JP5054404B2 - Aluminum alloy clad material and brazing sheet for heat exchanger - Google Patents
Aluminum alloy clad material and brazing sheet for heat exchanger Download PDFInfo
- Publication number
- JP5054404B2 JP5054404B2 JP2007083502A JP2007083502A JP5054404B2 JP 5054404 B2 JP5054404 B2 JP 5054404B2 JP 2007083502 A JP2007083502 A JP 2007083502A JP 2007083502 A JP2007083502 A JP 2007083502A JP 5054404 B2 JP5054404 B2 JP 5054404B2
- Authority
- JP
- Japan
- Prior art keywords
- surface layer
- mass
- brazing
- less
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Laminated Bodies (AREA)
Description
本発明は、自動車用の熱交換器等に使用されるクラッド材およびブレージングシート、特にろう付け後強度および耐食性に優れた熱交換器用アルミニウム合金クラッド材およびブレージングシートに関する。 TECHNICAL FIELD The present invention relates to a clad material and brazing sheet used for heat exchangers for automobiles, and more particularly to an aluminum alloy clad material and brazing sheet for heat exchanger excellent in strength and corrosion resistance after brazing.
自動車に搭載されるコンデンサ、エバポレータ等の熱交換器は、アルミニウム合金からなるクラッド材またはブレージングシートを成形、組み立て、ろう付けされることにより形成される。近年、このアルミニウム合金クラッド材およびブレージングシートは、熱交換器の軽量化のために、例えばチューブ材用においては従来の板厚0.3〜0.5mmから板厚0.2mm以下へ薄肉化が進められており、それに伴って、より高強度化および高耐食化が求められている。 A heat exchanger such as a condenser or an evaporator mounted on an automobile is formed by molding, assembling, and brazing a clad material or brazing sheet made of an aluminum alloy. In recent years, these aluminum alloy clad materials and brazing sheets have been reduced in thickness from a conventional plate thickness of 0.3 to 0.5 mm to a plate thickness of 0.2 mm or less, for example, for tube materials in order to reduce the weight of heat exchangers. Along with this, there is a demand for higher strength and higher corrosion resistance.
耐食性に優れた熱交換器用アルミニウム合金ブレージングシートに関する従来技術として、例えば、特許文献1には、Al−Mn−Cu合金からなる心材の両面にAl−Zn合金からなる犠牲陽極層を積層させ、Al−Zn合金の犠牲防食作用によって耐食性を向上させたものが開示されている。
上記従来技術では、Al−Mn−Cu合金を心材としてその両面にAl−Zn合金からなる層を設けることにより、大気側および流体(冷媒)通路側の両面からの腐食に対して犠牲防食作用を付与するものである。異なる組成の合金を重ねてクラッドするため、ブレージングシートの製造工程中における熱処理(熱延、軟化焼鈍)およびろう付け処理により含有元素(Cu,Zn)が拡散し、図2(a)に示す濃度分布を形成する。CuはAl合金の電位を貴に、ZnはAl合金の電位を卑にするので、このブレージングシートにおける電位勾配は、図2(b)に示す状態となる。この構造では一方からの腐食(孔食)が心材板厚中心に進展した場合、心材板厚中心部以深の電位が心材板厚中心より卑になるため、腐食が急速に進展すると考えられる。そのため、このブレージングシートが薄肉化および激しい腐食環境に曝された場合には早期貫通孔形成に至る怖れがある。 In the above prior art, by providing an Al—Mn—Cu alloy as a core material and a layer made of an Al—Zn alloy on both sides, a sacrificial anticorrosive action against corrosion from both the atmosphere side and the fluid (refrigerant) passage side is provided. It is given. Since the alloys having different compositions are clad and clad, the contained elements (Cu, Zn) are diffused by heat treatment (hot rolling, soft annealing) and brazing treatment during the manufacturing process of the brazing sheet, and the concentration shown in FIG. Form a distribution. Since Cu makes the potential of the Al alloy noble and Zn makes the potential of the Al alloy base, the potential gradient in this brazing sheet is as shown in FIG. In this structure, when corrosion (pitting corrosion) from one side progresses to the center of the core plate thickness, the potential deeper than the center of the core plate thickness becomes lower than the center of the core plate thickness. For this reason, when this brazing sheet is exposed to a thin wall and a severe corrosive environment, there is a fear of early through-hole formation.
本発明は、前記問題点に鑑みてなされたものであり、薄肉化した場合にも、高耐食、高強度を維持する熱交換器用アルミニウム合金クラッド材およびブレージングシートを提供することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide an aluminum alloy clad material for a heat exchanger and a brazing sheet that maintain high corrosion resistance and high strength even when the thickness is reduced.
前記課題を解決するために、本発明者らは、腐食環境である熱交換器外部側となる層(外面層)を、従来技術と同様に電位を心材より卑にして心材に対する犠牲陽極層とし、一方、冷媒に接する熱交換器内部側となる層(内面層)は逆に、電位を心材より貴にして、心材板厚中心以深においても犠牲防食効果を備えることとした。その結果、各層を形成する合金中のCuおよびZnの濃度分布を制御することにより、外部側から内部側に向かって電位が貴になるように電位勾配を付与する方法を発明するに至った(図1参照)。 In order to solve the above-mentioned problems, the present inventors set the layer (outer surface layer) on the outer side of the heat exchanger, which is a corrosive environment, as a sacrificial anode layer for the core material with the potential lower than that of the core material as in the prior art. On the other hand, the layer (inner surface layer) on the inner side of the heat exchanger in contact with the refrigerant has a potential more noble than the core material, and has a sacrificial anticorrosion effect even deeper than the center of the core material plate thickness. As a result, by controlling the Cu and Zn concentration distribution in the alloy forming each layer, the inventors have invented a method for applying a potential gradient so that the potential becomes noble from the outside to the inside ( (See FIG. 1).
すなわち、請求項1に係る熱交換器用アルミニウム合金クラッド材は、心材と、この心材の一面側に配置される内面層と、前記心材の他面側に配置される外面層とを備えた熱交換器用アルミニウム合金クラッド材であって、前記心材は、Si:0.3〜1.5質量%、Mn:0.5〜1.8質量%、Mg:1.5質量%以下、Cu:1.0質量%以下、Ti:0.1〜0.35質量%を含有し、残部がAlおよび不可避的不純物からなり、前記内面層は、Si:1.5質量%以下、Mn:1.8質量%以下、Cu:1.0質量%以下を含有し、残部がAlおよび不可避的不純物からなり、前記外面層は、Si:1.5質量%以下、Mn:1.8質量%以下、Zn:2.5〜7.0質量%を含有し、残部がAlおよび不可避的不純物からなり、前記内面層のCu含有量は前記心材のCu含有量以上であり、前記内面層および前記外面層の少なくとも一方は、さらにTi:0.1〜0.35質量%を含有することを特徴とする。 That is, the aluminum alloy clad material for a heat exchanger according to claim 1 includes a core material, an inner surface layer disposed on one surface side of the core material, and an outer surface layer disposed on the other surface side of the core material. An aluminum alloy clad material for a machine, wherein the core material is composed of Si: 0.3 to 1.5% by mass, Mn: 0.5 to 1.8% by mass, Mg: 1.5% by mass or less, Cu: 1. 0% by mass or less, Ti: 0.1 to 0.35% by mass, the balance is made of Al and inevitable impurities, and the inner surface layer has Si: 1.5% by mass or less, Mn: 1.8% by mass %, Cu: 1.0% by mass or less, the balance being made of Al and inevitable impurities, the outer surface layer is composed of Si: 1.5% by mass or less, Mn: 1.8% by mass or less, Zn: 2.5 to 7.0% by mass, with the balance consisting of Al and inevitable impurities, Cu content of the serial inner surface layer Ri der than the Cu content of the core, at least one of the inner surface layer and the outer surface layer further Ti: 0.1 to 0.35, wherein that you containing mass% And
このように、心材を、冷媒に接する内面層と、大気に曝される外面層とで挟んだ3層の積層構造にし、各層を形成する合金中のCuおよびZnの濃度分布を制御したことにより、外部側から内部側に向かって電位が貴になるように電位勾配を付与することができる。また、Tiを添加したことにより、内面層、外面層においても、板厚方向への腐食が進展し難くなり、耐食性をさらに向上させることが可能である。その結果、従来技術に比較して、心材中心以深に孔食が達した場合でも犠牲防食効果を維持でき、長寿命化を図ることが可能である。特に、コンデンサ、エバポレータ等大気側からの腐食防止が重要である場合に有効である。なお、これらの熱交換器は非腐食性の冷媒を使用するため、内部側からの腐食はほとんど発生しない。 In this way, the core material has a three-layer structure sandwiched between the inner surface layer in contact with the refrigerant and the outer surface layer exposed to the atmosphere, and the concentration distribution of Cu and Zn in the alloy forming each layer is controlled. A potential gradient can be applied so that the potential becomes noble from the outside to the inside. Further, the addition of Ti makes it difficult for corrosion in the thickness direction to progress in the inner surface layer and the outer surface layer, and the corrosion resistance can be further improved. As a result, the sacrificial anticorrosion effect can be maintained even when pitting corrosion reaches deeper than the center of the core material, and the life can be extended as compared with the prior art. This is particularly effective when it is important to prevent corrosion from the atmosphere, such as capacitors and evaporators. In addition, since these heat exchangers use a non-corrosive refrigerant, corrosion from the inner side hardly occurs.
さらに、請求項2に係る熱交換器用アルミニウム合金クラッド材は、請求項1に記載の熱交換器用アルミニウム合金クラッド材において、前記内面層および前記外面層のそれぞれの前記不可避的不純物としてのMgの含有量が0.1質量%以下であることを特徴とする。 Furthermore, the aluminum alloy clad material for a heat exchanger according to claim 2 is the aluminum alloy clad material for a heat exchanger according to claim 1, wherein Mg is contained as the unavoidable impurities in each of the inner surface layer and the outer surface layer. The amount is 0.1% by mass or less.
このように、Mg濃度を制限することにより、熱交換器用アルミニウム合金クラッド材のろう付け性を確保することが可能である。 Thus, by restricting the Mg concentration, it is possible to ensure the brazing property of the aluminum alloy clad material for heat exchanger.
また、請求項3に係る熱交換器用アルミニウム合金ブレージングシートは、請求項1または請求項2に記載の熱交換器用アルミニウム合金クラッド材の少なくとも一方の面に、さらに、ろう材層を備えることを特徴とする。 The aluminum alloy brazing sheet for a heat exchanger according to claim 3 further comprises a brazing material layer on at least one surface of the aluminum alloy clad material for heat exchanger according to claim 1 or 2. And
このように、外側にろう材層を備えたことにより、ベアフィン材のようにろう材層を備えていない板材とのろう付け接合が可能である。 Thus, by providing the brazing material layer on the outside, it is possible to braze and join with a plate material that does not have a brazing material layer, such as a bare fin material.
請求項1に係る熱交換器用アルミニウム合金クラッド材によれば、薄肉化しても、高耐食、高強度を長期に亘って維持することができる。 According to the aluminum alloy clad material for a heat exchanger according to claim 1, high corrosion resistance and high strength can be maintained over a long period of time even if the thickness is reduced.
請求項2に係る熱交換器用アルミニウム合金クラッド材によれば、ろう付け性に優れ、薄肉化しても、高耐食、高強度を長期に亘って維持することができる。 According to the aluminum alloy clad material for a heat exchanger according to claim 2, it is excellent in brazing properties and can maintain high corrosion resistance and high strength over a long period of time even when it is thinned.
請求項3に係る熱交換器用アルミニウム合金ブレージングシートによれば、薄肉化しても、高耐食、高強度を長期に亘って維持することができ、さらに、ろう材層のない分薄肉化された板材とろう付け接合することにより、より軽量化された熱交換器を形成することができる。 According to the aluminum alloy brazing sheet for a heat exchanger according to claim 3 , even if the thickness is reduced, high corrosion resistance and high strength can be maintained over a long period of time, and further, the thinned plate material without the brazing filler metal layer. By brazing and joining, a lighter heat exchanger can be formed.
以下、本発明に係る熱交換器用アルミニウム合金クラッド材およびブレージングシートを実現するための最良の形態について説明する。
図1は、本発明の第1の実施の形態である熱交換器用アルミニウム合金クラッド材におけるCu,Znの濃度分布および電位勾配を示す図であり、(a)はCu,Znの濃度分布図、(b)は電位勾配図である。
Hereinafter, the best mode for realizing the aluminum alloy clad material for a heat exchanger and the brazing sheet according to the present invention will be described.
FIG. 1 is a diagram showing a Cu, Zn concentration distribution and a potential gradient in an aluminum alloy clad material for a heat exchanger according to a first embodiment of the present invention, (a) is a concentration distribution diagram of Cu, Zn, (B) is a potential gradient diagram.
第1の実施の形態である熱交換器用アルミニウム合金クラッド材においては、アルミニウム合金からなる心材の一方の面に内面層がクラッドされ、他方の面に外面層がクラッドされている。なお、本実施形態の熱交換器用アルミニウム合金クラッド材で熱交換器を作製する際は、内面層が熱交換器内部側(冷媒通路側)、外面層が熱交換器外部側(大気側)となる。
すなわち、図1(a)、(b)に示すように、本実施形態の熱交換器用アルミニウム合金クラッド材は、その板厚方向(横軸)に、外部側から、外面層、心材、内面層の順に積層された3層構造となる。そして、各層におけるCuおよびZnの濃度分布を図1(a)に示すように制御したことで、図1(b)に示すように外部側から内部側に向かって電位が常に貴となる。
In the aluminum alloy clad material for a heat exchanger according to the first embodiment, an inner surface layer is clad on one surface of a core material made of an aluminum alloy, and an outer surface layer is clad on the other surface. In addition, when producing a heat exchanger with the aluminum alloy clad material for heat exchangers of this embodiment, an inner surface layer is the heat exchanger inner side (refrigerant channel side), and an outer surface layer is the heat exchanger outer side (atmosphere side). Become.
That is, as shown in FIGS. 1 (a) and 1 (b), the aluminum alloy clad material for a heat exchanger of the present embodiment has an outer surface layer, a core material, and an inner surface layer in the thickness direction (horizontal axis) from the outside. It becomes the three-layer structure laminated | stacked in order. Then, by controlling the Cu and Zn concentration distribution in each layer as shown in FIG. 1A, the potential is always noble from the outside to the inside as shown in FIG. 1B.
以下に、本発明に係る熱交換器用アルミニウム合金クラッド材およびブレージングシートを構成する各要素について説明する。 Below, each element which comprises the aluminum alloy clad material for heat exchangers and brazing sheet which concerns on this invention is demonstrated.
〔心材〕
心材は、Si:0.3〜1.5質量%、Mn:0.5〜1.8質量%、Mg:1.5質量%以下、Cu:1.0質量%以下かつ内面層のCu濃度以下、Ti:0.1〜0.35質量%を含有し、残部がAlおよび不可避的不純物からなる。なお、本発明に係る熱交換器用アルミニウム合金クラッド材およびブレージングシートにおける心材の厚さは特に限定されないが、好ましくは0.05〜0.4mmである。
[Heart material]
The core material is Si: 0.3-1.5% by mass, Mn: 0.5-1.8% by mass, Mg: 1.5% by mass or less, Cu: 1.0% by mass or less, and Cu concentration in the inner surface layer Hereinafter, Ti: 0.1 to 0.35 mass% is contained, and the balance is made of Al and inevitable impurities. In addition, the thickness of the core material in the aluminum alloy clad material for a heat exchanger and the brazing sheet according to the present invention is not particularly limited, but is preferably 0.05 to 0.4 mm.
(心材Si:0.3〜1.5質量%)
Siはろう付け後強度を向上させる効果があり、特にMg,Mnと共存させた場合、Mg−Si系金属間化合物、Al−Mn−Si系金属間化合物の形成により、さらにろう付け後強度を高めることができる。0.3質量%未満では効果が小さく、1.5質量%を超えると心材の融点低下および低融点相増加により、心材の溶融が生じる。したがって、心材におけるSiの含有量は、0.3〜1.5質量%とする。
(Core material Si: 0.3 to 1.5 mass%)
Si has the effect of improving the strength after brazing, and particularly when coexisting with Mg and Mn, the strength after brazing is further increased by the formation of Mg-Si intermetallic compounds and Al-Mn-Si intermetallic compounds. Can be increased. If the amount is less than 0.3% by mass, the effect is small, and if it exceeds 1.5% by mass, the core material is melted due to a decrease in the melting point of the core material and an increase in the low melting point phase. Therefore, the Si content in the core material is set to 0.3 to 1.5 mass%.
(心材Mn:0.5〜1.8質量%)
Mnはろう付け後強度を向上させる効果があり、含有量増加によりろう付け後強度を高めることができる。また、電位を貴にする働きがあるため、耐食性を向上させる。0.5質量%未満では効果が小さく、1.8質量%を超えると粗大な金属間化合物が形成され、成形性の低下、耐食性低下を起こしやすい。したがって、心材におけるMnの含有量は、0.5〜1.8質量%とする。
(Core material Mn: 0.5 to 1.8% by mass)
Mn has an effect of improving the strength after brazing, and the strength after brazing can be increased by increasing the content. Moreover, since it has the function of making the potential noble, the corrosion resistance is improved. If the amount is less than 0.5% by mass, the effect is small, and if it exceeds 1.8% by mass, a coarse intermetallic compound is formed, and the formability and the corrosion resistance are likely to deteriorate. Therefore, the Mn content in the core is 0.5 to 1.8% by mass.
(心材Mg:1.5質量%以下)
Mgはろう付け後強度を向上させる効果がある。しかし一方で、Mgはフラックスろう付け性を低下させる作用があるため、1.5質量%を超えると、ろう付けの際、外面層および内面層を通してろう材までMgが拡散し、ろう付け性が著しく低下する。したがって、心材におけるMgの含有量は、1.5質量%以下とする。また、0.05質量%未満では効果が小さい。したがって、心材における好ましいMgの含有量は、0.05〜1.0質量%である。
(Core material Mg: 1.5% by mass or less)
Mg has the effect of improving the strength after brazing. On the other hand, however, Mg has the effect of reducing the flux brazeability. Therefore, if it exceeds 1.5 mass%, Mg diffuses to the brazing material through the outer surface layer and the inner surface layer when brazing, and the brazeability is reduced. It drops significantly. Therefore, the content of Mg in the core is 1.5% by mass or less. Moreover, an effect is small if it is less than 0.05 mass%. Therefore, the preferable Mg content in the core material is 0.05 to 1.0 mass%.
(心材Cu:1.0質量%以下かつ内面層のCu濃度以下)
Cuはろう付け後強度を向上させる効果がある。また、電位を貴にする働きがあるため、耐食性を向上させる。一方、1.0質量%を超えると、融点の低下に伴ってバーニングが発生する可能性がある。また、内面層のCu濃度を超えると、内面層に対して心材側の電位が貴になるため、心材以深で孔食進展が促進される。したがって、心材におけるCuの含有量は、1.0質量%以下であり、かつ内面層のCu濃度以下である。また、0.01質量%未満では上記の効果が小さく、好ましくは0.05質量%以上である。したがって、心材における好ましいCuの含有量は、0.05〜0.9質量%かつ内面層のCu濃度以下で、より好ましくは、さらに内面層のCu濃度−0.1質量%以下である。
(Core material Cu: 1.0 mass% or less and Cu concentration of inner surface layer or less)
Cu has the effect of improving strength after brazing. Moreover, since it has the function of making the potential noble, the corrosion resistance is improved. On the other hand, if it exceeds 1.0% by mass, burning may occur as the melting point decreases. Further, when the Cu concentration in the inner surface layer is exceeded, the potential on the core material side becomes noble with respect to the inner surface layer, so that the progress of pitting corrosion is promoted deeper than the core material. Therefore, the content of Cu in the core material is 1.0% by mass or less and is equal to or less than the Cu concentration of the inner surface layer. Moreover, if it is less than 0.01 mass%, said effect is small, Preferably it is 0.05 mass% or more. Therefore, the preferable Cu content in the core material is 0.05 to 0.9 mass% and not more than the Cu concentration of the inner surface layer, more preferably, the Cu concentration of the inner surface layer is not more than -0.1 mass%.
(心材Ti:0.1〜0.35質量%)
TiはAl合金中でTi−Al系化合物を形成して層状に分散する。Ti−Al系化合物は電位が貴であるため、腐食形態が層状化し、深さ方向への腐食(孔食)に進展し難くなる効果がある。0.1質量%未満では腐食形態の層状化効果が小さく、0.35質量%を超えると粗大な金属間化合物形成により、加工性および耐食性が低下する。したがって、心材におけるTiの含有量は、0.1〜0.35質量%とする。
(Core material Ti: 0.1 to 0.35 mass%)
Ti forms a Ti—Al-based compound in an Al alloy and is dispersed in a layered manner. Since the potential of the Ti—Al compound is noble, the corrosion form is layered, and there is an effect that it is difficult to progress to corrosion (pitting corrosion) in the depth direction. If it is less than 0.1% by mass, the layering effect of the corrosion form is small, and if it exceeds 0.35% by mass, the workability and the corrosion resistance are lowered due to the formation of coarse intermetallic compounds. Therefore, the Ti content in the core material is 0.1 to 0.35 mass%.
上記以外に、心材の電位貴化および強度向上のため、Cr,Ni,Zr等をそれぞれ0.3質量%以下添加してもよい。また、電位勾配調整用として、Zn:1.0質量%以下を添加してもよい。ろう付け時のZn拡散で、心材において外面層側が内面側より電位が卑となることにより、犠牲陽極材となる領域が拡張され、防食効果を一層長く維持する効果がある。なお、不可避的不純物として、Fe,Sn,P,Be,B等をそれぞれ0.3質量%以下含有してもよい。 In addition to the above, Cr, Ni, Zr or the like may be added in an amount of 0.3% by mass or less in order to make the core noble and to improve the strength. Moreover, you may add Zn: 1.0 mass% or less for electric potential gradient adjustment. As a result of Zn diffusion at the time of brazing, the outer layer side of the core material has a lower potential than the inner surface side, so that the region serving as the sacrificial anode material is expanded, and the anticorrosion effect is maintained longer. In addition, as an inevitable impurity, Fe, Sn, P, Be, B or the like may be contained in an amount of 0.3% by mass or less.
〔内面層〕
内面層は、Si:1.5質量%以下、Mn:1.8質量%以下、Cu:1.0質量%以下かつ心材のCu濃度以上を含有し、残部がAlおよび不可避的不純物からなる。なお、本発明に係る熱交換器用アルミニウム合金クラッド材およびブレージングシートにおける内面層の厚さは特に限定されないが、好ましくは0.01〜0.1mmである。
[Inner layer]
The inner surface layer contains Si: 1.5% by mass or less, Mn: 1.8% by mass or less, Cu: 1.0% by mass or less, and the Cu concentration or more of the core material, and the balance is made of Al and inevitable impurities. In addition, the thickness of the inner surface layer in the aluminum alloy clad material for a heat exchanger and the brazing sheet according to the present invention is not particularly limited, but is preferably 0.01 to 0.1 mm.
(内面層Si:1.5質量%以下)
Siはろう付け後強度を向上させる効果があり、特にMg,Mnと共存させた場合、Mg−Si系金属間化合物、Al−Mn−Si系金属間化合物の形成により、さらにろう付け後強度を高めることができる。一方、1.5質量%を超えると内面層の融点低下と低融点相増加により、内面層の溶融が生じる。したがって、内面層におけるSiの含有量は、1.5質量%以下とする。また、0.03質量%未満では効果が小さい。したがって、内面層における好ましいSiの含有量は、0.03〜1.2質量%である。
(Inner surface layer Si: 1.5 mass% or less)
Si has the effect of improving the strength after brazing, and particularly when coexisting with Mg and Mn, the strength after brazing is further increased by the formation of Mg-Si intermetallic compounds and Al-Mn-Si intermetallic compounds. Can be increased. On the other hand, when the content exceeds 1.5% by mass, melting of the inner surface layer occurs due to a decrease in the melting point of the inner surface layer and an increase in the low melting point phase. Therefore, the content of Si in the inner surface layer is 1.5% by mass or less. Moreover, an effect is small if it is less than 0.03 mass%. Therefore, the preferable Si content in the inner surface layer is 0.03 to 1.2% by mass.
(内面層Mn:1.8質量%以下)
Mnはろう付け後強度を向上させる効果があり、含有量増加によりろう付け後強度を高めることができる。また、電位を貴にする働きがあるため、耐食性を向上させる。一方、1.8質量%を超えると粗大な金属間化合物が形成され、成形性の低下、耐食性低下を起こしやすい。したがって、内面層におけるMnの含有量は、1.8質量%以下とする。また、0.05質量%未満では効果が小さい。したがって、内面層における好ましいMnの含有量は、0.05〜1.5質量%である。
(Inner layer Mn: 1.8% by mass or less)
Mn has an effect of improving the strength after brazing, and the strength after brazing can be increased by increasing the content. Moreover, since it has the function of making the potential noble, the corrosion resistance is improved. On the other hand, if it exceeds 1.8% by mass, a coarse intermetallic compound is formed, which tends to cause a decrease in formability and corrosion resistance. Therefore, the Mn content in the inner surface layer is 1.8% by mass or less. Moreover, an effect is small if it is less than 0.05 mass%. Therefore, the preferable Mn content in the inner surface layer is 0.05 to 1.5% by mass.
(内面層Cu:1.0質量%以下かつ心材のCu濃度以上)
Cuはろう付け後強度を向上させる効果がある。また、電位を貴にする働きがあるため、耐食性を向上させる。一方、1.0質量%を超えると、融点の低下に伴ってバーニングが発生する可能性がある。また、心材のCu濃度未満であると、内面層に対して心材側の電位が貴になるため、心材以深で孔食進展が促進される。したがって、内面層におけるCuの含有量は、1.0質量%以下であり、かつ心材のCu濃度以上である。また、0.05質量%未満では上記の効果が小さい。したがって、内面層における好ましいCuの含有量は、0.05〜0.9質量%かつ心材のCu濃度以上で、より好ましくは、さらに心材のCu濃度+0.1質量%以上である。
(Inner surface layer Cu: 1.0 mass% or less and Cu concentration of core material or more)
Cu has the effect of improving strength after brazing. Moreover, since it has the function of making the potential noble, the corrosion resistance is improved. On the other hand, if it exceeds 1.0% by mass, burning may occur as the melting point decreases. Further, if the Cu concentration is less than the Cu concentration of the core material, the potential on the core material side becomes noble with respect to the inner surface layer, so that the progress of pitting corrosion is promoted deeper than the core material. Therefore, the content of Cu in the inner surface layer is 1.0% by mass or less and is equal to or higher than the Cu concentration of the core material. Moreover, if it is less than 0.05 mass%, said effect is small. Therefore, the preferable Cu content in the inner surface layer is 0.05 to 0.9 mass% and the Cu concentration of the core material is more than, more preferably, the Cu concentration of the core material + 0.1 mass% or more.
上記以外に、内面層の電位貴化および強度向上のため、Cr,Ni,Zr等をそれぞれ0.3質量%以下添加してもよい。また、電位勾配調整用として電位勾配を崩さない(内面層の電位が心材より卑とならない)範囲で、Zn:1.0質量%以下を添加してもよい。ろう付け時のZn拡散で、心材において外面層側が内面側より電位が卑となることにより、犠牲陽極材となる領域が拡張され、防食効果を一層長く維持する効果がある。なお、不可避的不純物として、Fe,Sn,P,Be,B等をそれぞれ0.3質量%以下含有してもよい。 In addition to the above, 0.3% by mass or less of Cr, Ni, Zr, or the like may be added in order to make the inner surface layer noble and to improve the strength. Further, Zn: 1.0% by mass or less may be added within the range in which the potential gradient is not broken for adjusting the potential gradient (the potential of the inner surface layer is not lower than that of the core material). As a result of Zn diffusion at the time of brazing, the outer layer side of the core material has a lower potential than the inner surface side, so that the region serving as the sacrificial anode material is expanded, and the anticorrosion effect is maintained longer. In addition, as an inevitable impurity, Fe, Sn, P, Be, B or the like may be contained in an amount of 0.3% by mass or less.
〔外面層〕
外面層は、Si:1.5質量%以下、Mn:1.8質量%以下、Zn:2.5〜7.0質量%を含有し、残部がAlおよび不可避的不純物からなる。なお、本発明に係る熱交換器用アルミニウム合金クラッド材およびブレージングシートにおける外面層の厚さは特に限定されないが、好ましくは0.01〜0.1mmである。
[Outer surface layer]
The outer surface layer contains Si: 1.5% by mass or less, Mn: 1.8% by mass or less, Zn: 2.5-7.0% by mass, and the balance is made of Al and inevitable impurities. In addition, the thickness of the outer surface layer in the aluminum alloy clad material for a heat exchanger and the brazing sheet according to the present invention is not particularly limited, but is preferably 0.01 to 0.1 mm.
(外面層Si:1.5質量%以下)
Siはろう付け後強度を向上させる効果があり、特にMg,Mnと共存させた場合、Mg−Si系金属間化合物、Al−Mn−Si系金属間化合物の形成により、さらにろう付け後強度を高めることができる。一方、1.5質量%を超えると外面層の融点低下と低融点相増加により、外面層の溶融が生じる。したがって、外面層におけるSiの含有量は、1.5質量%以下とする。また、0.03質量%未満では効果が小さい。したがって、外面層における好ましいSiの含有量は、0.03〜1.2質量%である。
(Outer surface layer Si: 1.5% by mass or less)
Si has the effect of improving the strength after brazing, and particularly when coexisting with Mg and Mn, the strength after brazing is further increased by the formation of Mg-Si intermetallic compounds and Al-Mn-Si intermetallic compounds. Can be increased. On the other hand, when the content exceeds 1.5% by mass, melting of the outer surface layer occurs due to a decrease in the melting point of the outer surface layer and an increase in the low melting point phase. Therefore, the content of Si in the outer surface layer is 1.5% by mass or less. Moreover, an effect is small if it is less than 0.03 mass%. Therefore, the preferable Si content in the outer surface layer is 0.03 to 1.2% by mass.
(外面層Mn:1.8質量%以下)
Mnはろう付け後強度を向上させる効果があり、含有量増加によりろう付け後強度を高めることができる。また、電位を貴にする働きがあるため、耐食性を向上させる。一方、1.8質量%を超えると粗大な金属間化合物が形成され、成形性の低下、耐食性低下を起こしやすい。したがって、外面層におけるMnの含有量は、1.8質量%以下とする。また、0.03質量%未満では効果が小さい。したがって、外面層における好ましいMnの含有量は、0.03〜1.2質量%である。
(Outer surface layer Mn: 1.8% by mass or less)
Mn has an effect of improving the strength after brazing, and the strength after brazing can be increased by increasing the content. Moreover, since it has the function of making the potential noble, the corrosion resistance is improved. On the other hand, if it exceeds 1.8% by mass, a coarse intermetallic compound is formed, which tends to cause a decrease in formability and corrosion resistance. Therefore, the Mn content in the outer surface layer is 1.8% by mass or less. Moreover, an effect is small if it is less than 0.03 mass%. Therefore, the preferable Mn content in the outer surface layer is 0.03 to 1.2% by mass.
(外面層Zn:2.5〜7.0質量%)
Znは電位を卑にする働きがあるため、外面層を犠牲陽極として作用させる。2.5質量%未満では電位卑化効果が不十分である。一方、7.0質量%を超えると、クラッド材およびブレージングシート単板の耐食性は良好であるが、ろう付け接合部に形成されるフィレット(ろう付け部)中のZn濃度が増加するためにフィレットの優先腐食が起こる怖れがある。また圧延割れが発生するため生産性が低下する。したがって、外面層におけるZnの含有量は、2.5〜7.0質量%とする。
(Outer surface layer Zn: 2.5-7.0 mass%)
Since Zn has a function of lowering the potential, the outer surface layer acts as a sacrificial anode. If it is less than 2.5% by mass, the potential lowering effect is insufficient. On the other hand, when the content exceeds 7.0 mass%, the corrosion resistance of the clad material and the single brazing sheet is good, but the Zn concentration in the fillet (brazed portion) formed in the brazed joint increases, so the fillet. There is a fear that the preferential corrosion of. Moreover, since rolling cracks are generated, productivity is lowered. Therefore, the Zn content in the outer surface layer is set to 2.5 to 7.0% by mass.
上記以外に、ろう付けへの悪影響が低いものとして、例えば外面層の電位卑化のために、Feを0.5質量%以下、Inを0.05質量%以下、外面層の電位卑化および腐食形態の層状化のためにSnを0.05質量%以下添加してもよい。 In addition to the above, it is assumed that the adverse effect on brazing is low. For example, Fe is 0.5% by mass or less, In is 0.05% by mass or less, and the external layer is subjected to potential denaturation, for the potential denaturation of the outer layer. You may add 0.05 mass% or less of Sn for the layering of a corrosion form.
本実施形態の内面層および外面層における不可避的不純物として、Mg:0.1質量%以下を含有してもよい。 As an inevitable impurity in the inner surface layer and the outer surface layer of the present embodiment, Mg: 0.1% by mass or less may be contained.
(内面層、外面層Mg:0.1質量%以下)
内面層および外面層においてMgは必須元素ではなく、さらに、Mgはフラックスろう付け性を低下させる作用があり、0.1質量%を超えると、ろう付け性が著しく低下する。したがって、不可避的不純物としてのMgは、0.1質量%以下に制限する。
(Inner layer, outer layer Mg: 0.1% by mass or less)
Mg is not an essential element in the inner surface layer and the outer surface layer. Further, Mg has an effect of lowering the flux brazeability, and when it exceeds 0.1% by mass, the brazeability is significantly lowered. Therefore, Mg as an unavoidable impurity is limited to 0.1% by mass or less.
なお、本発明ではノコロックろう付け法によるろう付け性重視のため、内面層および外面層には積極的にMgを添加しない。したがって、両層においてSiと化合するMgは心材から拡散するものを指す。 In the present invention, Mg is not positively added to the inner surface layer and the outer surface layer in order to emphasize brazing by the Nocolok brazing method. Therefore, Mg combined with Si in both layers indicates that which diffuses from the core material.
本実施形態の内面層および外面層の一方または両方が、さらにTi:0.1〜0.35質量%を含有してもよい。 One or both of the inner surface layer and the outer surface layer of the present embodiment may further contain Ti: 0.1 to 0.35 mass%.
(内面層、外面層Ti:0.1〜0.35質量%)
TiはAl合金中でTi−Al系化合物を形成して層状に分散する。Ti−Al系化合物は電位が貴であるため、腐食形態が層状化し、深さ方向への腐食(孔食)に進展し難くなる効果がある。0.1質量%未満では腐食形態の層状化効果が小さく、0.35質量%を超えると粗大な金属間化合物形成により、加工性および耐食性が低下する。したがって、内面層および外面層におけるTiの含有量は、0.1〜0.35質量%とする。
(Inner surface layer, outer surface layer Ti: 0.1 to 0.35% by mass)
Ti forms a Ti—Al-based compound in an Al alloy and is dispersed in a layered manner. Since the potential of the Ti—Al compound is noble, the corrosion form is layered, and there is an effect that it is difficult to progress to corrosion (pitting corrosion) in the depth direction. If it is less than 0.1% by mass, the layering effect of the corrosion form is small, and if it exceeds 0.35% by mass, the workability and the corrosion resistance are lowered due to the formation of coarse intermetallic compounds. Therefore, the content of Ti in the inner surface layer and the outer surface layer is 0.1 to 0.35 mass%.
また、本発明の第2の実施の形態である熱交換器用アルミニウム合金ブレージングシートにおいては、前記第1の実施の形態である熱交換器用アルミニウム合金クラッド材に、少なくとも一方の面に、さらに、ろう材層を備えている。 Further, in the aluminum alloy brazing sheet for heat exchangers according to the second embodiment of the present invention, the aluminum alloy clad material for heat exchangers according to the first embodiment is further provided on at least one surface. It has a material layer.
〔ろう材層〕
ろう材層は、本発明においては特にその組成を限定するものではないが、例えばAl−Si系Al合金である4000系合金に、MgやFeを添加して強度を向上させた合金が挙げられる。Mg添加量の許容範囲は心材との中間層である内面層や外面層の厚さ、またフラックス量によって異なり、中間層厚さが大きいほど、またはフラックス量が多いほどMg添加許容量は増加する。但し、Mg拡散は工程に依存するため、中間層厚さ、フラックス量、心材Mg含有量の相関関係は特に規定するものではなく、心材からろう材層へのMgの拡散障壁として内面層、外面層の厚さは15μm以上設けるのが望ましい。なお、本発明に係る熱交換器用アルミニウム合金ブレージングシートにおけるろう材層の厚さは特に限定されるものではなく、ろう付け処理に対応するものとするが、好ましくは0.01mm以上である。また、ろう材層を配置する側は、熱交換器用アルミニウム合金ブレージングシートの用途に応じて、内面層側および外面層側のいずれかあるいは両方とする。
[Brazing material layer]
In the present invention, the brazing filler metal layer is not particularly limited in its composition. For example, an alloy obtained by adding Mg or Fe to a 4000 series alloy, which is an Al-Si series Al alloy, to improve the strength. . The allowable range of Mg addition varies depending on the thickness of the inner layer and outer surface layer, which are intermediate layers with the core material, and the amount of flux. The larger the intermediate layer thickness or the greater the amount of flux, the greater the allowable amount of Mg addition. . However, since the Mg diffusion depends on the process, the correlation between the intermediate layer thickness, the flux amount, and the core material Mg content is not particularly specified, and the inner layer and the outer surface are used as barriers for diffusion of Mg from the core material to the brazing material layer. The thickness of the layer is preferably 15 μm or more. In addition, the thickness of the brazing material layer in the aluminum alloy brazing sheet for heat exchanger according to the present invention is not particularly limited and corresponds to the brazing treatment, but is preferably 0.01 mm or more. Moreover, the side which arrange | positions a brazing filler metal layer shall be either or both of an inner surface layer side and an outer surface layer side according to the use of the aluminum alloy brazing sheet for heat exchangers.
なお、内面層と外面層は同じ厚さである必要はない。本発明の要件を満たす範囲で、心材からろう材層へのMg拡散障壁作用、成形性等、必要に応じた値に任意に設定してもよい。 Note that the inner layer and the outer layer need not have the same thickness. As long as the requirements of the present invention are satisfied, the Mg diffusion barrier action from the core material to the brazing filler metal layer, formability, and the like may be arbitrarily set as required.
次に、本発明に係る熱交換器用アルミニウム合金クラッド材およびブレージングシートの製造方法について、その一例を説明する。 Next, an example of the method for producing an aluminum alloy clad material for a heat exchanger and a brazing sheet according to the present invention will be described.
まず、心材用アルミニウム合金、内面層材用アルミニウム合金、外面層材用アルミニウム合金、そしてブレージングシートを製造する場合はろう材層用合金(例えば4000系合金)を、連続鋳造にて溶解、鋳造し、必要に応じて面削、均質化熱処理(以下、均熱)して、心材用鋳塊、内面層材用鋳塊、外面層材用鋳塊、およびろう材層用鋳塊を得る。内面層材用鋳塊、外面層材用鋳塊、およびろう材層用鋳塊は、熱間圧延または切断によってそれぞれ所定厚さにして、内面層材、外面層材、およびろう材を得る。 First, an aluminum alloy for a core material, an aluminum alloy for an inner surface layer material, an aluminum alloy for an outer surface layer material, and a brazing material alloy (for example, a 4000 series alloy) are melted and cast by continuous casting. If necessary, chamfering and homogenization heat treatment (hereinafter, soaking) are performed to obtain a core material ingot, an inner layer material ingot, an outer layer material ingot, and a brazing material layer ingot. The inner surface layer material ingot, the outer surface layer material ingot, and the brazing material layer ingot are each given a predetermined thickness by hot rolling or cutting to obtain an inner surface layer material, an outer surface layer material, and a brazing material.
次に、心材を、内面層材と、外面層材とで挟み、さらに必要に応じてろう材をその外側に配置して、所定のクラッド率になるように重ね合わせ、400℃以上の温度で加熱した後、熱間圧延により圧着し、板材とする。その後、冷間圧延、中間焼鈍、冷間圧延を行うことにより所定の板厚とする。なお、圧着後、冷間圧延前に、合金中の元素分布を調整する目的で、熱処理を実施しても良い。また、中間焼鈍は350〜450℃で3時間以上実施するのが望ましく、最終の冷間加工率は30〜60%となるようにすることが好ましい。また、最終の板厚とした後、成型加工性を考慮して仕上げ焼鈍を実施してもよい。仕上げ焼鈍により、材料が軟化し、伸びが向上するため加工性が確保できる。 Next, the core material is sandwiched between the inner surface layer material and the outer surface layer material, and if necessary, a brazing material is disposed on the outer side, and is laminated so as to have a predetermined cladding ratio, at a temperature of 400 ° C. or higher. After heating, pressure bonding is performed by hot rolling to obtain a plate material. Thereafter, cold rolling, intermediate annealing, and cold rolling are performed to obtain a predetermined plate thickness. In addition, you may implement heat processing for the purpose of adjusting the element distribution in an alloy after cold bonding and before cold rolling. The intermediate annealing is desirably performed at 350 to 450 ° C. for 3 hours or more, and the final cold working rate is preferably 30 to 60%. In addition, after the final thickness is obtained, finish annealing may be performed in consideration of molding processability. Finish annealing can soften the material and improve the elongation, thereby ensuring workability.
以上、本発明を実施するための最良の形態について述べてきたが、以下に、本発明の効果を確認した実施例を、本発明の要件を満たさない比較例と比較して具体的に説明する。なお、本発明はこの実施例に限定されるものではない。 Although the best mode for carrying out the present invention has been described above, an example in which the effect of the present invention has been confirmed will be specifically described below in comparison with a comparative example that does not satisfy the requirements of the present invention. . In addition, this invention is not limited to this Example.
(供試材作製)
表1〜表3に示す組成を有する心材、内面層材、外面層材を作製し、表5に示す組合せで重ね合わせ、熱間圧延にて内面層材および外面層材の厚さをそれぞれ板厚全体の15%でクラッドし、冷間圧延にて板厚0.3mmとした。その後、400℃で5時間の中間焼鈍を行い、さらに冷間圧延を行うことで、板厚0.2mmとし、最後に仕上げ焼鈍を300℃で3時間行って、表5に示す3層材を作製した。
(Sample preparation)
A core material, an inner surface layer material, and an outer surface layer material having the compositions shown in Tables 1 to 3 are manufactured, superposed in the combinations shown in Table 5, and the thicknesses of the inner surface layer material and the outer surface layer material are respectively set by hot rolling. Clad at 15% of the total thickness, and cold rolled to a plate thickness of 0.3 mm. Thereafter, intermediate annealing is performed at 400 ° C. for 5 hours, and further cold rolling is performed to obtain a sheet thickness of 0.2 mm. Finally, final annealing is performed at 300 ° C. for 3 hours, and the three-layer materials shown in Table 5 are obtained. Produced.
同様に、表4に示す組成を有するろう材を作製し、心材を挟んでそれぞれ全板厚の15%の厚さの内面層および外面層を、その外側にそれぞれ全板厚の10%の厚さのろう材層をクラッドし、冷間圧延にて板厚0.3mmとした。その後、400℃で5時間の中間焼鈍を行い、さらに冷間圧延を行うことで、板厚0.2mmとし、最後に仕上げ焼鈍を300℃で3時間行って、表6に示す5層材を作製した。 Similarly, a brazing material having the composition shown in Table 4 was prepared, and an inner surface layer and an outer surface layer having a thickness of 15% of the total plate thickness were sandwiched between the core materials, and a thickness of 10% of the total plate thickness was formed on the outer side. The brazing filler metal layer was clad and cold rolled to a sheet thickness of 0.3 mm. Thereafter, intermediate annealing is performed at 400 ° C. for 5 hours, and further cold rolling is performed to obtain a sheet thickness of 0.2 mm. Finally, finish annealing is performed at 300 ° C. for 3 hours, and the five-layer materials shown in Table 6 are obtained. Produced.
次に、3層材、および表面に市販の非腐食性のフラックス5g/m2を塗布した5層材をそれぞれ治具に吊り下げて、酸素濃度が200ppm以下の雰囲気において595℃で2分間保持することにより、ろう付け加熱を行い、ろう付け熱処理材を作製した。その後、ろう付け熱処理材を切り出して、所定の形状、サイズの試験材を作製し、引張強度測定および腐食試験を行った。なお、表5および表6において、加工性、融点等の問題から、板形状に作製できなかったものについては、結果欄に「−」で示した。 Next, the three-layer material and the five-layer material coated with a commercially available non-corrosive flux of 5 g / m 2 are suspended from the jigs and held at 595 ° C. for 2 minutes in an atmosphere having an oxygen concentration of 200 ppm or less. As a result, brazing heating was performed to produce a brazing heat treatment material. Then, the brazing heat treatment material was cut out to prepare a test material having a predetermined shape and size, and a tensile strength measurement and a corrosion test were performed. In Tables 5 and 6, those that could not be formed into a plate shape due to problems such as workability and melting point are indicated by “-” in the result column.
(ろう付け後強度測定)
ろう付け後強度の測定は、ろう付け熱処理材からJIS5号試験材を切り出して引張試験を行い、引張強度の測定を行った。測定結果を表5および表6に示す。引張強度の合格基準は、200MPa以上とした。
(Measure strength after brazing)
The strength after brazing was measured by cutting out a JIS No. 5 test material from the brazed heat-treated material and conducting a tensile test to measure the tensile strength. The measurement results are shown in Table 5 and Table 6. The acceptance criteria for tensile strength was 200 MPa or more.
(腐食試験)
腐食試験は、ろう付け熱処理材から60mm×50mmの試験材を切り出し、外面層側が試験面となるように内面層側の面および端面をシールテープによりシールして、CASS試験(JIS Z 2371)を1000時間実施した。試験後、最大腐食深さを測定し、最小残存板厚(=試験前の板厚−最大腐食深さ)を算出した。その結果を表5および表6に示す。耐食性の合格基準は、最小残存板厚が65μm(板厚0.2mmの約30%)以上とした。
(Corrosion test)
In the corrosion test, a 60 mm × 50 mm test material was cut out from the brazed heat-treated material, and the surface and end surface of the inner surface layer side were sealed with a sealing tape so that the outer surface layer side became the test surface, and the CASS test (JIS Z 2371) was performed. Conducted for 1000 hours. After the test, the maximum corrosion depth was measured, and the minimum remaining plate thickness (= plate thickness before test−maximum corrosion depth) was calculated. The results are shown in Tables 5 and 6. The acceptable standard for corrosion resistance was a minimum remaining plate thickness of 65 μm (about 30% of the plate thickness of 0.2 mm) or more.
(心材組成による評価)
参考例1〜3は、心材におけるSi含有量が本発明の範囲内であるので、ろう付け後強度が十分に高い。これに対して、比較例26は心材のSi含有量が不足し、さらにMg含有量が不足している(無添加である)ため、ろう付け後強度が十分に得られなかった。一方、比較例27は心材のSi含有量が過剰なため、ろう付け時に心材が溶融して良好な試験材が得られなかった。
(Evaluation by core material composition)
In Reference Examples 1 to 3, since the Si content in the core material is within the range of the present invention, the strength after brazing is sufficiently high. On the other hand, in Comparative Example 26, since the Si content of the core material was insufficient and the Mg content was insufficient (no addition), the strength after brazing was not sufficiently obtained. On the other hand, in Comparative Example 27, since the Si content of the core material was excessive, the core material melted during brazing and a good test material was not obtained.
参考例1,4は、心材におけるMn含有量が本発明の範囲内であるので、ろう付け後強度が十分に高い。これに対して、比較例22は心材のMn含有量が不足している(無添加である)ため、ろう付け後強度が十分に得られず、僅かに基準に達しなかった。一方、比較例28は心材のMn含有量が過剰なため、粗大なMn化合物の形成により加工性が低下して良好な試験材が得られなかった。 In Reference Examples 1 and 4, since the Mn content in the core material is within the scope of the present invention, the strength after brazing is sufficiently high. On the other hand, in Comparative Example 22, since the Mn content of the core material was insufficient (no addition), the strength after brazing was not sufficiently obtained, and did not reach the standard slightly. On the other hand, in Comparative Example 28, since the Mn content of the core material was excessive, the workability was lowered due to the formation of a coarse Mn compound, and a good test material was not obtained.
参考例1,5,6は、心材におけるMg含有量が本発明の範囲内であるので、ろう付け後強度が十分に高い。これに対して、比較例23は心材のMg含有量が不足している(無添加である)ため、ろう付け後強度が十分に得られず、僅かに基準に達しなかった。また、比較例24は心材のMgが無添加で、Si含有量は下限値であり、比較例25はさらにMn含有量が不足している(無添加である)ため、これらはろう付け後強度が十分に得られなかった。一方、比較例29は心材のMg含有量が過剰なため、ろう付け後強度が飽和しており、さらに、ろう付け性が低下してろう付け接合が困難となって、熱交換器用アルミニウム合金クラッド材として不適合であった。 In Reference Examples 1, 5, and 6, since the Mg content in the core material is within the scope of the present invention, the strength after brazing is sufficiently high. On the other hand, in Comparative Example 23, the Mg content of the core material was insufficient (no addition), so the strength after brazing was not sufficiently obtained, and did not reach the standard slightly. In Comparative Example 24, the core material Mg was not added, and the Si content was the lower limit. In Comparative Example 25, the Mn content was further insufficient (no addition), so these were strengths after brazing. Could not be obtained sufficiently. On the other hand, in Comparative Example 29, since the Mg content of the core material is excessive, the strength after brazing is saturated, and further, brazing becomes difficult due to a decrease in brazing, and the aluminum alloy cladding for heat exchangers. It was incompatible as a material.
参考例1は、心材におけるTi含有量が本発明の範囲内であるので、耐食性が十分に高い。これに対して、比較例31は心材のTi含有量が不足しているので、腐食形態の層状効果が不十分で、孔食が進展した。一方、比較例32は心材のTi含有量が過剰なため、粗大なTi化合物の形成により加工性が低下して良好な試験材が得られなかった。 In Reference Example 1, since the Ti content in the core material is within the range of the present invention, the corrosion resistance is sufficiently high. On the other hand, since the Ti content of the core material was insufficient in Comparative Example 31, the layered effect of the corrosion form was insufficient and pitting corrosion progressed. On the other hand, in Comparative Example 32, since the Ti content of the core material was excessive, the workability was lowered due to the formation of a coarse Ti compound, and a good test material could not be obtained.
(内面層組成による評価)
参考例1,16,17は、内面層におけるSi含有量が本発明の範囲内であるので、ろう付け後強度が十分に高い。一方、比較例37は内面層のSi含有量が過剰なため、ろう付け時に内面層が溶融して良好な試験材が得られなかった。
(Evaluation by inner layer composition)
In Reference Examples 1, 16, and 17, since the Si content in the inner surface layer is within the range of the present invention, the strength after brazing is sufficiently high. On the other hand, in Comparative Example 37, since the Si content of the inner surface layer was excessive, the inner surface layer melted during brazing, and a good test material was not obtained.
参考例1,18は、内面層におけるMn含有量が本発明の範囲内であるので、ろう付け後強度が十分に高い。一方、比較例38は内面層のMn含有量が過剰なため、粗大なMn化合物の形成により加工性が低下して良好な試験材が得られなかった。 In Reference Examples 1 and 18, since the Mn content in the inner surface layer is within the range of the present invention, the strength after brazing is sufficiently high. On the other hand, in Comparative Example 38, since the Mn content of the inner surface layer was excessive, the workability was lowered due to the formation of a coarse Mn compound, and a good test material could not be obtained.
(外面層組成による評価)
参考例1,12,13は、外面層におけるSi含有量が本発明の範囲内であるので、ろう付け後強度が十分に高い。一方、比較例33は外面層のSi含有量が過剰なため、ろう付け時に外面層が溶融して良好な試験材が得られなかった。
(Evaluation by outer layer composition)
In Reference Examples 1, 12, and 13, since the Si content in the outer surface layer is within the range of the present invention, the strength after brazing is sufficiently high. On the other hand, in Comparative Example 33, since the Si content of the outer surface layer was excessive, the outer surface layer melted during brazing and a good test material was not obtained.
参考例1,14は、外面層におけるMn含有量が本発明の範囲内であるので、ろう付け後強度が十分に高い。一方、比較例34は外面層のMn含有量が過剰なため、粗大なMn化合物の形成により加工性が低下して良好な試験材が得られなかった。 In Reference Examples 1 and 14, since the Mn content in the outer surface layer is within the range of the present invention, the strength after brazing is sufficiently high. On the other hand, in Comparative Example 34, since the Mn content in the outer surface layer was excessive, workability was lowered due to the formation of a coarse Mn compound, and a good test material was not obtained.
参考例1,15は、外面層におけるZn含有量が本発明の範囲内であるので、犠牲防食効果が十分に高い。また、比較例35は外面層のZn含有量が不足している(無添加である)ため、犠牲防食効果が十分でなく、耐食性が低下した。一方、比較例36は外面層のZn含有量が過剰なため、単板の耐食性は高いが、フィレットでZn濃度が増加して優先腐食が発生した。 In Reference Examples 1 and 15, since the Zn content in the outer surface layer is within the scope of the present invention, the sacrificial anticorrosive effect is sufficiently high. In Comparative Example 35, the Zn content in the outer surface layer was insufficient (no addition), so the sacrificial anticorrosive effect was not sufficient and the corrosion resistance was lowered. On the other hand, in Comparative Example 36, since the Zn content in the outer surface layer was excessive, the corrosion resistance of the single plate was high. However, the Zn concentration increased in the fillet and preferential corrosion occurred.
(心材および内面層のCu含有量による評価)
参考例1,7〜11は、心材および内面層のそれぞれにおけるCu含有量が本発明の範囲内であるので、ろう付け後強度および耐食性が十分に高い。一方、比較例30は心材のCu含有量が過剰なため、比較例40は内面層のCu含有量が過剰なため、それぞれバーニングを発生して良好な試験材が得られなかった。また、比較例39,41,42は、心材のCu含有量が内面層のCu含有量を超えるため、試験材の厚み中心部すなわち心材で電位勾配が貴となり(図2(b)参照)、心材以深での犠牲防食効果が不十分であった。
(Evaluation by Cu content of core material and inner layer)
In Reference Examples 1 and 7 to 11, since the Cu content in each of the core material and the inner surface layer is within the scope of the present invention, the strength after brazing and the corrosion resistance are sufficiently high. On the other hand, since Comparative Example 30 has an excessive Cu content in the core material and Comparative Example 40 has an excessive Cu content in the inner surface layer, burning occurred and a good test material was not obtained. Further, in Comparative Examples 39, 41, and 42, the Cu content of the core material exceeds the Cu content of the inner surface layer, so that the potential gradient becomes noble at the thickness center portion of the test material, that is, the core material (see FIG. 2B). The sacrificial anticorrosive effect deeper than the heartwood was insufficient.
(内面層および外面層のMg含有量による評価)
参考例1は、内面層および外面層にMgを添加していないので、ろう付け性が良好であった。これに対して、比較例43は内面層および外面層の両層にMgを過剰に含有しているため、ろう付け性が低下してろう付け接合が困難となって、熱交換器用アルミニウム合金クラッド材として不適合であった。
(Evaluation based on Mg content of inner layer and outer layer)
Reference Example 1 had good brazing properties because Mg was not added to the inner surface layer and the outer surface layer. On the other hand, since Comparative Example 43 contains excessive Mg in both the inner surface layer and the outer surface layer, the brazing performance is lowered and brazing joining becomes difficult, and the aluminum alloy cladding for heat exchangers It was incompatible as a material.
(内面層および外面層のTi含有量による評価)
実施例20は内面層にTiを含有し、実施例19は外面層にTiを含有し、実施例21は、内面層および外面層の両層にTiを含有し、それぞれの含有量が本発明の範囲内であるので、耐食性が十分に高い。一方、比較例45は内面層のTi含有量が過剰なため、比較例44は外面層のTi含有量が過剰なため、それぞれ粗大なTi化合物の形成により加工性が低下して良好な試験材が得られなかった。
(Evaluation by Ti content of inner surface layer and outer surface layer)
Example 20 contains Ti in the inner surface layer, Example 19 contains Ti in the outer surface layer, and Example 21 contains Ti in both the inner surface layer and the outer surface layer. Therefore, the corrosion resistance is sufficiently high. On the other hand, since Comparative Example 45 has an excessive Ti content in the inner surface layer, and Comparative Example 44 has an excessive Ti content in the outer surface layer, the workability deteriorates due to the formation of a coarse Ti compound. Was not obtained.
(5層材の評価)
参考例46は、参考例1と同じ組成の内面層/心材/外面層の両面にろう材層を配置したもので、本発明の範囲内であるので、ろう付け後強度が十分に高い。
(Evaluation of 5-layer material)
Reference Example 46 has a brazing material layer disposed on both sides of the inner surface layer / core material / outer surface layer having the same composition as Reference Example 1, and is within the scope of the present invention, and therefore has a sufficiently high strength after brazing.
Claims (3)
前記心材は、Si:0.3〜1.5質量%、Mn:0.5〜1.8質量%、Mg:1.5質量%以下、Cu:1.0質量%以下、Ti:0.1〜0.35質量%を含有し、残部がAlおよび不可避的不純物からなり、
前記内面層は、Si:1.5質量%以下、Mn:1.8質量%以下、Cu:1.0質量%以下を含有し、残部がAlおよび不可避的不純物からなり、
前記外面層は、Si:1.5質量%以下、Mn:1.8質量%以下、Zn:2.5〜7.0質量%を含有し、残部がAlおよび不可避的不純物からなり、
前記内面層のCu含有量は、前記心材のCu含有量以上であり、
前記内面層および前記外面層の少なくとも一方は、さらにTi:0.1〜0.35質量%を含有することを特徴とする熱交換器用アルミニウム合金クラッド材。 An aluminum alloy clad material for a heat exchanger comprising a core material, an inner surface layer disposed on one side of the core material, and an outer surface layer disposed on the other surface side of the core material,
The core is composed of Si: 0.3 to 1.5% by mass, Mn: 0.5 to 1.8% by mass, Mg: 1.5% by mass or less, Cu: 1.0% by mass or less, Ti: 0.00%. 1 to 0.35% by mass, the balance consisting of Al and inevitable impurities,
The inner surface layer contains Si: 1.5% by mass or less, Mn: 1.8% by mass or less, Cu: 1.0% by mass or less, and the balance is made of Al and inevitable impurities.
The outer surface layer contains Si: 1.5% by mass or less, Mn: 1.8% by mass or less, Zn: 2.5-7.0% by mass, the balance is made of Al and inevitable impurities,
Cu content of the inner surface layer state, and are more Cu content of the core,
Wherein at least one of the inner surface layer and the outer surface layer, further Ti: 0.1 to 0.35 aluminum alloy clad sheet, characterized that you containing mass%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007083502A JP5054404B2 (en) | 2007-03-28 | 2007-03-28 | Aluminum alloy clad material and brazing sheet for heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007083502A JP5054404B2 (en) | 2007-03-28 | 2007-03-28 | Aluminum alloy clad material and brazing sheet for heat exchanger |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008240084A JP2008240084A (en) | 2008-10-09 |
JP5054404B2 true JP5054404B2 (en) | 2012-10-24 |
Family
ID=39911767
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007083502A Expired - Fee Related JP5054404B2 (en) | 2007-03-28 | 2007-03-28 | Aluminum alloy clad material and brazing sheet for heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5054404B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2692524B2 (en) * | 2008-01-18 | 2022-01-19 | Speira GmbH | Composite material with a protective layer against corrosion and method for its manufacture |
JP5704835B2 (en) * | 2009-05-27 | 2015-04-22 | 株式会社神戸製鋼所 | Aluminum alloy brazing sheet for heat exchanger |
JP5891026B2 (en) | 2011-12-14 | 2016-03-22 | 株式会社ケーヒン・サーマル・テクノロジー | Clad material |
JP6236290B2 (en) | 2012-11-13 | 2017-11-22 | 株式会社デンソー | Aluminum alloy clad material and heat exchanger assembled with a tube formed from the clad material |
JP6132330B2 (en) * | 2013-01-23 | 2017-05-24 | 株式会社Uacj | Aluminum alloy clad material and heat exchanger assembled with a tube formed from the clad material |
JP2015009244A (en) | 2013-06-27 | 2015-01-19 | 株式会社ケーヒン・サーマル・テクノロジー | Clad material, method of manufacturing brazed pipe, and the brazed pipe |
JP2016176112A (en) * | 2015-03-20 | 2016-10-06 | 株式会社神戸製鋼所 | Aluminum alloy brazing sheet |
JP6590536B2 (en) | 2015-06-05 | 2019-10-16 | 株式会社ケーヒン・サーマル・テクノロジー | Clad material and pipe manufacturing method |
JP6178483B1 (en) * | 2016-03-24 | 2017-08-09 | 株式会社神戸製鋼所 | Aluminum alloy brazing sheet |
JP6446015B2 (en) * | 2016-10-31 | 2018-12-26 | 株式会社Uacj | Aluminum alloy clad material and heat exchanger assembled with a tube formed from the clad material |
JP2022535666A (en) * | 2019-04-24 | 2022-08-10 | アーコニック テクノロジーズ エルエルシー | Intermediate liner for roll-bonded brazing sheets |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004225062A (en) * | 2003-01-20 | 2004-08-12 | Denso Corp | Aluminum alloy clad tube material having excellent corrosion resistance, and heat exchanger with the clad tube material assembled |
-
2007
- 2007-03-28 JP JP2007083502A patent/JP5054404B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008240084A (en) | 2008-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5054404B2 (en) | Aluminum alloy clad material and brazing sheet for heat exchanger | |
JP4477668B2 (en) | Aluminum alloy brazing sheet | |
JP4111456B1 (en) | Aluminum alloy brazing sheet for heat exchanger | |
JP6452627B2 (en) | Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same | |
JP2008246525A (en) | Brazing sheet made of aluminum alloy and its manufacturing method | |
JP5622349B2 (en) | Aluminum alloy material and aluminum alloy brazing sheet | |
WO2014115651A1 (en) | Aluminum alloy cladding material and heat exchanger incorporating tube obtained by molding said cladding material | |
JP5180565B2 (en) | Aluminum alloy brazing sheet for heat exchanger | |
JP6286335B2 (en) | Aluminum alloy brazing sheet | |
WO2017169633A1 (en) | Aluminum alloy brazing sheet | |
JP3360026B2 (en) | Brazing method of aluminum alloy brazing sheet for heat exchanger | |
JP5190079B2 (en) | Aluminum alloy brazing sheet manufacturing method, aluminum alloy brazing sheet brazing method, heat exchanger manufacturing method, heat exchanger | |
JP5190078B2 (en) | Brazing sheet for aluminum alloy brazing sheet and design method thereof | |
WO2019026658A1 (en) | Aluminum alloy brazing sheet for heat exchanger | |
JP5302114B2 (en) | Aluminum alloy brazing sheet for vacuum brazing | |
JP5390908B2 (en) | High strength aluminum alloy brazing sheet | |
JP2001170793A (en) | High-strength aluminum alloy clad metal for heat exchanger excellent in tube manufacturing property and corrosion resistance | |
JP6159843B1 (en) | Aluminum alloy brazing sheet | |
JP2007247021A (en) | Brazing sheet made of aluminum alloy for heat exchanger | |
JP2001170794A (en) | High-strength aluminum alloy clad material for heat exchanger excellent in tube manufacturing property and corrosion resistance | |
JP2011036914A (en) | Aluminum alloy brazing sheet | |
JP4996876B2 (en) | High corrosion resistance aluminum alloy composite for heat exchanger and aluminum alloy heat exchanger | |
JP2017172025A (en) | Aluminum alloy clad material for heat exchanger | |
JP6159841B1 (en) | Aluminum alloy brazing sheet | |
JP5190080B2 (en) | Aluminum alloy brazing sheet and brazing material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090929 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110913 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110920 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120724 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120727 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5054404 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150803 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |