JP5043389B2 - Iron-based soft magnetic powder for dust core, dust core and method for producing dust core - Google Patents
Iron-based soft magnetic powder for dust core, dust core and method for producing dust core Download PDFInfo
- Publication number
- JP5043389B2 JP5043389B2 JP2006243190A JP2006243190A JP5043389B2 JP 5043389 B2 JP5043389 B2 JP 5043389B2 JP 2006243190 A JP2006243190 A JP 2006243190A JP 2006243190 A JP2006243190 A JP 2006243190A JP 5043389 B2 JP5043389 B2 JP 5043389B2
- Authority
- JP
- Japan
- Prior art keywords
- resin
- lubricant
- dust core
- soft magnetic
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Soft Magnetic Materials (AREA)
- Powder Metallurgy (AREA)
Description
本発明は、交流磁場に広く使用される鉄または鉄基合金等の軟磁性粉末による圧粉磁心用の粉末であって、樹脂および潤滑剤で被覆されたもの、および同粉末で製造された圧粉磁心ならびに同粉末を用いた圧粉磁心の製造法に関する。 The present invention relates to a powder for a powder magnetic core made of soft magnetic powder such as iron or iron-based alloy widely used in an alternating magnetic field, which is coated with a resin and a lubricant, and a pressure produced from the powder. The present invention relates to a powder magnetic core and a method for producing a powder magnetic core using the powder.
軟磁性粉末をフエノール等の電気絶縁性樹脂でコーティングして圧粉磁心用の粉末を製造することはすでに実用化されているが、交流磁場で使用されるこの種の磁心には、少渦電流損および高磁束密度が要求される。さらに、製造現場でのハンドリングやコイリング時の破損を抑制するために機械的強度がすぐれていることも必要である。 Although it has already been put into practical use to produce powder for powder magnetic cores by coating soft magnetic powder with an electrically insulating resin such as phenol, this type of magnetic core used in an alternating magnetic field has a low eddy current. Loss and high magnetic flux density are required. Furthermore, it is also necessary that the mechanical strength is excellent in order to suppress breakage during handling and coiling at the manufacturing site.
フエノール樹脂などによる軟磁性粉末のコーティングは、圧粉成形時に粉末材料に効果的な結合または接着力を与えて上記の要求にこたえることができるが、樹脂でコーティングされた粉末をそのまま成形しようとすると、粉末相互間の摩擦抵抗や金型との摩擦抵抗が大きいため、成形時に破損したり、金型との焼き付きを生じたりすることがある。その様な不具合を防止するため、軟磁性粉末には通常、0.5〜1質量%程度の潤滑剤が更に混合されている。しかしながら、潤滑剤を添加した場合、成形時における上記の様な不具合は解消できるものの、成形後の成形体の強度低下を生じるという問題があった。この様な強度低下を防止することを目的に、下記特許文献1では、融点の高い潤滑剤を混合することで、樹脂の熱硬化に際して潤滑剤が溶融することを防止しようとしている。しかしながら、潤滑剤自体は成形後も存在することには変わりが無いため、必ずしも十分に強度低下を防止しているとは言えない。 Soft magnetic powder coating with phenol resin can meet the above requirements by giving effective bonding or adhesion to the powder material during compaction molding, but if you try to mold the resin coated powder as it is Since the frictional resistance between the powders and the frictional resistance with the mold are large, the powder may be damaged during molding or may be seized with the mold. In order to prevent such a problem, the soft magnetic powder is usually further mixed with about 0.5 to 1% by mass of a lubricant. However, when the lubricant is added, the above-described problems at the time of molding can be solved, but there is a problem that the strength of the molded body after molding is reduced. In order to prevent such a decrease in strength, in Patent Document 1 below, a lubricant having a high melting point is mixed to prevent the lubricant from being melted during thermosetting of the resin. However, since the lubricant itself remains after molding, it cannot always be said that the strength reduction is sufficiently prevented.
一方、潤滑剤を粉末に混合するのではなく、金型表面に潤滑剤を塗布することで成形体の強度を確保しようとすることも下記特許文献2などで提案されている。しかしながら、型潤滑成形法も、例えばモータのロータやステータ等の複雑な形状の成形体を製造する金型に適用することは困難である。 On the other hand, it is proposed in Patent Document 2 below to try to ensure the strength of the molded body by applying a lubricant to the mold surface instead of mixing the lubricant with powder. However, it is difficult to apply the mold lubrication molding method to a mold for manufacturing a molded body having a complicated shape such as a motor rotor or a stator.
更に、潤滑剤を積極的に結合寄与させて強度の向上を図ろうとする技術が下記特許文献3において提案されている。これは、架橋メチロール基を多く有するフェノール樹脂と、分子中に水酸基、エポキシ基またはカルボキシル基を有する粉末状潤滑剤を混合することによって、フェノール樹脂の熱硬化時に潤滑剤との反応結合を生じさせ、成形性を損なうことなく強度の向上を図ろうとするものである。しかしながら、この方法では、熱硬化時に溶融した樹脂と潤滑剤とが相溶し、表面に相溶した樹脂が押し出された結果、成形体の表面汚れを引き起こすという問題が生じることがあった。この様な表面汚れは外観を損ねるだけではなく、その後の表面処理や寸法精度に悪影響を及ぼすため、例えばモータ部品など、高い寸法精度を求められる部品や表面処理を必要とされる部品などへ適用することは難しかった。
本発明は、樹脂を混合あるいはコーティングした軟磁性粉末を原料に用いて圧粉磁心を製造する場合に、粉末相互間や粉末と金型との摩擦抵抗のため、成形時の破損や金型との焼き付きの不具合を防止することと、更に成形後の成形体強度の低下を防止することの両立を図りうる圧粉磁心用軟磁性粉末を提供することを課題とするものである。更に、その様な圧粉磁心用軟磁性粉末を用いた圧粉磁心の製造方法、及び該製造方法によって製造された圧粉磁心を提供することも課題とするものである。 In the case of producing a powder magnetic core using soft magnetic powder mixed or coated with a resin as a raw material, the present invention may cause damage at the time of molding due to frictional resistance between powders or between a powder and a mold. It is an object of the present invention to provide a soft magnetic powder for a dust core capable of preventing both of the problem of seizing and preventing the decrease in the strength of the molded body after molding. Furthermore, another object of the present invention is to provide a method for producing a dust core using such a soft magnetic powder for a dust core, and a dust core produced by the production method.
上記の様な課題を解決する手段とは、
鉄基軟磁性粉末の表面に樹脂および潤滑剤が付着した圧粉磁心用鉄基軟磁性粉末であって、前記潤滑剤はその沸点が前記樹脂のガラス転移温度あるいは融点がある場合は融点よりも低いものであり、且つ前記潤滑剤及び前記樹脂は、前記潤滑剤の融点以上、樹脂のガラス転移温度あるいは融点がある場合は融点未満の温度において相溶することが無いものであり、さらに前記樹脂は圧粉磁心用鉄基軟磁性粉末全体に対して0.1〜5質量%、前記潤滑剤は圧粉磁心用鉄基軟磁性粉末全体に対して0.5質量%以上の割合で付着しており、且つ、前記樹脂と前記潤滑剤は合計で圧粉磁心用鉄基軟磁性粉末全体に対して7質量%以下となっていることを特徴とする圧粉磁心用鉄基軟磁性粉末である。
Means to solve the above problems are:
An iron-based soft magnetic powder for a dust core in which a resin and a lubricant are attached to the surface of the iron-based soft magnetic powder, and the lubricant has a boiling point higher than the melting point when the glass transition temperature or melting point of the resin is present. and a low, and the lubricant and the resin, the lubricant or above the melting point, if there is a glass transition temperature or the melting point of the resin all SANYO it is not to compatible at temperatures below the melting point, further wherein The resin adheres at a rate of 0.1 to 5% by mass with respect to the entire iron-based soft magnetic powder for dust core, and the lubricant adheres at a rate of 0.5% by mass or more with respect to the entire iron-based soft magnetic powder for dust core. And the total amount of the resin and the lubricant is 7% by mass or less based on the total amount of the iron-based soft magnetic powder for dust cores. It is.
前記潤滑剤は分子量が200以上であり、且つOH基及び/又はCOOH基を有する有機物であることが好ましい。 The lubricant is preferably an organic substance having a molecular weight of 200 or more and having an OH group and / or a COOH group.
また、前記樹脂は圧粉磁心用鉄基軟磁性粉末全体に対して0.1〜5質量%、前記潤滑剤は圧粉磁心用鉄基軟磁性粉末全体に対して0.2質量%以上の割合で付着しており、且つ、前記樹脂と前記潤滑剤は合計で圧粉磁心用鉄基軟磁性粉末全体に対して7質量%以下となっていることが好ましい。 The resin is 0.1 to 5% by mass with respect to the entire iron-based soft magnetic powder for dust core, and the lubricant is 0.2% by mass or more with respect to the entire iron-based soft magnetic powder for dust core. It is preferable that the resin and the lubricant are adhered in a proportion and 7% by mass or less based on the total amount of the iron-based soft magnetic powder for dust core.
圧粉磁心を製造するにあたり、前記圧粉磁心用鉄基軟磁性粉末を圧縮成形し、その後該圧縮成形体を、前記樹脂の硬化温度以上に加熱して前記樹脂を硬化させれば、前記した様な成形時の不具合や成形後の成形体の強度低下を招くことなく、圧粉磁心を得ることができる。 In producing the dust core, the iron-based soft magnetic powder for dust core is compression molded, and then the compression molded body is heated to a temperature higher than the curing temperature of the resin to cure the resin. A powder magnetic core can be obtained without causing such inconveniences during molding and a decrease in strength of the molded body after molding.
そして、この様な圧粉磁心の製造方法により得られた圧粉磁心は、成形後の表面に樹脂の付着のよる表面汚れもなく、成形体強度も高い優れた圧粉磁心となる。 The dust core obtained by such a method for producing a dust core is an excellent dust core having high surface strength due to the adhesion of the resin to the surface after molding and having a high compact strength.
本発明は、軟磁性粉末にコーティングすべき樹脂と潤滑剤を、樹脂の硬化温度や潤滑剤の沸点の関係及び樹脂と潤滑剤の相溶性の観点から適切に選択したので、潤滑剤の効果により圧縮成形時の不具合が解消されると共に、その後樹脂を硬化しても成形体強度を高くすることが可能となる。 In the present invention, the resin and lubricant to be coated on the soft magnetic powder are appropriately selected from the viewpoint of the curing temperature of the resin, the boiling point of the lubricant, and the compatibility between the resin and the lubricant. In addition to eliminating problems during compression molding, it is possible to increase the strength of the molded article even after the resin is cured.
本発明者らは、軟磁性粉末を均一に混合し、熱硬化後の外観を損なうことなく圧粉成形体の機械的強度の向上と良好な成形性の両立を図るべく様々な検討を重ねた結果、潤滑剤として、その沸点が樹脂のガラス転移温度あるいは融点がある場合は融点よりも低く、且つ前記潤滑剤の融点以上、樹脂のガラス転移温度あるいは融点がある場合は融点未満の温度において、潤滑剤と樹脂が相溶することが無いものを選択すれば、上記の目標が達成されることを見出した。 The inventors mixed soft magnetic powders uniformly, and repeated various studies in order to achieve both improved mechanical strength and good moldability of the green compact without impairing the appearance after thermosetting. As a result, as a lubricant, the boiling point is lower than the melting point if there is a glass transition temperature or melting point of the resin, and more than the melting point of the lubricant, if there is a glass transition temperature or melting point of the resin at a temperature below the melting point It has been found that the above-mentioned goal can be achieved if a lubricant and a resin that are compatible with each other are selected.
すなわち、本発明に適用される潤滑剤は、その沸点が、これと共存する樹脂に融点がない場合には同樹脂のガラス転移温度よりも低いものを選択し、また前記樹脂に融点がある場合にはその融点よりも低いものを選択するものである。しかも、これら互いに共存する潤滑剤と樹脂とが、樹脂に融点がない場合には前記潤滑剤の融点以上で前記樹脂のガラス転移温度未満の温度範囲において相溶しないものを選択し、また樹脂に融点がある場合には前記潤滑剤の融点以上で前記樹脂の融点未満の温度範囲において相溶しないものを選択するものである。 That is, as for the lubricant applied to the present invention, if the resin coexisting therewith does not have a melting point, the lubricant is selected to be lower than the glass transition temperature of the resin, and if the resin has a melting point Is selected to be lower than its melting point. In addition, if the lubricant and the resin that coexist with each other do not have a melting point, select one that is not compatible with the resin in a temperature range that is higher than the melting point of the lubricant and lower than the glass transition temperature of the resin. If there is a melting point, one that is not compatible in a temperature range above the melting point of the lubricant and below the melting point of the resin is selected.
なお、本発明において圧粉磁心とは、軟磁性粉末の表面に電気的絶縁性と機械的強度の付与のために樹脂を、更に圧縮成形時の粉末同士や金型との摩擦を低減するために潤滑剤を付着し、樹脂及び潤滑剤を付着した粉末を加圧成形して所定の形状を付与し、その後熱処理(樹脂の硬化処理)を施されたものであって、主に交流で使用される磁心(コア)と呼ばれる電磁気部品であり、ノイズフィルタやチョークコイルなどの電源用部品の他、モータのロータやステータなどに用いられる磁心をいう。以下、本発明について更に詳細に説明する。 In the present invention, the dust core is a resin for imparting electrical insulation and mechanical strength to the surface of the soft magnetic powder, and for reducing friction between the powder and the mold during compression molding. Lubricant is adhered to the resin, and the powder with resin and lubricant adhered is pressure-molded to give a predetermined shape, and then heat-treated (resin curing treatment), mainly used in alternating current It is an electromagnetic component called a magnetic core (core), and refers to a magnetic core used for a power supply component such as a noise filter and a choke coil, as well as a motor rotor and stator. Hereinafter, the present invention will be described in more detail.
軟磁性粉末は強磁性体の金属粉末であり、純鉄粉や鉄基合金粉末であることが多く、主にアトマイズ法や、還元法により得られた塊を粉砕することにより製造され、平均粒径は通常50〜150μm程度である。この様な軟磁性粉末に付着させる樹脂や潤滑剤の粒径は、軟磁性粉末と均一に混合できる粒径であることが必要であるため、軟磁性粉末の平均粒径よりも小さいことが求められる。たとえば、軟磁性粉末の平均粒径が150μm程度であった場合には、樹脂や潤滑剤の平均粒径は100μm以下程度とすることが好ましい。なお、樹脂粉末と軟磁性粉末を混合するのではなく、樹脂を溶剤に溶解させてから軟磁性粉末表面に付着させる、あるいは樹脂を加熱し液体状態で軟磁性粉末と混合し軟磁性粉末表面に付着させることも可能であり、この様な場合には樹脂の粒径を考慮する必要は無いが、本件発明における特徴の一つである樹脂と潤滑剤の相溶性の観点からは、残留した溶剤との相溶を抑制するために樹脂を溶剤に溶解させる場合は溶剤の選択に留意し、潤滑剤が溶解しないものを選ぶ必要がある。この場合、潤滑剤については粉末として混合する。 Soft magnetic powder is a ferromagnetic metal powder, and is often pure iron powder or iron-base alloy powder, and is mainly produced by pulverizing a lump obtained by the atomization method or the reduction method. The diameter is usually about 50 to 150 μm. The particle size of the resin or lubricant adhered to such soft magnetic powder needs to be a particle size that can be uniformly mixed with the soft magnetic powder, and therefore is required to be smaller than the average particle size of the soft magnetic powder. It is done. For example, when the average particle size of the soft magnetic powder is about 150 μm, the average particle size of the resin or lubricant is preferably about 100 μm or less. Instead of mixing the resin powder and the soft magnetic powder, the resin is dissolved in a solvent and then attached to the surface of the soft magnetic powder, or the resin is heated and mixed with the soft magnetic powder in a liquid state on the surface of the soft magnetic powder. In such a case, it is not necessary to consider the particle size of the resin, but from the viewpoint of compatibility between the resin and the lubricant, which is one of the characteristics of the present invention, the remaining solvent When the resin is dissolved in a solvent in order to suppress the compatibility with the solvent, it is necessary to pay attention to the selection of the solvent and to select one that does not dissolve the lubricant. In this case, the lubricant is mixed as a powder.
従来のやり方、すなわちステアリン酸金属塩や金属石鹸、ワックスなど一般的粉末冶金で使用される潤滑剤と軟磁性粉末を混合し成形した圧粉磁心は、離型剤である潤滑剤が樹脂の接着力を阻害するため圧粉磁心の強度は低い。また、特許文献3に示す樹脂と潤滑剤が反応結合する樹脂と潤滑剤と軟磁性粉末を混合した粉末を圧縮成形し、その後樹脂を熱硬化したものは、前記した通り、成形体表面に樹脂による汚れが生じる。これは以下の様な機構によるものと推定される。すなわち、圧縮成形後の成形体表面は金型と成形体の摺動により、樹脂及び潤滑剤はほとんど残っていない。樹脂と潤滑剤のほとんどは成形体内部の空孔(軟磁性粉末同士の隙間)に存在している。樹脂を硬化させるために成形体を熱処理すると成形体内部で液状になった潤滑剤と樹脂が相溶し、潤滑剤と樹脂が溶け合った液状のものが、毛細管現象と、熱処理による液化で体積が増加したことに伴う成形体内部での圧力増加により、成形体表面に染みだしてくる。その後、温度が低下すると、この染みだしてきた液状のものが表面で固化することとなる。潤滑剤だけであれば、仮に固化したとしても容易にふき取ることが可能であるが、染みだした液体には樹脂が含まれているため、樹脂の接着力によって容易にはふき取ることができない汚れとなる。しかも、樹脂の固化したものは、樹脂固有の色、たとえばフェノール樹脂の場合には茶色の着色があり、見た目にも表面汚れが目立つこととなる。また、この分野で使用される樹脂は一般に粘性が高く、樹脂の量自体が少量であっても成形体表面に出てきたものは表面で球状になって存在し、この点も汚れを目立たせる原因となる。 The dust core formed by mixing soft magnetic powder with a lubricant used in conventional powder metallurgy, such as metal stearate, metal soap, and wax, is used as a release agent. The strength of the powder magnetic core is low to inhibit the force. Further, as described above, a resin obtained by compressing and molding a mixture of a resin in which a resin and a lubricant react with each other and a lubricant and soft magnetic powder are compression-molded, and then thermosetting the resin, as described above. Dirty due to. This is presumed to be due to the following mechanism. That is, almost no resin and lubricant remain on the surface of the molded body after compression molding due to the sliding of the mold and the molded body. Most of the resin and the lubricant are present in the pores (gap between the soft magnetic powders) inside the molded body. When the molded body is heat-treated to cure the resin, the liquid lubricant and resin are compatible in the molded body, and the liquid in which the lubricant and the resin are mixed together has a volume due to capillary action and liquefaction by heat treatment. The surface of the molded body oozes due to an increase in pressure inside the molded body due to the increase. Thereafter, when the temperature is lowered, the oozing liquid is solidified on the surface. If it is only a lubricant, it can be easily wiped off even if it is solidified, but since the exuded liquid contains resin, it cannot be easily wiped off due to the adhesive strength of the resin. Become. In addition, the solidified resin has a color unique to the resin, for example, a brown color in the case of a phenol resin, and surface contamination is conspicuous. In addition, resins used in this field are generally highly viscous, and even if the amount of the resin itself is small, what appears on the surface of the molded body exists in a spherical shape on the surface, and this point also makes the stain noticeable. Cause.
この様な成形体表面の問題を解決するためには、成形体内部の樹脂が表面に染みだしてこない様にすることが必要である(潤滑剤だけが出てくることは、前記の通りあまり問題にならない)。そこで本発明者らは、まず樹脂の硬化熱処理時において潤滑剤と樹脂が相溶しないことが樹脂の染みだしを防ぎ、結果、表面汚れを解決することになると考えたのである。 In order to solve such a problem on the surface of the molded body, it is necessary to prevent the resin inside the molded body from seeping out on the surface. Not a problem). Accordingly, the present inventors first thought that the incompatibility of the lubricant and the resin during the curing heat treatment of the resin would prevent the resin from exuding and consequently solve the surface contamination.
一方、前記した通り、樹脂の硬化熱処理後の成形体強度を低下させる原因は成形体内部に存在する潤滑剤である。成形体強度を向上させるためには、樹脂の硬化熱処理時において、樹脂の硬化に必要な温度に達する前に潤滑剤が存在しない様にすることが必要である。潤滑剤がその様なタイミングにおいて存在しない様にするには、潤滑剤の沸点が樹脂の硬化温度以下で蒸発あるいは揮発することが必要となる。 On the other hand, as described above, the cause of lowering the strength of the molded product after the heat treatment of the resin is the lubricant present in the molded product. In order to improve the strength of the molded body, it is necessary to prevent the lubricant from being present before reaching the temperature necessary for curing the resin during the resin curing heat treatment. In order to prevent the lubricant from being present at such timing, it is necessary that the boiling point of the lubricant evaporates or volatilizes below the curing temperature of the resin.
従来、粉末冶金分野における潤滑剤としては、ステアリン酸亜鉛に代表されるステアリン酸金属塩が使用されるが、ステアリン酸金属塩は600℃以上の高温でなければ分解し蒸発しない。一方、600℃以上の高温では、ほとんどの樹脂が分解してしまい、電気的絶縁や機械的強度の付与といった樹脂本来の機能が損なわれてしまう。従って、ステアリン酸金属塩は本発明においては使用できないものである。 Conventionally, as a lubricant in the powder metallurgy field, a metal stearate represented by zinc stearate is used, but the metal stearate does not decompose and evaporate unless it is at a high temperature of 600 ° C. or higher. On the other hand, at a high temperature of 600 ° C. or higher, most of the resin is decomposed and the original functions of the resin such as electrical insulation and imparting mechanical strength are impaired. Therefore, the stearic acid metal salt cannot be used in the present invention.
通常の樹脂の硬化温度はせいぜい400℃以下であるが、この様な温度範囲あるいはそれ以下の温度において沸点を有する樹脂としては、CO基及び/又はCOOH基を有する有機物が代表的に挙げられる。具体的な例としては、ドデシルアルコール、ミリスチルアルコール、ステアリルアルコール、セチルアルコール、アラデシルアルコール、D−パンテノール、セバシン酸、ドデカン酸、デシルアルコール、トリデカノール等が挙げられる。 The curing temperature of ordinary resins is at most 400 ° C., but organic resins having CO groups and / or COOH groups are typically listed as resins having a boiling point in such a temperature range or lower. Specific examples include dodecyl alcohol, myristyl alcohol, stearyl alcohol, cetyl alcohol, aradecyl alcohol, D-pantenol, sebacic acid, dodecanoic acid, decyl alcohol, tridecanol and the like.
上記潤滑剤の分子量については、200〜300であることが好ましい。分子量が200未満になると、融点が常温近傍になり、通常の使用環境下で溶融する可能性がある。混合粉末において圧縮成形工程より以前に潤滑剤が溶融してしまうと粉末の流れ性が著しく低下し、成形するために金型に混合粉末を充填しようとした際に、金型への充填が不十分になるなどの障害が発生することがあるため、常温においては潤滑剤が溶融しない様、分子量が200以上であることが好ましい。また、分子量が大きくなると潤滑剤の沸点も上昇し、揮発しにくくなるため、分子量は300以下であることが好ましい。 The molecular weight of the lubricant is preferably 200 to 300. When the molecular weight is less than 200, the melting point becomes near room temperature, and there is a possibility of melting under a normal use environment. If the lubricant is melted before the compression molding process in the mixed powder, the flowability of the powder is remarkably reduced, so that when the mixed powder is filled in the mold for molding, the mold is not filled. Since troubles such as becoming sufficient may occur, the molecular weight is preferably 200 or more so that the lubricant does not melt at room temperature. Further, since the boiling point of the lubricant increases and the volatilization becomes difficult as the molecular weight increases, the molecular weight is preferably 300 or less.
樹脂については、その硬化温度と潤滑剤の沸点との関係、及び潤滑剤との相溶性の関係から適宜所望の樹脂を選択すればよいが、前記したCO基及び/又はCOOH基を有する有機物を潤滑剤として使用する場合には、硬化温度の観点などから、ポリイミド樹脂、ポリイミドアミド樹脂、PEEK樹脂を使用することが推奨される。 As for the resin, a desired resin may be appropriately selected from the relationship between the curing temperature and the boiling point of the lubricant, and the compatibility relationship with the lubricant. However, the organic substance having the CO group and / or COOH group described above may be used. When used as a lubricant, it is recommended to use polyimide resin, polyimide amide resin, or PEEK resin from the viewpoint of curing temperature.
樹脂と潤滑剤の添加量については、圧粉磁心の分野における通常の配合と同程度であり、具体的には、樹脂については、機械的強度と粉末間の電気的絶縁性を付与するため圧粉磁心用鉄基軟磁性粉末全体に対して、0.1質量%以上添加することが好ましい。また、成形体における軟磁性粉末の占積率が成形体の磁束密度を左右するため、十分な磁束密度を得る目的からすると、樹脂の添加量は5質量%以下にすることが好ましい。潤滑剤については、成形時に金型との焼き付きを防止するために添加するものであり、圧粉磁心用鉄基軟磁性粉末全体に対して、0.2質量%以上、望ましくは0.5質量%以上添加することが好ましい。一方、成形体の密度を確保する目的からは必要以上に添加するべきではなく、樹脂と潤滑剤の総量が7質量%以下であることが好ましい。
(実施例)
実験1
樹脂の硬化温度における樹脂と潤滑剤の相溶性を調べるための実験を行った。ビーカーに潤滑剤25gを入れ、潤滑剤の融点以上の温度(融点よりも約30℃高い温度)で、実験に使用した樹脂の硬化温度以下である温度に加熱し、10分程度温度を保持することで潤滑剤を十分に溶融させた。その後、液体状態の潤滑剤に固体粉末状態の樹脂5gを添加し、樹脂が溶けるか否かを目視で確認して、相溶性の有無を確認した。実験に使用した樹脂と潤滑剤の組み合わせ及び相溶性の結果は表1の通りである。なお、各樹脂の融点及び硬化温度、各潤滑剤の融点及び沸点も表1に併記している。また、潤滑剤はいずれも和光純薬工業株式会社製の試薬で、粒度は150μmの目開きのふるいを通過したものを使用した。樹脂は、ポリイミド樹脂:日立化成デュポンマイクロシステムズ製のPIQ(ワニス状なので75℃で溶媒を加熱揮発させた後の固化成分で評価する)、ポリアミドイミド樹脂:東洋紡製のバイロマックス(ワニス状なので75℃で溶媒を加熱揮発させた後の固化成分で評価する)、PEEK樹脂は東京ベルト社製450P(粒度は20μmの粉末)を使用した。
The amount of resin and lubricant added is about the same as that of ordinary compounding in the field of powder magnetic cores. Specifically, the resin is pressed to give mechanical strength and electrical insulation between the powders. It is preferable to add 0.1% by mass or more based on the whole iron-based soft magnetic powder for powder magnetic core. Further, since the space factor of the soft magnetic powder in the molded body affects the magnetic flux density of the molded body, the amount of resin added is preferably 5% by mass or less for the purpose of obtaining a sufficient magnetic flux density. The lubricant is added to prevent seizure with the mold during molding, and is 0.2% by mass or more, preferably 0.5% by mass with respect to the entire iron-based soft magnetic powder for the dust core. % Or more is preferably added. On the other hand, for the purpose of ensuring the density of the molded body, it should not be added more than necessary, and the total amount of resin and lubricant is preferably 7% by mass or less.
(Example)
Experiment 1
An experiment was conducted to investigate the compatibility between the resin and the lubricant at the curing temperature of the resin. 25 g of the lubricant is put in a beaker, heated to a temperature equal to or higher than the melting point of the lubricant (a temperature higher by about 30 ° C. than the melting point) and lower than the curing temperature of the resin used in the experiment, and maintained at the temperature for about 10 minutes. As a result, the lubricant was sufficiently melted. Thereafter, 5 g of a resin in a solid powder state was added to the lubricant in a liquid state, and whether or not the resin was dissolved was visually confirmed to confirm the compatibility. The combination of resin and lubricant used in the experiment and the compatibility results are shown in Table 1. The melting point and curing temperature of each resin and the melting point and boiling point of each lubricant are also shown in Table 1. The lubricant used was a reagent manufactured by Wako Pure Chemical Industries, Ltd., and the particle size used was passed through a sieve having an opening of 150 μm. Resin is polyimide resin: PIQ made by Hitachi Chemical DuPont Microsystems (it is a varnish, so it is evaluated by the solidified component after heating and volatilizing the solvent at 75 ° C.), polyamideimide resin: Viromax made by Toyobo (75 because it is varnished) The PEEK resin was 450P (particle size is 20 μm powder) manufactured by Tokyo Belt Co., Ltd.).
比較例として使用したフェノール樹脂は、カネボウ社製ベルパールを使用した。 As a phenol resin used as a comparative example, Kanebo's Belpearl was used.
実験2
鉄基軟磁性粉末(鉄粉)に樹脂と潤滑剤を混合した混合粉末を圧縮成形し、その後樹脂の硬化処理を行って得られた成形体について、成形体の抗折強度を測定すると共に成形体表面の汚れの有無を目視で確認する実験を行った。
Experiment 2
For molded products obtained by compression-molding a mixed powder of iron-based soft magnetic powder (iron powder) mixed with resin and lubricant and then curing the resin, the bending strength of the molded product is measured and molded. An experiment was conducted to visually confirm the presence or absence of dirt on the body surface.
鉄粉に対して、樹脂は0.5質量%、潤滑剤は0.75質量%添加し、V型混合機で30分間混合した後、直径30mmの金型に混合粉末を充填し、8トン/cm2の成形圧で成形体高さ:20mmに成形した。その後、不活性ガス中で硬化温度(表2に記載する実験温度)で30分間保持することで樹脂の硬化処理を行った後、徐冷して成形体を得た。抗折強度試験は、ISO3325(焼結金属材料抗折力)に規定の試験方法に従って行った。試験装置には島津製作所製「AUTOGRAPH AG-5000E」を使用し、支持点間距離を25mmとした。結果を表2に示す。なお、同表2の実験温度の欄で「−」と表示したものは実験を行っていない(フェノール樹脂の溶融温度の方が潤滑剤の融点よりも低いため)。 After adding 0.5% by mass of resin and 0.75% by mass of lubricant to the iron powder, mixing for 30 minutes with a V-type mixer, filling the mixed powder into a 30 mm diameter mold, 8 tons Molded body height: 20 mm with a molding pressure of / cm 2. Thereafter, the resin was cured by being held in an inert gas at a curing temperature (experimental temperature described in Table 2) for 30 minutes, and then slowly cooled to obtain a molded body. The bending strength test was performed according to a test method prescribed in ISO 3325 (sintered metal material bending strength). “AUTOGRAPH AG-5000E” manufactured by Shimadzu Corporation was used as the test apparatus, and the distance between the support points was set to 25 mm. The results are shown in Table 2. In addition, what was displayed as "-" in the column of the experiment temperature of Table 2 was not experimented (because the melting temperature of the phenol resin is lower than the melting point of the lubricant).
硬化温度は樹脂によって異なり、熱硬化性樹脂は硬化の始まる硬化温度、熱可塑性樹脂の場合は、樹脂を軟化させて軟磁性粉末と密着させて圧粉磁心の強度を高めるため、ガラス転移温度(融点のないもの)あるいは融点以上の温度を硬化温度とする。いずれの場合も樹脂の熱劣化を抑制するために、硬化温度、ガラス転移温度、融点より10〜30℃高い温度にとどめておくことが望ましい。 The curing temperature varies depending on the resin, the thermosetting resin is the curing temperature at which curing begins, and in the case of a thermoplastic resin, the glass transition temperature (in order to increase the strength of the powder magnetic core by softening the resin and bringing it into close contact with the soft magnetic powder. The one having no melting point) or a temperature higher than the melting point is set as the curing temperature. In any case, in order to suppress thermal degradation of the resin, it is desirable to keep the temperature 10 to 30 ° C. higher than the curing temperature, glass transition temperature, and melting point.
実験3
樹脂の分子量が混合粉末の流れ性に及ぼす影響を実験により確認した。実験は、鉄粉の中に0.65質量%の潤滑剤を添加し、V型混合機により30分間混合した粉末を、日本粉末冶金工業会規格 JPMA P 07−1992、或いはJIS Z 2502に従って評価した。結果を表3に示す。なお、表3中、流れ性が×のものは室温において粉末が流れなかったことを意味し、○は流れたことを意味する。
Experiment 3
The effect of the molecular weight of the resin on the flowability of the mixed powder was confirmed by experiments. In the experiment, 0.65% by mass of a lubricant was added to iron powder, and the powder mixed for 30 minutes with a V-type mixer was evaluated according to Japan Powder Metallurgy Industry Association Standard JPMA P 07-1992 or JIS Z 2502. The results are shown in Table 3. In Table 3, when the flowability is x, the powder did not flow at room temperature, and ◯ means that it flowed.
実験1及び2の結果より、本発明によれば、成形体の強度を向上するための熱処理過程で昇温中、樹脂と潤滑剤が相溶しないので、樹脂の染み出しによる成形体の表面汚れを抑制することができ、樹脂の軟化温度では潤滑剤が蒸発するため成形体内部に残存せず、潤滑剤による成形体の強度低下を抑制することができるため、表面汚れのない高強度の圧粉磁心をえることができることが分かる。 From the results of Experiments 1 and 2, according to the present invention, since the resin and the lubricant are not compatible during the heat treatment in the heat treatment process for improving the strength of the molded body, the surface contamination of the molded body due to the resin oozing out. Since the lubricant evaporates at the softening temperature of the resin, it does not remain inside the molded body, and it is possible to suppress a decrease in the strength of the molded body due to the lubricant. It turns out that a powder magnetic core can be obtained.
また実験3において、粉末の流れ性が○の評価となる分子量200以上の潤滑剤を利用すれば、型潤滑成形(潤滑剤を含まない粉末の成形で金型に潤滑剤を塗布する)など特殊な成形方法を使用することなく、通常の内部潤滑成形(潤滑剤を含む粉末の成形)で、圧粉磁心の強度低下を抑制することが可能である。 Also, in Experiment 3, if a lubricant with a molecular weight of 200 or more whose powder flowability is evaluated as ◯ is used, special lubrication such as mold lubrication molding (the lubricant is applied to the mold by molding powder containing no lubricant) Without using a simple molding method, it is possible to suppress a decrease in strength of the powder magnetic core by ordinary internal lubrication molding (molding of a powder containing a lubricant).
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006243190A JP5043389B2 (en) | 2006-09-07 | 2006-09-07 | Iron-based soft magnetic powder for dust core, dust core and method for producing dust core |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006243190A JP5043389B2 (en) | 2006-09-07 | 2006-09-07 | Iron-based soft magnetic powder for dust core, dust core and method for producing dust core |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008066531A JP2008066531A (en) | 2008-03-21 |
JP5043389B2 true JP5043389B2 (en) | 2012-10-10 |
Family
ID=39288962
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006243190A Expired - Fee Related JP5043389B2 (en) | 2006-09-07 | 2006-09-07 | Iron-based soft magnetic powder for dust core, dust core and method for producing dust core |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5043389B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5650928B2 (en) * | 2009-06-30 | 2015-01-07 | 住友電気工業株式会社 | SOFT MAGNETIC MATERIAL, MOLDED BODY, DUST CORE, ELECTRONIC COMPONENT, SOFT MAGNETIC MATERIAL MANUFACTURING METHOD, AND DUST CORE MANUFACTURING METHOD |
JP5966236B2 (en) * | 2011-03-24 | 2016-08-10 | アルプス・グリーンデバイス株式会社 | Powder magnetic core and manufacturing method thereof |
CN102693826B (en) * | 2011-03-24 | 2015-02-04 | 阿尔卑斯绿色器件株式会社 | Powder magnetic core and manufacture method thereof |
JP6117504B2 (en) * | 2012-10-01 | 2017-04-19 | Ntn株式会社 | Manufacturing method of magnetic core |
JP2015126096A (en) | 2013-12-26 | 2015-07-06 | Ntn株式会社 | Dust core and method for producing the same |
WO2016043026A1 (en) * | 2014-09-17 | 2016-03-24 | 株式会社オートネットワーク技術研究所 | Method for producing composite material |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4064711B2 (en) * | 2002-04-24 | 2008-03-19 | 株式会社神戸製鋼所 | Powder for powder magnetic core, high-strength powder magnetic core, and production method thereof |
JP4462967B2 (en) * | 2004-03-11 | 2010-05-12 | 日立粉末冶金株式会社 | Method for producing soft magnetic member by powder metallurgy |
-
2006
- 2006-09-07 JP JP2006243190A patent/JP5043389B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008066531A (en) | 2008-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3986043B2 (en) | Powder magnetic core and manufacturing method thereof | |
JP5043389B2 (en) | Iron-based soft magnetic powder for dust core, dust core and method for producing dust core | |
JP4284004B2 (en) | Powder for high-strength dust core, manufacturing method for high-strength dust core | |
WO2008032503A1 (en) | Iron-based soft magnetic powder for dust core, method for producing the same and dust core | |
KR101352214B1 (en) | Production process of dust core and dust core obtained thereby | |
JP2009228107A (en) | Iron-based soft magnetic powder for dust core, method for manufacturing the same, and dust core | |
JP5974803B2 (en) | Soft magnetic alloy powder, green compact, dust core and magnetic element | |
TW200921715A (en) | Iron-based soft magnetic powder for dust core and dust core | |
JP2004197212A (en) | Soft magnetic molding, method of producing soft magnetic molding, and soft magnetic powder material | |
KR20120125966A (en) | Method for producing dust core, and dust core obtained by the method | |
JP5976284B2 (en) | Method for producing dust core and method for producing powder for magnetic core | |
CA2827409A1 (en) | Iron base soft magnetic powder for powder magnetic cores, fabrication method for same, and powder magnetic core | |
WO2019106813A1 (en) | Compound and tablet | |
JP4064711B2 (en) | Powder for powder magnetic core, high-strength powder magnetic core, and production method thereof | |
WO2000005732A1 (en) | Composition for bonded rare-earth permanent magnet, bonded rare-earth permanent magnet and method for manufacturing bonded rare-earth permanent magnet | |
JP4837700B2 (en) | Powder magnetic core and method for producing the same | |
JP5513922B2 (en) | Iron-based soft magnetic powder for dust core, method for producing iron-based soft magnetic powder for dust core, and dust core | |
JP4688833B2 (en) | Powder for dust core, dust core and method for producing the same | |
WO2019106810A1 (en) | Compound powder | |
JP4847977B2 (en) | Powder for magnetic core, powder magnetic core and method for producing them | |
JP6403940B2 (en) | Powder magnetic core and manufacturing method thereof | |
JP2008063649A (en) | Powder for dust core, its production method and method for producing dust core | |
JP4759533B2 (en) | Powder for powder magnetic core, powder magnetic core, and method for producing the same | |
JP2006310873A (en) | Powder magnetic core and method for manufacturing it | |
JPH0845724A (en) | Dust core |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080926 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100113 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100119 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100315 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20101221 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110407 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110407 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110408 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120712 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5043389 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150720 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |