annealing at 800 to 900 ° C. The temperature increase rate in the temperature range from 300 ° C. to 700 ° C. is important from the viewpoint of the anisotropy of the r value, which is one of the points of the present invention, and the average temperature increase rate in this temperature range is 10 ° C./s. If it is less than 1, the desired anisotropy of the r value cannot be obtained. Therefore, in the present invention, box annealing (batch annealing) is not preferable, and it is essential to use a continuous annealing line.
Here, the rate of temperature increase in the temperature range from 300 ° C to 700 ° C is thought to affect the progress of recrystallization and transformation, and as a result, it is finer and smaller in amount than conventional DP steel. It is considered that the martensite phase can be formed uniformly and the shape is improved. In particular, it is speculated that the recrystallization delay due to the addition of Nb had some effect on the α-γ transformation in the subsequent two-phase annealing, but the details are unknown.
The average rate of temperature rise is preferably 30 ° C./s or less because the load on the equipment increases when it exceeds 30 ° C./s. More preferably, it is 25 ° C./s or less.

焼鈍温度は、再結晶温度以上で、冷却後にフェライト相とマルテンサイト相を含む組織が得られる(α+γ)2相域温度以上とするため、800℃以上とする。しかしながら、900℃を超えると、再結晶粒が著しく粗大化する他、集合組織がランダム化してr値が劣化するだけでなく、機械的特性および表面性状が著しく劣化する傾向がある。
なお、特に限定するものではないが、再結晶粒を十分に発達させて深絞り性や穴広げ性を向上させるためには、700℃から焼鈍温度までの温度域については、昇温速度が好ましくは5℃/s以下の徐加熱とすることが望ましい。
さらに、十分に再結晶させるため、また(α+γ)2相城において相分離と固溶Cのオーステナイト相への濃化を十分に促進させるために、800〜900℃の温度域に120秒以上滞留させることが重要である。とはいえ、滞留時間が長すぎると、結晶粒が粗大化し、強度や表面性状など諸特性が劣化する傾向があることや、生産性の観点から、上限は300秒程度とすることが望ましい。
The annealing temperature is set to 800 ° C. or higher in order to set the annealing temperature to the recrystallization temperature or higher and to the (α + γ) two-phase region temperature or higher at which a structure including a ferrite phase and a martensite phase is obtained after cooling. However, when the temperature exceeds 900 ° C., the recrystallized grains are remarkably coarsened, and not only the texture is randomized and the r value is deteriorated, but also mechanical properties and surface properties tend to be remarkably deteriorated.
Although not particularly limited, in order to sufficiently develop the recrystallized grains and improve the deep drawability and hole expansibility, a temperature increase rate is preferable in the temperature range from 700 ° C. to the annealing temperature. Is preferably a slow heating of 5 ° C./s or less.
Furthermore, in order to sufficiently recrystallize and to sufficiently promote phase separation and concentration of solute C to austenite phase in (α + γ) two-phase castle, it stays in the temperature range of 800-900 ° C for 120 seconds or more. It is important to let However, if the residence time is too long, the crystal grains become coarse and various properties such as strength and surface properties tend to deteriorate, and from the viewpoint of productivity, the upper limit is preferably about 300 seconds.

焼鈍後の冷却速度は、マルテンサイト相形成の観点から800〜550℃の温度域を平均冷却速度:5℃/s以上で冷却することか望ましいが、本発明では、M値を規制することで、マルテンサイト相が得られる臨界冷却速度を低くしているので、一般的な連続焼鈍ライン設備の冷却速度であれば、十分にDP組織を得ることができる。また、既存設備に付帯している過時効帯を通板させることも何等問題はないが、マルテンサイト相が焼戻らない程度の温度として、過時効帯は400℃以下の温度とすることが望ましい。   As for the cooling rate after annealing, it is desirable that the temperature range of 800 to 550 ° C. is cooled at an average cooling rate of 5 ° C./s or more from the viewpoint of martensite phase formation, but in the present invention, the M value is regulated. Since the critical cooling rate at which the martensite phase is obtained is lowered, the DP structure can be sufficiently obtained if the cooling rate is that of a general continuous annealing line facility. In addition, there is no problem to let the overaging band attached to the existing equipment pass through, but it is desirable that the overaging band should be 400 ° C or less as the temperature at which the martensite phase is not tempered. .

さらに、冷却後の鋼板には、電気めっき処理や溶融めっき処理などによりめっき層を形成することができる。なお、オンラインで溶融めっきあるいは合金化溶融めっきを施す場合には、マルテンサイト相形成の観点から、前述したように800℃からめっき浴浸漬直前までの温度域を平均冷却速度:5℃/s以上で冷却することが望ましい。このとき、めっき浴浸漬直前の鋼板温度は概ね480〜520℃、めっき浴温度は概ね440〜480℃であり、合金化温度は概ね500〜600℃である。   Furthermore, a plated layer can be formed on the cooled steel sheet by electroplating or hot dipping. In addition, when performing hot dipping or alloying hot dipping online, the temperature range from 800 ° C. to just before dipping in the plating bath is average cooling rate: 5 ° C./s or more as described above from the viewpoint of martensite phase formation. It is desirable to cool with. At this time, the steel plate temperature immediately before immersion in the plating bath is approximately 480 to 520 ° C., the plating bath temperature is approximately 440 to 480 ° C., and the alloying temperature is approximately 500 to 600 ° C.

また、このようにして製造された冷延鋼板あるいはめっき鋼板に対し、形状矯正、表面粗度調度の目的で調質圧延またはレべラー加工を施すこともできる。調質圧延あるいはレベラー加工の伸び率は合計で0.2〜15%程度とすることが好ましい。というのは、伸び率が0.2%未満では、形状矯正や表面粗度調整の目的が達成できないおそれがあり、一方15%を超えると延性の著しい低下を招くおそれがあるからである。   In addition, the cold-rolled steel sheet or the plated steel sheet thus manufactured can be subjected to temper rolling or leveler processing for the purposes of shape correction and surface roughness adjustment. The total elongation of temper rolling or leveler processing is preferably about 0.2 to 15%. This is because if the elongation is less than 0.2%, the purpose of shape correction and surface roughness adjustment may not be achieved, while if it exceeds 15%, the ductility may be significantly reduced.

表1に示す成分組成になる鋼スラブを、1250℃に加熱後、表2に示す温度で仕上圧延し、コイルに巻き取って、板厚:4mmの熱延板とした。ついで、酸洗後、表2に示す圧下率で冷延したのち、300〜700℃の温度域を種々の昇温速度で加熱し、表2に示す焼鈍温度および滞留時間の連続焼鈍を施して、冷延焼鈍板とした。この冷延焼鈍板には、その後伸長率:0.5%の調質圧延を施した。
かくして得られた各冷延焼鈍板の引張試験による機械的特性、第二相分率、r値および角筒絞り成形性について調べた結果を、表3に示す。
A steel slab having the component composition shown in Table 1 was heated to 1250 ° C. and then finish-rolled at the temperature shown in Table 2 and wound around a coil to obtain a hot rolled sheet having a thickness of 4 mm. Next, after pickling, after cold rolling at the rolling reduction shown in Table 2, the temperature range of 300-700 ° C. is heated at various heating rates and subjected to continuous annealing at the annealing temperature and residence time shown in Table 2. A cold-rolled annealed plate was used. The cold-rolled annealed sheet was then subjected to temper rolling with an elongation of 0.5%.
Table 3 shows the results of examining the mechanical properties, the second phase fraction, the r value, and the rectangular tube drawing formability of each cold-rolled annealed sheet thus obtained by a tensile test.

なお、各特性は次のようにして調査した。
(1)機械的特性(引張試験)
引張試験による機械的特性は、次のようにして調査した。すなわち、各冷延焼鈍板から圧延方向に対して90°方向(C方向)にJIS Z 2201に規定される5号試験片を切出し、室温で引張試験を実施した。引張速度はクロスヘッド速度:10mm/min一定とし、JIS Z 2241に準拠して、引張強さTS、降伏強さYS(0.2%流動応力)、降伏比YR(YS/TS)および伸びU.El(一様伸び)を測定した。
Each characteristic was investigated as follows.
(1) Mechanical properties (tensile test)
The mechanical properties by the tensile test were investigated as follows. That is, a No. 5 test piece defined in JIS Z 2201 was cut out from each cold-rolled annealed plate in a 90 ° direction (C direction) with respect to the rolling direction, and a tensile test was performed at room temperature. The tensile speed is constant at the crosshead speed: 10 mm / min. In accordance with JIS Z 2241, tensile strength TS, yield strength YS (0.2% flow stress), yield ratio YR (YS / TS) and elongation U.El (Uniform elongation) was measured.

(2)第二相分率
各冷延焼鈍板から試験片を採取し、圧延方向に平行な板厚断面(L断面)について、光学顕微鏡あるいは走査型電子顕微鏡を用いて微視組織を撮像し、これを画像解析装置で解析して、主相であるフェライト相の面積率と第二相の種類および面積率を求めた。
(2) Second phase fraction A specimen is taken from each cold-rolled annealed plate, and a microscopic structure is imaged using an optical microscope or a scanning electron microscope with respect to a plate thickness section (L section) parallel to the rolling direction. Then, this was analyzed with an image analyzer, and the area ratio of the ferrite phase as the main phase, the type and area ratio of the second phase were obtained.

(3)r値
各冷延焼鈍板からL方向(圧延方向)、D方向(圧延方向と45°をなす方向)およびC方向(圧延方向と90°をなす方向)からそれぞれJIS Z 2201に規定される5号試験片を切出し、JIS Z 2254の規定に準拠してそれぞれのr値(rL,rD,rC)を求め、次式に従い平均r値と面内異方性(Δr値)を算出した。なお、付与した塑性歪は規定どおり均一伸びの範囲内で、10%とした。
平均r値=(rL+2×rD+rC)/4
Δr値=(rL−2×rD+rC)/2
(3) r value Specified in JIS Z 2201 from each cold-rolled annealed sheet from the L direction (rolling direction), D direction (direction that forms 45 ° with the rolling direction) and C direction (direction that forms 90 ° with the rolling direction). No. 5 test piece was cut out, and the respective r values (r L , r D , r C ) were obtained in accordance with the provisions of JIS Z 2254, and the average r value and in-plane anisotropy (Δr value) according to the following formula ) Was calculated. The applied plastic strain was 10% within the range of uniform elongation as specified.
Average r value = (r L + 2 × r D + r C ) / 4
Δr value = (r L −2 × r D + r C ) / 2

(4)角筒絞り成形性
各冷延焼鈍板から、ブランクサイズ:200×200mmで板取りし、しわ押さえ力:45ton、ポンチサイズ:100×100mm、ポンチ(縁)Rp:5mm、ポンチ(コーナー)Rc:15mm、ダイス(縁)Rd:10mm、ダイス(コーナー)Rc:16.5mmで角筒成形試験を行った。この試験で成形できたものを○、できなかったものを×で評価した。
(4) Square tube drawability Each cold-rolled annealed sheet is blanked at a blank size of 200 x 200 mm, wrinkle holding force: 45 tons, punch size: 100 x 100 mm, punch (edge) Rp: 5 mm, punch (corner) ) Rc: 15 mm, dice (edge) Rd: 10 mm, dice (corner) Rc: 16.5 mm. What was shape | molded by this test was evaluated by (circle), and what was not able to be evaluated by x.

Figure 0005071125
Figure 0005071125

Figure 0005071125
Figure 0005071125

Figure 0005071125
Figure 0005071125

表3に示したとおり、本発明の要件を満足する発明例はいずれも、TSが440MPa以上という高強度冷延鋼板において、優れた角筒絞り成形性が得られている。   As shown in Table 3, all the inventive examples that satisfy the requirements of the present invention have excellent square tube drawability in a high-strength cold-rolled steel sheet having a TS of 440 MPa or more.

また、一部の冷延焼鈍板については形状凍結性についても調査した。
すなわち、表3のNo.6,8,18および20の各種冷延鋼板を用い、形状凍結性を調査するために、ハット成形試験を行った。ハット成形試験は、図1に示すように、ブランクサイズ:80×340 mm、しわ押さえ力:10 ton、ダイ肩R:2mm、ポンチ肩:5mm、ストローク:100mmの条件で行った。
得られた結果を図2に示す。
同図に示したとおり、降伏比YRが0.6を超える発明材では、同強度レベルの従来複合組織鋼板(No.20)に比べ、開き量および反り量が共に改善されていることが分かる。
In addition, the shape freezing property of some cold-rolled annealed plates was also investigated.
That is, a hat forming test was conducted in order to investigate the shape freezing property using various cold rolled steel sheets of No. 6, 8, 18 and 20 in Table 3. As shown in FIG. 1, the hat forming test was performed under the conditions of blank size: 80 × 340 mm, crease pressing force: 10 ton, die shoulder R: 2 mm, punch shoulder: 5 mm, stroke: 100 mm.
The obtained results are shown in FIG.
As shown in the figure, it can be seen that both the opening amount and the warpage amount are improved in the invention material having the yield ratio YR exceeding 0.6 as compared with the conventional composite structure steel plate (No. 20) having the same strength level.

ハット成形試験の成形条件を示した図である。It is the figure which showed the molding conditions of a hat molding test. ハット成形試験後のYRと開き量および板反り量との関係を示した図である。It is the figure which showed the relationship between YR after a hat forming test, the amount of opening, and the amount of board curvature.

Claims (5)

質量%で、
C:0.010〜0.050%、
Si:1.0%以下、
Mn:1.5〜3.0%、
P:0.1%以下、
S:0.01%以下、
Al:0.005〜0.5%、
Ti:0.005〜0.05%、
Nb:0.01〜0.3%および
N:0.01%以下
を含み、かつ
Mo:0.01〜0.5%、
Cr:0.05〜0.8%および
V:0.01〜0.2%
のうちから選んだ一種または二種以上を、
M=[%Mn]+3[%Mo]+1.3[%Cr]+0.5[%V]≧2
を満足する範囲で含有し、残部はFeおよび不可避的不純物の組成になり、フェライト相を主相とし、体積分率で15%以下のマルテンサイト相を含む混合組織からなる鋼組織を有し、圧延方向と45°をなす方向のr値(rD)が1.2以上で、かつ下記式で示される面内異方性(Δr値)が−1.0≦Δr値≦−0.3の範囲を満足することを特徴とする角筒絞り成形性と形状凍結性に優れた高強度冷延鋼板。

Δr値=(rL−2×rD+rC)/2
但し、rL:圧延方向のr値
D:圧延方向と45°をなす方向のr値
C:圧延方向と90°をなす方向のr値
% By mass
C: 0.010 to 0.050%
Si: 1.0% or less,
Mn: 1.5-3.0%
P: 0.1% or less,
S: 0.01% or less,
Al: 0.005-0.5%
Ti: 0.005-0.05%
Nb: 0.01 to 0.3% and N: 0.01% or less, and
Mo: 0.01-0.5%
Cr: 0.05-0.8% and V: 0.01-0.2%
One or more selected from
M = [% Mn] +3 [% Mo] +1.3 [% Cr] +0.5 [% V] ≧ 2
The balance is the composition of Fe and inevitable impurities, the ferrite phase is the main phase, and has a steel structure consisting of a mixed structure containing a martensite phase with a volume fraction of 15% or less, The r value (r D ) in the direction forming 45 ° with the rolling direction is 1.2 or more, and the in-plane anisotropy (Δr value) represented by the following formula satisfies the range of −1.0 ≦ Δr value ≦ −0.3. A high-strength cold-rolled steel sheet with excellent square tube formability and shape freezing characteristics.
Record
Δr value = (r L −2 × r D + r C ) / 2
Where r L : r value in the rolling direction
r D : r value in the direction of 45 ° with the rolling direction
r C : r value in the direction of 90 ° with the rolling direction
降伏比が0.6を超えることを特徴とする請求項1に記載の角筒絞り成形性と形状凍結性に優れた高強度冷延鋼板。   The high strength cold-rolled steel sheet excellent in square tube drawing formability and shape freezing property according to claim 1, wherein the yield ratio exceeds 0.6. 鋼板表面にめっき層を有することを特徴とする請求項1または2に記載の角筒絞り成形性と形状凍結性に優れた高強度冷延鋼板。   The high-strength cold-rolled steel sheet excellent in square tube drawing formability and shape freezing property according to claim 1 or 2, wherein the steel sheet surface has a plating layer. 質量%で、
C:0.010〜0.050%、
Si:1.0%以下、
Mn:1.5〜3.0%、
P:0.1%以下、
S:0.01%以下、
Al:0.005〜0.5%、
Ti:0.005〜0.05%、
Nb:0.01〜0.3%および
N:0.01%以下
を含み、かつ
Mo:0.01〜0.5%、
Cr:0.05〜0.8%および
V:0.01〜0.2%
のうちから選んだ一種または二種以上を、
M=[%Mn]+3[%Mo]+1.3[%Cr]+0.5[%V]≧2
を満足する範囲で含有し、残部はFeおよび不可避的不純物の組成になる鋼スラブを、仕上圧延温度:910〜800℃で熱間圧延したのち、550〜700℃の温度でコイルに巻取り、圧下率:55〜80%で冷間圧延後、少なくとも300〜700℃の温度域を10℃/s以上の速度で加熱し、800〜900℃の温度域に120s以上滞留させるヒートサイクルで連続焼鈍することを特徴とする角筒絞り成形性と形状凍結性に優れた高強度冷延鋼板の製造方法。
% By mass
C: 0.010 to 0.050%
Si: 1.0% or less,
Mn: 1.5-3.0%
P: 0.1% or less,
S: 0.01% or less,
Al: 0.005-0.5%
Ti: 0.005-0.05%
Nb: 0.01 to 0.3% and N: 0.01% or less, and
Mo: 0.01-0.5%
Cr: 0.05-0.8% and V: 0.01-0.2%
One or more selected from
M = [% Mn] +3 [% Mo] +1.3 [% Cr] +0.5 [% V] ≧ 2
The steel slab that contains Fe and the inevitable impurities composition is hot rolled at a finish rolling temperature of 910 to 800 ° C, and then wound into a coil at a temperature of 550 to 700 ° C. Reduction ratio: After cold rolling at 55-80%, continuous annealing in a heat cycle in which at least 300-700 ° C temperature range is heated at a rate of 10 ° C / s or more and stays in the 800-900 ° C temperature range for 120s or more. A method for producing a high-strength cold-rolled steel sheet excellent in square tube drawing formability and shape freezeability.
請求項1〜3のいずれか1項に記載の高強度冷延鋼板に、角筒絞り成形を施して得たことを特徴とする製品形状に優れた自動車用部品。   An automotive part having an excellent product shape obtained by subjecting the high-strength cold-rolled steel sheet according to any one of claims 1 to 3 to square tube drawing.
JP2008018287A 2008-01-29 2008-01-29 High-strength cold-rolled steel sheet excellent in square tube drawing formability and shape freezing property, manufacturing method thereof, and automotive parts excellent in product shape Active JP5071125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008018287A JP5071125B2 (en) 2008-01-29 2008-01-29 High-strength cold-rolled steel sheet excellent in square tube drawing formability and shape freezing property, manufacturing method thereof, and automotive parts excellent in product shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008018287A JP5071125B2 (en) 2008-01-29 2008-01-29 High-strength cold-rolled steel sheet excellent in square tube drawing formability and shape freezing property, manufacturing method thereof, and automotive parts excellent in product shape

Publications (2)

Publication Number Publication Date
JP2009179832A JP2009179832A (en) 2009-08-13
JP5071125B2 true JP5071125B2 (en) 2012-11-14

Family

ID=41034035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008018287A Active JP5071125B2 (en) 2008-01-29 2008-01-29 High-strength cold-rolled steel sheet excellent in square tube drawing formability and shape freezing property, manufacturing method thereof, and automotive parts excellent in product shape

Country Status (1)

Country Link
JP (1) JP5071125B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5655475B2 (en) * 2010-03-24 2015-01-21 Jfeスチール株式会社 High-strength cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof
CN103328669B (en) * 2011-04-12 2015-03-11 新日铁住金株式会社 High-strength steel plate and high-strength steel pipe having excellent deformability and low-temperature toughness, and manufacturing methods therefor
CN103695764B (en) * 2012-09-27 2016-01-20 上海梅山钢铁股份有限公司 A kind of cold rolling hot-dip strip steel for liquid crystal module back board and production method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4555693B2 (en) * 2005-01-17 2010-10-06 新日本製鐵株式会社 High-strength cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof
JP5034364B2 (en) * 2005-08-16 2012-09-26 Jfeスチール株式会社 Manufacturing method of high-strength cold-rolled steel sheet
JP4345827B2 (en) * 2007-03-05 2009-10-14 住友金属工業株式会社 High-strength cold-rolled steel sheet, high-strength galvannealed steel sheet, and production method thereof

Also Published As

Publication number Publication date
JP2009179832A (en) 2009-08-13

Similar Documents

Publication Publication Date Title
JP6443592B1 (en) High strength steel sheet
JP5402191B2 (en) Ultra-high-strength cold-rolled steel sheet with excellent stretch flangeability and manufacturing method thereof
JP5217395B2 (en) High strength cold-rolled steel sheet with small in-plane anisotropy of elongation and method for producing the same
JP5549414B2 (en) Cold-rolled thin steel sheet having excellent shape freezing property and manufacturing method thereof
CN110832098A (en) Hot-rolled steel sheet and method for producing same
JP5825481B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and bake hardenability and its manufacturing method
JP4740099B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP5408314B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and material uniformity in the coil and method for producing the same
US9598755B2 (en) High strength galvanized steel sheet having excellent deep drawability and stretch flangeability and method for manufacturing the same
WO2013114850A1 (en) Hot-dip galvanized steel sheet and production method therefor
WO2016031165A1 (en) High-strength hot-dip galvanized steel sheet having superb stretch-flangeability, in-plane stability of stretch-flangeability, and bendability, and method for producing same
WO2013084478A1 (en) Method for manufacturing high-strength cold-rolled steel sheet having excellent aging resistance and bake hardenability
JP5532088B2 (en) High-strength hot-dip galvanized steel sheet excellent in deep drawability and manufacturing method thereof
JP5655475B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof
JP2004225132A (en) High strength cold rolled steel sheet and plated steel sheet having excellent deep drawability, steel tube having excellent workability, and production method therefor
JP3901039B2 (en) Ultra-high strength cold-rolled steel sheet having excellent formability and method for producing the same
JP2013181183A (en) High strength cold rolled steel sheet having low in-plane anisotropy of yield strength, and method of producing the same
JP4062961B2 (en) High tensile hot-rolled steel sheet excellent in mold galling resistance and fatigue resistance and method for producing the same
AU2005227556A1 (en) High-rigidity high-strength thin steel sheet and method for producing same
JP5071125B2 (en) High-strength cold-rolled steel sheet excellent in square tube drawing formability and shape freezing property, manufacturing method thereof, and automotive parts excellent in product shape
JP3864663B2 (en) Manufacturing method of high strength steel sheet
JP4010131B2 (en) Composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof
JP5304522B2 (en) High-strength steel sheet with excellent workability and method for producing the same
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
WO2023002910A1 (en) Cold-rolled steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120806

R150 Certificate of patent or registration of utility model

Ref document number: 5071125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250