JP5063486B2 - Heat pump hot water heating system - Google Patents

Heat pump hot water heating system Download PDF

Info

Publication number
JP5063486B2
JP5063486B2 JP2008143387A JP2008143387A JP5063486B2 JP 5063486 B2 JP5063486 B2 JP 5063486B2 JP 2008143387 A JP2008143387 A JP 2008143387A JP 2008143387 A JP2008143387 A JP 2008143387A JP 5063486 B2 JP5063486 B2 JP 5063486B2
Authority
JP
Japan
Prior art keywords
water temperature
heat
return water
temperature difference
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008143387A
Other languages
Japanese (ja)
Other versions
JP2009287895A (en
Inventor
則幸 ▲高▼須
清 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008143387A priority Critical patent/JP5063486B2/en
Publication of JP2009287895A publication Critical patent/JP2009287895A/en
Application granted granted Critical
Publication of JP5063486B2 publication Critical patent/JP5063486B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、ヒートポンプサイクルの冷媒と水熱媒とを熱交換器を介して熱交換させ、この水熱媒を室内放熱器に搬送し暖房を行うヒートポンプ温水暖房システムに関するものである。   The present invention relates to a heat pump hot water heating system in which heat is exchanged between a refrigerant of a heat pump cycle and a hydrothermal medium through a heat exchanger, and the hydrothermal medium is conveyed to an indoor radiator to perform heating.

ヒートポンプサイクルにより採熱した熱で、暖房に使う水熱媒を生成し、室内放熱器に送水して暖房を行うヒートポンプ温水暖房システムとも称される暖房システムにおいては、室内放熱器に水熱媒を搬送する部として、一般に交流電源で駆動する循環ポンプを用いる。この循環ポンプは、従来、運転する室内放熱器の台数や室内暖房負荷の大小に関わらず、常に一定の揚程にて運転するものが一般的であった。   In a heating system, also called a heat pump hot water heating system, which generates heat from the heat collected by the heat pump cycle, generates a water heating medium for heating, and sends water to the indoor radiator for heating. In general, a circulating pump driven by an AC power source is used as the conveying unit. Conventionally, this circulation pump is generally operated at a constant head regardless of the number of indoor radiators to be operated and the size of the indoor heating load.

上記のような暖房システムにおいては、室内暖房負荷が最大の場合に必要な放熱量を確保できるような流量が設定されるため、高温の水熱媒生成時に必要以上の流量が流れると、戻り水温が高温となり、ヒートポンプサイクルの冷媒圧力が上昇し、ヒートポンプサイクルの寿命低下、最悪の場合は破損に至る。又、室内暖房負荷が小さい場合、室内放熱器の放熱量が低下することにより、戻り水温が上昇し、凝縮温度が上昇することによりヒートポンプサイクルの効率が悪化する。又、室内暖房負荷が小さい場合、必要以上に流量を流すことにより、無駄に循環ポンプでエネルギーを消費するという課題があり、運転状況に応じて循環ポンプの回転数を制御し、適正な凝縮温度、適正な水温差を確保し、冷媒圧力の高圧化を抑制する必要があった。   In the heating system as described above, since the flow rate is set so as to secure the necessary heat dissipation when the indoor heating load is maximum, if the flow rate is higher than necessary when the high-temperature hydrothermal medium is generated, the return water temperature Becomes a high temperature, the refrigerant pressure of the heat pump cycle rises, the life of the heat pump cycle decreases, and in the worst case, the heat pump cycle breaks. Further, when the indoor heating load is small, the amount of heat released from the indoor radiator is reduced, the return water temperature is increased, and the condensation temperature is increased, thereby deteriorating the efficiency of the heat pump cycle. In addition, when the indoor heating load is small, there is a problem that energy is consumed by the circulation pump by flowing the flow rate more than necessary, and the rotation speed of the circulation pump is controlled according to the operating situation, and the appropriate condensation temperature Therefore, it was necessary to secure an appropriate water temperature difference and suppress an increase in the refrigerant pressure.

循環ポンプの回転数を制御し、流量を可変する技術として、例えば特許文献1に開示された技術がある。この技術では、室内放熱器の放熱負荷の大きさで変動する戻り水温が所定温度となるように循環ポンプの回転数を制御し、排熱回収の最適化を図っている。   As a technique for controlling the number of rotations of the circulation pump and changing the flow rate, for example, there is a technique disclosed in Patent Document 1. In this technique, the number of revolutions of the circulation pump is controlled so that the return water temperature that fluctuates depending on the size of the heat radiation load of the indoor radiator becomes a predetermined temperature, thereby optimizing the exhaust heat recovery.

特開2002−318007号公報JP 2002-318007 A

上記特許文献に示される技術は、室内放熱器の放熱負荷の大きさで変動する戻り水温が所定温度となるように循環ポンプの回転数を制御するものであって、ヒートポンプ温水暖房システムへの適用にあたっては、ヒートポンプサイクルの冷媒圧力の高圧化を抑制し、冷媒圧力が所定以下となるようにするための制御技術が必要である。又、ヒートポンプサイクルの効率化に着目した場合も、生成する水熱媒の温度が一定の温度の場合は、上記技術のように戻り水温が所定温度となるように循環ポンプの回転数を制御すれば、高効率化が可能となるが、生成する水熱媒の温度を室内暖房負荷に応じて自動的に可変する暖房システムや室内コントローラで任意に設定が可能であるシステムにおいては、生成する水熱媒の温度に関わらず、所定の戻り水温となるように循環ポンプ回転数を制御すると、例えば、目標とする戻り水温が低すぎると循環ポンプの回転数を必要以上に下げる必要があり、その結果、室内放熱器への水熱媒循環量が低下し、必要な放熱量を確保できない。また、目標とする戻り水温が高すぎるとヒートポンプサイクルの効率が悪化する。又、無駄に循環ポンプでエネルギーを消費するという問題があり、上記技術ではヒートポンプサイクルの冷媒圧力の高圧化抑制、ヒートポンプ温水暖房システムの性能の向上を十分なものとすることが困難であった。   The technique disclosed in the above-mentioned patent document controls the rotation speed of the circulation pump so that the return water temperature that fluctuates depending on the size of the heat radiation load of the indoor radiator becomes a predetermined temperature, and is applied to a heat pump hot water heating system. In this case, a control technique is required for suppressing the increase of the refrigerant pressure in the heat pump cycle so that the refrigerant pressure becomes a predetermined value or less. Also, when focusing on the efficiency of the heat pump cycle, if the temperature of the generated hydrothermal medium is constant, the rotation speed of the circulation pump should be controlled so that the return water temperature becomes a predetermined temperature as in the above technique. For example, in a heating system that automatically changes the temperature of the generated water heating medium according to the indoor heating load or a system that can be arbitrarily set by an indoor controller, Regardless of the temperature of the heat medium, if the circulation pump rotation speed is controlled so as to be a predetermined return water temperature, for example, if the target return water temperature is too low, the rotation speed of the circulation pump needs to be lowered more than necessary. As a result, the amount of circulating water heat medium to the indoor radiator is reduced, and a necessary amount of heat radiation cannot be secured. Moreover, if the target return water temperature is too high, the efficiency of the heat pump cycle is deteriorated. In addition, there is a problem that wasteful energy is consumed by the circulation pump, and it has been difficult to sufficiently increase the refrigerant pressure in the heat pump cycle and improve the performance of the heat pump hot water heating system.

本発明は、上記に鑑みてなされたものであって、流量低下による室内放熱器の放熱量不足を招くことなく、ヒートポンプサイクルの効率向上を実現することができるヒートポンプ温水暖房システムを得ることを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to obtain a heat pump hot water heating system capable of realizing an improvement in the efficiency of the heat pump cycle without incurring a shortage of heat radiation of the indoor radiator due to a decrease in flow rate. And

上記問題を解決するために本発明のヒートポンプ温水暖房システムは、ヒートポンプサイクルの冷媒と水熱媒とを熱交換器を介して熱交換させ、水熱媒を室内放熱器に搬送する循環ポンプと、この循環ポンプの揚程を制御する制御部とを有する熱源機と、熱源機に接続され熱源機から搬送される水熱媒により暖房を行う室内放熱器とを備えたヒートポンプ温水暖房システムにおいて、熱源機から室内放熱器に向かう水熱媒の温度(往き水温)と、室内放熱器から熱源機に戻る水熱媒の温度(戻り水温)との差である往き戻り水温差を検出する往き戻り水温検出部を備え、制御部は、往き戻り水温差が所定の範囲内となるように、循環ポンプの揚程を制御することを特徴とする。   In order to solve the above problem, the heat pump hot water heating system of the present invention comprises a circulation pump for exchanging heat between the refrigerant of the heat pump cycle and the hydrothermal medium via the heat exchanger, and conveying the hydrothermal medium to the indoor radiator. In a heat pump hot water heating system comprising: a heat source device having a control unit that controls the head of the circulation pump; and an indoor radiator that is connected to the heat source device and is heated by a water heat medium conveyed from the heat source device. The return water temperature detection detects the difference between the return water temperature, which is the difference between the temperature of the water heat medium (outward water temperature) from the interior to the indoor radiator and the temperature of the water heat medium (return water temperature) returning from the indoor radiator to the heat source unit And the control unit controls the head of the circulation pump so that the difference in the return water temperature is within a predetermined range.

また、制御部は、往き戻り水温差の減少に伴い、循環ポンプの揚程を下げ、往き戻り水温差の増大に伴い、循環ポンプの揚程を上げることを特徴とする。つまり、往き戻り水温差が往き戻り水温差下限未満である場合、循環ポンプの揚程を下げ、往き戻り水温差が往き戻り水温差上限以上である場合、循環ポンプの揚程を上げることを特徴とする。   Further, the control unit is characterized in that the head of the circulation pump is lowered as the return water temperature difference decreases, and the head of the circulation pump is raised as the return water temperature difference increases. That is, when the difference in the return water temperature is less than the lower limit of the return water temperature difference, the head of the circulation pump is lowered, and when the difference in the return water temperature is greater than or equal to the upper limit of the return water temperature difference, the head of the circulation pump is increased. .

往き戻り温度差がある一定の範囲内の温度となるように循環ポンプの揚程を制御することにより、流量低下による室内放熱器の放熱量不足を招くことなく、ヒートポンプサイクルの効率向上を実現することができる。   By controlling the head of the circulation pump so that the difference between the return and return temperatures is within a certain range, the efficiency of the heat pump cycle can be improved without causing a shortage of heat from the indoor radiator due to a decrease in flow rate. Can do.

以下に、本発明にかかるヒートポンプ温水暖房システムの実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Embodiments of a heat pump hot water heating system according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態1.
図1は、本発明にかかるヒートポンプ温水暖房システムの実施の形態1のシステム構成図である。図1において、本実施の形態のヒートポンプ温水暖房システムは、暖房に使う水熱媒を生成するヒートポンプ熱源機21と、ヒートポンプ熱源機21から供給される水熱媒により暖房運転を行う室内放熱器22とを含んで構成されている。ヒートポンプ熱源機21は、ヒートポンプサイクルにより採熱した熱で暖房に使う水熱媒を生成する。ヒートポンプ熱源機21は、水熱媒を貯留するバッファタンク5と、バッファタンク5の水熱媒を循環させる送水手段としての循環ポンプ6と、水熱媒を冷媒−水熱交換器4を介して加熱するヒートポンプサイクル11とから構成されている。
Embodiment 1 FIG.
FIG. 1 is a system configuration diagram of Embodiment 1 of a heat pump hot water heating system according to the present invention. In FIG. 1, the heat pump hot water heating system of the present embodiment includes a heat pump heat source device 21 that generates a water heat medium used for heating, and an indoor radiator 22 that performs a heating operation using a water heat medium supplied from the heat pump heat source device 21. It is comprised including. The heat pump heat source unit 21 generates a water heat medium used for heating with the heat collected by the heat pump cycle. The heat pump heat source unit 21 includes a buffer tank 5 that stores a water heat medium, a circulation pump 6 that serves as a water supply unit that circulates the water heat medium in the buffer tank 5, and the water heat medium via the refrigerant-water heat exchanger 4. It comprises a heat pump cycle 11 for heating.

ヒートポンプサイクル11は、室外空気から熱を採熱する熱源側熱交換器2と、ヒートポンプサイクル11内を循環し熱を搬送する冷媒を圧縮する圧縮機3と、冷媒の流量を調整する冷媒流量調節弁10と、冷媒と水熱媒の熱交換をする冷媒−水熱交換器4の一次流路とで構成された熱媒循環閉路である。ヒートポンプサイクル11の冷媒と室内放熱器循環サイクルの水熱媒とは相互に独立し、混じり合うことはないが冷媒−水熱交換器4により熱的には接続している。上記構成のヒートポンプ熱源機21は、単一のケーシングに収められ、室外に設置される。   The heat pump cycle 11 includes a heat source side heat exchanger 2 that collects heat from outdoor air, a compressor 3 that compresses a refrigerant that circulates in the heat pump cycle 11 and conveys heat, and a refrigerant flow rate adjustment that adjusts the flow rate of the refrigerant. It is a heat medium circulation closed circuit comprised with the valve 10 and the primary flow path of the refrigerant | coolant-water heat exchanger 4 which performs heat exchange of a refrigerant | coolant and a water heat medium. The refrigerant of the heat pump cycle 11 and the hydrothermal medium of the indoor radiator circulation cycle are independent of each other and are not thermally mixed but are thermally connected by the refrigerant-water heat exchanger 4. The heat pump heat source unit 21 having the above configuration is housed in a single casing and installed outside the room.

バッファタンク5には、往き側接続口5aと、戻り側接続口5bが設けられていて、往き側接続口5aは、循環ポンプ6の吸入側に配管接続され、戻り側接続口5bは、ヒートポンプ熱源機21から供給される水熱媒により暖房運転を行う室内放熱器22からの戻り側配管が接続されている。循環ポンプ6の吐出側には採熱用の冷媒−水熱交換器4の二次流路の入口側(戻り配管側接続口)4aが配管接続され、冷媒−水熱交換器4の出口側(往き配管側接続口)4bには室内放熱器22への往き側配管が接続される。室内放熱器22への往き側配管には、冷媒−水熱交換器4の出口の水熱媒温度を検知する往き水温検知部7が設けられている。また、室内放熱器22からの戻り側配管には、室内放熱器22からの戻り水温を検知する戻り水温検知部8が設けられている。この往き水温検知部7と戻り水温検知部8とは、ヒートポンプ熱源機21から室内放熱器22に向かう水熱媒の温度(往き水温)と、室内放熱器22からヒートポンプ熱源機21に戻る水熱媒の温度(戻り水温)との差である往き戻り水温差を検出する往き戻り水温検出部を構成している。   The buffer tank 5 is provided with a forward connection port 5a and a return connection port 5b. The forward connection port 5a is connected to the suction side of the circulation pump 6, and the return connection port 5b is a heat pump. A return side pipe from the indoor radiator 22 that performs the heating operation by the water heat medium supplied from the heat source unit 21 is connected. On the discharge side of the circulation pump 6, an inlet side (return pipe side connection port) 4 a of the secondary flow path of the refrigerant-water heat exchanger 4 for heat collection is pipe-connected, and an outlet side of the refrigerant-water heat exchanger 4. The forward piping to the indoor radiator 22 is connected to the (forward piping side connection port) 4b. An outgoing water temperature detection unit 7 that detects the temperature of the water heating medium at the outlet of the refrigerant-water heat exchanger 4 is provided in the outgoing piping to the indoor radiator 22. In addition, a return water temperature detection unit 8 that detects a return water temperature from the indoor radiator 22 is provided in the return side pipe from the indoor radiator 22. The forward water temperature detection unit 7 and the return water temperature detection unit 8 are the temperature of the water heat medium (forward water temperature) from the heat pump heat source unit 21 toward the indoor radiator 22 and the water heat that returns from the indoor radiator 22 to the heat pump heat source unit 21. A forward / backward water temperature detection unit that detects a forward / backward water temperature difference that is a difference from the temperature of the medium (return water temperature) is configured.

制御部9は、マイコンを主体として構成され循環ポンプ6や圧縮機3及び室外空気の熱を採熱する熱源側送風ファン1等を制御する。循環ポンプ6はインペラを有し、このインペラを回転させることにより循環回路内の水熱媒を強制循環させ、室内放熱器22に水熱媒を循環させる。本実施の形態においては、循環ポンプ6は、制御部9によってPWM制御されるモータを備え速度指令電圧によりインペラの回転数が任意に可変できる直流電源で駆動するポンプが用いられる。   The control unit 9 is mainly composed of a microcomputer, and controls the circulation pump 6, the compressor 3, the heat source side blower fan 1 that collects the heat of the outdoor air, and the like. The circulation pump 6 has an impeller. By rotating the impeller, the water heat medium in the circulation circuit is forcibly circulated, and the water heat medium is circulated through the indoor radiator 22. In the present embodiment, the circulation pump 6 is a pump that includes a motor that is PWM-controlled by the control unit 9 and that is driven by a DC power source that can arbitrarily change the rotation speed of the impeller by a speed command voltage.

ヒートポンプ熱源機21が室外に設置されているのに対して、室内には1機または複数機の室内放熱器22とコントローラ23が設けられている。室内放熱器22は、ヒートポンプ熱源機21から供給される水熱媒により暖房運転を行う。室内放熱器22は、例えば床下に設置され、輻射暖房を行う床暖房パネル、室内壁面に設置され輻射暖房を行うパネルヒーター、室内空気循環用の送風機と室内空気と水熱媒をする熱交換器を備え、強制対流により暖房を行うファンコンベクターなどで構成される。   While the heat pump heat source unit 21 is installed outside the room, one or more indoor radiators 22 and a controller 23 are provided in the room. The indoor radiator 22 performs a heating operation with a hydrothermal medium supplied from the heat pump heat source unit 21. The indoor radiator 22 is, for example, a floor heating panel that is installed under the floor and performs radiant heating, a panel heater that is installed on the indoor wall surface and performs radiant heating, a blower for circulating indoor air, a heat exchanger that performs indoor air and a water heat medium Equipped with a fan convector that heats by forced convection.

コントローラ23には、室温を検知する室温検知手段(図示せず)と、目標とする室温を設定する室温設定手段(図示せず)と、水熱媒の温度を設定する水熱媒温度設定手段(図示せず)とが設けられている。水熱媒温度設定手段は、任意の水温で固定して運転する水温固定運転と、設定室温と現在室温から推定される暖房負荷に応じて、暖房負荷が高い場合は高い水温で運転し、暖房負荷が小さい場合は低い水温で運転するように自動的に水温を可変する水温自動運転の切り替え手段を構成している。   The controller 23 includes a room temperature detecting means (not shown) for detecting the room temperature, a room temperature setting means (not shown) for setting the target room temperature, and a hydrothermal medium temperature setting means for setting the temperature of the hydrothermal medium. (Not shown). The water heating medium temperature setting means operates at a high water temperature when the heating load is high, depending on the set temperature and the heating load estimated from the current room temperature. When the load is small, a water temperature automatic operation switching means for automatically changing the water temperature is configured so as to operate at a low water temperature.

制御部9は、室内に設置されたコントローラ23と双方向の通信が可能となるように設置されており、コントローラ23から設定室温や現在室温や設定水温情報や冷媒−水熱交換器4の出口の水熱媒温度を検知する往き水温検知部7や室内放熱器22からの戻り水温を検知する戻り水温検知部8の出力が、ヒートポンプ熱源機21の循環ポンプ6や圧縮機3及び熱源側送風ファン1等を制御するための制御情報として取り込まれる。   The control unit 9 is installed so as to be capable of bidirectional communication with the controller 23 installed in the room, and the controller 23 sets the set room temperature, the current room temperature, the set water temperature information, and the outlet of the refrigerant-water heat exchanger 4. The output of the return water temperature detection unit 7 for detecting the temperature of the water heat medium and the return water temperature detection unit 8 for detecting the return water temperature from the indoor radiator 22 are the circulation pump 6 and the compressor 3 of the heat pump heat source device 21 and the heat source side ventilation. It is taken in as control information for controlling the fan 1 and the like.

次にヒートポンプ暖房システムの動作について説明する。図2は本実施の形態のヒートポンプ温水暖房システムの制御動作を示すフローチャートである。図2において、まず、ステップS1にて、室内放熱器22のコントローラ23のいずれかが運転開始操作されると、コントローラ23から、ヒートポンプ熱源機21の制御部9に運転開始情報、設定室温、現在室温、設定水温情報(水温固定運転の場合はコントローラ23で設定された任意の水温、水温自動運転の場合は水温自動運転が選択されているという情報)が伝達される。   Next, the operation of the heat pump heating system will be described. FIG. 2 is a flowchart showing the control operation of the heat pump hot water heating system of the present embodiment. In FIG. 2, first, when any of the controllers 23 of the indoor radiator 22 is operated to start operation in step S <b> 1, the operation start information, the set room temperature, the current temperature are sent from the controller 23 to the control unit 9 of the heat pump heat source unit 21. Room temperature and set water temperature information (arbitrary water temperature set by the controller 23 in the case of the water temperature fixed operation, information that the water temperature automatic operation is selected in the water temperature automatic operation) is transmitted.

次に、ステップS2において、制御部9は循環ポンプ6が制御部9に予め記憶された初期回転数で運転するように速度指令電圧を与えるとともに往き水温が目標の水温となるようにヒートポンプサイクルを制御する。目標とする水温は水温固定の場合はコントローラ23で設定された水温、水温自動の場合は設定室温、現在室温情報から演算される水温である。なお、初期回転数は一定ではなく目標とする往き水温に応じて可変しても良い。   Next, in step S2, the control unit 9 gives a speed command voltage so that the circulation pump 6 operates at the initial rotational speed stored in advance in the control unit 9, and performs a heat pump cycle so that the outgoing water temperature becomes the target water temperature. Control. The target water temperature is the water temperature set by the controller 23 when the water temperature is fixed, the set room temperature when the water temperature is automatic, and the water temperature calculated from the current room temperature information. Note that the initial rotational speed is not constant and may be varied according to the target outgoing water temperature.

次に、ステップS3にて、往き水温検知部7で往き水温を検知する。次いで、ステップS4にて、戻り水温検知部8で戻り水温を検知するとともに、検知した戻り水温を制御部9のマイコンに記憶する。   Next, in step S <b> 3, the outgoing water temperature detection unit 7 detects the outgoing water temperature. Next, in step S <b> 4, the return water temperature detection unit 8 detects the return water temperature and stores the detected return water temperature in the microcomputer of the control unit 9.

次に、ステップS5にて、往き戻り水温差(ΔTa)(往き水温−戻り水温)が往き戻り水温差下限4℃(ΔTaL)以上であるか否かを判断する。そして、往き戻り水温差ΔTaが往き戻り水温差下限4℃(ΔTaL)未満である場合はステップS8に進み、循環ポンプ6の回転数を300rpm下げる処理、すなわち、循環ポンプ6の揚程を下げる処理を行い、その後、ステップS10に進み、3分は現状の回転数を維持し(ステップS7)、3分経過後、ステップS3に戻る。ここで、往き戻り水温差下限4℃(ΔTaL)はヒートポンプの効率を向上するために最低限必要な温度差である。   Next, in step S5, it is determined whether or not the return water temperature difference (ΔTa) (forward water temperature−return water temperature) is equal to or greater than the return water temperature difference lower limit 4 ° C. (ΔTaL). If the return water temperature difference ΔTa is less than the return water temperature difference lower limit 4 ° C. (ΔTaL), the process proceeds to step S8, and a process of lowering the rotational speed of the circulation pump 6 by 300 rpm, that is, a process of lowering the head of the circulation pump 6 is performed. After that, the process proceeds to step S10, and the current rotational speed is maintained for 3 minutes (step S7), and after 3 minutes, the process returns to step S3. Here, the lower limit of the return water temperature difference 4 ° C. (ΔTaL) is the minimum temperature difference necessary to improve the efficiency of the heat pump.

一方、ステップS5の判断にて、往き戻り水温差(ΔTa)が往き戻り水温差下限4℃(ΔTaL)以上である場合、ステップS6に進み、往き戻り水温差(ΔTa)が往き戻り水温差上限20℃(ΔTaH)以下であるか判断する。そして、往き戻り水温差(ΔTa)が往き戻り水温差上限20℃(ΔTaH)を超える場合、ステップS9に進み、循環ポンプ6の回転数を300rpm上げる処理、すなわち、循環ポンプ6の揚程を上げる処理を行い、その後、ステップS10に進み、3分は現状の回転数を維持し(ステップS7)、3分経過後、ステップS3に戻る。   On the other hand, if it is determined in step S5 that the return water temperature difference (ΔTa) is equal to or larger than the return water temperature difference lower limit 4 ° C. (ΔTaL), the process proceeds to step S6, where the return water temperature difference (ΔTa) is the upper limit of the return water temperature difference. It is judged whether it is 20 ° C. (ΔTaH) or less. If the return water temperature difference (ΔTa) exceeds the return water temperature difference upper limit 20 ° C. (ΔTaH), the process proceeds to step S9, and the process of increasing the rotational speed of the circulation pump 6 by 300 rpm, that is, the process of increasing the head of the circulation pump 6 Then, the process proceeds to step S10, and the current rotational speed is maintained for 3 minutes (step S7). After 3 minutes, the process returns to step S3.

また、ステップS6の判断にて、往き戻り水温差(ΔTa)が往き戻り水温差上限20℃(ΔTaH)以下である場合、ステップS7に進み、循環ポンプ6の現状回転数を維持し、ステップS10に進み、3分経過後、ステップS3に戻る。ここで、往き戻り水温差上限20℃(ΔTaH)は流量低下により室内放熱器22が放熱量不足とならないために許容できる最大の温度差である。   If it is determined in step S6 that the return water temperature difference (ΔTa) is equal to or less than the return water temperature difference upper limit 20 ° C. (ΔTaH), the process proceeds to step S7, and the current rotational speed of the circulation pump 6 is maintained. The process returns to step S3 after 3 minutes. Here, the upper limit of the return water temperature difference 20 ° C. (ΔTaH) is the maximum temperature difference that can be tolerated in order that the indoor radiator 22 does not have a shortage of heat dissipation due to a decrease in flow rate.

なお、往き戻り水温差下限4℃(ΔTaL)と往き戻り水温差上限20℃(ΔTaH)は、室内放熱器22の放熱特性により定まるもので、上記の値は様々な種類の室内放熱器22に対応できるように設定したものであるが、使用する室内放熱器22の種類が制限される場合は、室内放熱器22の放熱特性に合せて最適な値を設定しても良い。   The lower limit of the return water temperature difference 4 ° C. (ΔTaL) and the upper limit of the return water temperature difference 20 ° C. (ΔTaH) are determined by the heat dissipation characteristics of the indoor radiator 22, and the above values are different for various types of indoor radiators 22. However, when the type of indoor radiator 22 to be used is limited, an optimal value may be set according to the heat dissipation characteristics of the indoor radiator 22.

また、ステップS7における循環ポンプ6の回転数を維持する時間は3分、ステップS8及びステップS9における回転数可変量は300rpmとしたが、循環ポンプ6の回転数可変量と現状回転数を維持する時間は循環ポンプ6の回転数可変量を大きくすれば、ヒートポンプサイクル及び戻り水温の安定に時間がかかるため、現状回転数を維持する時間を長くし、循環ポンプ6の回転数可変量を小さくすれば、ヒートポンプサイクル及び戻り水温の安定に時間がかからないため、現状回転数を維持する時間を短くしても良い。   The time for maintaining the rotation speed of the circulation pump 6 in step S7 is 3 minutes, and the variable rotation speed in steps S8 and S9 is 300 rpm. However, the rotation speed variable amount of the circulation pump 6 and the current rotation speed are maintained. If the rotational speed variable amount of the circulation pump 6 is increased, it takes time to stabilize the heat pump cycle and the return water temperature. Therefore, the time for maintaining the current rotational speed is lengthened, and the rotational speed variable amount of the circulation pump 6 is decreased. For example, since it does not take time to stabilize the heat pump cycle and the return water temperature, the time for maintaining the current rotational speed may be shortened.

以上のように、本実施の形態のヒートポンプ温水暖房システムにおいては、制御部9が、往き戻り温度差がある一定の範囲内の温度となるように循環ポンプ6の回転数を制御することにより、流量低下による室内放熱器22の放熱量不足を招くことなく、ヒートポンプサイクルの効率向上を実現することができる。   As described above, in the heat pump hot water heating system of the present embodiment, the control unit 9 controls the number of rotations of the circulation pump 6 so that the temperature difference between the return and return temperatures is within a certain range. The efficiency improvement of the heat pump cycle can be realized without causing a shortage of heat radiation of the indoor radiator 22 due to a decrease in the flow rate.

実施の形態2.
本実施の形態はヒートポンプ温水暖房システムの構成、制御フローは実施の形態1と同一であるが、実施の形態1における往き戻り水温差下限(ΔTaL)と往き戻り水温差上限(ΔTaH)を往き水温に応じて設定するようにしたものである。図3に往き水温と適正水温差の関係を示す。図3に示されるように、適正水温差は往き水温に比例する。そして、適正水温差に対して、往き戻り水温差下限(ΔTaL)は適正水温差−1℃、往き戻り水温差上限(ΔTaH)は適正水温差+1℃の値で設定される。
Embodiment 2. FIG.
Although the present embodiment is the same in configuration and control flow of the heat pump hot water heating system as in the first embodiment, the return water temperature difference lower limit (ΔTaL) and the return water temperature difference upper limit (ΔTaH) in the first embodiment are set to the forward water temperature. It is set according to. FIG. 3 shows the relationship between the incoming water temperature and the appropriate water temperature difference. As shown in FIG. 3, the appropriate water temperature difference is proportional to the incoming water temperature. And with respect to the appropriate water temperature difference, the return water temperature difference lower limit (ΔTaL) is set to a value of an appropriate water temperature difference of −1 ° C., and the return water temperature difference upper limit (ΔTaH) is set to a value of an appropriate water temperature difference of + 1 ° C.

このように往き戻り水温差下限(ΔTaL)と往き戻り水温差上限(ΔTaH)との間に2℃の温度幅を持たせることによりヒートポンプ温水熱源機の制御収束性を安定させることが可能となる。   In this way, by providing a temperature range of 2 ° C. between the return water temperature difference lower limit (ΔTaL) and the return water temperature difference upper limit (ΔTaH), it becomes possible to stabilize the control convergence of the heat pump hot water heat source machine. .

なお、往き戻り水温差下限(ΔTaL)と往き戻り水温差上限(ΔTaH)の温度差は2℃としたが、往き戻り水温差下限(ΔTaL)と往き戻り水温差上限(ΔTaH)の温度差は大きいほうがヒートポンプ温水熱源機の制御収束性が高まるため、ヒートポンプ温水熱源機の制御収束性が遅い場合は往き戻り水温差下限(ΔTaL)と往き戻り水温差上限(ΔTaH)の温度差を大きく、逆に、ヒートポンプ温水熱源機の制御収束性が早い場合は往き戻り水温差下限(ΔTaL)と往き戻り水温差上限(ΔTaH)の温度差を小さくしても良い。   Although the temperature difference between the return water temperature difference lower limit (ΔTaL) and the return water temperature difference upper limit (ΔTaH) is 2 ° C., the temperature difference between the return water temperature difference lower limit (ΔTaL) and the return water temperature difference upper limit (ΔTaH) is The larger the control convergence of the heat pump hot water heat source machine, the higher the control convergence of the heat pump hot water heat source machine. In addition, when the control convergence of the heat pump hot water heat source device is fast, the temperature difference between the return water temperature difference lower limit (ΔTaL) and the return water temperature difference upper limit (ΔTaH) may be reduced.

また、適正水温差は、室内放熱器22の放熱特性から求められるものであり、室内放熱器22に定格流量を流した場合の水温差である。即ち、往き水温が高い場合は室内放熱器22での放熱量が大きいため適正水温差は大きく、往き水温が低い場合は室内放熱器22での放熱量が小さいため適正水温差は小さくなる。床暖房パネルの場合、図3に示すように、往き水温60℃の場合、適正水温差は10℃、往き水温40℃の場合、適正水温差は6℃とする。   The appropriate water temperature difference is obtained from the heat dissipation characteristics of the indoor radiator 22 and is a water temperature difference when a rated flow rate is passed through the indoor radiator 22. That is, when the outgoing water temperature is high, the amount of heat dissipation in the indoor radiator 22 is large, so the appropriate water temperature difference is large, and when the outgoing water temperature is low, the amount of heat dissipation in the indoor radiator 22 is small, so the appropriate water temperature difference is small. In the case of the floor heating panel, as shown in FIG. 3, when the outgoing water temperature is 60 ° C., the appropriate water temperature difference is 10 ° C., and when the outgoing water temperature is 40 ° C., the appropriate water temperature difference is 6 ° C.

なお、制御部9は任意の適正水温差を設定することが可能となるように構成されており、放熱特性が未知の室内放熱器22と組合せ使用する場合は、任意の適正水温差を設定することにより、様々な室内放熱器22との組合せが可能となるようになっている。   In addition, the control part 9 is comprised so that it can set arbitrary appropriate water temperature differences, and when using it in combination with the indoor radiator 22 whose heat dissipation characteristic is unknown, it sets arbitrary appropriate water temperature differences. Thus, combinations with various indoor radiators 22 are possible.

なお、高温水生成時は必要以上の流量が流れると、戻り水温が高温となり、冷媒凝縮温度が上昇し、冷媒が高圧となることから、戻り水温を下げ、適正な水温差を確保する必要がある。即ち、ヒートポンプサイクルに繰り返し加わる冷媒圧力に対して、冷媒回路の耐圧寿命が満足する水温差を確保する必要がある。上記の往き水温60℃時の適正水温差10℃は冷媒回路の耐圧寿命を満足する運転が可能となる水温差である。   Note that if the flow rate is higher than necessary when generating high-temperature water, the return water temperature becomes high, the refrigerant condensing temperature rises, and the refrigerant becomes high pressure.Therefore, it is necessary to lower the return water temperature and ensure an appropriate water temperature difference. is there. That is, it is necessary to ensure a water temperature difference that satisfies the pressure-resistant life of the refrigerant circuit with respect to the refrigerant pressure repeatedly applied to the heat pump cycle. The appropriate water temperature difference of 10 ° C. when the outgoing water temperature is 60 ° C. is a water temperature difference that enables operation satisfying the pressure-resistant life of the refrigerant circuit.

以上のように、往き水温に応じて目標とする行き戻り温度差を設定するとともに、目標とする往き戻り温度差となるように循環ポンプ6の回転数を制御することにより、室内放熱器22の放熱特性に応じて最適な往き戻り温度差を確保することが可能となる。その結果、ヒートポンプサイクルの効率を実施の形態1以上に向上することができる。また、ヒートポンプサイクルの冷媒高圧化抑制による機器寿命の長期化が実現できる。   As described above, by setting the target return temperature difference according to the going water temperature, and controlling the rotational speed of the circulation pump 6 so as to be the target return temperature difference, the indoor radiator 22 It is possible to ensure an optimal back and forth temperature difference according to the heat dissipation characteristics. As a result, the efficiency of the heat pump cycle can be improved over that of the first embodiment. In addition, it is possible to extend the life of the equipment by suppressing the increase in the refrigerant pressure in the heat pump cycle.

実施の形態3.
本実施の形態はヒートポンプ温水暖房システムの構成、制御フローは実施の形態1と同一であるが、実施の形態1の制御フローのステップS8とステップS9における回転数可変量を制御部9に記憶した前時刻戻り水温と現在の戻り水温の差である戻り水温変化量(ΔTb)(前時刻戻り水温−現在戻り水温)により可変するようにしたものである。
Embodiment 3 FIG.
Although the present embodiment is the same as the first embodiment in the configuration and control flow of the heat pump hot water heating system, the variable number of rotations in steps S8 and S9 of the control flow in the first embodiment is stored in the control unit 9. It is made variable by a return water temperature change amount (ΔTb) (previous time return water temperature−current return water temperature) which is a difference between the previous time return water temperature and the current return water temperature.

本実施の形態の回転数可変量は、図4に示すように、循環ポンプ6の回転数を下げる処理を行う場合は、ΔTbが小さいほど回転数変化量を大きくする。室内放熱器22の運転台数が増加した場合など、前時刻戻り水温に対して現在戻り水温が2℃を超えて下がった場合(ΔTb>2)の循環ポンプ6の回転数可変量は−100rpmとし、室内放熱器22の運転台数に変化がない場合など前時刻戻り水温に対して現在戻り水温の変化が2℃以内の場合(2≧ΔTb≧−2)の循環ポンプ6の回転数可変量は−300rpmとし、室内放熱器22の運転台数が減少した場合など、前時刻戻り水温に対して現在戻り水温が2℃を超えて上がった場合(ΔTb<−2)の循環ポンプ6の回転数可変量は−500rpmとする。   As shown in FIG. 4, the variable amount of rotation speed of the present embodiment increases the rotation speed change amount as ΔTb decreases when processing for decreasing the rotation speed of the circulation pump 6 is performed. The variable amount of rotation of the circulating pump 6 when the current return water temperature falls below 2 ° C. with respect to the previous time return water temperature (ΔTb> 2), such as when the number of indoor radiators 22 is increased, is −100 rpm. When the change in the current return water temperature is within 2 ° C. (2 ≧ ΔTb ≧ −2) with respect to the previous time return water temperature, such as when there is no change in the number of operating indoor radiators 22, the rotational speed variable amount of the circulation pump 6 is -300 rpm, when the number of operating indoor radiators 22 is decreased, etc. When the current return water temperature rises by more than 2 ° C. relative to the previous time return water temperature (ΔTb <−2), the rotation speed of the circulation pump 6 is variable. The amount is -500 rpm.

逆に、循環ポンプ6の回転数を上げる処理を行う場合、戻り水温変化量(ΔTb)が大きいほど回転数変化量を大きくする。室内放熱器22の運転台数が増加した場合など、前時刻戻り水温に対して現在戻り水温が2℃を超えて下がった場合(ΔTb>2)の循環ポンプ6の回転数可変量は+500rpmとし、室内放熱器22の運転台数に変化がない場合など前時刻戻り水温に対して現在戻り水温の変化が2℃以内の場合(2≧ΔTb≧−2)の循環ポンプ6の回転数可変量は+300rpmとし、室内放熱器22の運転台数が減少した場合など、前時刻戻り水温に対して現在戻り水温が2℃を超えて上がった場合(ΔTb<−2)の循環ポンプ6の回転数可変量は+100rpmとする。   On the contrary, when the process of increasing the rotation speed of the circulation pump 6 is performed, the rotation speed change amount is increased as the return water temperature change amount (ΔTb) is larger. When the number of operating indoor radiators 22 is increased or the like, when the current return water temperature falls below 2 ° C. relative to the previous time return water temperature (ΔTb> 2), the rotation speed variable amount of the circulation pump 6 is +500 rpm, If the change in the current return water temperature is within 2 ° C. (2 ≧ ΔTb ≧ −2) with respect to the previous time return water temperature, such as when there is no change in the number of indoor radiators 22 operating, the rotation speed variable amount of the circulation pump 6 is +300 rpm. And the variable amount of rotation of the circulating pump 6 when the current return water temperature exceeds 2 ° C. with respect to the previous time return water temperature (ΔTb <−2), such as when the number of operating indoor radiators 22 decreases. +100 rpm.

上記の回転数可変量の一例を示したが、回転数可変量は循環ポンプ6の回転数と流量特性によって最適な値を選択すれば良い。   Although an example of the above-described rotation speed variable amount has been shown, an optimal value for the rotation speed variable amount may be selected according to the rotation speed and flow rate characteristics of the circulation pump 6.

上記のように、本実施の形態のヒートポンプ温水暖房システムにおいては、回転数可変量を、制御部9に記憶した前時刻戻り水温と現在の戻り水温の差である戻り水温変化量(ΔTb)により求めることにより、室内放熱器22の運転台数変更などによる急激な負荷変動に対する追従性を高めている。   As described above, in the heat pump hot water heating system of the present embodiment, the rotation speed variable amount is determined by the return water temperature change amount (ΔTb) that is the difference between the previous time return water temperature stored in the control unit 9 and the current return water temperature. As a result, the followability to a sudden load fluctuation due to a change in the number of operating units of the indoor radiator 22 or the like is improved.

実施の形態4.
本実施の形態のヒートポンプ温水暖房システムの構成は実施の形態1と同一であるが、実施の形態1の制御フローのステップS5において、往き戻り水温差(ΔTa)が往き戻り水温差下限(ΔTaL)以上である場合にステップS11の目標往き水温が確保されているか(目標往き水温に達しているか)確認する処理を追加したものである。
Embodiment 4 FIG.
The configuration of the heat pump hot water heating system of the present embodiment is the same as that of the first embodiment. However, in step S5 of the control flow of the first embodiment, the return water temperature difference (ΔTa) is the lower limit of the return water temperature difference (ΔTaL). In this case, a process for confirming whether or not the target outgoing water temperature is secured (whether the target outgoing water temperature has been reached) in step S11 is added.

ステップS11において目標往き水温が確保されていない場合、ステップS8に進み、循環ポンプ6の回転数を300rpm下げる処理を行い、その後、ステップS10に進み、3分経過後、ステップS3に戻る。   If the target outgoing water temperature is not ensured in step S11, the process proceeds to step S8, a process for lowering the rotational speed of the circulation pump 6 by 300 rpm is performed, then the process proceeds to step S10, and after 3 minutes, the process returns to step S3.

ステップS11において目標往き水温が確保されている場合はステップS6に進み、以降は実施の形態1と同一の処理を行う。   When the target outgoing water temperature is secured in step S11, the process proceeds to step S6, and thereafter the same processing as in the first embodiment is performed.

以上のように、本実施の形態のヒートポンプ温水暖房システムにおいては、目標往き水温が確保されていない場合、循環ポンプ6の回転数を下げる処理を行うことにより、ヒートポンプ温水暖房システムの立ち上り時や室内放熱器22の運転台数が増加により流量が増加し、往き水温が低下した場合などに往き水温の立ち上げを早めることが可能となる。   As described above, in the heat pump hot water heating system according to the present embodiment, when the target outgoing water temperature is not secured, the heat pump hot water heating system is When the number of operating radiators 22 increases, the flow rate increases, and when the outgoing water temperature decreases, the rising of the outgoing water temperature can be accelerated.

実施の形態5.
本実施の形態のヒートポンプ温水暖房システムの構成は実施の形態1と同一であるが、実施の形態4の制御フローのステップS11において、目標往き水温が確保されていない場合にステップS12の除霜運転中か確認する処理を追加したものである。
Embodiment 5 FIG.
The configuration of the heat pump hot water heating system of the present embodiment is the same as that of the first embodiment. However, in step S11 of the control flow of the fourth embodiment, when the target outgoing water temperature is not ensured, the defrosting operation of step S12 is performed. This is a process to check whether it is inside.

ステップS12において除霜運転中であった場合はステップS7に進み、循環ポンプ6の回転数は現状を維持し、以降は実施の形態4と同一の処理を行う。   If the defrosting operation is being performed in step S12, the process proceeds to step S7, where the rotational speed of the circulation pump 6 is maintained, and thereafter the same processing as in the fourth embodiment is performed.

ステップS12において除霜運転中ではない場合はステップS8に進み、循環ポンプ6の回転数を300rpm下げる処理を行い、以降は実施の形態4と同一の処理を行う。   If the defrosting operation is not being performed in step S12, the process proceeds to step S8 to perform a process for lowering the rotational speed of the circulation pump 6 by 300 rpm, and thereafter the same process as in the fourth embodiment is performed.

除霜運転は熱源側熱交換器2に付着した霜により暖房能力が低下することを防ぐために行うものであって、ヒートポンプサイクルを冷房運転に切り替え、水熱媒の熱により霜を溶かすものである。よって除霜運転を行うことにより水熱媒の温度は一時的に低下する。   The defrosting operation is performed in order to prevent the heating capacity from being reduced by frost adhering to the heat source side heat exchanger 2, and the heat pump cycle is switched to the cooling operation and the frost is melted by the heat of the water heat medium. . Therefore, the temperature of the hydrothermal medium is temporarily lowered by performing the defrosting operation.

除霜運転中かどうかの判断は除霜運転が終了していても、目標とする往き水温まで水温が上昇するまでの時間は現状回転数を維持することが望ましいため、除霜運転終了後5分間は除霜運転中と判断する。   Whether or not the defrosting operation is in progress is determined even if the defrosting operation is finished, it is desirable to maintain the current rotational speed for the time until the water temperature rises to the target forward water temperature. It is determined that the defrosting operation is in progress for a minute.

以上のように、本実施の形態のヒートポンプ温水暖房システムにおいては、除霜運転中は、循環ポンプ6の回転数を変化させずに維持することにより、除霜運転による水温変化による不必要な回転数変更を排除することが可能となる。   As described above, in the heat pump hot water heating system of the present embodiment, during the defrosting operation, by maintaining the rotation speed of the circulation pump 6 without changing, unnecessary rotation due to the water temperature change due to the defrosting operation. It becomes possible to eliminate the number change.

以上のように、本発明は、ヒートポンプサイクルの冷媒と水熱媒とを熱交換器を介して熱交換させ水熱媒を室内放熱器に搬送する循環ポンプを有する熱源機を備えたヒートポンプ温水暖房システムに有用なものである。   As described above, the present invention is a heat pump hot water heating system including a heat source device having a circulation pump that exchanges heat between a refrigerant of a heat pump cycle and a hydrothermal medium via a heat exchanger and conveys the hydrothermal medium to an indoor radiator. It is useful for the system.

本発明にかかるヒートポンプ温水暖房システムの実施の形態1のシステム構成図である。It is a system configuration figure of Embodiment 1 of the heat pump hot water heating system concerning the present invention. 実施の形態1の制御動作を示すフローチャートである。3 is a flowchart showing a control operation of the first embodiment. 実施の形態2の往き水温と適正水温の関係を示す図である。It is a figure which shows the relationship between the going water temperature of Embodiment 2, and appropriate water temperature. 実施の形態3の循環ポンプの回転数可変量を示す図である。It is a figure which shows the rotation speed variable amount of the circulation pump of Embodiment 3. 実施の形態4の制御動作を示すフローチャートである。10 is a flowchart illustrating a control operation according to the fourth embodiment. 実施の形態5の制御動作を示すフローチャートである。10 is a flowchart illustrating a control operation according to the fifth embodiment.

符号の説明Explanation of symbols

1 熱源側送風ファン
2 熱源側熱交換器
3 圧縮機
4 冷媒−水熱交換機
4a 入口側(戻り配管側接続口)
4b 出口側(往き配管側接続口)
5 バッファタンク
5a 往き側接続口
5b 戻り側接続口
6 循環ポンプ
7 往き水温検知部(往き戻り水温検出部)
8 戻り水温検知部(往き戻り水温検出部)
9 制御部
10 冷媒流量調節弁
11 ヒートポンプサイクル
21 ヒートポンプ熱源機(熱源機)
22 室内放熱器
23 コントローラ
DESCRIPTION OF SYMBOLS 1 Heat source side ventilation fan 2 Heat source side heat exchanger 3 Compressor 4 Refrigerant-water heat exchanger 4a Inlet side (return piping side connection port)
4b Outlet side (outward piping side connection port)
5 Buffer tank 5a Outward side connection port 5b Return side connection port 6 Circulating pump 7 Outward water temperature detection part (forward return water temperature detection part)
8 Return water temperature detector (Return water temperature detector)
9 Control Unit 10 Refrigerant Flow Rate Control Valve 11 Heat Pump Cycle 21 Heat Pump Heat Source Machine (Heat Source Machine)
22 Indoor radiator 23 Controller

Claims (9)

ヒートポンプサイクルの冷媒と水熱媒とを熱交換器を介して熱交換させる熱源機と、前記熱源機に接続され該熱源機から搬送される前記水熱媒により暖房を行う室内放熱器とを備えたヒートポンプ温水暖房システムにおいて、
前記水熱媒を前記熱交換器と前記室内放熱器との間で循環させる循環ポンプと、
前記熱源機から前記室内放熱器に向かう前記水熱媒の温度(往き水温)と前記室内放熱器から前記熱源機に戻る前記水熱媒の温度(戻り水温)との差である往き戻り水温差を検出する往き戻り水温検出部と、
前記往き戻り水温検出部の検出値に応じて、前記往き戻り水温差が所定の範囲内となるように、前記循環ポンプの揚程を制御する制御部と
を備えたことを特徴とするヒートポンプ温水暖房システム。
A heat source device that exchanges heat between the refrigerant of the heat pump cycle and the hydrothermal medium via a heat exchanger, and an indoor radiator that is connected to the heat source machine and that is heated by the hydrothermal medium conveyed from the heat source machine In the heat pump hot water heating system,
A circulation pump for circulating the water heating medium between the heat exchanger and the indoor radiator;
Forward / return water temperature difference which is a difference between the temperature of the water heat medium (forward water temperature) from the heat source unit toward the indoor radiator and the temperature of the water heat medium (return water temperature) from the indoor radiator to the heat source unit A return water temperature detector for detecting
A heat pump hot water heating system comprising: a control unit that controls a head of the circulation pump so that the difference in the return water temperature falls within a predetermined range in accordance with a detection value of the return water temperature detection unit. system.
前記制御部は、前記往き戻り水温差の減少に伴い、前記循環ポンプの揚程を下げ、前記往き戻り水温差の増大に伴い、前記循環ポンプの揚程を上げる
ことを特徴とする請求項1に記載のヒートポンプ温水暖房システム。
The said control part lowers the head of the said circulation pump with the reduction | decrease of the said return water temperature difference, and raises the head of the said circulation pump with the increase of the said return water temperature difference. Heat pump hot water heating system.
前記制御部は、前記往き戻り水温差が往き戻り水温差下限未満であるとき、前記循環ポンプの揚程を下げ、往き戻り水温差が往き戻り水温差上限以上であるとき、前記循環ポンプの揚程を上げる
ことを特徴とする請求項2に記載のヒートポンプ温水暖房システム。
The control unit lowers the head of the circulation pump when the difference in the return water temperature is less than the lower limit of the return water temperature difference, and reduces the head of the circulation pump when the difference in the return water temperature is equal to or higher than the upper limit of the return water temperature difference. The heat pump hot water heating system according to claim 2, wherein the heat pump is heated.
前記制御部は、水熱媒温度に応じて、目標とする往き戻り温度差を変更する
ことを特徴とする請求項1に記載のヒートポンプ温水暖房システム。
The heat pump hot water heating system according to claim 1, wherein the control unit changes a target return temperature difference according to a hydrothermal medium temperature.
前記制御部は、水熱媒温度に応じて、往き水温が高いとき、目標とする往き戻り水温差を大きくし、往き水温が低いとき、目標とする往き戻り水温差を小さくする
ことを特徴とする請求項4に記載のヒートポンプ温水暖房システム。
The control unit increases the target return water temperature difference when the outgoing water temperature is high, and reduces the target return water temperature difference when the outgoing water temperature is low, according to the hydrothermal medium temperature. The heat pump hot water heating system according to claim 4.
前記制御部は、往き戻り水温差下限及び往き戻り水温差上限を、往き水温に比例する適正水温差に基づいて変更し、該適正水温差から所定値減算した値を前記往き戻り水温差下限とし、前記適正水温差に所定値加算した値を前記往き戻り水温差上限とする
ことを特徴とする請求項5に記載のヒートポンプ温水暖房システム。
The control unit changes the return water temperature difference lower limit and the return water temperature difference upper limit based on an appropriate water temperature difference proportional to the forward water temperature, and sets a value obtained by subtracting a predetermined value from the appropriate water temperature difference as the forward water temperature difference lower limit. The heat pump hot water heating system according to claim 5, wherein a value obtained by adding a predetermined value to the appropriate water temperature difference is set as the upper limit of the return water temperature difference.
前記制御部は、前記循環ポンプの回転数を下げる処理を行うときに、戻り水温変化量が小さいほど回転数変化量を大きくし、前記循環ポンプの回転数を上げる処理を行うときに、戻り水温変化量が大きいほど回転数変化量を大きくする
ことを特徴とする請求項1に記載のヒートポンプ温水暖房システム。
When performing the process of reducing the rotation speed of the circulation pump, the control unit increases the rotation speed change amount as the return water temperature change amount is smaller, and performs the process of increasing the rotation speed of the circulation pump. The heat pump hot water heating system according to claim 1, wherein the rotational speed change amount is increased as the change amount is larger.
前記制御部は、前記水熱媒の温度が目標に達していない場合は前記循環ポンプの回転数を下げる
ことを特徴とする請求項1に記載のヒートポンプ温水暖房システム。
2. The heat pump hot water heating system according to claim 1, wherein when the temperature of the hydrothermal medium does not reach a target, the control unit reduces the rotational speed of the circulation pump.
前記制御部は、前記ヒートポンプサイクルが除霜運転中は、前記水熱媒の温度が目標に達していない場合でも前記循環ポンプの回転数を変化させない
ことを特徴とする請求項1から8のいずれか1項に記載のヒートポンプ温水暖房システム。
The said control part does not change the rotation speed of the said circulation pump, even when the temperature of the said hydrothermal medium has not reached the target, during the defrost operation of the said heat pump cycle. The heat pump hot water heating system according to claim 1.
JP2008143387A 2008-05-30 2008-05-30 Heat pump hot water heating system Active JP5063486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008143387A JP5063486B2 (en) 2008-05-30 2008-05-30 Heat pump hot water heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008143387A JP5063486B2 (en) 2008-05-30 2008-05-30 Heat pump hot water heating system

Publications (2)

Publication Number Publication Date
JP2009287895A JP2009287895A (en) 2009-12-10
JP5063486B2 true JP5063486B2 (en) 2012-10-31

Family

ID=41457273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008143387A Active JP5063486B2 (en) 2008-05-30 2008-05-30 Heat pump hot water heating system

Country Status (1)

Country Link
JP (1) JP5063486B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104964331A (en) * 2015-07-16 2015-10-07 山东海利丰地源热泵有限责任公司 Heating system for conducting low-temperature power generation through deep-layer terrestrial heat
CN105509125B (en) * 2016-01-18 2018-06-26 西安交通大学 A kind of Trans-critical cycle CO with quickly defrosting function2Heat pump heating system

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ201043A3 (en) * 2010-01-20 2011-05-11 Method of controlling heat pump operation
JP5442521B2 (en) * 2010-04-12 2014-03-12 株式会社コロナ Heat pump type hot water heater
JP5476604B2 (en) * 2010-11-25 2014-04-23 パナソニック株式会社 Heat pump hot water heater
JP5582053B2 (en) * 2011-02-08 2014-09-03 パナソニック株式会社 Heat pump hot water heater
JP5582059B2 (en) * 2011-02-16 2014-09-03 パナソニック株式会社 Heat pump hot water heater
JP5747159B2 (en) * 2011-06-14 2015-07-08 パナソニックIpマネジメント株式会社 Heat pump hot water heater
JP6078780B2 (en) * 2012-08-08 2017-02-15 パナソニックIpマネジメント株式会社 Heat pump hot water heater
JP5475072B2 (en) * 2012-08-09 2014-04-16 リンナイ株式会社 Heat pump heat source system
JP5712196B2 (en) * 2012-12-04 2015-05-07 シャープ株式会社 Heat pump heating system
JP5781060B2 (en) 2012-12-25 2015-09-16 三菱電機株式会社 Air conditioner
JP5981395B2 (en) * 2013-07-10 2016-08-31 サンポット株式会社 Heat pump heat source machine
WO2015194038A1 (en) * 2014-06-20 2015-12-23 三菱電機株式会社 Heat pump heating system
JP6550959B2 (en) * 2015-06-22 2019-07-31 三菱電機株式会社 Heat transfer system
CN106196731B (en) * 2016-08-25 2019-04-09 陈松青 Heat pump unit and the dead-beat source crude sewage heating system for using the heat pump unit
WO2018087810A1 (en) * 2016-11-08 2018-05-17 三菱電機株式会社 Heating control system and heat pump hot-water heating system
CN114353289A (en) * 2021-12-21 2022-04-15 山东省煤田地质局第四勘探队 Rock-soil heat exchanger circulating water pump control device and control method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006010232A (en) * 2004-06-28 2006-01-12 Matsushita Electric Ind Co Ltd Heat pump device
JP4233507B2 (en) * 2004-09-17 2009-03-04 東京瓦斯株式会社 Hot water heating system and operation method thereof
JP4369841B2 (en) * 2004-09-24 2009-11-25 三機工業株式会社 Heat medium piping system
JP5004498B2 (en) * 2006-04-27 2012-08-22 パナソニック株式会社 Pump operation support system
JP5073970B2 (en) * 2006-06-01 2012-11-14 日立アプライアンス株式会社 Heat pump hot water floor heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104964331A (en) * 2015-07-16 2015-10-07 山东海利丰地源热泵有限责任公司 Heating system for conducting low-temperature power generation through deep-layer terrestrial heat
CN105509125B (en) * 2016-01-18 2018-06-26 西安交通大学 A kind of Trans-critical cycle CO with quickly defrosting function2Heat pump heating system

Also Published As

Publication number Publication date
JP2009287895A (en) 2009-12-10

Similar Documents

Publication Publication Date Title
JP5063486B2 (en) Heat pump hot water heating system
JP5984784B2 (en) Hot / cold water air conditioning system
JP6079507B2 (en) Hot / cold water air conditioning system
US8019480B2 (en) Method for controlling cooled or heated water pump of air conditioning installation
CN103348200B (en) Air conditioning and hot-water supplying system
JP2012233605A (en) Liquid circulation heating system
JP5920251B2 (en) Heating and hot water supply equipment
JP5476604B2 (en) Heat pump hot water heater
JP6471672B2 (en) Hot water heating system
JP6103144B2 (en) Heat pump heating system
AU2020438844B2 (en) Heat pump heat source device and heat pump water heater
JP5973076B2 (en) Hot water heater
JP6354627B2 (en) Heat pump hot water heating and heating system
JP6147659B2 (en) Heat pump equipment
JP5455338B2 (en) Cooling tower and heat source system
JP2019066138A (en) Cogeneration system
WO2017138133A1 (en) Hot water/cold water air-conditioning system
JP4026654B2 (en) Water heater
JP2013117344A (en) Heat-pump heater
JP2017040452A (en) Heat pump hot water heating system
KR20170070504A (en) Cooling apparatus for water charge air cooler and method for controlling of the same
WO2018105734A1 (en) Heat medium circulation system and coolant circulation system
WO2022176273A1 (en) Heat pump-type heat source device
JP3919046B2 (en) Air conditioner and hot water circuit using the same
JP2013245861A (en) Water-cooled air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120807

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5063486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250