JP5051817B2 - Visibility correction filter glass and visibility correction filter - Google Patents

Visibility correction filter glass and visibility correction filter Download PDF

Info

Publication number
JP5051817B2
JP5051817B2 JP2006171334A JP2006171334A JP5051817B2 JP 5051817 B2 JP5051817 B2 JP 5051817B2 JP 2006171334 A JP2006171334 A JP 2006171334A JP 2006171334 A JP2006171334 A JP 2006171334A JP 5051817 B2 JP5051817 B2 JP 5051817B2
Authority
JP
Japan
Prior art keywords
glass
ultraviolet
visibility correction
correction filter
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006171334A
Other languages
Japanese (ja)
Other versions
JP2008001544A (en
Inventor
英俊 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Techno Glass Co Ltd
Original Assignee
AGC Techno Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AGC Techno Glass Co Ltd filed Critical AGC Techno Glass Co Ltd
Priority to JP2006171334A priority Critical patent/JP5051817B2/en
Publication of JP2008001544A publication Critical patent/JP2008001544A/en
Application granted granted Critical
Publication of JP5051817B2 publication Critical patent/JP5051817B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/23Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron
    • C03C3/247Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron containing fluorine and phosphorus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Filters (AREA)
  • Glass Compositions (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

本発明は,デジタルスチルカメラ(以下、DSCと称する)やカラービデオカメラなどの色補正フィルタ等に使用され、可視域を透過し、700nm付近におけるシャープカット特性及び近紫外線カット特性を有する視感度補正フィルタガラスに関する。   The present invention is used in color correction filters for digital still cameras (hereinafter referred to as DSCs), color video cameras, and the like, and transmits the visible region and corrects the visibility with a sharp cut characteristic and a near ultraviolet cut characteristic near 700 nm. It relates to filter glass.

従来、DSCやカラービデオカメラに使用されているCCDやCMOS等の固体撮像素子は可視域から1100nm付近の近赤外域にわたる分光感度を有している。したがって、このままでは良好な色再現性を得ることができないので、赤外域を吸収するフィルタを用いて、人の通常の視感度に補正することが必要である。このフィルタは近赤外波長を選択的に吸収するように、リン酸塩系ガラスまたは弗燐酸塩系ガラスにCuOを添加したフィルタガラスが使用されている。このフィルタガラスは多量のPを必須成分としてCuOを含有しており、酸化性の溶融雰囲気中で、多数の酸素イオンに配位されたCu2+イオンを形成させることによって青緑色を呈し、近赤外線カット特性を有するものである。 Conventionally, solid-state imaging devices such as CCDs and CMOSs used in DSCs and color video cameras have spectral sensitivity ranging from the visible region to the near infrared region near 1100 nm. Therefore, since good color reproducibility cannot be obtained as it is, it is necessary to correct to normal human visibility using a filter that absorbs the infrared region. This filter uses a filter glass in which CuO is added to a phosphate glass or a fluorophosphate glass so as to selectively absorb near-infrared wavelengths. This filter glass contains CuO containing a large amount of P 2 O 5 as an essential component, and exhibits a blue-green color by forming Cu 2+ ions coordinated to a large number of oxygen ions in an oxidizing molten atmosphere. It has a near infrared cut characteristic.

前記フィルタガラスのうちリン酸塩系ガラスは、耐候性が不十分なため、ガラス研磨面にウェザリングを生じるので、長期間にわたって使用するには難点があり、現在では耐候性に優れた弗燐酸塩系ガラスが主に使用されている。   Among the filter glasses, phosphate-based glass has insufficient weather resistance, so it causes weathering on the polished glass surface. System glass is mainly used.

CuO−弗燐酸塩系ガラスからなる近赤外線カットフィルタガラスとしては、代表的なものとして特許文献1記載のものが知られており、特許文献1のガラスにおける400nm付近の透過率低下を抑えるためにSb、As、CeOなどを少量含有させた特許文献2や、700〜1200nmの透過率を低く抑えるために少量のVを加えた特許文献3記載のものなどがある。 As a near-infrared cut filter glass made of CuO-fluorophosphate glass, a typical one described in Patent Document 1 is known, and in order to suppress a decrease in transmittance around 400 nm in the glass of Patent Document 1. Patent Document 2 containing a small amount of Sb 2 O 3 , As 2 O 3 , CeO 2, or the like, Patent Document 3 adding a small amount of V 2 O 5 to keep the transmittance at 700 to 1200 nm low, etc. There is.

特開平1−219037号公報Japanese Patent Laid-Open No. 1-219037 特開平2−204342号公報JP-A-2-204342 特開平10−194776号公報Japanese Patent Laid-Open No. 10-194776

上述のとおりCCDやCMOS等の固体撮像素子は可視域から1100nm付近の近赤外域にわたる分光感度を有しており、近紫外域にも感度を有している。上記特許文献記載のようなCu2+イオンを含有した弗燐酸塩系ガラスフィルタの透過率カーブは、ほぼ300nm以下の波長を透過せず、波長300nmから400nmの範囲で急激に透過率が上昇し、600nmから700nmにかけて緩やかに下降する曲線であり、可視域における透過率を一定以上に設定した場合、900〜1000nm超の長波長側を若干透過する特性を持つ。このため、ガラスフィルタによる吸収のみでは人の視感度と撮影画像の色再現性とを完全に一致させることが難しい場合がある。 As described above, a solid-state imaging device such as a CCD or CMOS has a spectral sensitivity ranging from the visible region to the near infrared region near 1100 nm, and also has sensitivity in the near ultraviolet region. The transmittance curve of a fluorophosphate glass filter containing Cu 2+ ions as described in the above patent document does not transmit a wavelength of approximately 300 nm or less, and the transmittance increases rapidly in the wavelength range of 300 nm to 400 nm, It is a curve that gradually falls from 600 nm to 700 nm. When the transmittance in the visible region is set to a certain level or more, it has a characteristic of slightly transmitting the longer wavelength side exceeding 900 to 1000 nm. For this reason, it may be difficult to make the human visibility and the color reproducibility of the photographed image completely coincide with each other only by absorption by the glass filter.

このような場合、誘電体多層膜を併用することによって近紫外域及び近赤外域をさらにカットすることが行われている。誘電体多層膜は、高屈折率層として二酸化チタン(TiO)及び低屈折率層としての二酸化シリコン(SiO)の交互積層膜などからなり、近赤外線カットフィルタガラスの表面に成膜される場合もあれば、ローパスフィルタとしてカメラに内装される水晶板表面に真空蒸着やスパッタによって成膜される場合もある。誘電体多層膜による赤外線カット膜の透過特性は、成膜面に垂直に入射する光線に対して、およそ400nm以下と700nm以上の波長光を反射してほとんど透過せず、400〜700nmを透過する。この結果、ガラスフィルタによる吸収と誘電体多層膜による反射とを併用した光学系では、400〜600nmを高率に透過し、600〜700nmにかけて緩やかに下降し、700nm以上を透過しない透過率曲線を描き、人の視感度に近似した特性とすることができる。 In such a case, the near-ultraviolet region and the near-infrared region are further cut by using a dielectric multilayer film in combination. The dielectric multilayer film is composed of an alternating laminated film of titanium dioxide (TiO 2 ) as a high refractive index layer and silicon dioxide (SiO 2 ) as a low refractive index layer, and is formed on the surface of a near infrared cut filter glass. In some cases, a low-pass filter may be formed by vacuum deposition or sputtering on the surface of a crystal plate built in the camera. The transmission characteristic of the infrared cut film by the dielectric multilayer film is that light having a wavelength of about 400 nm or less and 700 nm or more is reflected and hardly transmitted, and 400 to 700 nm is transmitted with respect to light incident perpendicularly to the film formation surface. . As a result, in an optical system that combines absorption by a glass filter and reflection by a dielectric multilayer film, a transmittance curve that transmits 400 to 600 nm at a high rate, gradually decreases from 600 to 700 nm, and does not transmit 700 nm or more. The characteristics can be drawn and approximated to human visibility.

ところで、近年、高画素数の撮像素子を用いたDSCなどにおいて、レンズ系の色収差に起因して、撮影された画像にパープルフリンジと称される紫色の輪郭ぼけが認識されるようになっている。すなわち、光学要素を構成するガラスなどの媒質の屈折率は光の波長に依存する性質をもっており、同一の媒質であっても、可視光に対する屈折率と、近紫外線に対する屈折率、近赤外線に対する屈折率とは異なる。このような性質により、光線がガラス光学要素を通過する際には、短波長の光ほど強く屈折し、長波長の光ほど屈折度合いが弱くなるため、可視光の光路と近紫外線の光路、近赤外線の光路とが分岐され、可視光の焦点位置に対して近紫外線は手前に、近赤外線は後方に焦点を結ぶ(軸上色収差)。このように分岐された光線が、撮像素子の光電変換面に到達する位置では、色収差が2次元方向のずれとなり、このずれが近紫外線または近赤外線によるボケ半径となって、輪郭ぼけを発生させる原因となる。特に高画素数の撮像素子では、ピクセルサイズが小さくなる分、色収差の影響が大きく認識されやすく、また撮影画像中心部に比べて周辺部でその影響が出やすい。換言すると、色収差による輪郭ボケの問題は、撮像素子の高画素化の進展によって顕在化した課題と言える。   By the way, in recent years, in a DSC or the like using an image sensor with a high pixel count, a purple outline blur called purple fringe is recognized in a photographed image due to chromatic aberration of a lens system. . In other words, the refractive index of a medium such as glass that constitutes an optical element has a property that depends on the wavelength of light, and even for the same medium, the refractive index for visible light, the refractive index for near ultraviolet light, and the refraction for near infrared light. It is different from the rate. Due to this property, when light passes through the glass optical element, the shorter wavelength light is refracted more strongly, and the longer wavelength light is less refracted. The infrared optical path is branched, and near ultraviolet rays are focused on the near side and near infrared rays are focused on the rear side relative to the focal position of visible light (axial chromatic aberration). At the position where the light beam branched in this way reaches the photoelectric conversion surface of the image sensor, the chromatic aberration becomes a two-dimensional deviation, and this deviation becomes a blur radius due to near ultraviolet rays or near infrared rays, and blurring occurs. Cause. In particular, in an image sensor with a high pixel count, the influence of chromatic aberration is easily recognized as the pixel size is reduced, and the influence is more likely to occur in the peripheral part than in the center part of the captured image. In other words, the problem of contour blur due to chromatic aberration can be said to be a problem that has become apparent as the number of pixels of the image sensor increases.

上記した誘電体多層膜は、反射によって紫外域や赤外域の光をカットするが、誘電体多層膜は光線の入射角度によって反射特性が変化するため、成膜面に垂直に入射する光線に対する透過率が0の波長の光であっても斜めに入射した光に対しては完全に反射することができず透過してしまう場合がある。このため、色収差による輪郭ボケをなくすことはできず、撮像素子に対して斜めに入射する光が多くなる画像周辺部で影響が出やすくなる。また、誘電体多層膜に反射された光が光学系の中で迷光となって再度誘電体多層膜に斜めに入射すると、撮像素子の光電変換面に到達して偽色など撮影画像の色彩を乱す原因になる。   The above-mentioned dielectric multilayer film cuts light in the ultraviolet region and infrared region by reflection, but the dielectric multilayer film changes its reflection characteristics depending on the incident angle of the light beam, so that it transmits light incident on the film surface perpendicularly. Even light with a wavelength of 0 may not be completely reflected with respect to obliquely incident light and may be transmitted. For this reason, the outline blur due to chromatic aberration cannot be eliminated, and the influence is likely to occur at the periphery of the image where the light incident obliquely on the image sensor increases. In addition, when the light reflected by the dielectric multilayer film becomes stray light in the optical system and enters the dielectric multilayer film obliquely again, it reaches the photoelectric conversion surface of the image sensor and changes the color of the photographed image such as false color. It will cause disturbance.

したがって、誘電体多層膜に頼ることなくガラスの吸収によって紫外域や赤外域の光をカットできれば、これら不要光が斜めに入射しても、その悪影響をなくすことができる。その方法として、上述のCuO−弗燐酸塩系ガラスは、元来紫外域にも吸収をもっているので、近紫外域の吸収を高めるためにCuOの添加量を増加することが考えられる。図5に従来のCuO−弗燐酸塩系ガラスにおいて、CuO添加量を変えたガラスの透過率曲線を示す。これは、後述する比較例ガラスのものであり、弗燐酸塩系ガラスからなる母ガラス100質量部に対して、曲線9がCuOを2質量部、曲線10がCuOを5質量部添加したものである。図5からわかるようにCuOの添加量を増やすと、近紫外域の吸収とともに近赤外域における吸収も増加し、600〜700nmのカットパターンが短波長側に移動する。つまり、CuO添加量を変化させただけでは、近紫外域と近赤外域のカット特性を独立して制御することはできない。   Therefore, if light in the ultraviolet region or infrared region can be cut by glass absorption without relying on the dielectric multilayer film, the adverse effects can be eliminated even if these unnecessary lights are incident obliquely. As the method, since the above-mentioned CuO-fluorophosphate glass originally has absorption in the ultraviolet region, it is conceivable to increase the amount of CuO added in order to enhance absorption in the near ultraviolet region. FIG. 5 shows a transmittance curve of a conventional CuO-fluorophosphate glass in which the amount of CuO added is changed. This is a comparative glass to be described later, in which curve 9 is added with 2 parts by mass of CuO and curve 10 is added with 5 parts by mass of CuO with respect to 100 parts by mass of the mother glass made of fluorophosphate glass. is there. As can be seen from FIG. 5, when the amount of CuO added is increased, the absorption in the near infrared region is increased with the absorption in the near ultraviolet region, and the cut pattern of 600 to 700 nm moves to the short wavelength side. That is, the cut characteristics in the near-ultraviolet region and the near-infrared region cannot be controlled independently only by changing the CuO addition amount.

実際にDSCやビデオカメラに使用される視感度補正フィルタの近紫外域または近赤外域のカットパターンは、個々のCCDやCMOSの感度特性あるいはカメラの設計に合せて決められるものであるため、近紫外域のカット特性と近赤外域のカット特性とは独立して制御できることが望ましい。   The near-ultraviolet or near-infrared cut pattern of the visibility correction filter that is actually used in DSCs and video cameras is determined according to the sensitivity characteristics of each CCD or CMOS or the design of the camera. It is desirable that the cut characteristic in the ultraviolet region and the cut characteristic in the near infrared region can be controlled independently.

本発明は、このような事情を考慮してなされたもので、固体撮像素子の視感度補正に用いられるフィルタガラスにおいて、近紫外線吸収特性をもち、かつ近赤外線吸収特性と近紫外線吸収特性とを独立して変えられるガラスを提供することを目的とする。また、これによりレンズ系の近紫外線色収差に起因する輪郭ぼけなどの撮影画像の乱れを低減することのできる視感度補正フィルタを提供することを目的とする。   The present invention has been made in consideration of such circumstances, and a filter glass used for correcting the visibility of a solid-state imaging device has a near-ultraviolet absorption characteristic, and a near-infrared absorption characteristic and a near-ultraviolet absorption characteristic. The object is to provide glass that can be changed independently. It is another object of the present invention to provide a visibility correction filter that can reduce disturbances in a captured image such as blurring due to near-ultraviolet chromatic aberration of a lens system.

本発明は、上記課題を解決するために、CuO−弗燐酸塩系ガラスからなる基礎ガラス100質量部に対して、外割で、CeOを1〜 6質量部、Vを0.01〜0.5質量部、CuOを0.5〜12質量部含有するものであり、前記基礎ガラスが、質量%で、P
10〜60%、AlF 0〜20%、RF(RはLi,Na,Kのうち少なくとも1種) 1〜30%、R´F (R´はMg,Ca,Sr,Baのうち少なくとも1種)
10〜75%、( ただし、弗化物総合計量の70%までを酸化物に置換可能)からなる成分の合計が90%以上であることを特徴とする視感度補正フィルタガラスである。
In order to solve the above-mentioned problems, the present invention is based on 100% by mass of the basic glass made of CuO-fluorophosphate glass, and CeO 2 is 1 to 6 parts by mass, and V 2 O 5 is 0.1%. 01 to 0.5 parts by mass, containing 0.5 to 12 parts by mass of CuO, and the basic glass is P 2 O 5 by mass%.
10-60%, AlF 3 0-20%, RF (R is at least one of Li, Na, K) 1-30%, R′F 2 (R ′ is at least of Mg, Ca, Sr, Ba) 1 type)
It is a visibility correction filter glass characterized in that the total of components consisting of 10 to 75% (however, up to 70% of the total amount of fluoride can be replaced with oxide) is 90% or more .

本発明の視感度補正フィルタガラスにおいては、ガラス中に含まれるV/CeOの質量比が0.01〜0.1の範囲であることが好ましい。 In the visibility correction filter glass of the present invention, the mass ratio of V 2 O 5 / CeO 2 contained in the glass is preferably in the range of 0.01 to 0.1.

さらに本発明は、上記ガラスからなる視感度補正フィルタである。   Furthermore, the present invention is a visibility correction filter made of the glass.

本発明のガラスは、近赤外線の吸収特性に加え近紫外線も吸収することができるので、撮像光学系において、不要な紫外線が撮像素子に到達せず、近紫外線色収差に起因する輪郭ぼけや迷光紫外線などによる撮影画像の乱れを低減することができる。また、近紫外域のカット特性と近赤外域のカット特性とを独立して制御できるので、本発明のガラスと組合せ使用される撮像素子に合せた特性のフィルタを提供でき、撮像デバイスの色再現性向上に有用である。   Since the glass of the present invention can absorb near ultraviolet rays in addition to the absorption characteristics of near infrared rays, unnecessary ultraviolet rays do not reach the image sensor in the imaging optical system, and outline blurring and stray light ultraviolet rays caused by near ultraviolet chromatic aberration are prevented. It is possible to reduce the disturbance of the captured image due to the above. In addition, since the near-UV cut characteristics and near-infrared cut characteristics can be controlled independently, it is possible to provide filters with characteristics that match the image sensor used in combination with the glass of the present invention, and color reproduction of the image sensing device. It is useful for improving the performance.

本発明は、上記構成により上記目的を達成したものであり、本発明のガラスを構成する各成分の含有量等を上記のように限定した理由を以下に説明する。 The present invention achieves the above-mentioned object by the above-described configuration, and the reason for limiting the content of each component constituting the glass of the present invention as described above will be described below.

まず、CuO−弗燐酸塩系ガラスを基礎ガラスとするのは、上述のとおり酸素イオンに配位されたCu2+イオンによる近赤外域の吸収特性が視感度補正に必要なためである。 First, the reason why the CuO-fluorophosphate glass is used as the basic glass is that, as described above, the absorption characteristics in the near-infrared region due to Cu 2+ ions coordinated to oxygen ions are necessary for correcting the visibility.

CeOは、弗燐酸塩系ガラスにおいて紫外域に吸収を示すため、紫外線吸収剤として含有させるが、基礎ガラス100質量部に対する外割で示して、1質量部未満では近紫外域での吸収効果が少なく、6質量部を超えて添加するとガラスが失透しやすくなる。好ましくは2〜5質量部である。 CeO 2 shows absorption in the ultraviolet region in fluorophosphate glass, so it is contained as an ultraviolet absorber. However, it is shown as an external ratio with respect to 100 parts by mass of the basic glass, and if it is less than 1 part by mass, it absorbs in the near ultraviolet region. If the amount is less than 6 parts by mass, the glass tends to devitrify. Preferably it is 2-5 mass parts.

は、酸化剤及び安定化剤として添加するが、基礎ガラス100質量部に対する外割で0.01質量部未満ではその効果が十分でなく、0.5質量部を越えると可視域の透過率が大きく低下するので好ましくない。好ましくは0.05〜0.3質量部である。 V 2 O 5 is added as an oxidant and a stabilizer, but the effect is not sufficient if it is less than 0.01 parts by mass with respect to 100 parts by mass of the base glass, and visible if it exceeds 0.5 parts by mass. This is not preferable because the transmittance of the glass greatly decreases. Preferably it is 0.05-0.3 mass part.

CeOは、単独で添加した場合でもガラスに紫外線カット特性を付与することができるが、本発明者は、CuO含有弗燐酸塩系ガラスにおいて、特定量のCeOに特定量のVを共存させることにより、近紫外線吸収特性を向上させ、かつその特性を安定化できることを見出し、本発明に至ったものである。Ceは、ガラス中においてCe3+とCe4+との平衡状態で存在しており、Ce4+が350nm付近に吸収を示すのに対し、Ce3+はより短波長側に吸収を示す。このため、Ce3+は本発明が主としてカットしようとする、固体撮像素子が感度を有する近紫外域の吸収に寄与しない。したがって、近紫外域の吸収を高めるためには、Ce4+の存在比を上げることが重要となる。 CeO 2 can impart UV-cutting properties to the glass even when added alone, but the present inventor has found that a specific amount of V 2 O 5 is added to a specific amount of CeO 2 in a CuO-containing fluorophosphate glass. It has been found that the coexistence of can improve near-ultraviolet absorption characteristics and can stabilize the characteristics, and has led to the present invention. Ce is present in equilibrium with Ce 3+ and Ce 4+ in glass, Ce 4+ whereas exhibit absorption in the vicinity of 350 nm, Ce 3+ exhibits absorption to a shorter wavelength side. For this reason, Ce 3+ does not contribute to absorption in the near-ultraviolet region where the solid-state imaging device is sensitive, which the present invention intends to cut. Therefore, in order to increase absorption in the near ultraviolet region, it is important to increase the abundance ratio of Ce 4+ .

は、ガラス中にV5+として存在している場合は、紫外域に強い吸収を示すが、CuO含有弗燐酸塩系ガラス中でCeイオンと共存すると、Ceの酸化還元平衡を酸化方向に移動させ、つまりCe4+の存在比を上げ、V自身は還元されて紫外域に吸収をもたないV4+またはV3+になる。そして、Vイオンはガラス中に残りCeの酸化還元平衡を安定させるため、Ce4+による近紫外線吸収特性が安定したガラスが得られると考えられる。Vが存在しない場合は、ガラスの熔解雰囲気によってCeの酸化還元平衡が移動するため、紫外線吸収特性は安定しない。 When V 2 O 5 is present in the glass as V 5+ , it exhibits strong absorption in the ultraviolet region. However, when it coexists with Ce ions in a CuO-containing fluorophosphate glass, the redox equilibrium of Ce is oxidized. In other words, the abundance ratio of Ce 4+ is increased, and V itself is reduced to V 4+ or V 3+ having no absorption in the ultraviolet region. And since V ion stabilizes the redox equilibrium of Ce which remains in glass, it is thought that the glass with which the near-ultraviolet absorption characteristic by Ce4 + was stabilized is obtained. In the absence of V, the redox equilibrium of Ce moves depending on the glass melting atmosphere, so the ultraviolet absorption characteristics are not stable.

一方、Ce4+の存在比を上げる方法としては、原料中に硝酸塩などの酸化剤を加えて熔解することも考えられるが、ガラスの熔解初期には酸化剤によってCe4+の存在比が増加するものの、溶解中にCe4+の一部がCe3+になるため、最終的に得られるガラスの紫外線吸収特性がばらつく原因となり安定的な量産への課題がある。 On the other hand, as a method for increasing the abundance ratio of Ce 4+ , it is conceivable to melt by adding an oxidizing agent such as nitrate to the raw material, but the abundance ratio of Ce 4+ is increased by the oxidizing agent at the initial stage of melting of the glass. Since part of Ce 4+ becomes Ce 3+ during melting, there is a problem in stable mass production because the ultraviolet absorption characteristics of the finally obtained glass vary.

本発明において、上記のようにVをCeに対する酸化剤として作用させ、安定した近紫外線吸収特性を発現させるためには、ガラス中に含まれるV/CeOの質量比を0.01〜0.1の範囲とすることが好ましい。V/CeOの質量比が0.01未満ではVによるCeの酸化還元平衡を酸化方向に移動させる作用が十分でなく、所望の近紫外線吸収特性が安定的に得られず、0.1を越えるとCeに対する酸化剤として寄与しない余剰のVイオンがV5+となって、可視域の透過率までも低下させる。 In the present invention, in order to cause V 2 O 5 to act as an oxidizing agent for Ce as described above and to exhibit stable near-ultraviolet absorption characteristics, the mass ratio of V 2 O 5 / CeO 2 contained in the glass is set to A range of 0.01 to 0.1 is preferable. If the mass ratio of V 2 O 5 / CeO 2 is less than 0.01, the action of moving the redox equilibrium of Ce by V in the oxidation direction is not sufficient, and the desired near-ultraviolet absorption characteristics cannot be stably obtained. If it exceeds 0.1, surplus V ions that do not contribute as an oxidizing agent for Ce become V 5+, and the transmittance in the visible range is also reduced.

次に基礎ガラスを構成する成分について説明する。Pはガラスの網目構造を形成する主成分であるが、10%未満ではガラス化が困難であり、60%を越えると化学的耐久性が低下して長期使用におけるウエザリングの影響が懸念される。好ましくは20〜50%である。 Next, components constituting the basic glass will be described. P 2 O 5 is a main component that forms a network structure of glass, but if it is less than 10%, vitrification is difficult, and if it exceeds 60%, the chemical durability is lowered and there is a concern about the influence of weathering in long-term use. Is done. Preferably it is 20 to 50%.

AlFはガラスの化学的耐久性向上に有効な成分であるが、20%を越えるとガラスの溶融性が低下する。好ましくは1〜15%である。 AlF 3 is an effective component for improving the chemical durability of the glass, but if it exceeds 20%, the meltability of the glass decreases. Preferably it is 1 to 15%.

RFとして示したLiF、NaF,KFは、ガラス中にフッ素を導入し溶融温度と粘性を下げるために有効な成分であるが、RFの合量が1%未満ではその効果が得られず、30%を越えると化学的耐久性が著しく低下する。好ましくは5〜25%の範囲である。   LiF, NaF, and KF shown as RF are effective components for introducing fluorine into glass and lowering the melting temperature and viscosity. However, when the total amount of RF is less than 1%, the effect cannot be obtained. If it exceeds 50%, the chemical durability is remarkably lowered. Preferably it is 5 to 25% of range.

R´Fとして示したMgF、CaF、SrF、BaFは、化学的耐久性を低下することなくガラスを安定化するのに効果があるが、R´Fの合量が10%未満ではガラス化しにくく、75%を越えると失透傾向が顕著になる。好ましくは20〜60%の範囲である。 MgF 2 , CaF 2 , SrF 2 , and BaF 2 shown as R′F 2 are effective in stabilizing the glass without reducing chemical durability, but the total amount of R′F 2 is 10 If it is less than%, it is difficult to vitrify, and if it exceeds 75%, the tendency to devitrify becomes remarkable. Preferably it is 20 to 60% of range.

また、上記母ガラスを構成する金属弗化物の合計量の70%までを金属酸化物に置換しても所望の分光特性、化学的耐久性を得ることができる。   Moreover, even if up to 70% of the total amount of metal fluoride constituting the mother glass is replaced with a metal oxide, desired spectral characteristics and chemical durability can be obtained.

以上、P、AlF、RF、R´F(金属弗化物を置換した金属酸化物を含む)からなる成分の合計が90%以上であるガラスを本発明では母ガラスと称する。母ガラスは、上記成分からなるガラスとすることもできるが、上記成分のほか視感度補正フィルタガラスの特性を損なわない物質、たとえば、ZnF、ZrF、LaF、Sbなどを、ガラスの耐候性、溶融性の改善や熱膨張係数の調整などを目的として10%までの範囲で含有させることが可能である。 As described above, a glass having a total of 90% or more of components composed of P 2 O 5 , AlF 3 , RF, and R′F 2 (including a metal oxide substituted with a metal fluoride) is referred to as a mother glass in the present invention. The mother glass can be a glass composed of the above components, but in addition to the above components, materials that do not impair the properties of the visibility correction filter glass, such as ZnF 2 , ZrF 4 , LaF 3 , Sb 2 O 3 , It can be contained in the range of up to 10% for the purpose of improving the weather resistance and meltability of the glass and adjusting the thermal expansion coefficient.

CuOは近赤外線カットのための必須成分であるが、上記の母ガラス100質量部に対して外割で、0.5質量部未満では近赤外線吸収効果が十分でなく、12質量部を越えると可視域における透過率をも低下させ、またガラスが不安定になって失透性が増す。好ましくは1〜10質量部である。一般にDSCやカラービデオカメラにおける視感度補正では、近赤外域で透過率が50%となる波長が590nmから670nmの範囲内、多くは610nmから650nmの範囲となるカットパターンが好ましく使用される。また、良好な色再現性と入射光量を確保するために波長500nmにおける透過率は、反射防止膜等を被着していないガラス単体で少なくとも80%以上、より好ましくは85%以上であることが好ましい。他方、撮像素子が感度を有する近紫外線の影響を低減するためには、近紫外域の分光透過率において透過率が50%を示す波長が360nm以上、より好ましくは370nm以上の長波長側にあることが好ましい。   CuO is an essential component for cutting near-infrared rays, but it is an outer split with respect to 100 parts by mass of the mother glass, and if it is less than 0.5 parts by mass, the near-infrared absorbing effect is not sufficient, and if it exceeds 12 parts by mass. The transmittance in the visible range is also lowered, and the glass becomes unstable and devitrification increases. Preferably it is 1-10 mass parts. In general, in the visibility correction in a DSC or color video camera, a cut pattern in which the wavelength at which the transmittance is 50% in the near infrared region is in the range of 590 nm to 670 nm, and in many cases is in the range of 610 nm to 650 nm, is preferably used. Further, in order to ensure good color reproducibility and incident light quantity, the transmittance at a wavelength of 500 nm is at least 80% or more, more preferably 85% or more, for a single glass not coated with an antireflection film or the like. preferable. On the other hand, in order to reduce the influence of near-ultraviolet rays with which the image sensor has sensitivity, the wavelength at which the transmittance is 50% in the near-ultraviolet spectral transmittance is on the long wavelength side of 360 nm or more, more preferably 370 nm or more. It is preferable.

本発明のガラスは次のようにして作製することができる。まず得られるガラスが上記組成範囲になるように原料を秤量、混合する。この原料混合物を白金ルツボに収容し、蓋をして、電気炉内において700〜1000℃の温度で加熱溶融する。十分に攪拌・清澄した後、金型内に鋳込み、徐冷した後、切断・研磨して内厚0.3mmの平板状に成形する。CuOを増加することにより、ガラスは不安定となり失透し易くなる傾向があるが、ルツボで溶融する場合は、白金製などの蓋でルツボを密閉してフッ素成分の揮発を抑え、かつルツボ内でのガラスの停滞をなくすため、ガラスの撹拌方法を工夫して強化することで、ガラスの失透を抑制することができる。本発明のガラスは、溶融、成形工程を通じて、後の研磨工程で除去できないような目立った脈理の発生はなく、光学的にも均質なガラスを得ることができる。 The glass of the present invention can be produced as follows. First, the raw materials are weighed and mixed so that the obtained glass has the above composition range. This raw material mixture is placed in a platinum crucible, covered, and heated and melted at a temperature of 700 to 1000 ° C. in an electric furnace. After sufficiently stirring and clarifying, it is cast into a mold, slowly cooled, then cut and polished to form a flat plate having an inner thickness of 0.3 mm. Increasing CuO tends to make the glass unstable and easily devitrified. However, when melting with a crucible, the crucible is sealed with a lid made of platinum or the like to suppress the volatilization of the fluorine component, and within the crucible In order to eliminate the stagnation of the glass, devitrification of the glass can be suppressed by devising and strengthening the glass stirring method. The glass of the present invention does not cause any striae that cannot be removed in the subsequent polishing process through the melting and forming processes, and an optically homogeneous glass can be obtained.

本発明の視感度補正フィルタは、上記のようにして作成したガラスを切断、研削、研磨、面取などの機械加工を施して、最終的に両面が光学研磨された薄板状に整形したものである。この視感度補正フィルタは、上記ガラスからなり、近赤外線及び近紫外線に吸収特性を有するので、これにより撮像素子に対する視感度補正を行うことができる。使用されるフィルタの厚さは、組み合わされる撮像素子側の要求特性に応じて、近赤外線吸収物質であるCuO含有量、紫外線吸収剤含有量などのガラス組成と合せて適切な透過特性が得られるように調整して使用される。一般的なDSCなどでは、0.1〜1mm程度、好ましくは0.2〜0.5mm程度の厚さで用いられる。フィルタの使用態様としては、本発明の視感度補正フィルタを2枚の水晶板で挟んで接着したものや片面のみに水晶板を接着したもの、あるいは光学ガラスに貼り合わせるなどして使用することができる。また、フィルタの表面には必要に応じて反射防止膜、紫外線カット膜などの光学多層膜を真空蒸着など周知の手段によって形成することができる。   The visibility correction filter of the present invention is obtained by shaping the glass prepared as described above into a thin plate that has been subjected to mechanical processing such as cutting, grinding, polishing, and chamfering and finally optically polished on both sides. is there. This visibility correction filter is made of the glass and has absorption characteristics in the near infrared and near ultraviolet, so that the visibility correction for the image sensor can be performed. Appropriate transmission characteristics can be obtained for the thickness of the filter used in combination with the glass composition such as the content of CuO, which is a near-infrared absorbing material, and the content of an ultraviolet absorber, depending on the required characteristics on the side of the image sensor to be combined. It is used as adjusted. In a general DSC, the thickness is about 0.1 to 1 mm, preferably about 0.2 to 0.5 mm. As a usage mode of the filter, the visibility correction filter of the present invention is sandwiched between two quartz plates, bonded to only one side, or bonded to optical glass. it can. Further, an optical multilayer film such as an antireflection film or an ultraviolet cut film can be formed on the surface of the filter as required by a known means such as vacuum deposition.

本発明のフィルタは、主として固体撮像素子の視感度補正に用いられることから、撮像装置の撮影レンズと撮像素子との間の光路上に配設されて使用され、上記近赤外線及び近紫外線の吸収特性により良好な視感度補正を行うことができ、偽色などの発生を抑制することができる。また、本発明のガラスは優れた耐候性を有しているので、ガラスにウエザリングが発生しにくく長期間にわたって良好な光学特性を維持できる。   Since the filter of the present invention is mainly used for correcting the visibility of a solid-state imaging device, it is used by being disposed on the optical path between the imaging lens of the imaging device and the imaging device, and absorbs the near infrared rays and the near ultraviolet rays. Good visibility correction can be performed according to the characteristics, and generation of false colors and the like can be suppressed. Further, since the glass of the present invention has excellent weather resistance, weathering is hardly generated in the glass, and good optical characteristics can be maintained over a long period of time.

次に、本発明のガラスについて、実施例に基づき詳細に説明する。本発明の実施例及び比較例を表1及び表2に示す。なお、表中の組成は母ガラス部分を質量%で示し、CuO含有量を母ガラス100質量部に対する外割で示し、紫外線吸収剤として添加する成分を母ガラスとCuOとからなる基礎ガラス100質量部に対する外割で示してある。表中記載のガラスは、表に示す組成となるよう原料粉末を秤量・混合し、白金るつぼを用いて700〜1000℃の温度で溶融した。その後、充分に攪拌・清澄したガラスを矩形枠内に流出させ、徐冷後に厚さ1mm程度にスライスし、11mm×11mmの大きさに切断したものを300枚ずつ研磨装置の定盤に固定し、研磨剤として酸化セリウムを使用し肉厚0.3mmになるまで光学研磨した。 Next, the glass of this invention is demonstrated in detail based on an Example. Examples and Comparative Examples of the present invention are shown in Tables 1 and 2. In addition, the composition in a table | surface shows a mother glass part by the mass%, shows CuO content by the outer part with respect to 100 mass parts of mother glasses, and 100 mass of basic glasses which consist of mother glass and CuO as a component added as a ultraviolet absorber. It is shown as an external division for the part. The glass described in the table was weighed and mixed with the raw material powder so as to have the composition shown in the table, and melted at a temperature of 700 to 1000 ° C. using a platinum crucible. Then, the glass that has been sufficiently stirred and clarified is poured into a rectangular frame, sliced to a thickness of about 1 mm after slow cooling, and cut into 11 mm × 11 mm sizes, and fixed to the surface plate of the polishing apparatus 300 sheets at a time. Then, cerium oxide was used as an abrasive and optical polishing was performed until the thickness became 0.3 mm.

Figure 0005051817
Figure 0005051817

Figure 0005051817
Figure 0005051817

以上のようにして作成した平板状のガラスについて、分光透過率を測定した。分光透過率は、光学系に回折格子を使用している日本分光株式会社製のUV−IR分光光度計V−570を用い、ガラスに反射防止膜などを被着していないガラス単体での透過率を測定した。この結果として、各実施例および比較例ガラスの紫外側の透過率が50%を示す波長を表1及び表2に示し、またいくつかの例の分光透過率曲線を図示した。   Spectral transmittance was measured for the flat glass prepared as described above. Spectral transmittance is measured by using a UV-IR spectrophotometer V-570 manufactured by JASCO Corporation, which uses a diffraction grating in the optical system, and the glass is not coated with an antireflection film or the like. The rate was measured. As a result, the wavelengths at which the transmittance on the ultraviolet side of each Example and Comparative Example glass is 50% are shown in Tables 1 and 2, and the spectral transmittance curves of some examples are shown.

図1に実施例No.2と比較例No.11のガラスの分光透過率曲線を曲線2、曲線11として示す。これらのサンプルは、CuO含有量が同一で紫外線吸収剤として同量のCeOを含有するものであるが、実施例No.2はVを添加したものである。CuO含有量が同一であるため、近赤外側のカットパターンは、ほぼ同一の特性を示すが、近紫外側は実施例ガラスの吸収が顕著であり、CeO含有量が同一であるにもかかわらず紫外側の透過率が50%を示す波長が比較例に比べて長波長側に大きくシフトしていることがわかる。 In FIG. 2 and Comparative Example No. The spectral transmittance curves of 11 glass are shown as curve 2 and curve 11. These samples have the same CuO content and contain the same amount of CeO 2 as an ultraviolet absorber. 2 is the addition of V 2 O 5 . Since the CuO content is the same, the cut pattern on the near-infrared side shows almost the same characteristics, but the near-ultraviolet side has remarkable absorption of the example glass and the CeO 2 content is the same. It can be seen that the wavelength at which the transmittance on the ultraviolet side is 50% is greatly shifted to the long wavelength side compared to the comparative example.

図2に実施例No.2及びNo.4のガラスの分光透過率曲線を曲線2、曲線4として示す。これらのサンプルは、CuO含有量及びV添加量が同一で、CeO量を変化させたものである。図1と同様、CuO含有量が同一であるため、近赤外側のカットパターンは、ほぼ同一の特性を示し、CeO量が多い実施例No.4の方が近紫外側の吸収範囲が拡大している。ただし、図1との比較から、CeO量のみの変化ではVの有無によるほどの変化はないことがわかる。 In FIG. 2 and no. The spectral transmittance curves of glass No. 4 are shown as curve 2 and curve 4, respectively. In these samples, the CuO content and the V 2 O 5 addition amount are the same, and the CeO 2 amount is changed. Similar to FIG. 1, since CuO content is identical, near-infrared region of the cut pattern shows substantially the same characteristic, CeO 2 amount is large Example No. No. 4 has a larger absorption range on the near ultraviolet side. However, from the comparison with FIG. 1, it can be seen that the change in only the amount of CeO 2 does not change as much as the presence or absence of V 2 O 5 .

図3には実施例No.1及びNo.2のガラスの分光透過率曲線を曲線1、曲線2として示した。これらのサンプルは、CuO含有量及びCeO添加量が同一で、V量を変化させたものである。この例のようにV添加量により近紫外域の吸収特性を変化させることができる。 In FIG. 1 and no. The spectral transmittance curves of the glass No. 2 are shown as curve 1 and curve 2. In these samples, the CuO content and the CeO 2 addition amount are the same, and the V 2 O 5 amount is changed. As in this example, the absorption characteristics in the near-ultraviolet region can be changed by adding V 2 O 5 .

図4には実施例No.6及び実施例No.7のガラスの分光透過率曲線を曲線6、曲線7として示した。実施例No.6と実施例No.7とは、CuO、CeO、Vとも含有量が異なるが、透過帯がシフトした形で透過率曲線はほぼ相似形であり、これら赤外線・紫外線吸収成分の調整によって近赤外域と近紫外域のカット特性を調整できることを示す。 In FIG. 6 and Example No. The spectral transmittance curves of the glass No. 7 are shown as curve 6 and curve 7, respectively. Example No. 6 and Example No. 7 and CuO, CeO 2 and V 2 O 5 are different in content, but the transmittance curve is almost similar with the shifted transmission band, and by adjusting these infrared and ultraviolet absorption components, It shows that the cut characteristics in the near ultraviolet region can be adjusted.

なお、研磨した各実施例のガラスサンプルの耐候性試験として、温度60℃、相対湿度95%の条件下に保持し、ガラスの表面に変質が見られるまでの時間を測定した。その結果、本実施例のガラスはいずれも1000時間経過後も特に表面に変化は認められず、実使用に耐えうるものであると判断した。 In addition, as a weather resistance test of the polished glass sample of each Example, it was kept under the conditions of a temperature of 60 ° C. and a relative humidity of 95%, and the time until the surface of the glass was altered was measured. As a result, it was judged that the glass of this example was able to withstand actual use without any change in the surface even after 1000 hours.

図6に本発明の視感度補正フィルタガラスをDSCなどの撮像光学系に適用した例を示す。図6は、撮像光学系の構成の一例を模式的に示す断面図である。撮像光学系30は、被写体の像を結像するための撮影レンズ31と光軸を一にして視感度補正フィルタ32、水晶板などからなる光学的ローパスフィルタ33、カバーガラス34とを介してパッケージ35内に封入された撮像素子36が配設されている。そして、撮影レンズ31により撮像素子36の光電変換面361に結像された被写体光像は、光電変換されて電気的な映像信号として出力される。前記視感度補正フィルタ32は、上述した本発明に係るガラスからなるものであり、可視光を透過し近赤外線及び近紫外線を吸収する特性をもつ。   FIG. 6 shows an example in which the visibility correction filter glass of the present invention is applied to an imaging optical system such as DSC. FIG. 6 is a cross-sectional view schematically showing an example of the configuration of the imaging optical system. The imaging optical system 30 is packaged via a photographing lens 31 for forming an image of a subject, a visual sensitivity correction filter 32, an optical low-pass filter 33 made of a quartz plate, etc., and a cover glass 34 with the same optical axis. An image sensor 36 enclosed in 35 is disposed. The subject light image formed on the photoelectric conversion surface 361 of the image sensor 36 by the photographing lens 31 is photoelectrically converted and output as an electrical video signal. The visibility correction filter 32 is made of the glass according to the present invention described above, and has a characteristic of transmitting visible light and absorbing near infrared rays and near ultraviolet rays.

このような撮像光学系30に、光線が入射した場合、撮影レンズ31の可視光に対する屈折率と近紫外線に対する屈折率とが異なるため、可視光の光路Vと近紫外線の光路Uとは図示のように分岐し、光路上に近紫外線カットフィルタを持たない撮像光学系では、近紫外線は光路U、U’を経て撮像素子36に到達する。その結果、撮像素子36の光電変換面361では、図中にLで示すずれが発生する。一般の撮像素子は近紫外線に感度を有するので、このずれLが輪郭ボケとなって画像に記録されることになる。   When a light beam is incident on such an imaging optical system 30, the refractive index for visible light and the refractive index for near ultraviolet light of the photographing lens 31 are different, so that the optical path V of visible light and the optical path U of near ultraviolet light are illustrated. In an imaging optical system that branches in this manner and does not have a near-ultraviolet cut filter on the optical path, near-ultraviolet rays reach the image sensor 36 via optical paths U and U ′. As a result, in the photoelectric conversion surface 361 of the image sensor 36, a shift indicated by L in the drawing occurs. Since a general image sensor has sensitivity to near ultraviolet rays, the deviation L is recorded as an outline blur in an image.

本発明に係る視感度補正フィルタ32を用いた撮像光学系30では、可視光をほぼ透過し、近紫外線以下の波長の光線をほぼ吸収することができるため、可視光は光路Vのように光電変換面361に到達するが、光路Uに分岐された近紫外線は、視感度補正フィルタ32で吸収されて光電変換面361に到達せず、レンズ等の光学要素によって発生する色収差を除去して、撮影画像における輪郭ボケ、偽色などの画質低下を低減することができる。   In the imaging optical system 30 using the visibility correction filter 32 according to the present invention, visible light can be substantially transmitted and light having a wavelength of near-ultraviolet light or less can be substantially absorbed. Near-ultraviolet rays that have reached the conversion surface 361 but branched into the optical path U are absorbed by the visibility correction filter 32 and do not reach the photoelectric conversion surface 361, and remove chromatic aberration caused by optical elements such as lenses. It is possible to reduce deterioration in image quality such as outline blur and false color in a captured image.

このとき、撮像素子36の中心に到達する中心光束と、撮像素子36の周辺に到達する周辺光束とを比べると、周辺光束の方が斜めに入射する光線を多く含んでいるが、視感度補正フィルタ32の近紫外線吸収量は、光線がフィルタを通過する光路の長さが長いほど、多くの光線が吸収されるため、視感度補正フィルタ32に垂直に入射する光線よりも斜めに入射する光線の方が光路長が長くなり、周辺光束の方が中心光束よりも近紫外線以下の波長の光線をより多く吸収できることになる。   At this time, when the central light beam reaching the center of the image sensor 36 is compared with the peripheral light beam reaching the periphery of the image sensor 36, the peripheral light beam contains more rays incident obliquely. The near-ultraviolet ray absorption amount of the filter 32 is such that as the length of the optical path through which the light passes through the filter increases, more light is absorbed. In this case, the optical path length is longer, and the peripheral light beam can absorb more light rays having a wavelength shorter than the near ultraviolet ray than the central light beam.

上述した色収差によるずれLは、光軸に対して光線がなす角度が大きいほど大きくなるので、近紫外線等により発生する色収差は、光電変換面361の周辺部ほど大きくなるが、前記のように斜めに入射する光線を多く含む周辺光束ほど視感度補正フィルタ32による近紫外線の吸収量が増えるため、効果的に色収差の影響を除去できる。   The deviation L due to the chromatic aberration described above increases as the angle formed by the light beam with respect to the optical axis increases. Therefore, the chromatic aberration generated by near ultraviolet rays or the like increases toward the periphery of the photoelectric conversion surface 361, but as described above, it is oblique. Since the amount of absorption of near-ultraviolet rays by the visibility correction filter 32 increases as the peripheral light flux contains more light rays incident on the light, the influence of chromatic aberration can be effectively removed.

また、たとえば、視感度補正フィルタ32の撮影レンズ31側表面に誘電体多層膜からなる紫外線カット膜が成膜されている場合、成膜面に対して斜めに入射した紫外線が紫外線カット膜で反射されず透過してしまっても、前記のように視感度補正フィルタ32によって効果的に吸収されるため、近紫外線以下の波長の光線の光電変換面361への到達を防止または抑制することができる。   In addition, for example, when an ultraviolet cut film made of a dielectric multilayer film is formed on the surface of the visibility correction filter 32 on the photographing lens 31 side, ultraviolet rays incident obliquely with respect to the film formation surface are reflected by the ultraviolet cut film. Even if it is transmitted without being transmitted, it is effectively absorbed by the visibility correction filter 32 as described above, so that it is possible to prevent or suppress the arrival of light having a wavelength of near-ultraviolet light or less to the photoelectric conversion surface 361. .

なお、図6に示した撮像光学系の構成は一例であり、たとえば、視感度補正フィルタを2枚の水晶板間に挟んだり、カバーガラスに置換したりするなどの変更があっても、本発明に係る視感度補正フィルタによる効果は変わるものではない。   Note that the configuration of the imaging optical system shown in FIG. 6 is an example. For example, even if there is a change such as sandwiching the visibility correction filter between two quartz plates or replacing it with a cover glass, The effect of the visibility correction filter according to the invention does not change.

以上のように、本発明のガラスは、近赤外線に加え近紫外線も吸収することができ、CuOと紫外線吸収成分の含有量を調整することで、近紫外域のカット特性と近赤外域のカット特性とを独立して制御することができる。なお、ガラスの吸収特性のみによって所望の分光特性が得られない場合に誘電体多層膜を併用するときも、本発明のガラスを用いた場合、従来のガラスに比べてガラスによる近紫外域などの不要光線の吸収量が増加している分、上述した成膜面に斜めに入射する光などによる影響を小さく抑えることができる。   As described above, the glass of the present invention can absorb not only near-infrared rays but also near-ultraviolet rays. By adjusting the contents of CuO and ultraviolet-absorbing components, the near-ultraviolet region cut characteristics and near-infrared region cuts can be achieved. The characteristics can be controlled independently. Even when the dielectric multilayer film is used in combination when the desired spectral characteristics cannot be obtained only by the absorption characteristics of the glass, when the glass of the present invention is used, the near-ultraviolet region due to the glass is higher than that of the conventional glass. Since the amount of absorption of unnecessary light increases, the influence of the light incident obliquely on the film formation surface described above can be reduced.

本発明に係るガラスは以上に詳述したように、撮像素子にとって不要な赤外線及び紫外線を選択的、効果的に吸収除去することができるので、DSCやカラービデオカメラなどの撮像デバイスの色再現性向上に有用であり、これら撮像機器に使用される視感度補正フィルタとして好適である。 As described in detail above, the glass according to the present invention can selectively and effectively absorb and remove infrared rays and ultraviolet rays which are unnecessary for the image sensor, so that color reproducibility of an imaging device such as a DSC or a color video camera can be obtained. It is useful for improvement and is suitable as a visibility correction filter used in these imaging devices.

本発明に係る実施例No.2及び比較例No.11のガラスの分光透過率曲線を示す曲線図である。Example No. 5 according to the present invention. 2 and Comparative Example No. It is a curve figure which shows the spectral transmittance curve of 11 glass. 本発明に係る実施例No.2及びNo.4のガラスの分光透過率曲線を示す曲線図である。Example No. 5 according to the present invention. 2 and no. It is a curve figure which shows the spectral transmittance curve of 4 glass. 本発明に係る実施例No.1及びNo.2のガラスの分光透過率曲線を示す曲線図である。Example No. 5 according to the present invention. 1 and no. It is a curve figure which shows the spectral transmittance curve of 2 glass. 本発明に係る実施例No.6及びNo.7のガラスの分光透過率曲線を示す曲線図である。Example No. 5 according to the present invention. 6 and no. FIG. 7 is a curve diagram showing a spectral transmittance curve of No. 7 glass. 比較例No.9及びNo.10のガラスの分光透過率曲線を示す曲線図である。Comparative Example No. 9 and no. It is a curve figure which shows the spectral transmittance curve of 10 glass. 本発明に係る視感度補正フィルタガラスを適用した撮像光学系の構成を示す模式的断面図である。It is typical sectional drawing which shows the structure of the imaging optical system to which the visibility correction filter glass which concerns on this invention is applied.

符号の説明Explanation of symbols

1…実施例ガラスNo.1の分光透過率曲線、2…実施例ガラスNo.2の分光透過率曲線、4…実施例ガラスNo.4の分光透過率曲線、6…実施例ガラスNo.6の分光透過率曲線、7…実施例ガラスNo.7の分光透過率曲線、9…比較例ガラスNo.9の分光透過率曲線、10…比較例ガラスNo.10の分光透過率曲線、11…比較例ガラスNo.11の分光透過率曲線、30…撮像光学系、31…レンズ、32…視感度補正フィルタ、33…光学的ローパスフィルタ、34…カバーガラス、36…撮像素子、361…光電変換面

1 Example glass No. 1 No. 1 spectral transmittance curve, 2. No. 2 spectral transmittance curve, 4. No. 4 spectral transmittance curve, 6. No. 6 spectral transmittance curve, 7. No. 7 spectral transmittance curve, 9 ... Comparative glass No. No. 9 spectral transmittance curve, 10 ... Comparative Example Glass No. No. 10 spectral transmittance curve, No. 11 Comparative glass No. 11 Spectral transmittance curve, 30 ... Imaging optical system, 31 ... Lens, 32 ... Visibility correction filter, 33 ... Optical low-pass filter, 34 ... Cover glass, 36 ... Imaging element, 361 ... Photoelectric conversion surface

Claims (4)

CuO−弗燐酸塩系ガラスからなる基礎ガラス100質量部に対して、外割で、CeOを1〜6質量部、Vを0.01〜0.5質量部、CuOを0.5〜12質量部含有するものであり、前記基礎ガラスが、質量%で、P
10〜60%、AlF 0〜20%、RF(RはLi,Na,Kのうち少なくとも1種) 1〜30%、R´F (R´はMg,Ca,Sr,Baのうち少なくとも1種)
10〜75%、( ただし、弗化物総合計量の70%までを酸化物に置換可能)からなる成分の合計が90%以上であることを特徴とする視感度補正フィルタガラス。
With respect to 100 parts by mass of the basic glass made of CuO-fluorophosphate glass, CeO 2 is 1 to 6 parts by mass, V 2 O 5 is 0.01 to 0.5 parts by mass, and CuO is 0.1 parts by mass . are those containing 5 to 12 parts by weight, the base glass is, by mass%, P 2 O 5
10-60%, AlF 3 0-20%, RF (R is at least one of Li, Na, K) 1-30%, R′F 2 (R ′ is at least of Mg, Ca, Sr, Ba) 1 type)
Visibility correction filter glass characterized in that the total of components consisting of 10 to 75% (however, up to 70% of the total amount of fluoride can be replaced with oxide) is 90% or more .
ガラス中に含まれるV/CeOの質量比が0.01〜0.1の範囲であることを特徴とする請求項1記載の視感度補正フィルタガラス。 The visibility correction filter glass according to claim 1, wherein a mass ratio of V 2 O 5 / CeO 2 contained in the glass is in a range of 0.01 to 0.1. 固体撮像素子の視感度補正に用いられる請求項1または2記載の視感度補正フィルタガラス。 The visibility correction filter glass according to claim 1 or 2, which is used for visibility correction of a solid-state imaging device. 請求項1ないしのいずれか1項に記載の視感度補正フィルタガラスからなる視感度補正フィルタ。
Visibility correction filter consisting visibility correction filter glass according to any one of claims 1 to 3.
JP2006171334A 2006-06-21 2006-06-21 Visibility correction filter glass and visibility correction filter Active JP5051817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006171334A JP5051817B2 (en) 2006-06-21 2006-06-21 Visibility correction filter glass and visibility correction filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006171334A JP5051817B2 (en) 2006-06-21 2006-06-21 Visibility correction filter glass and visibility correction filter

Publications (2)

Publication Number Publication Date
JP2008001544A JP2008001544A (en) 2008-01-10
JP5051817B2 true JP5051817B2 (en) 2012-10-17

Family

ID=39006240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006171334A Active JP5051817B2 (en) 2006-06-21 2006-06-21 Visibility correction filter glass and visibility correction filter

Country Status (1)

Country Link
JP (1) JP5051817B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008044813A (en) * 2006-08-15 2008-02-28 Fujinon Corp Optical glass
KR20100137229A (en) * 2009-06-22 2010-12-30 삼성전자주식회사 Hybrid ir cut filter for digital camera
JP5494046B2 (en) 2010-03-12 2014-05-14 株式会社リコー Image forming apparatus
JP5337212B2 (en) * 2011-09-02 2013-11-06 株式会社東芝 Solid-state image sensor
CN104364681B (en) * 2012-06-25 2017-05-24 Jsr株式会社 Solid-state image capture element optical filter and application thereof
JP2014048402A (en) * 2012-08-30 2014-03-17 Kyocera Corp Optical filter member and imaging device
WO2016152561A1 (en) 2015-03-24 2016-09-29 旭硝子株式会社 Near infrared cut filter glass
JP2019038732A (en) * 2017-08-29 2019-03-14 日本電気硝子株式会社 Near-infrared radiation absorption glass

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219038A (en) * 1988-02-29 1989-09-01 Hoya Corp Optical glass filter and method for correcting transmissivity or absorbance in ultraviolet region with said filter
JP2726078B2 (en) * 1989-01-31 1998-03-11 ホーヤ株式会社 Near infrared absorption filter glass
DE4031469C1 (en) * 1990-10-05 1992-02-06 Schott Glaswerke, 6500 Mainz, De
DE19546313C1 (en) * 1995-12-12 1997-01-23 Schott Glaswerke New copper oxide-contg. alumino-phosphate glass
JP3396387B2 (en) * 1997-01-09 2003-04-14 旭テクノグラス株式会社 Near infrared cut filter glass

Also Published As

Publication number Publication date
JP2008001544A (en) 2008-01-10

Similar Documents

Publication Publication Date Title
JP5051817B2 (en) Visibility correction filter glass and visibility correction filter
JP5036229B2 (en) Visibility correction filter glass and visibility correction filter
US7192897B2 (en) Near-infrared light-absorbing glass, near-infrared light-absorbing element, near-infrared light-absorbing filter, and method of manufacturing near-infrared light-absorbing formed glass article, and copper-containing glass
JP5057505B2 (en) Visibility correction filter glass manufacturing method
JP3965352B2 (en) Copper-containing glass, near infrared light absorption element, and near infrared light absorption filter
US6225244B1 (en) Glass for near absorption filter and near infrared absorption filter to which the glass is applied
JP5659499B2 (en) Near-infrared cut filter glass
JP4953347B2 (en) Visibility correction filter glass and visibility correction filter
JP2009263190A (en) Infrared absorption glass
WO2011118724A1 (en) Process for production of near infrared ray cut filter glass
JP2011132077A (en) Near-infrared light absorbing glass, near-infrared light absorbing filter, and imaging device
TWI725213B (en) Optical glass and near infrared cut filter
JP3835718B2 (en) Phosphate glass for precision molding, optical element using the same, and method for producing optical element
JP5251365B2 (en) Near-infrared cut filter glass
KR102479292B1 (en) Optical glass filter
KR101566218B1 (en) Fluorophosphate glass and method for producing the same and near-infrared absorbing filter
JP4433391B2 (en) Glass for semiconductor package window, glass window for semiconductor package and semiconductor package
JP4925243B2 (en) Near-infrared cut filter glass
JP2006182584A (en) Filter glass for cutting near-infrared ray
JP3396387B2 (en) Near infrared cut filter glass
JP2006182586A (en) Filter glass for cutting near-infrared ray
JP7456563B2 (en) Glass for optical filters and optical filters
JP2007099525A (en) Preform for precise press forming, lens, prism, and their production method
JP4282340B2 (en) Colored glass and blue filter
WO2023210615A1 (en) Glass for optical filter and optical filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120720

R150 Certificate of patent or registration of utility model

Ref document number: 5051817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250