JP5028940B2 - Output voltage control apparatus and method for serial multiple AC / DC converter - Google Patents

Output voltage control apparatus and method for serial multiple AC / DC converter Download PDF

Info

Publication number
JP5028940B2
JP5028940B2 JP2006276592A JP2006276592A JP5028940B2 JP 5028940 B2 JP5028940 B2 JP 5028940B2 JP 2006276592 A JP2006276592 A JP 2006276592A JP 2006276592 A JP2006276592 A JP 2006276592A JP 5028940 B2 JP5028940 B2 JP 5028940B2
Authority
JP
Japan
Prior art keywords
converter
voltage
phase
output voltage
command value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006276592A
Other languages
Japanese (ja)
Other versions
JP2008099400A (en
Inventor
達人 中島
聡 宮崎
純弥 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2006276592A priority Critical patent/JP5028940B2/en
Publication of JP2008099400A publication Critical patent/JP2008099400A/en
Application granted granted Critical
Publication of JP5028940B2 publication Critical patent/JP5028940B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Inverter Devices (AREA)

Description

本発明は、複数台の交直変換器が三相各相にそれぞれ直列に接続されて構成された直列多重型交直変換装置の出力電圧制御装置及び方法に関する。   The present invention relates to an output voltage control apparatus and method for a serial multiplex type AC / DC converter comprising a plurality of AC / DC converters connected in series to three phases.

一般に、交直変換装置の出力制御装置には、搬送波比較方式によるパルス幅変調制御が用いられており、交流出力電圧を制御している。搬送波比較方式は、出力電圧指令値に基づく交流電圧波形と、スイッチング周波数を定める搬送波(キャリア)とを比較し、交流電圧波形と搬送波の値の大小によりオンオフパルス信号を生成する方式である。   In general, an output control device of an AC / DC converter uses pulse width modulation control by a carrier wave comparison method, and controls an AC output voltage. The carrier wave comparison method is a method in which an AC voltage waveform based on an output voltage command value is compared with a carrier wave (carrier) that determines a switching frequency, and an on / off pulse signal is generated based on the magnitude of the AC voltage waveform and the value of the carrier wave.

例えば、交直変換装置の出力電圧を下げるには交流電圧波形の振幅(変調率)を1から下げることになるが、変調率を下げると、図10に示すように、電圧高調波が増加して電圧歪率が増大する傾向にある。一方、キャリア周波数を上げることで波形歪みの減少や制御性能の向上を図ることができるが、交直変換器はキャリア周波数を上げるにつれロスが増えるため、特に大容量の交直変換器の場合には、実用上キャリア周波数を低めに設定している。   For example, to reduce the output voltage of the AC / DC converter, the amplitude (modulation factor) of the AC voltage waveform is lowered from 1. However, when the modulation factor is lowered, the voltage harmonics increase as shown in FIG. The voltage distortion rate tends to increase. On the other hand, waveform distortion can be reduced and control performance can be improved by increasing the carrier frequency. However, since the loss increases as the carrier frequency increases, especially in the case of a large capacity AC / DC converter, In practice, the carrier frequency is set low.

大容量の交直変換装置の場合、1台の変換器あたりの変換器容量を大きくすることは設計上困難であるので、変換器の多重化方式を使用している。例えば、三相各相に対して複数台の変換器を直列に接続して直列多重型交直変換装置を構成している。この多重方式の直列多重型交直変換装置では、出力電圧を低下させる場合には、各々の各変換器は、同位相で同変調率の電圧ベクトルを合成して出力している。例えば、2台の変換器で多重化している場合、従来は変調率を0.8にするには、同位相で2台の変換器ともに変調率を0.8にしていた。   In the case of a large-capacity AC / DC converter, since it is difficult to design a large converter capacity per converter, a converter multiplexing system is used. For example, a serial multiplex AC / DC converter is configured by connecting a plurality of converters in series for each phase of three phases. In this multiplex type serial multiplex type AC / DC converter, when the output voltage is lowered, each converter synthesizes and outputs voltage vectors having the same phase and the same modulation rate. For example, when multiplexing is performed by two converters, conventionally, in order to set the modulation rate to 0.8, the modulation rate is set to 0.8 for both of the two converters in the same phase.

図11は、2台の変換器で多重化されている直列多重型交直変換装置の出力電圧を1puから0.8puに低下させた場合の出力電圧ベクトル図である。図11(a)は直列多重型交直変換装置の出力電圧を低下させる前の出力電圧ベクトル図、図11(b)は直列多重型交直変換装置の出力電圧を低下させた後の出力電圧ベクトル図である。   FIG. 11 is an output voltage vector diagram when the output voltage of the serial multiplex AC / DC converter multiplexed by two converters is reduced from 1 pu to 0.8 pu. 11A is an output voltage vector diagram before reducing the output voltage of the serial multiple AC / DC converter, and FIG. 11B is an output voltage vector diagram after reducing the output voltage of the serial multiple AC / DC converter. It is.

図11(a)に示すように、直列多重型変換装置の三相の同相の変換器は同位相で同変調率の電圧ベクトルであり、三相各相は120°の位相差があり三相平衡している。例えば、U相では2台の変換器の出力電圧U1、U2は同じ位相で同じ電圧値(同じ変調率)である。V相についても2台の変換器の出力電圧V1、V2は同じ位相で同じ電圧値(同じ変調率)であり、W相についても2台の変換器の出力電圧W1、W2は同じ位相で同じ電圧値(同じ変調率)である。そして、三相各相は120°の位相差があり三相平衡していることから、U1〜W2の電圧値はすべて等しい。   As shown in FIG. 11 (a), the three-phase in-phase converter of the serial multiplexing type conversion device is a voltage vector having the same phase and the same modulation rate, and each of the three phases has a phase difference of 120 ° and has three phases. Equilibrium. For example, in the U phase, the output voltages U1 and U2 of the two converters have the same phase and the same voltage value (same modulation rate). Also for the V phase, the output voltages V1 and V2 of the two converters have the same phase and the same voltage value (the same modulation factor), and for the W phase, the output voltages W1 and W2 of the two converters have the same phase and the same value. It is a voltage value (same modulation rate). Since each of the three phases has a phase difference of 120 ° and is balanced in three phases, the voltage values of U1 to W2 are all equal.

この状態で、出力電圧を0.8puに低下させる場合には三相各相の2台の変換器の変調率を0.8にする。これにより、図11に示すように、三相各相の2台の変換器の出力電圧はu1〜w2は、図11(a)の電圧ベクトルを0.8puに縮小した相似形の電圧ベクトルとなる。   In this state, when the output voltage is reduced to 0.8 pu, the modulation rate of the two converters for each of the three phases is set to 0.8. As a result, as shown in FIG. 11, the output voltages u1 to w2 of the two converters in each phase of the three phases are similar to the voltage vector of FIG. 11 (a) reduced to 0.8 pu. Become.

ここで、直列多重型交直変換装置において、特定高調波次数を削減するためにスイッチング角度をあらかじめ求めておき、そのスイッチング角度で運転するようにした電力変換装置がある(例えば、特許文献1参照)。
特開平6−276747号公報
Here, in a serial multiplex AC / DC converter, there is a power converter that obtains a switching angle in advance in order to reduce a specific harmonic order, and operates at the switching angle (see, for example, Patent Document 1). .
JP-A-6-276747

しかし、特許文献1のものでは、各次高調波含有率が最小になるスイッチング角度を求めるようにしているが、出力電圧が一定である場合の制御であり、出力電圧を可変にする場合には、そのまま適用することができない。すなわち、例えば、2台の変換器で多重化している場合、出力電圧を0.8puにするには、同位相で2台の変換器ともに変調率を0.8にしているが、この変調率の変化によって出力される波形歪みが変化するので、各次高調波含有率も変化する。   However, in Patent Document 1, the switching angle at which each harmonic content is minimized is obtained. However, the control is performed when the output voltage is constant, and the output voltage is variable. It cannot be applied as it is. That is, for example, in the case of multiplexing with two converters, in order to set the output voltage to 0.8 pu, the modulation rate is set to 0.8 for both converters in the same phase. Since the output waveform distortion changes due to the change of, each harmonic content also changes.

そこで、高調波フィルタを設けて波形歪みを除去することが行われているが、高調波フィルタを設計する場合には、波形歪みの最大値をある制限値まで抑制するようにフィルタ設計する必要があるので、高調波フィルタのコンパクト化ができない。   Therefore, a harmonic filter is provided to remove waveform distortion. However, when designing a harmonic filter, it is necessary to design the filter so as to suppress the maximum value of waveform distortion to a certain limit value. Therefore, the harmonic filter cannot be made compact.

本発明の目的は、変換器での変換損失を抑制しつつ出力電圧の変更に伴う高調波の抑制ができる直列多重型交直変換装置の出力電圧制御装置及び方法を提供することである。   An object of the present invention is to provide an output voltage control device and method for a serial multiple AC / DC converter that can suppress harmonics accompanying changes in the output voltage while suppressing conversion loss in the converter.

請求項1の発明に係わる直列多重型交直変換装置の出力電圧制御装置は、電力を変換する複数台の変換器が三相各相にそれぞれ直列に接続されて構成された直列多重型交直変換装置の出力電圧制御装置において、前記直列多重型交直変換装置の電圧指令値を入力する電圧指令値入力手段と、前記電圧指令値入力手段で入力した前記直列多重型交直変換装置の電圧上げまたは下げ及び位相変化の電圧指令値に基づいて各相の各々の変換器のうち少なくとも1台の変換器の出力電圧の電圧値及び位相を一定とし残りのいずれかの変換器の出力電圧の電圧値及び位相を変化させた状態で、各相の各々の変換器の出力電圧のベクトル和が前記直列多重型交直変換装置の電圧指令値と等しくなるような各相の各々の変換器の電圧指令値を出力する変換器電圧指令値出力手段と、前記変換器電圧指令値出力手段からの変換器の電圧指令値に基づいて各相の各々の変換器の出力電圧を制御する変換器制御手段とを備えたことを特徴とする。 An output voltage control device for a serial multiplex AC / DC converter according to claim 1 is a serial multiplex AC / DC converter configured by connecting a plurality of converters for converting power to each of three phases in series. The voltage command value input means for inputting the voltage command value of the serial multiple AC / DC converter, and the voltage increase or decrease of the serial multiple AC / DC converter input by the voltage command value input means, Based on the voltage command value of the phase change, the voltage value and phase of the output voltage of at least one converter among the converters of each phase are fixed, and the voltage value and phase of the output voltage of any remaining converter in a state of changing the output voltage command value of the voltage command value becomes equal such each phase of each transducer of the vector sum of the phases of each of the converter output voltage is the multi-series type AC-DC converter Converter Pressure command value output means, and converter control means for controlling the output voltage of each converter of each phase based on the voltage command value of the converter from the converter voltage command value output means. And

請求項2の発明に係わる直列多重型交直変換装置の出力電圧制御装置は、請求項1の発明において、前記変換器制御手段は、電圧指令値に基づく交流電圧波形と搬送波とを比較しそれらの値の大小により各相の各々の変換器を制御する搬送波比較制御方式が採用され、電圧指令値を変化させた変換器に対して、搬送波の周波数を変えることを特徴とする。 The output voltage control device of the serial multiplex type AC / DC converter according to the invention of claim 2 is the invention according to claim 1 , wherein the converter control means compares the AC voltage waveform based on the voltage command value with the carrier wave and compares them. A carrier wave comparison control system that controls each converter of each phase according to the magnitude of the value is adopted, and the frequency of the carrier wave is changed with respect to the converter in which the voltage command value is changed.

請求項3の発明に係わる直列多重型交直変換装置の出力電圧制御方法は、電力を変換する複数台の変換器が三相各相にそれぞれ直列に接続されて構成された直列多重型交直変換装置の出力電圧制御方法において、前記直列多重型交直変換装置の電圧指令値を入力し、入力した前記直列多重型交直変換装置の電圧上げまたは下げ及び位相変化の電圧指令値に基づいて各相の各々の変換器のうち少なくとも1台の変換器の出力電圧の電圧値及び位相を一定とし残りのいずれかの変換器の出力電圧の電圧値及び位相を変化させた状態で、各相の各々の変換器の出力電圧のベクトル和が前記直列多重型交直変換装置の電圧指令値と等しくなるような各相の各々の変換器の電圧指令値を出力し、出力された変換器の電圧指令値に基づいて各相の各々の変換器の出力電圧を制御することを特徴とする。
An output voltage control method for a serial multiplex AC / DC converter according to the invention of claim 3 is a serial multiplex AC / DC converter configured by connecting a plurality of converters for converting power to each of three phases in series. In the output voltage control method, the voltage command value of the serial multiple AC / DC converter is input, and each phase is determined based on the voltage increase / decrease and phase change voltage command values of the input serial multiple AC / DC converter. Conversion of each phase in a state where the voltage value and phase of the output voltage of at least one of the converters is constant and the voltage value and phase of the output voltage of any of the remaining converters are changed. The voltage command value of each converter of each phase is set so that the vector sum of the output voltage of the converter becomes equal to the voltage command value of the serial multiple AC / DC converter, and based on the output voltage command value of the converter For each phase And controlling the output voltage of the vessel.

本発明によれば、各相の各々の変換器の出力電圧のベクトル和が直列多重型交直変換装置の電圧指令値と等しくなるような各相の各々の変換器の電圧指令値を出力するので、直列多重型交直変換装置の電圧上げまたは下げの電圧指令値に対しても変調率を変化させることなく、各相の各々の変換器の電圧指令値を出力できる。従って、変調率を下げることに伴う電圧高調波の増加を防止でき電圧歪率が増大することを防止できる。また、高調波フィルタの容量を削減でき高調波フィルタのコンパクト化やフィルタ損失の低減を図ることができる。また、発生高調波の減少により、変圧器で発生する高調波ロスを減少できる。   According to the present invention, the voltage command value of each converter of each phase is output so that the vector sum of the output voltage of each converter of each phase becomes equal to the voltage command value of the serial multiple AC / DC converter. The voltage command value of each converter of each phase can be output without changing the modulation rate even with respect to the voltage command value for raising or lowering the voltage of the serial multiple AC / DC converter. Therefore, an increase in voltage harmonics accompanying a decrease in the modulation factor can be prevented, and an increase in the voltage distortion rate can be prevented. Further, the capacity of the harmonic filter can be reduced, and the harmonic filter can be made compact and the filter loss can be reduced. Moreover, the harmonic loss which generate | occur | produces with a transformer can be reduced by reduction of a generated harmonic.

図1は本発明の実施の形態に係わる直列多重型交直変換装置の出力電圧制御装置の構成図である。直列多重型変換装置11は、三相各相に対してそれぞれ複数台の変換器12が設けられる。図1では三相各相のU相、V相、W相に対して、それぞれn台の変換器12が設けられた場合を示している。すなわち、U相には変換器12U1、12U2〜12Unが設けられ、V相には変換器12V1、12V2〜12Vnが設けられ、W相には変換器12W1、12W2〜12Wnが設けられている。   FIG. 1 is a configuration diagram of an output voltage control device of a serial multiple AC / DC converter according to an embodiment of the present invention. The serial multiple conversion device 11 is provided with a plurality of converters 12 for each of the three phases. FIG. 1 shows a case where n converters 12 are provided for the U phase, V phase, and W phase of each of the three phases. That is, converters 12U1 and 12U2 to 12Un are provided in the U phase, converters 12V1 and 12V2 to 12Vn are provided in the V phase, and converters 12W1 and 12W2 to 12Wn are provided in the W phase.

図2は、変換器12の一例を示す回路構成図である。変換器12は、例えば絶縁ゲート形半導体素子である4個のIGBT(Insulated Gate Bipolar Transistor)13を直並列に接続して構成され、直流電源14からの直流電力を交流電力に変換して巻線15に出力するようになっている。   FIG. 2 is a circuit configuration diagram illustrating an example of the converter 12. The converter 12 is configured by connecting, for example, four IGBTs (Insulated Gate Bipolar Transistors) 13 which are, for example, insulated gate semiconductor elements in series and parallel, and converts DC power from the DC power supply 14 into AC power to be wound. 15 is output.

そして、図1に示すように、変換器12の巻線15を変圧器16の一次巻線に磁気結合させ、三相各相にn個ずつ直列に配置する。これにより、変圧器16の各々の一次巻線からは、各相につき、直列接続されたn個の変換器12の出力電圧が出力される。   As shown in FIG. 1, the winding 15 of the converter 12 is magnetically coupled to the primary winding of the transformer 16, and n pieces are arranged in series in each of the three phases. Thereby, the output voltage of n converters 12 connected in series is output from each primary winding of transformer 16 for each phase.

変換器制御装置17は、各々の変換器12U1〜12Wnを制御するものであり、直列多重型交直変換装置の電圧指令値Vrは電圧指令値入力手段18に入力される。変換器電圧指令値出力手段19は、電圧指令値入力手段18で入力した直列多重型交直変換装置の電圧指令値Vrに基づいて、記憶部20に予め記憶された各相の各々の変換器12U1〜12Wnの電圧指令値Vru1〜Vrwnを取り出し変換器制御手段21に出力する。   The converter control device 17 controls each of the converters 12U1 to 12Wn, and the voltage command value Vr of the serial multiple AC / DC converter is input to the voltage command value input means 18. The converter voltage command value output means 19 is based on the voltage command value Vr of the serial multiplex type AC / DC converter input by the voltage command value input means 18, and each converter 12U1 of each phase stored in the storage unit 20 in advance. Voltage command values Vru1 to Vrwn of ˜12 Wn are taken out and output to the converter control means 21.

変換器制御手段21は、例えば、電圧指令値に基づく交流電圧波形と搬送波とを比較しそれらの値の大小により各相の各々の変換器を制御する搬送波比較制御方式により、ゲート制御回路22に制御指令を出力する。すなわち、変換器制御手段21は、各相の各々の変換器12U1〜12Wnの出力電圧が変換器電圧指令値出力手段19からの変換器12U1〜12Wnの電圧指令値Vru1〜Vrwnになるようにゲート制御回路22に制御指令を出力し、ゲート制御回路22は各相の各々の変換器12U1〜12Wnにゲート信号を出力する。   The converter control means 21 compares the AC voltage waveform based on the voltage command value with the carrier wave, and controls the converter of each phase according to the magnitude of those values. Output control commands. That is, the converter control means 21 gates so that the output voltage of each converter 12U1 to 12Wn of each phase becomes the voltage command values Vru1 to Vrwn of the converters 12U1 to 12Wn from the converter voltage command value output means 19. A control command is output to the control circuit 22, and the gate control circuit 22 outputs a gate signal to each converter 12U1 to 12Wn of each phase.

ここで、記憶部20には、三相各相の各々の変換器12U1〜12Wnの出力電圧のベクトル和が直列多重型交直変換装置の電圧指令値Vrと等しくなるような各相の各々の変換器12U1〜12Wnの電圧指令値Vru1〜Vrwnが予め記憶されている。   Here, the storage unit 20 converts each phase of each of the three phases so that the vector sum of the output voltages of the respective converters 12U1 to 12Wn of each phase becomes equal to the voltage command value Vr of the serial multiple AC / DC converter. Voltage command values Vru1 to Vrwn of the units 12U1 to 12Wn are stored in advance.

図3は、記憶部20に予め記憶されている各相の各々の変換器12の電圧指令値の実施例1の説明図である。図3では各相の各々の変換器12が2台ずつ設けられた場合の電圧ベクトルを示しており、図3(a)は直列多重型交直変換装置11の出力電圧を低下させる前の出力電圧ベクトル図、図3(b)は直列多重型交直変換装置11の出力電圧を低下させた後の出力電圧ベクトル図である。   FIG. 3 is an explanatory diagram of Example 1 of the voltage command value of each converter 12 of each phase stored in advance in the storage unit 20. FIG. 3 shows voltage vectors when two converters 12 for each phase are provided, and FIG. 3A shows the output voltage before the output voltage of the serial multiple AC / DC converter 11 is lowered. FIG. 3B is a vector diagram and FIG. 3B is an output voltage vector diagram after the output voltage of the serial multiple AC / DC converter 11 is lowered.

すなわち、この実施例1は、直列多重型交直変換装置11の電圧下げの電圧指令値Vrを入力したとき、各相の各々の変換器12U1〜12W2の出力電圧U1〜W2の電圧値|U1|〜|W2|(変調率mが1のときの出力電圧の電圧値)を一定のまま保持し、出力電圧U1〜W2の位相を変化させるものである。   That is, in the first embodiment, when the voltage command value Vr for voltage reduction of the serial multiple AC / DC converter 11 is input, the voltage values | U1 | of the output voltages U1 to W2 of the converters 12U1 to 12W2 of each phase ˜ | W2 | (voltage value of the output voltage when the modulation factor m is 1) is kept constant, and the phase of the output voltages U1 to W2 is changed.

図3(a)に示すように、直列多重型交直変換装置11の出力電圧を低下させる前の出力電圧は、U相では2台の変換器の出力電圧U1、U2は同じ位相で同じ電圧値(変調率mが1のときの出力電圧の電圧値)、V相についても同様に2台の変換器の出力電圧V1、V2は同じ位相で同じ電圧値(変調率mが1のときの出力電圧の電圧値)、W相についても同様に2台の変換器の出力電圧W1、W2は同じ位相で同じ電圧値(変調率mが1のときの出力電圧の電圧値)である。そして、三相各相は120°の位相差があり三相平衡していることから、U1〜W2の電圧値はすべて等しい。つまり、|U1|=|U2|=|V1|=|V2|=|W1|=|W2|である。   As shown in FIG. 3 (a), the output voltage before reducing the output voltage of the serial multiple AC / DC converter 11 is the same voltage value for the output voltages U1 and U2 of the two converters in the U phase. (Voltage value of the output voltage when the modulation factor m is 1) For the V phase, the output voltages V1 and V2 of the two converters have the same phase and the same voltage value (output when the modulation factor m is 1). Similarly, for the W phase, the output voltages W1 and W2 of the two converters are the same voltage value (the voltage value of the output voltage when the modulation factor m is 1). Since each of the three phases has a phase difference of 120 ° and is balanced in three phases, the voltage values of U1 to W2 are all equal. That is, | U1 | = | U2 | = | V1 | = | V2 | = | W1 | = | W2 |.

いま、直列多重型交直変換装置11の電圧指令値Vrが√3/2倍である電圧下げ指令(変調率mがm=√3/2)であった場合には、図3(b)に示すように、各相の各々の変換器12U1〜12W2の出力電圧U1〜W2の電圧値|U1|〜|W2|を一定のまま保持し、出力電圧U1、V1、W1の位相をπ/6だけ進め、出力電圧U2、V2、W2の位相をπ/6だけ遅らせる。これにより、U相、V相、W相につき、大きさが√3/2倍で位相は元のままの120°ずつ変化した出力電圧が得られる。   Now, when the voltage command value Vr of the serial multiple AC / DC converter 11 is a voltage reduction command (modulation factor m is m = √3 / 2) that is √3 / 2 times, FIG. As shown, the voltage values | U1 | to | W2 | of the output voltages U1 to W2 of the converters 12U1 to 12W2 of the respective phases are kept constant, and the phases of the output voltages U1, V1, and W1 are set to π / 6. The phase of the output voltages U2, V2, and W2 is delayed by π / 6. As a result, for the U phase, the V phase, and the W phase, an output voltage whose magnitude is √3 / 2 times and whose phase remains unchanged by 120 ° can be obtained.

ここで、変換器12の損失について検討する。変換器12の損失(導通損失・環流ダイオードの損失)は、変調率mと力率cosΦとの積で示される。図11に示した従来方式の場合には、三相各相の位相を同一としてU1〜W2の電圧値|U1|〜|W2|を√3/2倍とするので変調率mはm=√3/2であり、Φ=0であるので力率cosΦはcos0=1である。従って、従来方式の場合には変換器12の損失(導通損失・環流ダイオードの損失)は、mcosΦ=(√3/2)・1の積で表せる。一方、実施例1では出力電圧U1〜W2の電圧値|U1|〜|W2|を一定のまま保持するので変調率mはm=1であり、Φ=π/6であるので力率cosΦはcosπ/6=√3/2である。従って、実施例1の場合には変換器12の損失(導通損失・環流ダイオードの損失)は、mcosΦ=1・(√3/2)の積で表せ、導通損失・環流ダイオードの損失は同じである。また、キャリア周波数が同じならば、スイッチング回数は同じであり、ターンオン・ターンオフ損失も同じであるので、結果として、従来方式と実施例1ともに損失に関してはほぼ同じである。   Here, the loss of the converter 12 will be considered. The loss of the converter 12 (conduction loss / loss of the freewheeling diode) is represented by the product of the modulation factor m and the power factor cosΦ. In the case of the conventional system shown in FIG. 11, the phase of each of the three phases is the same, and the voltage values | U1 | to | W2 | of U1 to W2 are multiplied by √3 / 2, so the modulation factor m is m = √. Since 3/2 and Φ = 0, the power factor cosΦ is cos0 = 1. Therefore, in the case of the conventional method, the loss of the converter 12 (conduction loss / loss of the freewheeling diode) can be expressed by the product of mcosΦ = (√3 / 2) · 1. On the other hand, in Example 1, since the voltage values | U1 | to | W2 | of the output voltages U1 to W2 are kept constant, the modulation factor m is m = 1 and Φ = π / 6, so the power factor cosΦ is cosπ / 6 = √3 / 2. Therefore, in the first embodiment, the loss of the converter 12 (conduction loss / loss of the freewheeling diode) can be expressed by the product of mcosΦ = 1 · (√3 / 2), and the loss of conduction loss and the freewheeling diode are the same. is there. If the carrier frequency is the same, the number of times of switching is the same and the turn-on and turn-off losses are also the same. As a result, the loss is almost the same in both the conventional method and the first embodiment.

図4は、記憶部20に予め記憶されている各相の各々の変換器12の電圧指令値の実施例2の説明図である。図4では各相の各々の変換器12が2台ずつ設けられた場合の電圧ベクトルを示しており、図4(a)は直列多重型交直変換装置11の出力電圧を低下させる前の出力電圧ベクトル図、図4(b)は直列多重型交直変換装置11の出力電圧を低下させた後の出力電圧ベクトル図である。   FIG. 4 is an explanatory diagram of Example 2 of the voltage command value of each converter 12 of each phase stored in advance in the storage unit 20. 4 shows voltage vectors when two converters 12 are provided for each phase, and FIG. 4A shows the output voltage before the output voltage of the serial multiple AC / DC converter 11 is lowered. 4B is an output voltage vector diagram after the output voltage of the serial multiple AC / DC converter 11 is lowered.

この実施例2は、直列多重型交直変換装置11の電圧下げの電圧指令値Vrを入力したとき、直列多重型交直変換装置11の電圧指令値Vrが1台の変換器12の出力電圧|U1|〜|W2|(変調率mが1のときの出力電圧)より大きいときは、各相の各々の変換器12U1〜12W2のうちの1台の変換器12の出力電圧の電圧値及び位相を一定とし、残りの少なくとも1台の変換器12の出力電圧の電圧値を変化させる(変調率mを1未満とする)ものである。   In the second embodiment, when the voltage command value Vr for reducing the voltage of the serial multiple AC / DC converter 11 is inputted, the voltage command value Vr of the serial multiple AC / DC converter 11 becomes the output voltage | U1 of one converter 12. | ~ | W2 | (the output voltage when the modulation factor m is 1) is greater than the voltage value and phase of the output voltage of one converter 12 of the converters 12U1 to 12W2 of each phase. The voltage value of the output voltage of the remaining at least one converter 12 is changed (the modulation factor m is less than 1).

図4(a)に示すように、直列多重型交直変換装置11の出力電圧を低下させる前の出力電圧は、図3(a)と同様に、三相各相は120°の位相差があり三相平衡しており、U1〜W2の電圧値はすべて等しく、|U1|=|U2|=|V1|=|V2|=|W1|=|W2|である。   As shown in FIG. 4A, the output voltage before reducing the output voltage of the serial multiple AC / DC converter 11 is similar to FIG. 3A, and each of the three phases has a phase difference of 120 °. The voltage values of U1 to W2 are all equal, and | U1 | = | U2 | = | V1 | = | V2 | = | W1 | = | W2 |.

いま、直列多重型交直変換装置11の電圧指令値Vrが0.6倍である電圧下げ指令が与えられたとする。この場合には、図4(b)に示すように、各相の各々の変換器12U1、12V1、12W1の出力電圧U1、V1、W1の電圧値|U1|、|V1|、|W1|及び位相を一定のまま保持し、残りの各相の変換器12U2、12V2、12W2の出力電圧u2、v2、w2の位相はそのままで、電圧値|u2|、|v2|、|w2|をそれぞれ0.2puに変化させる。これにより、U相、V相、W相につき、大きさが0.6倍で位相は元のままの120°ずつ変化した出力電圧が得られる。この場合の変換器12の損失についても従来方式とほぼ同じとなる。   Now, it is assumed that a voltage lowering command in which the voltage command value Vr of the serial multiple AC / DC converter 11 is 0.6 times is given. In this case, as shown in FIG. 4B, the voltage values | U1 |, | V1 |, | W1 | of the output voltages U1, V1, W1 of the converters 12U1, 12V1, 12W1 of the respective phases The phase is kept constant, and the voltage values | u2 |, | v2 |, and | w2 | are each 0 while the phases of the output voltages u2, v2, and w2 of the converters 12U2, 12V2, and 12W2 of the remaining phases remain unchanged. Change to 2 pu. As a result, for the U phase, the V phase, and the W phase, an output voltage that is 0.6 times larger and remains unchanged from the original phase by 120 ° is obtained. In this case, the loss of the converter 12 is substantially the same as in the conventional method.

図5は、記憶部20に予め記憶されている各相の各々の変換器12の電圧指令値の実施例3の説明図である。図5では各相の各々の変換器12が2台ずつ設けられた場合の電圧ベクトルを示しており、図5(a)は直列多重型交直変換装置11の出力電圧を低下させる前の出力電圧ベクトル図、図5(b)は直列多重型交直変換装置11の出力電圧を低下させた後の出力電圧ベクトル図である。   FIG. 5 is an explanatory diagram of Example 3 of the voltage command value of each converter 12 of each phase stored in advance in the storage unit 20. FIG. 5 shows voltage vectors when two converters 12 for each phase are provided. FIG. 5A shows the output voltage before the output voltage of the serial multiple AC / DC converter 11 is lowered. FIG. 5B is a vector diagram after the output voltage of the serial multiple AC / DC converter 11 is lowered.

この実施例3は、直列多重型交直変換装置11の電圧下げ及び位相変化の電圧指令値Vrを入力したとき、各相の各々の変換器12U1〜12W2のうち少なくとも1台の変換器12の出力電圧の電圧値及び位相を一定とし、残りのいずれかの変換器12の出力電圧の電圧値及び位相を変化させるものである。   In the third embodiment, when the voltage command value Vr for voltage reduction and phase change of the serial multiple AC / DC converter 11 is input, the output of at least one converter 12 among the converters 12U1 to 12W2 of each phase. The voltage value and phase of the voltage are made constant, and the voltage value and phase of the output voltage of any remaining converter 12 are changed.

図5(a)に示すように、直列多重型交直変換装置11の出力電圧を低下させる前の出力電圧は、図3(a)と同様に、三相各相は120°の位相差があり三相平衡しており、U1〜W2の電圧値はすべて等しく、|U1|=|U2|=|V1|=|V2|=|W1|=|W2|である。   As shown in FIG. 5 (a), the output voltage before reducing the output voltage of the serial multiple AC / DC converter 11 has a phase difference of 120 ° in each of the three phases, as in FIG. 3 (a). The voltage values of U1 to W2 are all equal, and | U1 | = | U2 | = | V1 | = | V2 | = | W1 | = | W2 |.

いま、直列多重型交直変換装置11の電圧指令値Vrが事前の1/√3倍で、位相がπ/6の進みの電圧指令が与えられたとする。この場合には、図5(b)に示すように、各相の各々の変換器12U1、12V1、12W1の出力電圧U1、V1、W1の電圧値|U1|、|V1|、|W1|及び位相を一定のまま保持し、残りの各相の変換器12U2、12V2、12W2の出力電圧u2、v2、w2の位相をπ/2だけ進め、さらに、電圧値|u2|、|v2|、|w2|をそれぞれ1/√3に変化させる。これにより、U相、V相、W相につき、大きさが事前の1/√3倍で位相はπ/6だけ進み元のままの120°ずつ変化した出力電圧が得られる。この場合の変換器12の損失についても従来方式とほぼ同じとなる。   Now, it is assumed that the voltage command value Vr of the serial multiple AC / DC converter 11 is 1 / √3 times the previous voltage command and a phase voltage command of π / 6 is given. In this case, as shown in FIG. 5B, the voltage values | U1 |, | V1 |, | W1 | of the output voltages U1, V1, W1 of the converters 12U1, 12V1, 12W1 of the respective phases The phase is kept constant, the phases of the output voltages u2, v2, and w2 of the converters 12U2, 12V2, and 12W2 of the remaining phases are advanced by π / 2, and the voltage values | u2 |, | v2 |, | Each w2 | is changed to 1 / √3. As a result, for U phase, V phase, and W phase, an output voltage whose magnitude is 1 / √3 times the previous phase and the phase is advanced by π / 6 and is changed by 120 ° as it is is obtained. In this case, the loss of the converter 12 is substantially the same as in the conventional method.

なお、図5(a)の電圧ベクトルにおいて、電圧の大きさを一定にした状態で位相のみを変化させることも可能である。変換器の位相をα度変更する場合、従来方法では、|U1|=|U2|=|V1|=|V2|=|W1|=|W2|の条件で各電圧ベクトルの位相をそれぞれα度回転させていたが、本発明の場合には、電圧ベクトルU1、V1、W1を一定にして、U2、V2、W2の位相と大きさとを変化させることにより、従来と同様にα度の位相制御を行うことも可能である。 図6は、記憶部20に予め記憶されている各相の各々の変換器12の電圧指令値の実施例4の説明図である。図6では各相の各々の変換器12が2台ずつ設けられた場合の電圧ベクトルを示しており、図6(a)は直列多重型交直変換装置11の出力電圧を低下させる前の出力電圧ベクトル図、図6(b)は直列多重型交直変換装置11の出力電圧を低下させた後の出力電圧ベクトル図である。   In the voltage vector of FIG. 5A, it is also possible to change only the phase while keeping the voltage magnitude constant. When changing the phase of the converter by α degrees, in the conventional method, the phase of each voltage vector is α degrees under the condition of | U1 | = | U2 | = | V1 | = | V2 | = | W1 | = | W2 | In the present invention, the voltage vectors U1, V1, and W1 are kept constant, and the phases and magnitudes of U2, V2, and W2 are changed, so that the phase control of α degrees is performed as in the prior art. It is also possible to perform. FIG. 6 is an explanatory diagram of Example 4 of the voltage command value of each converter 12 of each phase stored in advance in the storage unit 20. FIG. 6 shows a voltage vector when two converters 12 are provided for each phase, and FIG. 6A shows the output voltage before the output voltage of the serial multiple AC / DC converter 11 is lowered. 6B is an output voltage vector diagram after the output voltage of the serial multiple AC / DC converter 11 is lowered.

この実施例4は、図3に示した実施例1に対し、搬送波比較制御方式でゲート制御回路22に制御指令を出力する場合に、直列多重型交直変換装置11の電圧下げの電圧指令値Vrを入力したときは、各相の各々の変換器12U1〜12W2のうちの1台の変換器12の出力電圧の電圧値(変調率mが1のときの出力電圧)及び位相を一定とし、残りの少なくとも1台の変換器12の出力電圧の電圧値を変化させる(変調率mを1未満とする)とともに、電圧値及び位相を変化させた変換器に対して、搬送波比較制御方式の搬送波の周波数(キャリア周波数)を上げるようにしたものである。   In the fourth embodiment, when the control command is output to the gate control circuit 22 by the carrier wave comparison control method, the voltage command value Vr for voltage reduction of the serial multiple AC / DC converter 11 is compared with the first embodiment shown in FIG. Is input, the voltage value (output voltage when the modulation factor m is 1) and the phase of the output voltage of one of the converters 12U1 to 12W2 in each phase are constant, and the rest The voltage value of the output voltage of at least one converter 12 is changed (modulation rate m is set to less than 1), and the carrier of the carrier wave comparison control system is applied to the converter whose voltage value and phase are changed. The frequency (carrier frequency) is increased.

図6(a)に示すように、直列多重型交直変換装置11の出力電圧を低下させる前の出力電圧は、図3(a)と同様に、三相各相は120°の位相差があり三相平衡しており、U1〜W2の電圧値はすべて等しく、|U1|=|U2|=|V1|=|V2|=|W1|=|W2|である。   As shown in FIG. 6 (a), the output voltage before reducing the output voltage of the serial multiple AC / DC converter 11 has a phase difference of 120 ° in each of the three phases, as in FIG. 3 (a). The voltage values of U1 to W2 are all equal, and | U1 | = | U2 | = | V1 | = | V2 | = | W1 | = | W2 |.

いま、直列多重型交直変換装置11の電圧指令値Vrが事前の1/√3倍である電圧下げ指令(変調率mがm=√3/2)であった場合には、図6(b)に示すように、各相の各々の変換器12U1、12V1、12W1の出力電圧U1、V1、W1の電圧値|U1|、|V1|、|W1|を一定のまま保持し、位相をπ/6だけ進める。そして、残りの各相の変換器12U2、12V2、12W2の出力電圧u2、v2、w2の位相をπ/3だけ遅らせ、さらに、電圧値|u2|、|v2|、|w2|をそれぞれ1/√3に変化させる。また、電圧値|u2|、|v2|、|w2|をそれぞれ1/√3に変化させた残りの各相の変換器12U2、12V2、12W2の出力電圧u2、v2、w2の搬送波の周波数(キャリア周波数)Fcを上げる。   If the voltage command value Vr of the serial multiplex AC / DC converter 11 is a voltage lowering command (modulation factor m is m = √3 / 2) which is 1 / √3 times the previous value, FIG. ), The voltage values | U1 |, | V1 |, | W1 | of the output voltages U1, V1, W1 of the converters 12U1, 12V1, 12W1 of the respective phases are kept constant, and the phase is π Advance by / 6. Then, the phases of the output voltages u2, v2, and w2 of the converters 12U2, 12V2, and 12W2 of the remaining phases are delayed by π / 3, and the voltage values | u2 |, | v2 |, and | w2 | Change to √3. In addition, the carrier frequencies of the output voltages u2, v2, and w2 of the converters 12U2, 12V2, and 12W2 of the remaining phases in which the voltage values | u2 |, | v2 |, and | w2 | are changed to 1 / √3 respectively. Increase carrier frequency Fc.

これにより、U相、V相、W相につき、大きさが√3/2倍で位相は元のままの120°ずつ変化した出力電圧が得られ、また、電圧値をそれぞれ変化させた残りの各相の変換器12U2、12V2、12W2の出力電圧u2、v2、w2の搬送波の周波数(キャリア周波数)Fcを上昇させるので、波形歪みを減少した出力電圧が得られる。変調率が変化すると、発生する高調波電圧歪も増減する。   As a result, for U phase, V phase, and W phase, an output voltage whose magnitude is √3 / 2 times and the phase remains unchanged by 120 ° is obtained, and the remaining voltage values are changed. Since the carrier voltages (carrier frequencies) Fc of the output voltages u2, v2, and w2 of the converters 12U2, 12V2, and 12W2 of the respective phases are increased, an output voltage with reduced waveform distortion can be obtained. When the modulation factor changes, the generated harmonic voltage distortion also increases or decreases.

変調率に応じてキャリア周波数を変えることにより、発生高調波の変動を抑制することができる。この場合の変換器12の損失については、キャリア周波数を上げるのでロスが増えるが、キャリア周波数を上げるのは電圧値を低下させた残りの各相の変換器12U2、12V2、12W2の出力電圧u2、v2、w2についてだけであるので、その影響は少なく従来方式とほぼ同じの損失となる。以上の説明では、実施例1に対して、搬送波比較制御方式の搬送波の周波数(キャリア周波数)を上げるようにしたが、実施例2、3に対しても同様に適用できる。 By changing the carrier frequency according to the modulation rate, fluctuations in the generated harmonics can be suppressed. Regarding the loss of the converter 12 in this case, the loss increases because the carrier frequency is increased. However, increasing the carrier frequency increases the output voltage u2 of the converters 12U2, 12V2, and 12W2 of the remaining phases whose voltage values are reduced. Since it is only about v2 and w2, the influence is few and it becomes a loss substantially the same as the conventional system. In the above description, the carrier frequency of the carrier wave comparison control method is increased with respect to the first embodiment. However, the present invention can be similarly applied to the second and third embodiments.

図7は、記憶部20に予め記憶されている各相の各々の変換器12の電圧指令値の実施例5の説明図である。図7では各相の各々の変換器12が3台ずつ設けられた場合の電圧ベクトルを示しており、図7(a)は直列多重型交直変換装置11の出力電圧を低下させる前の出力電圧ベクトル図、図7(b)は直列多重型交直変換装置11の出力電圧を低下させた後の出力電圧ベクトル図である。   FIG. 7 is an explanatory diagram of Example 5 of the voltage command value of each converter 12 of each phase stored in advance in the storage unit 20. FIG. 7 shows voltage vectors when three converters 12 for each phase are provided. FIG. 7A shows the output voltage before the output voltage of the serial multiple AC / DC converter 11 is lowered. FIG. 7B is a vector diagram and FIG. 7B is an output voltage vector diagram after the output voltage of the serial multiple AC / DC converter 11 is lowered.

この実施例5は、図3に示した実施例1に対し、直列多重型交直変換装置11の電圧下げの電圧指令値Vrを入力したときは、直列多重型交直変換装置11の電圧指令値Vrを直列接続された複数台の変換器12の何台で分担できるか否かを判定し、直列多重型交直変換装置12の電圧指令値Vrを分担するに必要な台数分以外の残りの変換器12を停止するかまたは出力電圧を0とし、直列多重型交直変換装置11の電圧指令値Vrを分担するに必要な台数分の変換器12の出力電圧を調整するようにしたものである。   The fifth embodiment is different from the first embodiment shown in FIG. 3 in that the voltage command value Vr of the serial multiple AC / DC converter 11 when the voltage command value Vr for voltage reduction of the serial multiple AC / DC converter 11 is input. Of the plurality of converters 12 connected in series, and the remaining converters other than the number necessary for sharing the voltage command value Vr of the serial multiple AC / DC converter 12 12 is stopped or the output voltage is set to 0, and the output voltages of the converters 12 corresponding to the number of converters necessary to share the voltage command value Vr of the serial multiple AC / DC converter 11 are adjusted.

図7(a)に示すように、直列多重型交直変換装置11の出力電圧を低下させる前の出力電圧は、U相では3台の変換器の出力電圧U1、U2、U3は同じ位相で同じ電圧値(変調率mが1のときの出力電圧の電圧値)、V相についても同様に3台の変換器の出力電圧V1、V2、V3は同じ位相で同じ電圧値(変調率mが1のときの出力電圧の電圧値)、W相についても同様に3台の変換器の出力電圧W1、W2、W3は同じ位相で同じ電圧値(変調率mが1のときの出力電圧の電圧値)である。そして、三相各相は120°の位相差があり三相平衡していることから、U1〜W3の電圧値はすべて等しい。つまり、|U1|=|U2|=|U3|=|V1|=|V2|=|V3|=|W1|=|W2|=|W3|である。   As shown in FIG. 7 (a), the output voltage before reducing the output voltage of the serial multiple AC / DC converter 11 is the same in the U phase for the output voltages U1, U2, and U3 of the three converters in the same phase. Similarly, with respect to the voltage value (voltage value of the output voltage when the modulation factor m is 1) and the V phase, the output voltages V1, V2, and V3 of the three converters have the same phase and the same voltage value (the modulation factor m is 1). Similarly, for the W phase, the output voltages W1, W2, and W3 of the three converters are the same voltage value in the same phase (the voltage value of the output voltage when the modulation factor m is 1). ). Since each of the three phases has a phase difference of 120 ° and is balanced in three phases, the voltage values of U1 to W3 are all equal. That is, | U1 | = | U2 | = | U3 | = | V1 | = | V2 | = | V3 | = | W1 | = | W2 | = | W3 |.

いま、直列多重型交直変換装置11の電圧指令値Vrが2/3倍である電圧下げ指令が与えられたとする。この場合には、図7(b)に示すように、各相の各々の変換器12U1、12U2の出力電圧U1、U2の電圧値|U1|、|U2|及び位相を一定のまま保持し、残りの各相の変換器12U3、12V3、12W3を停止するかまたは出力電圧を0とする。これにより、U相、V相、W相につき、大きさが2/3倍で位相は元のままの120°ずつ変化した出力電圧が得られる。   Now, it is assumed that a voltage lowering command in which the voltage command value Vr of the serial multiple AC / DC converter 11 is 2/3 times is given. In this case, as shown in FIG. 7B, the voltage values | U1 |, | U2 | and the phase of the output voltages U1, U2 of the converters 12U1, 12U2 of each phase are kept constant, The remaining converters 12U3, 12V3, 12W3 of each phase are stopped or the output voltage is set to zero. As a result, an output voltage that is 2/3 times larger and has the original phase changed by 120 ° is obtained for the U phase, the V phase, and the W phase.

また、直列多重型交直変換装置11の電圧指令値Vrが1台の変換器12の出力電圧の整数倍でない電圧下げ指令であるとき、例えば、2/3倍より小さく1/3倍より大きい電圧下げ指令(例えば√3/3倍の電圧下げ指令)が与えられたときは、各相の1台の変換器12U3、12V3、12W3を停止するかまたは出力電圧を0とし、残りの各相の各々の変換器12U1、12U2の出力電圧U1、U2の位相はそのままで、電圧値|U1|、|U2|を√3/2倍(変調率mがm=√3/2)とする。これにより、U相、V相、W相につき、大きさが√3/3倍で位相は元のままの120°ずつ変化した出力電圧が得られる。   When the voltage command value Vr of the serial multiple AC / DC converter 11 is a voltage reduction command that is not an integral multiple of the output voltage of one converter 12, for example, a voltage that is smaller than 2/3 times and larger than 1/3 times When a lowering command (for example, a voltage lowering command of √3 / 3 times) is given, one converter 12U3, 12V3, 12W3 of each phase is stopped or the output voltage is set to 0, and the remaining each phase The voltage values | U1 | and | U2 | are set to √3 / 2 times (modulation factor m is m = √3 / 2) while keeping the phases of the output voltages U1 and U2 of the converters 12U1 and 12U2 as they are. As a result, for the U phase, the V phase, and the W phase, an output voltage whose magnitude is √3 / 3 times and whose phase is unchanged by 120 ° is obtained.

図8は、記憶部20に予め記憶されている各相の各々の変換器12の電圧指令値の実施例6の説明図である。図8では各相の各々の変換器12が3台ずつ設けられた場合の電圧ベクトルを示しており、図8(a)は直列多重型交直変換装置11の出力電圧を低下させる前の出力電圧ベクトル図、図8(b)は直列多重型交直変換装置11の出力電圧を低下させた後の出力電圧ベクトル図である。   FIG. 8 is an explanatory diagram of Example 6 of the voltage command value of each converter 12 of each phase stored in advance in the storage unit 20. FIG. 8 shows voltage vectors when three converters 12 for each phase are provided. FIG. 8A shows the output voltage before the output voltage of the serial multiple AC / DC converter 11 is lowered. FIG. 8B is a vector diagram after the output voltage of the serial multiple AC / DC converter 11 is lowered.

この実施例6は、図7に示した実施例5に対し、1台の変換器の出力電圧の整数倍でない電圧下げ指令が与えられたときは、停止または出力電圧を0としない変換器12の出力電圧の電圧値を小さくすることに代えて、停止または出力電圧を0としない変換器12の出力電圧の電圧値(変調率mが1のときの出力電圧の電圧値)を一定のまま保持し、出力電圧の位相を変化させるものである。   In the sixth embodiment, in contrast to the fifth embodiment shown in FIG. 7, when a voltage lowering command that is not an integral multiple of the output voltage of one converter is given, the converter 12 that does not stop or set the output voltage to 0 is used. Instead of reducing the output voltage voltage value, the voltage value of the output voltage of the converter 12 that does not stop or set the output voltage to 0 (the voltage value of the output voltage when the modulation factor m is 1) remains constant. It holds and changes the phase of the output voltage.

図8(a)に示すように、直列多重型交直変換装置11の出力電圧を低下させる前の出力電圧は、図7(a)と同様に、三相各相は120°の位相差があり三相平衡しており、U1〜W3の電圧値はすべて等しく、|U1|=|U2|=|U3|=|V1|=|V2|=|V3|=|W1|=|W2|=|W3|である。   As shown in FIG. 8 (a), the output voltage before reducing the output voltage of the serial multiple AC / DC converter 11 has a phase difference of 120 ° in each of the three phases, as in FIG. 7 (a). The voltage values of U1 to W3 are all equal, and | U1 | = | U2 | = | U3 | = | V1 | = | V2 | = | V3 | = | W1 | = | W2 | = | W3 |.

いま、直列多重型交直変換装置11の電圧指令値Vrが√3/3倍である電圧下げ指令(変調率mがm=√3/2)が与えられたとする。この場合、1台の変換器12の出力電圧の整数倍でない電圧下げ指令であり、1台を停止または出力電圧を0として2台の変換器12で負担できる電圧指令であるので、各相の1台の変換器12U3、12V3、12W3を停止または出力電圧を0とし、U相では2台の変換器12U1、12U2、V相では2台の変換器12V1、12V2、W相では2台の変換器12W1、12W2で電圧指令値Vrを出力する。   Now, it is assumed that a voltage lowering command (modulation factor m is m = √3 / 2) in which the voltage command value Vr of the serial multiple AC / DC converter 11 is √3 / 3 times is given. In this case, since it is a voltage reduction command that is not an integral multiple of the output voltage of one converter 12 and is a voltage command that can be borne by two converters 12 with one unit stopped or the output voltage set to 0, One converter 12U3, 12V3, 12W3 is stopped or the output voltage is set to 0. Two converters 12U1, 12U2 for the U phase, two converters 12V1, 12V2, for the V phase, two conversions for the W phase The voltage command value Vr is output by the units 12W1 and 12W2.

図8(b)に示すように、各相の各々の変換器12U1〜12W2の出力電圧U1〜W2の電圧値|U1|〜|W2|を一定のまま保持し、出力電圧U1、V1、W1の位相をπ/6だけ進め、出力電圧U2、V2、W2の位相をπ/6だけ遅らせる。これにより、U相、V相、W相につき、大きさが√3/3倍で位相は元のままの120°ずつ変化した出力電圧が得られる。   As shown in FIG. 8B, the voltage values | U1 | to | W2 | of the output voltages U1 to W2 of the converters 12U1 to 12W2 of the respective phases are kept constant, and the output voltages U1, V1, W1 are kept constant. Is advanced by π / 6, and the phases of the output voltages U2, V2, W2 are delayed by π / 6. As a result, for the U phase, the V phase, and the W phase, an output voltage whose magnitude is √3 / 3 times and whose phase is unchanged by 120 ° is obtained.

以上の説明では、直列多重型交直変換装置11の電圧指令値Vrに対応して、図3ないし図8に示したような各相の各々の変換器12の電圧指令値を予め記憶部20に記憶するようしたが、その都度演算するようにしてもよい。   In the above description, in correspondence with the voltage command value Vr of the serial multiple AC / DC converter 11, the voltage command value of each converter 12 of each phase as shown in FIGS. Although it memorize | stores, you may make it calculate each time.

本発明の形態では単相変換器を組み合わせた例を紹介しているが三相変換器あるいは三相・単相変換器を組み合わせてもよい。   In the embodiment of the present invention, an example in which a single-phase converter is combined is introduced, but a three-phase converter or a three-phase / single-phase converter may be combined.

また、各相の変換器12は同じ台数で運転するようにしたが、各相ごとに異なる台数で運転するようにしてもよい。例えば、各相の各々の変換器12が4台ずつ設けられ、合計12台の変換器12を有した直列多重型交直変換装置11において、U相及びV相は2台で運転し、W相は3台で運転するようにしてもよい。この場合、三相各相のU相、V相、W相の出力電圧の電圧値は等しくなるように制御することは言うまでもない。なお、各相の変換器12の運転台数を同じとしない場合でも、そのときの変換器12の損失はほとんど変わらない。   Moreover, although the converter 12 of each phase was operated with the same number, it may be operated with a different number for each phase. For example, in the serial multiplex AC / DC converter 11 having four converters 12 for each phase and a total of 12 converters 12, the U phase and the V phase are operated by two units, and the W phase May be operated with three vehicles. In this case, it goes without saying that the voltage values of the U-phase, V-phase, and W-phase output voltages of the three phases are controlled to be equal. Even when the number of operating converters 12 of each phase is not the same, the loss of the converter 12 at that time hardly changes.

また、変換器12の出力電圧を下げる場合に、ある変換器を逆に出力することも可能である。図9は、記憶部20に予め記憶されている各相の各々の変換器12の電圧指令値の実施例7の説明図である。図9では各相の各々の変換器12が3台ずつ設けられた場合の電圧ベクトルを示しており、図9(a)は直列多重型交直変換装置11の出力電圧を低下させる前の出力電圧ベクトル図、図9(b)は直列多重型交直変換装置11の出力電圧を低下させた後の出力電圧ベクトル図である。   Further, when the output voltage of the converter 12 is lowered, a certain converter can be output in reverse. FIG. 9 is an explanatory diagram of Example 7 of the voltage command value of each converter 12 of each phase stored in advance in the storage unit 20. FIG. 9 shows voltage vectors when three converters 12 for each phase are provided. FIG. 9A shows the output voltage before the output voltage of the serial multiple AC / DC converter 11 is lowered. FIG. 9B is an output voltage vector diagram after the output voltage of the serial multiple AC / DC converter 11 is lowered.

この実施例9は、図8に示した実施例6に対し、1台の変換器の出力電圧の整数倍でない電圧下げ指令が与えられたときは、停止または出力電圧を0としない変換器12の出力電圧の電圧値を一定のまま保持して出力電圧の位相を変化させることに代えて、いずれかの変換器12の出力電圧の電圧値を逆に出力するようにしたものである。   In the ninth embodiment, in contrast to the sixth embodiment shown in FIG. 8, when a voltage reduction command that is not an integral multiple of the output voltage of one converter is given, the converter 12 that does not stop or set the output voltage to 0 is used. Instead of changing the phase of the output voltage while keeping the voltage value of the output voltage constant, the voltage value of the output voltage of one of the converters 12 is output in reverse.

図9(a)に示すように、直列多重型交直変換装置11の出力電圧を低下させる前の出力電圧は、図8(a)と同様に、三相各相は120°の位相差があり三相平衡しており、U1〜W3の電圧値はすべて等しく、|U1|=|U2|=|U3|=|V1|=|V2|=|V3|=|W1|=|W2|=|W3|である。   As shown in FIG. 9A, the output voltage before reducing the output voltage of the serial multiple AC / DC converter 11 is similar to FIG. 8A, and each of the three phases has a phase difference of 120 °. The voltage values of U1 to W3 are all equal, and | U1 | = | U2 | = | U3 | = | V1 | = | V2 | = | V3 | = | W1 | = | W2 | = | W3 |.

いま、直列多重型交直変換装置11の電圧指令値Vrが1/2倍である電圧下げ指令(変調率mがm=1/2)が与えられたとする。この場合、図9(b)に示すように、U相の2台の変換器12U1、12U2の出力電圧U1、U2、V相の2台の変換器12V1、12V2の出力電圧V1、V2、W相の2台の変換器12W1、12W2の出力電圧W1、W2を一定のまま保持し、U相の変換器12U3の出力電圧u3、V相の変換器12V3の出力電圧v3、W相の変換器12W3の出力電圧w3を逆方向の0.5puの出力とする。これにより、U相、V相、W相につき、大きさが1/2倍で位相は元のままの120°ずつ変化した出力電圧が得られる。これは、U3、V3、W3の位相変化範囲に制限を与えることなく逆位相の場合にも適用できるという趣旨である。さらに、U1、U2、V1、V2、W1、W2の出力を固定し、U3、V3、W3の電圧ベクトルのみを変化させることができる。その結果、U1、U2、V1、V2、W1、W2の制御回路を簡素化することができる。     Now, it is assumed that a voltage reduction command (modulation factor m is m = 1/2) in which the voltage command value Vr of the serial multiple AC / DC converter 11 is ½ times is given. In this case, as shown in FIG. 9B, the output voltages U1, U2 of the two U-phase converters 12U1, 12U2, and the output voltages V1, V2, W of the two V-phase converters 12V1, 12V2. The output voltages W1 and W2 of the two phase converters 12W1 and 12W2 are kept constant, the output voltage u3 of the U-phase converter 12U3, the output voltage v3 of the V-phase converter 12V3, and the W-phase converter The output voltage w3 of 12W3 is set to 0.5 pu output in the reverse direction. As a result, for the U phase, the V phase, and the W phase, an output voltage that is ½ times larger and remains unchanged from the original phase by 120 ° is obtained. This means that the present invention can also be applied to the case of the reverse phase without restricting the phase change range of U3, V3, and W3. Furthermore, the outputs of U1, U2, V1, V2, W1, and W2 can be fixed, and only the voltage vectors of U3, V3, and W3 can be changed. As a result, the control circuits for U1, U2, V1, V2, W1, and W2 can be simplified.

本発明の実施の形態によれば、直列多重型変換装置の変換器12の出力電圧を変更する場合に、従来のように、それぞれの変換器12の出力電圧を同位相でかつ同変調率で運転するのではなく、複数の変換器12の位相と電圧値(変調率)とを個別に制御し、電圧ベクトルを合成して所定の電圧ベクトルとするので、高調波による電圧歪みが少なく制御できる。このため、高調波フィルタの容量削減によるコンパクト化やフィルタ損失の低減が行える。また、発生高調波の減少により変圧器で発生する高調波ロスを減少させることができる。また、変換器12の出力電圧の電圧値(変調率)と位相とを自由に変更ができるので、直列多重型交直変換装置の電圧指令値に柔軟に対応できる。   According to the embodiment of the present invention, when the output voltage of the converter 12 of the serial multiplex conversion device is changed, the output voltage of each converter 12 has the same phase and the same modulation rate as in the prior art. Rather than operating, the phase and voltage value (modulation rate) of the plurality of converters 12 are individually controlled, and the voltage vectors are synthesized into a predetermined voltage vector, so that voltage distortion due to harmonics can be reduced and controlled. . For this reason, it is possible to reduce the size and filter loss by reducing the capacity of the harmonic filter. Moreover, the harmonic loss which generate | occur | produces with a transformer can be reduced by the reduction | decrease of a generated harmonic. Further, since the voltage value (modulation factor) and phase of the output voltage of the converter 12 can be freely changed, it is possible to flexibly cope with the voltage command value of the serial multiple AC / DC converter.

本発明の実施の形態に係わる直列多重型交直変換装置の出力電圧制御装置の構成図。The block diagram of the output voltage control apparatus of the serial multiple type | mold AC / DC converter concerning embodiment of this invention. 本発明の実施の形態における変換器の一例を示す回路構成図。The circuit block diagram which shows an example of the converter in embodiment of this invention. 本発明の実施の形態における記憶部に予め記憶されている各相の各々の変換器の電圧指令値の実施例1の説明図。Explanatory drawing of Example 1 of the voltage command value of each converter of each phase previously memorize | stored in the memory | storage part in embodiment of this invention. 本発明の実施の形態における記憶部に予め記憶されている各相の各々の変換器の電圧指令値の実施例2の説明図。Explanatory drawing of Example 2 of the voltage command value of each converter of each phase previously memorize | stored in the memory | storage part in embodiment of this invention. 本発明の実施の形態における記憶部に予め記憶されている各相の各々の変換器の電圧指令値の実施例3の説明図。Explanatory drawing of Example 3 of the voltage command value of each converter of each phase previously memorize | stored in the memory | storage part in embodiment of this invention. 本発明の実施の形態における記憶部に予め記憶されている各相の各々の変換器の電圧指令値の実施例4の説明図。Explanatory drawing of Example 4 of the voltage command value of each converter of each phase previously memorize | stored in the memory | storage part in embodiment of this invention. 本発明の実施の形態における記憶部に予め記憶されている各相の各々の変換器の電圧指令値の実施例5の説明図。Explanatory drawing of Example 5 of the voltage command value of each converter of each phase previously memorize | stored in the memory | storage part in embodiment of this invention. 本発明の実施の形態における記憶部に予め記憶されている各相の各々の変換器の電圧指令値の実施例6の説明図。Explanatory drawing of Example 6 of the voltage command value of each converter of each phase previously memorize | stored in the memory | storage part in embodiment of this invention. 本発明の実施の形態における記憶部に予め記憶されている各相の各々の変換器の電圧指令値の実施例7の説明図。Explanatory drawing of Example 7 of the voltage command value of each converter of each phase previously memorize | stored in the memory | storage part in embodiment of this invention. 変換器の変調率と変換器の出力電圧の電圧歪率と関係を示し特性図。The characteristic diagram which shows the relationship between the modulation rate of a converter, and the voltage distortion rate of the output voltage of a converter. 2台の変換器で多重化されている従来の直列多重型交直変換装置の出力電圧を1から0.8に低下させた場合の出力電圧ベクトル図。The output voltage vector figure at the time of reducing the output voltage of the conventional serial multiplex type | mold AC / DC converter multiplexed with two converters from 1 to 0.8.

符号の説明Explanation of symbols

11…直列多重型変換装置、12…変換器、13…IGBT、14…直流電源、15…巻線、16…変圧器、17…変換器制御装置、18…電圧指令値入力手段、19…変換器電圧指令値出力手段、20…記憶部、21…変換器制御手段、22…ゲート制御回路 DESCRIPTION OF SYMBOLS 11 ... Series multiple conversion apparatus, 12 ... Converter, 13 ... IGBT, 14 ... DC power supply, 15 ... Winding, 16 ... Transformer, 17 ... Converter control apparatus, 18 ... Voltage command value input means, 19 ... Conversion Voltage command value output means, 20 ... storage section, 21 ... converter control means, 22 ... gate control circuit

Claims (3)

電力を変換する複数台の変換器が三相各相にそれぞれ直列に接続されて構成された直列多重型交直変換装置の出力電圧制御装置において、前記直列多重型交直変換装置の電圧指令値を入力する電圧指令値入力手段と、前記電圧指令値入力手段で入力した前記直列多重型交直変換装置の電圧上げまたは下げ及び位相変化の電圧指令値に基づいて各相の各々の変換器のうち少なくとも1台の変換器の出力電圧の電圧値及び位相を一定とし残りのいずれかの変換器の出力電圧の電圧値及び位相を変化させた状態で、各相の各々の変換器の出力電圧のベクトル和が前記直列多重型交直変換装置の電圧指令値と等しくなるような各相の各々の変換器の電圧指令値を出力する変換器電圧指令値出力手段と、前記変換器電圧指令値出力手段からの変換器の電圧指令値に基づいて各相の各々の変換器の出力電圧を制御する変換器制御手段とを備えたことを特徴とする直列多重型交直変換装置の出力電圧制御装置。 In an output voltage control device of a serial multiple AC / DC converter configured by connecting a plurality of converters that convert electric power in series to each of the three phases, the voltage command value of the serial multiple AC / DC converter is input. At least one of the converters of each phase based on the voltage command value input means for performing and the voltage command value of the voltage increase / decrease and phase change of the serial multiple AC / DC converter input by the voltage command value input means The vector sum of the output voltage of each converter in each phase with the voltage value and phase of the output voltage of one converter fixed and the voltage value and phase of the output voltage of any remaining converter changed. Converter voltage command value output means for outputting the voltage command value of each converter of each phase such that is equal to the voltage command value of the serial multiple AC / DC converter, and from the converter voltage command value output means Converter power The output voltage control apparatus for a multi-series type AC-DC converter, characterized in that on the basis of the command value and a converter control means for controlling the output voltage of each phase of each transducer. 前記変換器制御手段は、電圧指令値に基づく交流電圧波形と搬送波とを比較しそれらの値の大小により各相の各々の変換器を制御する搬送波比較制御方式が採用され、電圧値を変化させた変換器に対して、搬送波の周波数を変えることを特徴とする請求項1記載の直列多重型交直変換装置の出力電圧制御装置。 The converter control means employs a carrier wave comparison control system that compares an AC voltage waveform based on a voltage command value and a carrier wave, and controls each converter of each phase according to the magnitude of those values, thereby changing the voltage value. 2. The output voltage control apparatus for a serial multiplex AC / DC converter according to claim 1 , wherein the frequency of the carrier wave is changed with respect to the converter. 電力を変換する複数台の変換器が三相各相にそれぞれ直列に接続されて構成された直列多重型交直変換装置の出力電圧制御方法において、前記直列多重型交直変換装置の電圧指令値を入力し、入力した前記直列多重型交直変換装置の電圧上げまたは下げ及び位相変化の電圧指令値に基づいて各相の各々の変換器のうち少なくとも1台の変換器の出力電圧の電圧値及び位相を一定とし残りのいずれかの変換器の出力電圧の電圧値及び位相を変化させた状態で、各相の各々の変換器の出力電圧のベクトル和が前記直列多重型交直変換装置の電圧指令値と等しくなるような各相の各々の変換器の電圧指令値を出力し、出力された変換器の電圧指令値に基づいて各相の各々の変換器の出力電圧を制御することを特徴とする直列多重型交直変換装置の出力電圧制御方法。 In the output voltage control method for a serial multiple AC / DC converter configured by connecting a plurality of converters for converting electric power in series to each of the three phases, the voltage command value of the serial multiple AC / DC converter is input. The voltage value and phase of the output voltage of at least one converter among the converters of each phase based on the input voltage increase or decrease and phase change voltage command values of the serial multiplex type AC / DC converter. In a state where the voltage value and phase of the output voltage of any of the remaining converters are constant, the vector sum of the output voltages of the converters of each phase is the voltage command value of the serial multiple AC / DC converter. The voltage command value of each converter of each phase to be equal is output, and the output voltage of each converter of each phase is controlled based on the output voltage command value of the converter. Multi-type AC / DC converter Voltage control method.
JP2006276592A 2006-10-10 2006-10-10 Output voltage control apparatus and method for serial multiple AC / DC converter Expired - Fee Related JP5028940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006276592A JP5028940B2 (en) 2006-10-10 2006-10-10 Output voltage control apparatus and method for serial multiple AC / DC converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006276592A JP5028940B2 (en) 2006-10-10 2006-10-10 Output voltage control apparatus and method for serial multiple AC / DC converter

Publications (2)

Publication Number Publication Date
JP2008099400A JP2008099400A (en) 2008-04-24
JP5028940B2 true JP5028940B2 (en) 2012-09-19

Family

ID=39381655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006276592A Expired - Fee Related JP5028940B2 (en) 2006-10-10 2006-10-10 Output voltage control apparatus and method for serial multiple AC / DC converter

Country Status (1)

Country Link
JP (1) JP5028940B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2530756B2 (en) * 1990-12-26 1996-09-04 日本電気計器検定所 Variable voltage power supply
JP3741171B2 (en) * 1996-06-17 2006-02-01 株式会社安川電機 Multiple pulse width modulation power converter
US5986909A (en) * 1998-05-21 1999-11-16 Robicon Corporation Multiphase power supply with plural series connected cells and failed cell bypass

Also Published As

Publication number Publication date
JP2008099400A (en) 2008-04-24

Similar Documents

Publication Publication Date Title
Tarisciotti et al. Modulated predictive control for indirect matrix converter
JP6038289B2 (en) Power converter
JP5892955B2 (en) Power converter
US9036379B2 (en) Power converter based on H-bridges
JP4957303B2 (en) Space vector modulation method for AC-AC direct conversion device
EP3389174A1 (en) Power conversion device
JP4512117B2 (en) Multiple power conversion device and multiple transformer
US20140268970A1 (en) Matrix converter and method for controlling matrix converter
JP5762329B2 (en) Power converter
EP2849332B1 (en) Multilevel inverter
JP2016197940A (en) Power conversion system and method of controlling the same
Bozorgi et al. An in-depth investigation of a Z-source ultrasparse matrix converter in buck and boost modes of operation
JP2013255308A (en) Semiconductor power conversion device
JP5121755B2 (en) Power converter
JP4822100B2 (en) AC / AC direct conversion device
KR101789913B1 (en) Power conversion device for preventing a circulating current and method of driving the same
JP4893152B2 (en) Space vector modulation method for AC-AC direct conversion device
JP5028940B2 (en) Output voltage control apparatus and method for serial multiple AC / DC converter
JP2007306677A (en) Method for generating switching pattern of ac-ac direct converter
KR102416374B1 (en) Apparatus for controlling dc link voltage in power cell of medium voltage inverter
Tewari et al. Indirect matrix converter based open-end winding AC drives with zero common-mode voltage
JP5012310B2 (en) Switching pattern switching method for AC-AC direct conversion device
CN113120006B (en) Electric transmission system, variable current control method and electric locomotive
JP7040077B2 (en) Power converter
Castellan et al. Comparative performance analysis of VSI and CSI supply solutions for high power multi-phase synchronous motor drives

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees