JP5061851B2 - Positive electrode for secondary battery and secondary battery - Google Patents

Positive electrode for secondary battery and secondary battery Download PDF

Info

Publication number
JP5061851B2
JP5061851B2 JP2007283142A JP2007283142A JP5061851B2 JP 5061851 B2 JP5061851 B2 JP 5061851B2 JP 2007283142 A JP2007283142 A JP 2007283142A JP 2007283142 A JP2007283142 A JP 2007283142A JP 5061851 B2 JP5061851 B2 JP 5061851B2
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
radical compound
battery
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007283142A
Other languages
Japanese (ja)
Other versions
JP2009110847A (en
Inventor
和希 平田
恭平 宇佐美
金満 清水
学 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007283142A priority Critical patent/JP5061851B2/en
Publication of JP2009110847A publication Critical patent/JP2009110847A/en
Application granted granted Critical
Publication of JP5061851B2 publication Critical patent/JP5061851B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、大電流での充放電特性に優れかつエネルギー密度が高い二次電池を得られる二次電池用正極及び二次電池に関する。   The present invention relates to a positive electrode for a secondary battery and a secondary battery that can obtain a secondary battery that has excellent charge / discharge characteristics at a large current and a high energy density.

近年、ノート型パソコン、デジタルカメラ等の携帯電子機器の普及に伴い、高エネルギー密度を有する小型大容量二次電池への要求が高まっている。また、環境問題の観点から、電池自動車や動力の一部に電力を利用したハイブリッド車が実用化されており、電力の貯蔵手段としての二次電池の高性能化が求められている。   In recent years, with the widespread use of portable electronic devices such as notebook computers and digital cameras, there is an increasing demand for small high-capacity secondary batteries having high energy density. From the viewpoint of environmental problems, battery cars and hybrid cars using electric power as a part of power have been put into practical use, and there is a demand for higher performance of secondary batteries as power storage means.

これらの要求に応える二次電池の有力候補としてリチウムイオン電池の開発が進んでおり、優れた安定性並びに高エネルギー密度の実現に向けての開発が行われている。   Development of a lithium ion battery is progressing as a promising candidate for a secondary battery that meets these requirements, and development is being carried out to achieve excellent stability and high energy density.

しかしながら、リチウムイオン電池は、充放電時に活物質でリチウムイオンの挿入脱離反応を伴うことから、ある程度以上の大電流を流すと電池性能が低下するという問題があった。このため、高い電池性能を発揮させるために、放電速度や充電速度がある程度以上にならないような制限が必要となっていた。   However, since the lithium ion battery is accompanied by an insertion / release reaction of lithium ions as an active material during charging / discharging, there is a problem that the battery performance deteriorates when a large current of a certain level is passed. For this reason, in order to exhibit a high battery performance, the restriction | limiting that discharge rate and charge rate did not become a certain amount or more was needed.

一方、ポリ(2,2,6,6−テトラメチルピペリジノキシメタクリレート)(PTMA)に代表されるラジカル材料を正極に用いた二次電池は、イオンの吸脱着反応を電離反応に利用しているので、通常のリチウムイオン電池よりも大電流を流すことが可能であり、サイクル特性も優れており携帯電子機器や電気自動車への適用が期待されている。   On the other hand, a secondary battery using a radical material typified by poly (2,2,6,6-tetramethylpiperidinoxymethacrylate) (PTMA) as a positive electrode uses an ion adsorption / desorption reaction for an ionization reaction. Therefore, it is possible to pass a larger current than a normal lithium ion battery, the cycle characteristics are excellent, and application to portable electronic devices and electric vehicles is expected.

ところで、リチウムイオン電池においては正極材料中に酸化物材料をリチウムを含んだ状態で含有できるので、高エネルギー密度化を目指す場合には正極材料中のリチウム酸化物材料を増加させれば充分であり電解液中の塩濃度は必要なイオン伝導度が実現できる程度にすれば充分である。   By the way, in a lithium ion battery, an oxide material can be contained in a positive electrode material in a state containing lithium. Therefore, when aiming at a higher energy density, it is sufficient to increase the lithium oxide material in the positive electrode material. It is sufficient that the salt concentration in the electrolytic solution is such that the necessary ionic conductivity can be realized.

しかしながら、PTMA等のラジカル化合物を正極に用いた二次電池において高エネルギー密度を実現するには、正極中のラジカル量を多くすると同時に、そのラジカルに反応するイオンの供給源を電解液中において多く含有させる必要があると考えられていた。例えば、電解液中の支持電解質を二次電池の容量に応じて高い濃度に設定していた。   However, in order to achieve a high energy density in a secondary battery using a radical compound such as PTMA for the positive electrode, the amount of radicals in the positive electrode is increased, and at the same time, the source of ions that react with the radicals is increased in the electrolyte. It was thought that it was necessary to contain. For example, the supporting electrolyte in the electrolytic solution is set to a high concentration according to the capacity of the secondary battery.

ここで、LiPFに代表されるような支持電解質の濃度を高くすると電解液の粘度が上昇してイオンの拡散速度が低下して、電解液の導電率が低下する。その結果、電池から取り出すことができる電流の値が小さくなり、出力密度の低下を引き起こすことになる。 Here, when the concentration of the supporting electrolyte as typified by LiPF 6 is increased, the viscosity of the electrolytic solution is increased, the ion diffusion rate is decreased, and the conductivity of the electrolytic solution is decreased. As a result, the value of the current that can be taken out from the battery is reduced, causing a reduction in output density.

更に、電解液中に支持電解質を大量に添加すると、電極に対する電解液の濡れ性が悪化し内部抵抗が上昇して電池としての出力低下を引き起こすことが判明している。   Furthermore, it has been found that when a large amount of a supporting electrolyte is added to the electrolytic solution, the wettability of the electrolytic solution with respect to the electrode is deteriorated, the internal resistance is increased, and the output of the battery is reduced.

つまり、ラジカル化合物を用いた二次電池においては、高エネルギー密度と高出力密度を両立することは困難であった。   That is, in a secondary battery using a radical compound, it is difficult to achieve both high energy density and high output density.

ラジカル化合物を用いた二次電池の高エネルギー密度化に関する従来技術としては、特許文献1に、正極が安定ラジカル化合物を含み、且つ、電解質塩を保持する技術が開示されている。   As a conventional technique related to increasing the energy density of a secondary battery using a radical compound, Patent Document 1 discloses a technique in which a positive electrode contains a stable radical compound and holds an electrolyte salt.

しかし、この技術において正極内に保持された電解質塩は電解液に可溶なため、高温保存や長期保存時に電解質塩が溶解して電解液全体に均一に分散し、電解液の粘度を上昇させ電解液の導電率を低下させ、結果として、電池の出力低下を引き起こすことが推定される。
特開2004−259618号公報
However, since the electrolyte salt held in the positive electrode in this technology is soluble in the electrolyte, the electrolyte salt dissolves and is uniformly dispersed throughout the electrolyte during high-temperature storage and long-term storage, increasing the viscosity of the electrolyte. It is presumed that the conductivity of the electrolytic solution is lowered, and as a result, the output of the battery is lowered.
JP 2004-259618 A

本発明は上記実情に鑑みなされたものであり、高エネルギー密度及び高出力密度が両立された二次電池を得られる二次電池用正極及びその正極を用いた二次電池を提供することを課題とする。   This invention is made | formed in view of the said situation, and provides a secondary battery using the positive electrode for secondary batteries which can obtain the secondary battery in which high energy density and high output density were compatible, and the positive electrode And

上記課題を解決する目的で本発明者らは鋭意検討を行った結果、XYF(X:Li,Na,Kの一種、Y:Cを除く14族元素)とラジカル化合物とを電極中にて共存させることで、ラジカル化合物の特性が充分に発揮できるとの知見を得た。 In order to solve the above problems, the present inventors have conducted intensive studies. As a result, X 2 YF 6 (X: a kind of Li, Na, K, group 14 element excluding Y: C) and a radical compound are contained in the electrode. It was found that the characteristics of the radical compound can be sufficiently exerted by coexisting with.

すなわち、本発明の二次電池用正極は、正極活物質としてのラジカル化合物と、XYF(X:Li,Na,Kの一種、Y:Cを除く14族元素)と、を有することを特徴とする。 That is, the positive electrode for a secondary battery of the present invention has a radical compound as a positive electrode active material and X 2 YF 6 (X: a kind of Li, Na, K, 14: a group 14 element excluding Y: C). It is characterized by.

また、本発明の二次電池は、正極活物質としてのラジカル化合物と、XYF(X:Li,Na,Kの一種、Y:Cを除く14族元素)と、を有する二次電池用正極と、負極と、電解質をもつ電解液と、を有することを特徴とする。 In addition, the secondary battery of the present invention is a secondary battery having a radical compound as a positive electrode active material and X 2 YF 6 (X: a kind of Li, Na, K, group 14 element excluding Y: C). And a negative electrode and an electrolyte solution having an electrolyte.

本発明の二次電池用正極は、ラジカル化合物に反応するイオンを供給できるXYFをラジカル化合物とともに有している。この正極は、ラジカル化合物がもつラジカル部分は充電時に酸化してカチオンになり、電子を放出することで電極反応に関与している。そして、XYFからカチオンが解離してラジカル化合物から生成したカチオンの電荷を補償することで電池反応が継続できるものである。この結果、本発明の二次電池用正極は、高出力密度及び高エネルギー密度が両立できる二次電池を得られる。 Secondary battery positive electrode of the present invention, the X 2 YF 6 capable of supplying ions to react to radical compound has with radical compounds. In this positive electrode, the radical part of the radical compound is oxidized at the time of charging to become a cation, and participates in the electrode reaction by releasing electrons. Then, in which the cell reaction can continue by cations from the X 2 YF 6 to compensate the charge of the cations generated from radical compounds dissociate. As a result, the secondary battery positive electrode of the present invention can provide a secondary battery capable of achieving both high output density and high energy density.

そして、本発明の二次電池は、本発明の二次電池用正極を有するものであり、高出力密度及び高エネルギー密度が両立できるものとなっている。特に、電解液中の支持電解質濃度が低い状態でも高いエネルギー密度を実現できるので、支持電解質を高濃度に溶解させることに起因する電解液の粘度上昇が抑制できる結果、高い出力密度が実現可能になっている。   And the secondary battery of this invention has the positive electrode for secondary batteries of this invention, and can make high power density and high energy density compatible. In particular, since a high energy density can be realized even when the concentration of the supporting electrolyte in the electrolyte is low, an increase in the viscosity of the electrolyte caused by dissolving the supporting electrolyte at a high concentration can be suppressed, resulting in a high output density. It has become.

本発明の二次電池用正極は、正極活物質としてのラジカル化合物と、XYF(X:Li,Na,Kの一種、Y:Cを除く14族元素)と、を有する。 The positive electrode for a secondary battery of the present invention has a radical compound as a positive electrode active material and X 2 YF 6 (X: a kind of Li, Na, K, group 14 element excluding Y: C).

YFは、正極活物質においてイオン伝導を実現する化合物であり、本発明の二次電池用正極を二次電池に適用した環境下においてラジカル化合物に対応したイオンが脱離可能な化合物である。ここで、XYFは、ラジカル化合物のモル数の50%以上200%以下のモル数(割合)で混合することが望ましい。 X 2 YF 6 is a compound that realizes ion conduction in the positive electrode active material, and is a compound that can desorb ions corresponding to the radical compound in an environment where the positive electrode for a secondary battery of the present invention is applied to a secondary battery. is there. Here, X 2 YF 6 is desirably mixed in a mole number (ratio) of 50% or more and 200% or less of the number of moles of the radical compound.

YFとしては、脱離してカチオンになる部分構造であるカチオン構造と、そのカチオン構造が脱離した後の残部であってそのカチオン構造が脱離した後にアニオンを生成する部分構造であるアニオン構造と、をもつ材料を例示することができる。 具体的には、XYFのXがLiである化合物を例示できる。リチウムをカチオンとしたリチウム化合物においては、リチウムが解離した後にアニオン構造としてLiYF またはYF 2−などの構造が残存する。さらに、XYFの例としては、YがSiまたはSnであるLiSiFまたはLiSnFを例示することができる。 X 2 YF 6 is a cation structure that is a partial structure that becomes a cation upon desorption, and a partial structure that forms the anion after the cation structure is desorbed after the cation structure is desorbed. A material having an anionic structure can be exemplified. Specifically, a compound in which X in X 2 YF 6 is Li can be exemplified. In a lithium compound having lithium as a cation, a structure such as LiYF 6 or YF 6 2− remains as an anion structure after lithium is dissociated. Furthermore, examples of X 2 YF 6 include Li 2 SiF 6 or Li 2 SnF 6 in which Y is Si or Sn.

YFは、二次電池を構成したときに固体状態であることが望ましく、更には支持電解質の存在形態として液体を採用した場合に、溶解されないことが望ましい。すなわち、XYFは、二次電池を形成したときに用いられる電解液に不溶であることが好ましい。ここで、二次電池外(本発明の二次電池用正極を二次電池に適用する前及び本二次電池用正極を製造する前)におけるXYFの形態は特に限定しない。 X 2 YF 6 is desirably in a solid state when a secondary battery is formed, and further desirably not dissolved when a liquid is used as a supporting electrolyte. That is, X 2 YF 6 is preferably insoluble in the electrolytic solution used when forming the secondary battery. Here, the form of X 2 YF 6 outside the secondary battery (before applying the secondary battery positive electrode of the present invention to the secondary battery and before manufacturing the secondary battery positive electrode) is not particularly limited.

ラジカル化合物は、本発明の二次電池用正極において正極活物質として機能し、ラジカルを分子構造中に有する化合物である。ラジカル化合物は、本実施形態の二次電池用正極を二次電池に適用した場合に、分子構造中に有するラジカルにおける酸化還元が電池反応に対して直接関係する化合物である。従って、ラジカル化合物は、本発明の二次電池用正極を適用する二次電池の種類(組み合わせる電極、支持電解質の種類、目的とする電池性能)によって適正に選択できる。また、ラジカル化合物は、その構造中に導電性を有するものを用いてもよい。導電性を有したものを用いた場合、導電材量を低減できるため、ラジカル化合物量を増加させることができる。ラジカル化合物は正極合材重量を基準として5%以上60%以下の割合で混合することが望ましい。   The radical compound is a compound that functions as a positive electrode active material in the positive electrode for a secondary battery of the present invention and has a radical in the molecular structure. The radical compound is a compound in which the oxidation-reduction in the radical contained in the molecular structure is directly related to the battery reaction when the secondary battery positive electrode of the present embodiment is applied to the secondary battery. Accordingly, the radical compound can be appropriately selected depending on the type of secondary battery (the electrode to be combined, the type of supporting electrolyte, and the target battery performance) to which the positive electrode for secondary battery of the present invention is applied. Moreover, you may use what has electroconductivity in the structure as a radical compound. When the conductive material is used, the amount of the conductive material can be reduced, so that the amount of the radical compound can be increased. The radical compound is desirably mixed at a ratio of 5% to 60% based on the weight of the positive electrode mixture.

リチウムイオンを採用した二次電池に適用する場合において具体的に用いることが可能なラジカル化合物としては、ニトロキシルラジカル化合物、オキシラジカル化合物、アリールオキシラジカル化合物並びにアミノトリアジン構造をもつ化合物などが挙げられる。   Examples of radical compounds that can be specifically used when applied to a secondary battery employing lithium ions include nitroxyl radical compounds, oxy radical compounds, aryloxy radical compounds, and compounds having an aminotriazine structure. .

本発明の二次電池用正極において、XYFとラジカル化合物とはできるだけ近接していることが望ましい。つまり、ラジカル化合物とリチウム化合物は混合していることが望ましい。ここで、ラジカル化合物及びリチウム化合物は、良好に混合するように、お互いに親和性が高いことが望ましい。 In the positive electrode for secondary battery of the present invention, it is desirable that X 2 YF 6 and the radical compound are as close as possible. That is, it is desirable that the radical compound and the lithium compound are mixed. Here, it is desirable that the radical compound and the lithium compound have a high affinity for each other so as to be mixed well.

本発明の二次電池用正極は、ラジカル化合物で進行する電子の授受が円滑に進行するようにする目的で、更に導電材を含有してもよい。導電材は、ラジカル化合物のラジカル及びラジカル化合物からの集電を行う集電体との双方の間の導電性を向上することを目的としているので、分子レベルにおいてまで双方に近接して配設されていることが望ましい。導電材は正極合材の重量を基準として5%以上50%以下の割合で混合することが望ましく、5%以上40%以下の割合で混合することが更に望ましい。   The positive electrode for a secondary battery of the present invention may further contain a conductive material for the purpose of smoothly transferring and receiving electrons that proceed with the radical compound. The conductive material is intended to improve the electrical conductivity between the radical of the radical compound and the current collector that collects current from the radical compound, so it is disposed close to both up to the molecular level. It is desirable that The conductive material is preferably mixed at a rate of 5% to 50%, more preferably 5% to 40%, based on the weight of the positive electrode mixture.

具体的な導電材としては、ケッチェンブラック、アセチレンブラック、カーボンブラック、グラファイト、カーボンナノチューブ、非晶質炭素等、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリアセンなどの導電性高分子や、金属材料を例示することができる。   Specific conductive materials include ketjen black, acetylene black, carbon black, graphite, carbon nanotubes, amorphous carbon, conductive polymers such as polyaniline, polypyrrole, polythiophene, polyacetylene, polyacene, and metal materials. can do.

更に、本発明の二次電池用正極はラジカル化合物以外にも電池反応に関連する活物質(リチウムイオンが挿入脱離する化合物など)を含有する構成を採用することができる。活物質は正極合材の重量を基準として0%を超え90%以下の割合で混合することが望ましい。   Furthermore, the positive electrode for a secondary battery of the present invention can employ a configuration containing an active material related to a battery reaction (such as a compound from which lithium ions are inserted and released) in addition to a radical compound. The active material is desirably mixed in a proportion of more than 0% and 90% or less based on the weight of the positive electrode mixture.

本発明の正極に混合できる正極の活物質としては、層状構造またはスピネル構造のリチウム−金属複合酸化物をあげることができる。具体的には、Li(1−Z)NiO、Li(1−Z)MnO、Li(1−Z)Mn、Li(1−Z)CoO、Li(1−Z)FeO等をあげることができる。ここで、これらのリチウム−金属複合酸化物におけるzは0〜1である。また、これらのリチウム−金属複合酸化物は、各々にLi、Mg、Al、又はCo、Ti、Nb、Cr等の遷移金属を添加または置換していてもよい。また、これらのリチウム−金属複合酸化物を単独で用いるばかりでなくこれらを複数種類混合して用いることもできる。このなかでも、層状構造又はスピネル構造のリチウムマンガン含有複合酸化物、リチウムニッケル含有複合酸化物及びリチウムコバルト含有複合酸化物のうちの1種以上のリチウム−金属複合酸化物であることが好ましい。 Examples of the positive electrode active material that can be mixed with the positive electrode of the present invention include a lithium-metal composite oxide having a layered structure or a spinel structure. Specifically, Li (1-Z) NiO 2, Li (1-Z) MnO 2, Li (1-Z) Mn 2 O 4, Li (1-Z) CoO 2, Li (1-Z) FeO 2 etc. can be raised. Here, z in these lithium-metal composite oxides is 0-1. Further, these lithium-metal composite oxides may each be added or substituted with a transition metal such as Li, Mg, Al, Co, Ti, Nb, or Cr. Moreover, not only these lithium-metal composite oxides are used alone, but also a plurality of them can be mixed and used. Among these, at least one lithium-metal composite oxide of a lithium manganese-containing composite oxide, a lithium nickel-containing composite oxide, and a lithium cobalt-containing composite oxide having a layered structure or a spinel structure is preferable.

更に、本発明の二次電池用正極は、リチウム化合物、ラジカル化合物、活物質などを分散する分散材、またそれらを結合する結着材、ラジカル化合物にて生成する電子を集電する集電体(金属箔などから形成することができる)などを有することができる。   Furthermore, the positive electrode for a secondary battery according to the present invention includes a dispersion material in which a lithium compound, a radical compound, an active material, and the like are dispersed, a binder that binds them, and a current collector that collects electrons generated by the radical compound. (It can be formed from a metal foil or the like).

分散材、結着材は高分子材料から形成されることが望ましく、二次電池内の雰囲気において化学的・物理的に安定な材料であることが望ましい。   The dispersion material and the binder are preferably formed from a polymer material, and are desirably materials that are chemically and physically stable in the atmosphere in the secondary battery.

本実施形態の二次電池用正極は、ラジカル化合物及びXYFを必須の構成要素として有し、前述の正極活物質、結着材、導電材その他の材料から必要に応じて選択される添加材を混合した電極合材からなる層であってその集電体の表面に形成された電極合材層を金属箔などから形成される集電体の表面に有する形態とすることが一般的である。集電体の表面に電極合材層を形成する方法としては電極合材を適正な分散媒中に分散または溶解させた後、集電体の表面に塗布・乾燥する方法が例示できる。 The positive electrode for secondary battery of this embodiment has a radical compound and X 2 YF 6 as essential components, and is selected from the above-described positive electrode active material, binder, conductive material and other materials as necessary. In general, the electrode mixture layer is a layer made of an electrode mixture in which an additive is mixed, and the electrode mixture layer formed on the surface of the current collector is formed on the surface of the current collector formed of a metal foil or the like. It is. Examples of a method for forming the electrode mixture layer on the surface of the current collector include a method in which the electrode mixture is dispersed or dissolved in an appropriate dispersion medium and then applied to the surface of the current collector and dried.

そして、本発明の二次電池は、正極活物質としてのラジカル化合物と、XYF(X:Li,Na,Kの一種、Y:Cを除く14族元素)と、を有する二次電池用正極と、負極と、電解質をもつ電解液と、を有する。すなわち、本発明の二次電池は、前記した本発明の二次電池用正極を有するものである。 The secondary battery of the present invention, a radical compound as a positive electrode active material, X 2 YF 6 (X: Li, Na, kind of K, Y: 14 group elements excluding C) secondary battery having a A positive electrode for use, a negative electrode, and an electrolyte solution having an electrolyte. That is, the secondary battery of the present invention has the above-described positive electrode for a secondary battery of the present invention.

本発明の二次電池は、前記した二次電池用正極を負極と組み合わせて二次電池を構成するが、組み合わせる負極の活物質としては、リチウムイオンを充電時には吸蔵し且つ放電時には放出する化合物が採用できる。この負極活物質は、その材料構成で特に限定されるものではなく、公知の材料、構成のものを用いることができる。例えば、リチウム金属、グラファイト又は非晶質炭素等の炭素材料等、ケイ素、スズなどを含有する合金材料、LiTi12、Nb等の酸化物材料である。 In the secondary battery of the present invention, the above-described positive electrode for a secondary battery is combined with a negative electrode to form a secondary battery. As an active material of the negative electrode to be combined, a compound that occludes lithium ions during charging and releases them during discharging is used. Can be adopted. The negative electrode active material is not particularly limited in its material configuration, and known materials and configurations can be used. For example, a lithium metal, a carbon material such as graphite or amorphous carbon, an alloy material containing silicon, tin, or the like, or an oxide material such as Li 4 Ti 5 O 12 or Nb 2 O 5 .

電解液は、特に限定しないが、有機溶媒などの溶媒に電解質(支持塩)を溶解させたもの、自身が液体状であるイオン液体、そのイオン液体に対して更に支持塩を溶解させたものが例示できる。有機溶媒としては、通常リチウム二次電池の電解液に用いられる有機溶媒が例示できる。例えば、カーボネート類、ハロゲン化炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、オキソラン化合物等を用いることができる。特に、プロピレンカーボネート、エチレンカーボネート、1,2−ジメトキシエタン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等及びそれらの混合溶媒が適当である。   The electrolyte solution is not particularly limited, but an electrolyte solution (supporting salt) dissolved in a solvent such as an organic solvent, an ionic liquid that is liquid itself, or a solution in which a supporting salt is further dissolved in the ionic liquid. It can be illustrated. As an organic solvent, the organic solvent normally used for the electrolyte solution of a lithium secondary battery can be illustrated. For example, carbonates, halogenated hydrocarbons, ethers, ketones, nitriles, lactones, oxolane compounds and the like can be used. In particular, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and the like, and mixed solvents thereof are suitable.

例に挙げたこれらの有機溶媒のうち、特に、カーボネート類、エーテル類からなる群より選ばれた一種以上の非水溶媒を用いることにより、支持塩の溶解性、誘電率および粘度において優れ、電池の充放電効率も高いので、好ましい。   Among these organic solvents mentioned in the examples, in particular, by using one or more non-aqueous solvents selected from the group consisting of carbonates and ethers, the solubility of the supporting salt, the dielectric constant and the viscosity are excellent, and the battery The charge / discharge efficiency is also preferable.

イオン液体は、通常リチウム二次電池の電解液に用いられるイオン液体であれば特に限定されるものではない。例えば、イオン液体のカチオン成分としては、N−メチル−N−プロピルピペリジニウムや、ジメチルエチルメトキシアンモニウムカチオン等が挙げられ、アニオン成分としは、BF 、LiN(SO 等が挙げられる。 An ionic liquid will not be specifically limited if it is an ionic liquid normally used for the electrolyte solution of a lithium secondary battery. For example, as the cation component of the ionic liquid, or N- methyl -N- propyl piperidinium, dimethylethyl methoxy ammonium cation and the like, and an anionic component, BF 4 -, LiN (SO 2 C 2 F 5) 2 -, and the like.

本発明の二次電池の電解液において用いられる支持塩としては、特に限定されない。例えば、LiPF、LiBF、LiAsF、LiCFSO、LiN(CFSO、LiC(CFSO、LiSbF、LiSCN、LiClO、LiAlCl、NaClO、NaBF、NaI、これらの誘導体等の塩化合物が挙げられる。これらの中でも、LiPF、LiBF、LiClO、LiAsF、LiCFSO、LiN(CFSO、LiC(CFSO、LiCFSOの誘導体、LiN(CFSOの誘導体及びLiC(CFSOの誘導体からなる群から選ばれる1種以上の塩を用いることが、電気特性の観点からは好ましい。 The supporting salt used in the electrolytic solution of the secondary battery of the present invention is not particularly limited. For example, LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiSbF 6 , LiSCN, LiClO 4 , LiAlCl 4 , NaClO 4 , BClO 4 , NaI, and salt compounds such as derivatives thereof. Among these, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiCF 3 SO 3 derivative, LiN (CF 3 From the viewpoint of electrical characteristics, it is preferable to use one or more salts selected from the group consisting of a derivative of SO 2 ) 2 and a derivative of LiC (CF 3 SO 2 ) 3 .

正極と負極との間には電気的な絶縁作用とイオン伝導作用とを両立する部材であるセパレータを介装することが望ましい。電解液が液状である場合にはセパレータは、液状の支持電解質を保持する役割をも果たす。セパレータとしては、多孔質合成樹脂膜、特にポリオレフィン系高分子(ポリエチレン、ポリプロピレン)の多孔質膜が例示できる。更に、セパレータは、正極及び負極の間の絶縁を担保する目的で、正極及び負極よりも更に大きい形態を採用することが好ましい。   It is desirable to interpose a separator that is a member that achieves both electrical insulation and ion conduction between the positive electrode and the negative electrode. When the electrolytic solution is liquid, the separator also plays a role of holding the liquid supporting electrolyte. Examples of the separator include a porous synthetic resin film, particularly a porous film of a polyolefin polymer (polyethylene or polypropylene). Furthermore, it is preferable that the separator has a larger size than the positive electrode and the negative electrode for the purpose of ensuring the insulation between the positive electrode and the negative electrode.

正極、負極、支持電解質、セパレータなどは何らかのケース内に収納することが一般的である。ケースは、特に限定されるものではなく、公知の材料、形態で作成することができる。   In general, the positive electrode, the negative electrode, the supporting electrolyte, the separator, and the like are housed in some case. The case is not particularly limited and can be made of a known material and form.

本発明の二次電池用正極及び二次電池について、以下の具体的な実施例に基づき、更に詳細に説明する。但し、以下の実施例は本発明の例示であり、本発明は以下の実施例によって制限を受けるものではない。   The positive electrode for secondary battery and the secondary battery of the present invention will be described in more detail based on the following specific examples. However, the following examples are illustrative of the present invention, and the present invention is not limited by the following examples.

(実施例1)
(二次電池用正極の作製)
LiSiFと、ラジカル化合物としてのPTMA、導電材としてのカーボンブラック、結着材としてポリフッ化ビニリデン(PVDF)、分散媒としてのN−メチルピロリドン(NMP)を10:57:28:5:90の質量割合(質量部)で混合分散させた。ここで、LiSiFのモル数は、ラジカル化合物のモル数の50%であった。
Example 1
(Preparation of positive electrode for secondary battery)
Li 2 SiF 6 , PTMA as a radical compound, carbon black as a conductive material, polyvinylidene fluoride (PVDF) as a binder, and N-methylpyrrolidone (NMP) as a dispersion medium 10: 57: 28: 5: It was mixed and dispersed at a mass ratio (parts by mass) of 90. Here, the number of moles of Li 2 SiF 6 was 50% of the number of moles of the radical compound.

得られたスラリーをアルミニウム製の金属箔よりなる正極集電体の両面に塗布し、乾燥後、プレスして、正極板とした。その後、この正極板を所定の大きさにカットした上で、電流取り出し用のリードタブ溶接部となる部分の正極合剤を掻き取ってシート状の正極を作製した。   The obtained slurry was applied to both surfaces of a positive electrode current collector made of an aluminum metal foil, dried and pressed to obtain a positive electrode plate. Thereafter, the positive electrode plate was cut into a predetermined size, and then the positive electrode mixture in the portion to be a lead tab weld for extracting current was scraped off to produce a sheet-like positive electrode.

(電解液の調製)
エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを3:7の質量比で混合した有機溶媒に、LiPFを0.6mol/Lの濃度となるように添加し電解液とした。
(Preparation of electrolyte)
LiPF 6 was added to an organic solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a mass ratio of 3: 7 to a concentration of 0.6 mol / L to obtain an electrolytic solution.

(コイン型電池の作製)
製造された本実施例の正極1を用いてコイン型電池を製造した。本実施例のコイン型電池1を断面図で図1に示した。本実施例のコイン型電池は、正極2、負極3、電解液4およびセパレータ7を有する。負極3には金属リチウムを、電解液4は調製した前記電解液を、セパレータ7は厚さ25μmのポリエチレン製の多孔質膜を用いた。なお、正極2は正極集電体2aをもち、負極3は負極集電体3aをもつ。
(Production of coin-type battery)
A coin-type battery was manufactured using the manufactured positive electrode 1 of this example. A coin-type battery 1 of this example is shown in FIG. The coin-type battery of this example includes a positive electrode 2, a negative electrode 3, an electrolytic solution 4, and a separator 7. The negative electrode 3 was made of metallic lithium, the electrolytic solution 4 was the prepared electrolytic solution, and the separator 7 was a 25 μm thick polyethylene porous membrane. The positive electrode 2 has a positive electrode current collector 2a, and the negative electrode 3 has a negative electrode current collector 3a.

これらの発電要素をステンレス製のケース(正極ケース50と負極ケース51から構成されている)中に収納した。正極ケース50と負極ケース51とは正極端子と負極端子とを兼ねている。正極ケース50と負極ケース51との間にはポリプロピレン製のガスケット6を介装することで密閉性と正極ケース50と負極ケース51との間の絶縁性とを担保している。   These power generation elements were housed in a stainless steel case (consisting of a positive electrode case 50 and a negative electrode case 51). The positive electrode case 50 and the negative electrode case 51 serve as a positive electrode terminal and a negative electrode terminal. A gasket 6 made of polypropylene is interposed between the positive electrode case 50 and the negative electrode case 51 to ensure sealing and insulation between the positive electrode case 50 and the negative electrode case 51.

(実施例2)
LiSiFと、ラジカル化合物としてのPTMA、導電材としてのカーボンブラック、結着材としてPVDF、分散媒としてのNMPを17:52:26:5:90の質量割合(質量部)で混合分散させた。ここで、LiSiFのモル数は、ラジカル化合物のモル数と同数(100%)である。
(Example 2)
Li 2 SiF 6 and PTMA as a radical compound, carbon black as a conductive material, PVDF as a binder, and NMP as a dispersion medium are mixed and dispersed in a mass ratio (parts by mass) of 17: 52: 26: 5: 90. I let you. Here, the number of moles of Li 2 SiF 6 is the same number (100%) as the number of moles of the radical compound.

調製されたスラリーから実施例1の時と同様にして、本実施例の正極およびコイン型電池を製造した。   The positive electrode and coin-type battery of this example were produced from the prepared slurry in the same manner as in Example 1.

(実施例3)
LiSiFと、ラジカル化合物としてのPTMA、導電材としてのカーボンブラック、結着材としてのPVDF、分散媒としてのNMPを29:44:22:5:90の質量割合(質量部)で混合分散させた。ここで、LiSiFのモル数は、ラジカル化合物のモル数の200%である。
(Example 3)
Li 2 SiF 6 mixed with PTMA as a radical compound, carbon black as a conductive material, PVDF as a binder, and NMP as a dispersion medium in a mass ratio (parts by mass) of 29: 44: 22: 5: 90 Dispersed. Here, the number of moles of Li 2 SiF 6 is 200% of the number of moles of the radical compound.

調製されたスラリーから実施例1の時と同様にして、本実施例の正極およびコイン型電池を製造した。   The positive electrode and coin-type battery of this example were produced from the prepared slurry in the same manner as in Example 1.

(実施例4)
LiSiFと、ラジカル化合物としてのPTMA、導電材としてのカーボンブラック、結着材としてPVDF、分散媒としてのNMPを17:52:26:5:90の質量割合(質量部)で混合分散させた。ここで、LiSiFのモル数は、ラジカル化合物のモル数と同数(100%)である。
Example 4
Li 2 SiF 6 and PTMA as a radical compound, carbon black as a conductive material, PVDF as a binder, and NMP as a dispersion medium are mixed and dispersed in a mass ratio (parts by mass) of 17: 52: 26: 5: 90. I let you. Here, the number of moles of Li 2 SiF 6 is the same number (100%) as the number of moles of the radical compound.

調製されたスラリーから実施例1の時と同様にして、本実施例の正極を製造した。   The positive electrode of this example was produced from the prepared slurry in the same manner as in Example 1.

ECとDECとを3:7の質量比で混合した有機溶媒にLiPFを1.0mol/Lの濃度で添加し電解液とした以外は、実施例1の時と同様にして、本実施例のコイン型電池を製造した。 This example was the same as Example 1 except that LiPF 6 was added at a concentration of 1.0 mol / L to an organic solvent in which EC and DEC were mixed at a mass ratio of 3: 7 to obtain an electrolytic solution. Manufactured a coin-type battery.

(比較例1)
LiSiFを添加しない以外は概ね実施例1と同様にして本比較例の正極を製造した。
(Comparative Example 1)
A positive electrode of this comparative example was manufactured in substantially the same manner as in Example 1 except that Li 2 SiF 6 was not added.

正極として、ラジカル化合物としてのPTMA、導電材としてのカーボンブラック、結着材としてPVDF、分散媒としてのNMPを63:31:6:90の質量割合(質量部)で混合分散させて正極合材とし、それ以外は実施例1と同様にして本比較例の正極を製造した。   As a positive electrode, PTMA as a radical compound, carbon black as a conductive material, PVDF as a binder, and NMP as a dispersion medium are mixed and dispersed at a mass ratio (parts by mass) of 63: 31: 6: 90. Otherwise, a positive electrode of this comparative example was produced in the same manner as in Example 1.

ECとDECとを3:7の質量比で混合した有機溶媒にLiPFを1.0mol/Lの濃度で添加し電解液とした以外は、実施例1の時と同様にして、本比較例のコイン型電池を製造した。 This comparative example was the same as in Example 1 except that LiPF 6 was added to an organic solvent in which EC and DEC were mixed at a mass ratio of 3: 7 at a concentration of 1.0 mol / L to obtain an electrolytic solution. Manufactured a coin-type battery.

(比較例2)
本比較例の正極は、比較例1と同様にして製造された正極である。
(Comparative Example 2)
The positive electrode of this comparative example is a positive electrode manufactured in the same manner as in comparative example 1.

ECとDECとを3:7の質量比で混合した有機溶媒をそのまま電解液とした以外は、比較例1と同様にして、本比較例のコイン型電池を製造した。   A coin-type battery of this comparative example was manufactured in the same manner as in Comparative Example 1 except that an organic solvent obtained by mixing EC and DEC at a mass ratio of 3: 7 was used as it was as an electrolytic solution.

(比較例3)
本比較例の正極は、比較例1と同様にして製造された正極である。
(Comparative Example 3)
The positive electrode of this comparative example is a positive electrode manufactured in the same manner as in comparative example 1.

ECとDECとを3:7の質量比で混合した有機溶媒に、LiSiFを1.0mol/Lの濃度で添加して電解液とした以外は、比較例1と同様にして、本比較例のコイン型電池を製造した。ここでLiSiFのモル数は、ラジカル化合物のモル数と同数(100%)である。 In the same manner as in Comparative Example 1, except that Li 2 SiF 6 was added at a concentration of 1.0 mol / L to an organic solvent in which EC and DEC were mixed at a mass ratio of 3: 7, this electrolyte was used. A coin-type battery of a comparative example was manufactured. Here, the number of moles of Li 2 SiF 6 is the same number (100%) as the number of moles of the radical compound.

(評価)
実施例及び比較例の評価として、コイン型電池の容量比を求めた。
(Evaluation)
As an evaluation of the examples and comparative examples, the capacity ratio of the coin-type battery was determined.

(コイン型電池評価試験方法)
実施例及び比較例のコイン型電池を25℃の恒温槽内に入れ、1C相当の電流値(1Cは電池容量を1時間で放電できる電流値)で、4.1Vまで定電流充電し、1C相当の電流値で3.0Vまで定電流放電を行った。この試験を5回行った後、5回目の放電容量値を各コイン電池の容量値とし、比較例1の容量を基準として容量比を算出した。得られた結果を表1に示す。
(Coin-type battery evaluation test method)
The coin type batteries of Examples and Comparative Examples are placed in a constant temperature bath at 25 ° C., and are charged at a constant current up to 4.1 V at a current value equivalent to 1 C (1 C is a current value that can discharge the battery capacity in 1 hour). A constant current discharge was performed up to 3.0 V at a considerable current value. After this test was performed five times, the discharge capacity value of the fifth time was used as the capacity value of each coin battery, and the capacity ratio was calculated based on the capacity of Comparative Example 1. The obtained results are shown in Table 1.

表1に示したように、実施例1〜3のコイン電池は、比較例1よりも高い容量比であることが確認できる。つまり、ラジカル化合物を有する正極内にLiSiFを混合することで、電解液中の支持塩の塩濃度が低くても、比較例1と同等以上の容量を実現することができる。 As shown in Table 1, it can be confirmed that the coin batteries of Examples 1 to 3 have a higher capacity ratio than Comparative Example 1. That is, by mixing Li 2 SiF 6 in the positive electrode having a radical compound, even when the salt concentration of the supporting salt in the electrolytic solution is low, a capacity equal to or higher than that of Comparative Example 1 can be realized.

さらに、実施例1〜3のコイン電池から、LiSiFの添加量の増大により、容量比が向上しており、LiSiFのLiが解離した後、アニオン部分がラジカル化合物から生成したカチオンの電荷を補償して電池反応していることが確認することができた。 Furthermore, from the coin batteries of Examples 1 to 3, the capacity ratio was improved by increasing the amount of Li 2 SiF 6 added, and after Li of Li 2 SiF 6 was dissociated, the anion portion was generated from the radical compound. It was confirmed that the battery reaction was performed by compensating the charge of the cation.

また、実施例4のコイン型電池では、電解液中の支持塩の塩濃度が増加すると、より高い容量比となることが確認できる。   Moreover, in the coin type battery of Example 4, it can be confirmed that when the salt concentration of the supporting salt in the electrolytic solution is increased, a higher capacity ratio is obtained.

ここで、比較例3のコイン型電池では、LiSiFが電解液に添加されているが、電解液に溶解していなかった。そして、比較例3のコイン型電池では、容量は発現していない。すなわち、各実施例の時のように、正極中のラジカル化合物(PTMA)の近傍に存在させてはじめて効果を発揮することが確認できた。 Here, in the coin type battery of Comparative Example 3, Li 2 SiF 6 was added to the electrolytic solution, but was not dissolved in the electrolytic solution. And the capacity | capacitance is not expressed in the coin-type battery of the comparative example 3. That is, as in each example, it was confirmed that the effect was exhibited only when it was present in the vicinity of the radical compound (PTMA) in the positive electrode.

表1から明らかなように、電解液中の支持塩濃度を低くしても正極内にラジカル化合物とLiSiFとを混合することにより高い容量が実現できるので、高い出力密度が必要な場合には電解液中の支持塩濃度を低くして電解液の導電率を高くすることにより、高出力密度と高エネルギー密度の両立を実現できることが明らかとなった。 As is clear from Table 1, a high capacity can be realized by mixing a radical compound and Li 2 SiF 6 in the positive electrode even when the concentration of the supporting salt in the electrolytic solution is low. It has been clarified that a high output density and a high energy density can both be achieved by lowering the concentration of the supporting salt in the electrolyte and increasing the conductivity of the electrolyte.

本実施例で製造したコイン型電池の構造を概略的に示す縦断面図である。It is a longitudinal cross-sectional view which shows roughly the structure of the coin-type battery manufactured in the present Example.

符号の説明Explanation of symbols

1:コイン型電池
2:正極 2a:正極集電体
3:負極 3a:負極集電体
4:電解液
50:正極ケース 51:負極ケース
6:ガスケット
7:セパレータ
1: coin-type battery 2: positive electrode 2a: positive electrode current collector 3: negative electrode 3a: negative electrode current collector 4: electrolyte 50: positive electrode case 51: negative electrode case 6: gasket 7: separator

Claims (10)

正極活物質としてのラジカル化合物と、XYF(X:Li,Na,Kの一種、Y:Cを除く14族元素)と、を有することを特徴とする二次電池用正極。 A positive electrode for a secondary battery, comprising: a radical compound as a positive electrode active material; and X 2 YF 6 (X: a kind of Li, Na, K, a group 14 element excluding Y: C). 前記ラジカル化合物と前記XYFが、混合している請求項1に記載の二次電池用正極。 The positive electrode for a secondary battery according to claim 1, wherein the radical compound and the X 2 YF 6 are mixed. 前記化合物XYFは、XがLiである請求項1〜2のいずれかに記載の二次電池用正極。 The positive electrode for a secondary battery according to claim 1, wherein in the compound X 2 YF 6 , X is Li. 前記LiXFは、LiSiFまたはLiSnFである請求項1〜3のいずれかに記載の二次電池用正極。 The Li 2 XF 6 is a positive electrode for a secondary battery according to claim 1 is Li 2 SiF 6 or Li 2 SnF 6. 前記XYFは、電解液に不溶である請求項1〜4のいずれかに記載の二次電池用正極。 The positive electrode for a secondary battery according to claim 1, wherein the X 2 YF 6 is insoluble in an electrolytic solution. 正極活物質としてのラジカル化合物と、XYF(X:Li,Na,Kの一種、Y:Cを除く14族元素)と、を有する二次電池用正極と、負極と、電解質をもつ電解液と、を有することを特徴とする二次電池。 A positive electrode for a secondary battery having a radical compound as a positive electrode active material and X 2 YF 6 (X: a kind of Li, Na, K, group 14 element excluding Y: C), a negative electrode, and an electrolyte A secondary battery comprising an electrolyte solution. 前記ラジカル化合物と前記XYFが、混合している請求項6に記載の二次電池。 The secondary battery according to claim 6, wherein the radical compound and the X 2 YF 6 are mixed. 前記化合物XYFは、XがLiである請求項6〜7のいずれかに記載の二次電池。 The secondary battery according to claim 6, wherein X of the compound X 2 YF 6 is Li. 前記LiXFは、LiSiFまたはLiSnFである請求項6〜8のいずれかに記載の二次電池。 The Li 2 XF 6, the secondary battery according to any one of claims 6 to 8 is a Li 2 SiF 6 or Li 2 SnF 6. 前記化合物XYFは、電解液に不溶である請求項6〜9のいずれかに記載の二次電池。 The secondary battery according to claim 6, wherein the compound X 2 YF 6 is insoluble in an electrolytic solution.
JP2007283142A 2007-10-31 2007-10-31 Positive electrode for secondary battery and secondary battery Expired - Fee Related JP5061851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007283142A JP5061851B2 (en) 2007-10-31 2007-10-31 Positive electrode for secondary battery and secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007283142A JP5061851B2 (en) 2007-10-31 2007-10-31 Positive electrode for secondary battery and secondary battery

Publications (2)

Publication Number Publication Date
JP2009110847A JP2009110847A (en) 2009-05-21
JP5061851B2 true JP5061851B2 (en) 2012-10-31

Family

ID=40779103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007283142A Expired - Fee Related JP5061851B2 (en) 2007-10-31 2007-10-31 Positive electrode for secondary battery and secondary battery

Country Status (1)

Country Link
JP (1) JP5061851B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5510084B2 (en) * 2010-06-03 2014-06-04 ソニー株式会社 Negative electrode for lithium ion secondary battery, lithium ion secondary battery, electric tool, electric vehicle and power storage system
JP2013089413A (en) * 2011-10-17 2013-05-13 Canon Inc Electrode active material for secondary battery, and secondary battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6010570A (en) * 1983-06-30 1985-01-19 Showa Denko Kk Secondary battery
JPS6097567A (en) * 1983-10-31 1985-05-31 Hitachi Ltd Secondary battery
JPS6319763A (en) * 1986-07-09 1988-01-27 Mitsubishi Chem Ind Ltd Battery
JP4972831B2 (en) * 2001-07-24 2012-07-11 日本電気株式会社 Lithium secondary battery
JP5076884B2 (en) * 2007-02-20 2012-11-21 株式会社デンソー Secondary battery electrode and secondary battery employing the electrode
JP5043551B2 (en) * 2007-08-01 2012-10-10 株式会社デンソー Nonaqueous electrolyte secondary battery using high molecular weight polymer containing nitroxy radical group

Also Published As

Publication number Publication date
JP2009110847A (en) 2009-05-21

Similar Documents

Publication Publication Date Title
CN108899583B (en) Electrolyte system for silicon-containing electrodes
CN108886166B (en) Nonaqueous electrolyte additive, and nonaqueous electrolyte for lithium secondary battery and lithium secondary battery containing same
US20090169992A1 (en) Lithium Secondary Battery Using Ionic Liquid
US11876177B2 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
JP2007179883A (en) Nonaqueous electrolyte secondary battery
WO2012001988A1 (en) Non-aqueous electrolyte secondary battery
KR20130117721A (en) The electrodes and the secondary battery comprising the same
KR20130122279A (en) Mixed positive-electrode material with improved output property and lithium secondary battery comprising the same
KR100875126B1 (en) Electrode for lithium secondary battery having improved cycle performance and lithium secondary battery using same
JP5076884B2 (en) Secondary battery electrode and secondary battery employing the electrode
KR100813309B1 (en) Nonaqueous electrolyte for lithium secondary batteries having enhanced cycle performance and lithium secondary batteries comprising the same
JP5298767B2 (en) Secondary battery electrode, manufacturing method thereof, and secondary battery employing the electrode
KR101564131B1 (en) Cathode active material for lithium secondary battery and manufacturing method thereof
CN109155435B (en) Solid electrolyte, all-solid-state battery
JP2009277432A (en) Electrode for secondary battery, manufacturing method thereof, and secondary battery
ES2927260T3 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
JP5061851B2 (en) Positive electrode for secondary battery and secondary battery
KR102543244B1 (en) Electrolyte for lithium metal battery and lithium metal battery comprising thereof
KR101560863B1 (en) Lithium secondary battery with high energy density
JP2013037864A (en) Nonaqueous electrolyte secondary battery
JP2006073253A (en) Nonaqueous electrolyte battery
JP5242315B2 (en) Nonaqueous electrolyte secondary battery
JP4710230B2 (en) Secondary battery electrolyte and secondary battery
KR20150083365A (en) Nonaqueous electrolyte and lithium secondary battery containing the same
JP5471324B2 (en) Secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees