JP5020526B2 - Alloyed hot-dip galvanized steel sheet with excellent corrosion resistance, workability, and paintability and method for producing the same - Google Patents
Alloyed hot-dip galvanized steel sheet with excellent corrosion resistance, workability, and paintability and method for producing the same Download PDFInfo
- Publication number
- JP5020526B2 JP5020526B2 JP2006105110A JP2006105110A JP5020526B2 JP 5020526 B2 JP5020526 B2 JP 5020526B2 JP 2006105110 A JP2006105110 A JP 2006105110A JP 2006105110 A JP2006105110 A JP 2006105110A JP 5020526 B2 JP5020526 B2 JP 5020526B2
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- corrosion resistance
- less
- plating
- dip galvanized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Coating With Molten Metal (AREA)
Description
本発明は、極低炭素鋼板を原板とする耐食性、加工性、塗装性に優れた合金化溶融亜鉛メッキ鋼板およびその製造方法に関する。 The present invention relates to an alloyed hot-dip galvanized steel sheet excellent in corrosion resistance, workability, and paintability using an ultra-low carbon steel sheet as a base plate and a method for producing the same.
従来、合金化溶融亜鉛メッキ鋼板は、その優れた塗膜密着性や塗装後の耐食性から、主として自動車用または建築用鋼板として使用されてきたが、特に近年の自動車用鋼板においては優れた深絞り性が要求されることから、極低炭素鋼板を原板とした合金化溶融亜鉛メッキ鋼板が多く使用されている。
しかしながら、これらの極低炭素鋼板を原板とした合金化溶融亜鉛メッキ鋼板には、裸での耐食性や塗装キズ部の耐食性が必ずしも十分とはいえない問題があり、さらには加工時のパウダリング抑制とフレーキング抑制の両立が困難であるといった課題や、電着塗装時の外観欠陥が生じやすいといった課題もあった。
Conventionally, alloyed hot-dip galvanized steel sheets have been used mainly as automotive or architectural steel sheets because of their excellent coating film adhesion and corrosion resistance after painting. Therefore, alloyed hot-dip galvanized steel sheets made from ultra-low carbon steel sheets are often used.
However, alloyed hot-dip galvanized steel sheets based on these ultra-low carbon steel sheets have problems that the corrosion resistance of bare steel and the corrosion resistance of scratched parts are not always sufficient, and further, powdering is suppressed during processing. There is also a problem that it is difficult to suppress both flaking and flaking, and a problem that appearance defects tend to occur during electrodeposition coating.
例えば、特許文献1には、鋼板上に第1層としてZn−Fe合金層、第2層としてFe:8〜15%、Ni:0.1〜2%、Alを1%以下含む耐食性に優れた合金化溶融亜鉛メッキ鋼板が開示されている。
また、特許文献2には、鋼板表面に0.2〜2g/m2のNiプレメッキ後、430〜500℃に急速加熱し、Al:0.05〜0.25%を含有するZnメッキ浴中で溶融メッキし、ワイピング直上で470〜550℃で10〜40秒合金化加熱処理を行うことを特徴とする耐食性の優れた合金化溶融亜鉛メッキ鋼板の製造方法が開示されている。
For example, Patent Document 1 has excellent corrosion resistance including a Zn—Fe alloy layer as a first layer on a steel plate, Fe: 8 to 15%, Ni: 0.1 to 2%, and Al of 1% or less as a second layer. An alloyed hot-dip galvanized steel sheet is disclosed.
Patent Document 2 discloses that a Zn plating bath containing Al: 0.05 to 0.25% is rapidly heated to 430 to 500 ° C. after 0.2 to 2 g / m 2 of Ni is pre-plated on the steel sheet surface. A method for producing an alloyed hot-dip galvanized steel sheet with excellent corrosion resistance is disclosed, which comprises hot-dip plating and performing alloying heat treatment at 470 to 550 ° C. for 10 to 40 seconds immediately above wiping.
しかしながら、これらの文献において実質的に開示されているのは熱延低炭素Alキルド鋼板であって、本発明が目的とする極低炭素鋼板についての知見は示されていない。極低炭素鋼板は低炭素鋼板と比較するとフェライト粒界の清浄度が高く、合金化が不均一に進行したり、Γ層が成長しやすいといった違いがあるため、低炭素鋼板の知見をそのまま流用することはできない。また特許文献1〜2には加工性、塗装性に関しての知見も示されていない。 However, what is substantially disclosed in these documents is a hot-rolled low-carbon Al-killed steel sheet, and no knowledge about the ultra-low-carbon steel sheet intended by the present invention is shown. Compared with low-carbon steel sheets, ultra-low-carbon steel sheets have higher ferrite grain boundary cleanliness, alloying progresses unevenly, and Γ layers tend to grow. I can't do it. In addition, Patent Documents 1 and 2 do not show any knowledge about workability and paintability.
特許文献3には、メッキ浴中に0.2%未満のAlと0.01〜0.5%のNiを含有させた浴で溶融メッキ、合金化することで、Fe:8〜13%、Al:0.5%未満、Ni:0.02〜1%と残部Znを含有し、地鉄界面のΓ層厚みを0.5μ以下とした合金化溶融亜鉛メッキ鋼板が開示されている。
しかしながら、この文献においても実質的に開示されているのは低炭素鋼板であって、本発明が目的とする極低炭素鋼板についての知見はなく、ここで開示されている製法を極低炭素鋼板に適用しても、Γ層厚みを0.5μ以下にするのは実質不可能であり、本発明が目的とする耐食性、加工性、塗装性についても全く不十分である。
In Patent Document 3, Fe: 8 to 13% is obtained by hot dipping and alloying in a bath containing less than 0.2% Al and 0.01 to 0.5% Ni in a plating bath. An alloyed hot-dip galvanized steel sheet containing Al: less than 0.5%, Ni: 0.02 to 1%, and the balance Zn, and having a Γ layer thickness of the ground iron interface of 0.5 μm or less is disclosed.
However, even in this document, what is substantially disclosed is a low-carbon steel sheet, and there is no knowledge about the ultra-low-carbon steel sheet intended by the present invention. Even if it is applied to the above, it is practically impossible to make the Γ layer thickness 0.5 μm or less, and the corrosion resistance, workability, and paintability intended by the present invention are quite insufficient.
特許文献4には、極低炭素鋼板に20〜70mg/m2のNiメッキを施した後、焼鈍、溶融亜鉛メッキ、合金化処理を行う合金化溶融亜鉛メッキ鋼板の製造方法が開示されている。しかし、この方法では耐食性の改善効果はなく、加工性についても十分ではない。
また、特許文献5には、Al:0.1〜0.2%、Ni:0.04〜0.2%を含有する溶融亜鉛メッキ浴でめっきし、10〜20℃/sの昇温速度で合金化し、1〜10μのζ層によって1〜40%表面被覆されていることを特徴とする摺動性と塗装性に優れた合金化溶融亜鉛メッキ鋼板が開示されている。しかし、この場合には加工性、特にパウダリング性と耐食性が十分でないという欠点がある。
Patent Document 4 discloses a method for producing an alloyed hot-dip galvanized steel sheet that is annealed, hot-dip galvanized, and alloyed after an extremely low carbon steel sheet is plated with 20 to 70 mg / m 2 of Ni. . However, this method does not have an effect of improving the corrosion resistance, and the processability is not sufficient.
In Patent Document 5, plating is performed with a hot dip galvanizing bath containing Al: 0.1 to 0.2% and Ni: 0.04 to 0.2%, and the temperature rising rate is 10 to 20 ° C./s. An alloyed hot-dip galvanized steel sheet excellent in slidability and paintability, characterized by being alloyed with 1 to 40% of the surface and coated with 1 to 10 μ ζ layer, is disclosed. However, in this case, there is a drawback that processability, particularly powdering property and corrosion resistance are not sufficient.
特許文献6には、Alを含有した溶融亜鉛メッキ浴にNiを添加し、更にPb,Sb,Bi,Snの少なくとも1種を添加した浴でメッキを行い所定の条件で合金化することで、Al:0.1〜0.25%、Fe:6〜18%、Ni:0.05〜0.3%、Pb,Sb,Bi,Snの少なくとも1種を0.001〜0.01%含む合金化溶融亜鉛メッキ鋼板が開示されている。
しかし、この場合には浴が4元系となり管理が煩雑となるばかりでなく、浴中でNiとAlが化合したドロスが発生しやすく、これがメッキ層に巻き込まれた場合は耐食性劣化の要因となるため好ましくない。
In Patent Document 6, Ni is added to a hot dip galvanizing bath containing Al, and further plating is performed in a bath containing at least one of Pb, Sb, Bi, and Sn, and alloying is performed under predetermined conditions. Al: 0.1 to 0.25%, Fe: 6 to 18%, Ni: 0.05 to 0.3%, Pb, Sb, Bi, Sn containing 0.001 to 0.01% An alloyed hot dip galvanized steel sheet is disclosed.
However, in this case, the bath becomes a quaternary system, and management becomes complicated, and dross in which Ni and Al are combined in the bath is likely to occur, and if this is caught in the plating layer, it is a cause of deterioration in corrosion resistance. Therefore, it is not preferable.
また、Tiを添加した極低炭素鋼板は、極めて優れた深絞り性と延性が幅広い成分範囲で安定して得られる特徴がある。しかしこの鋼板に溶融亜鉛メッキを施し、更に合金化処理を行う場合、鋼中Tiの影響により結晶粒界が清浄化される為、合金化反応が結晶粒界で促進され、その結果、アウトバースト反応が起き易くなり過合金が進行しやすくパウダリング性が悪化する問題が生ずる。 Further, the ultra-low carbon steel sheet to which Ti is added has a feature that extremely excellent deep drawability and ductility can be stably obtained in a wide component range. However, when this steel sheet is hot dip galvanized and further alloyed, the grain boundaries are cleaned by the effect of Ti in the steel, so the alloying reaction is accelerated at the grain boundaries, resulting in outburst. The reaction is likely to occur, the overalloy is likely to proceed, and the powdering property deteriorates.
この課題を解決するためにTiとあわせてNbを複合添加し、結晶粒界で生じる合金化反応を制御することでパウダリング性を改善させる合金化溶融亜鉛メッキ鋼板の製造方法が開示されている(例えば、特許文献7〜10参照)。ただし、これらはTiにさらにNbを複合添加するものであるので、Nbの添加コストが高いため、あまり経済的ではない。
一方、Nbを複合添加することなしにTi添加極低炭素鋼板のパウダリング性を改善する技術として、特許文献11には、再結晶焼鈍後の冷却過程で水蒸気雰囲気を制御することで結晶粒界を酸化させ、合金化反応時のアウトバーストを抑制する方法が開示されている。しかし、この方法は酸化の制御が困難であるばかりでなく、メッキ外観に悪影響を及ぼしやすい。
In order to solve this problem, a method for producing an alloyed hot-dip galvanized steel sheet in which powdering properties are improved by adding Nb together with Ti and controlling the alloying reaction occurring at the grain boundaries is disclosed. (For example, refer to Patent Documents 7 to 10). However, since these are those in which Nb is further added to Ti, the addition cost of Nb is high, which is not very economical.
On the other hand, as a technique for improving the powdering property of a Ti-added ultra-low carbon steel sheet without adding Nb in combination, Patent Document 11 describes a grain boundary by controlling a water vapor atmosphere in a cooling process after recrystallization annealing. A method is disclosed in which the outburst during the alloying reaction is suppressed by oxidizing. However, this method not only makes it difficult to control oxidation, but also tends to adversely affect the plating appearance.
さらに、特許文献12には、溶融メッキ浴中のAl濃度を0.12〜0.2%と通常よりも高めにして、地鉄−メッキ界面にAl濃度の高い相を局在させる方法が開示されているが、この場合はメッキ層が凹凸になりやすく外観が悪化しやすい。
本発明の解決すべき課題は、極低炭素鋼板を原板とする耐食性、加工性、塗装性に優れた合金化溶融亜鉛メッキ鋼板およびその製造方法を提供することである。 The problem to be solved by the present invention is to provide an alloyed hot-dip galvanized steel sheet excellent in corrosion resistance, workability, and paintability using an ultra-low carbon steel sheet as a base plate and a method for producing the same.
本発明者らは、特許文献1、2の知見をベースに、極低炭素鋼板を原板として、耐食性、加工性、塗装性に優れた合金化溶融亜鉛メッキ鋼板を検討した結果、本発明を完成した。その要旨とするところは、以下の通りである。 Based on the knowledge of Patent Documents 1 and 2, the present inventors have studied the alloyed hot-dip galvanized steel sheet excellent in corrosion resistance, workability, and paintability using an ultra-low carbon steel sheet as the original sheet, and completed the present invention. did. The gist is as follows.
(1) 焼鈍済みの質量%で、C:0.005%以下を含む極低炭素鋼板表面を清浄後に、0.1〜1.0g/m2のNiプレメッキを施し、無酸化または還元性雰囲気中で板温度430〜500℃に30℃/sec以上の昇温速度で急速加熱を行なった後、Al:0.1〜0.2質量%を含有する溶融Znメッキ浴中でメッキし、ワイピング後に470〜600℃に30℃/sec以上の昇温速度で急速加熱を行い、均熱時間をとらずに冷却するか、または15秒未満の均熱保持の後に冷却することを特徴とする耐食性、加工性、塗装性に優れた合金化溶融亜鉛メッキ鋼板の製造方法。 (1) After cleaning the surface of an ultra-low carbon steel sheet containing C: 0.005% or less in mass% that has been annealed, Ni pre-plating of 0.1 to 1.0 g / m 2 is performed, and a non-oxidizing or reducing atmosphere After rapid heating at a plate temperature of 430 to 500 ° C. at a heating rate of 30 ° C./sec or more, plating is performed in a hot dip Zn plating bath containing Al: 0.1 to 0.2% by mass, and wiping is performed. Corrosion resistance characterized by performing rapid heating to a temperature of 470 to 600 ° C. at a temperature rising rate of 30 ° C./sec or more and then cooling without taking a soaking time, or cooling after keeping soaking for less than 15 seconds. , A method for producing alloyed hot-dip galvanized steel sheets with excellent workability and paintability.
本発明によれば、極低炭素鋼板を原板とする耐食性、加工性、塗装性に優れた合金化溶融亜鉛メッキ鋼板およびその製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the alloyed hot-dip galvanized steel plate excellent in the corrosion resistance, workability, and coating property which used an ultra-low carbon steel plate as a base plate, and its manufacturing method can be provided.
以下、本発明を実施するための最良の形態を説明する。
本発明が対象とする極低炭素鋼板としては、Ti,Nb等を単独あるいは複合添加して固溶炭素をなくしたものや、更にP、Mn、Si等を添加して強度を向上させたもの等を使用できる。また、極微量のNi,Cu,Sn,Cr等、いわゆるトランプエレメントを含有するものも使用できる。なお、以下の説明において成分含有量は質量%を示す。
Hereinafter, the best mode for carrying out the present invention will be described.
The ultra-low carbon steel sheet targeted by the present invention is one in which Ti, Nb, etc. are added alone or in combination to eliminate solid solution carbon, and further, the strength is improved by adding P, Mn, Si, etc. Etc. can be used. Moreover, what contains what is called a trump element, such as trace amount Ni, Cu, Sn, Cr, can be used. In addition, in the following description, component content shows the mass%.
Ti,Nbを単独あるいは複合添加して固溶炭素をなくした極低炭素鋼板として、詳しくは質量%で、C:0.005%以下、Si:0.03%以下、Mn:0.05〜0.5%、P:0.02%以下、S:0.02%以下、Ti(およびまたはNb):0.001〜0.2%含有するものを使用できる。Ti(またはNb)単独添加の場合であっても、不可避的不純物として混入する0.001%程度以下のNb(またはTi)の含有は包含するものとする。 As an ultra-low carbon steel sheet in which Ti and Nb are added alone or in combination to eliminate solute carbon, in particular, by mass, C: 0.005% or less, Si: 0.03% or less, Mn: 0.05 to A material containing 0.5%, P: 0.02% or less, S: 0.02% or less, and Ti (and / or Nb): 0.001 to 0.2% can be used. Even when Ti (or Nb) is added alone, inclusion of about 0.001% or less of Nb (or Ti) mixed as an inevitable impurity is included.
また、Pを添加して強度を向上させた極低炭素鋼板として、詳しくはC:0.005%以下、Si:0.03%以下、Mn:0.05〜0.5%、P:0.02〜0.1%、S:0.02%以下含有するものを使用できる。これらは、340〜390MPaクラスの自動車外板用途にも適用可能な絞り性の良好な高強度合金化溶融亜鉛メッキ鋼板の原板として適用可能である。また、前記組成で更にMnを0.5〜2.5%とし、更にSiを0.5%以下としたものを使用できる。これらは、390〜440MPaクラスの自動車外板用途にも適用可能な絞り性の良好な高強度合金化溶融亜鉛メッキ鋼板の原板として適用可能である。 In addition, as an ultra-low carbon steel sheet whose strength is improved by adding P, in detail, C: 0.005% or less, Si: 0.03% or less, Mn: 0.05 to 0.5%, P: 0 0.02 to 0.1%, S: 0.02% or less can be used. These can be applied as an original plate of a high strength alloyed hot-dip galvanized steel sheet with good drawability, which can be applied to an automobile outer plate of 340 to 390 MPa class. Further, a composition having Mn of 0.5 to 2.5% and Si of 0.5% or less can be used. These can be applied as an original plate of a high-strength alloyed hot-dip galvanized steel sheet with good drawability, which can be applied to a 390-440 MPa class automobile outer plate.
次に、メッキ層の組成、構造についての限定理由を説明する。
Fe:8〜13%としたのは、下限未満では耐食性が悪化しやすく、上限を超えるとパウダリング性が悪化しやすいためである。
Ni:0.05〜1.0%としたのは、下限未満では耐食性が悪化しやすく、上限を超えるとパウダリング性が悪化しやすいためである。なお、より良好なパウダリング性を求める時は、Ni:0.1〜0.5%とするのが望ましい。
Next, the reasons for limiting the composition and structure of the plating layer will be described.
The reason why Fe is 8 to 13% is that the corrosion resistance tends to be deteriorated if it is less than the lower limit, and the powdering property tends to be deteriorated if it exceeds the upper limit.
Ni: 0.05 to 1.0% is because the corrosion resistance is likely to be deteriorated if it is less than the lower limit, and the powdering property is likely to be deteriorated if the upper limit is exceeded. In order to obtain better powdering properties, Ni: 0.1 to 0.5% is desirable.
Al:0.15〜1.5%としたのは、下限未満ではパウダリング性や耐食性が悪化しやすく、上限を超えると塗装性やまた耐食性も悪化しやすいためである。なお、より良好なパウダリング性を求める時は、Alの下限は0.3%、またより良好な塗装性を求める時はAlの上限を0.8%とするのが望ましい。 The reason why Al is 0.15 to 1.5% is that powdering properties and corrosion resistance are liable to deteriorate if the amount is less than the lower limit, and coating properties and corrosion resistance are also liable to deteriorate if the upper limit is exceeded. When obtaining a better powdering property, the lower limit of Al is preferably 0.3%, and when obtaining a better paintability, the upper limit of Al is preferably 0.8%.
さらに、Al/Niの比率を0.5〜5.0に規定したのは、下限未満ではパウダリング性が悪化しやすく、上限を超えると塗装性やまた耐食性も悪化しやすいためである。より良好なパウダリング性を求める時は、Al/Ni比の下限を1.0にするのが望ましい。 Furthermore, the reason why the Al / Ni ratio is defined as 0.5 to 5.0 is that the powdering property tends to be deteriorated if the ratio is less than the lower limit, and the coating property and the corrosion resistance tend to be deteriorated if the upper limit is exceeded. When obtaining better powdering properties, it is desirable to set the lower limit of the Al / Ni ratio to 1.0.
本発明は、地鉄界面のΓ層の平均厚みが1μm以下、またそのバラツキが±0.3μm以下であることを特徴とする。
ここで、Γ層厚みを測定する手段としては、例えば塩化アンモニウム水溶液中で定電位電解にてΓ層以外を溶解した後、定電流電解にてΓ層を定量する電解剥離法や、メッキ断面をナイタール(アルコール+硝酸)等の既知のエッチング液でエッチングして光学顕微鏡等で直接観察する方法、あるいはX線回折強度から求める方法など、いずれでも可能である。
また、Γ層のバラツキとは、鋼板の幅方向で数点〜数十点測定して、Γ層の平均値に対して最大値、最小値が±0.3μm以内であることを言う。本発明のΓ層の平均厚み上限が1μmというのは比較的大きな値であるが、パウダリング性、加工性には前述のバラツキの制御が重要であり、また前述の適正なメッキ組成とあわせて、良好な性能を得ることが可能である。
The present invention is characterized in that the average thickness of the Γ layer at the iron-iron interface is 1 μm or less, and the variation is ± 0.3 μm or less.
Here, as a means for measuring the thickness of the Γ layer, for example, an electrolytic exfoliation method for quantifying the Γ layer by constant current electrolysis after dissolving other than the Γ layer by constant potential electrolysis in an aqueous ammonium chloride solution, Either a method of etching with a known etching solution such as nital (alcohol + nitric acid) and directly observing with an optical microscope or the like, or a method of obtaining from the X-ray diffraction intensity is possible.
Further, the variation of the Γ layer means that the maximum value and the minimum value are within ± 0.3 μm with respect to the average value of the Γ layer by measuring several to several tens of points in the width direction of the steel sheet. The upper limit of the average thickness of the Γ layer of the present invention is 1 μm, which is a relatively large value. However, the control of the above-mentioned variation is important for powdering and workability, and in addition to the above-mentioned appropriate plating composition. It is possible to obtain good performance.
次に、本発明に係る合金化溶融亜鉛メッキ鋼板を製造する方法について説明する。
本発明では、焼鈍済みの極低炭素鋼板を原板として用いる。まず、表面の清浄化が必要であるが、この方法については特に限定されず、アルカリ脱脂、ブラッシング処理、酸処理等の既知の方法を、原板の汚れや酸化膜の状況にあわせて単独あるいは組み合わせて用いればよい。後述のNiメッキの均一性の観点から、アルカリ脱脂(例えばNaOH水溶液処理)と酸処理(例えば硫酸水溶液処理)をこの順で組み合わせて使用することが好ましい。
Next, a method for producing the galvannealed steel sheet according to the present invention will be described.
In the present invention, an annealed ultra-low carbon steel plate is used as the original plate. First, it is necessary to clean the surface, but this method is not particularly limited, and known methods such as alkaline degreasing, brushing treatment, acid treatment, etc. are used alone or in combination depending on the state of the original plate and the state of the oxide film. Can be used. From the viewpoint of uniformity of Ni plating described later, it is preferable to use alkaline degreasing (for example, NaOH aqueous solution treatment) and acid treatment (for example, sulfuric acid aqueous solution treatment) in this order.
本発明では、原板の表面洗浄後に0.1〜1.0g/m2のNiプレメッキを施す。前述の清浄化前処理にもよるが、下限未満ではこの後の溶融メッキの濡れ性が不十分であり、また耐食性も不足する。上限を超えるとパウダリング性が悪化しやすい。より良好なパウダリング性を求める時は、Niプレメッキの上限を0.8g/m2とするのが望ましい。 In the present invention, 0.1 to 1.0 g / m 2 of Ni pre-plating is applied after cleaning the surface of the original plate. Although depending on the above-mentioned pretreatment for cleaning, if it is less than the lower limit, the wettability of the subsequent hot dipping is insufficient and the corrosion resistance is also insufficient. When the upper limit is exceeded, the powdering property tends to deteriorate. When seeking better powdering properties, the upper limit of Ni pre-plating is desirably 0.8 g / m 2 .
Niプレメッキ後に、無酸化または還元性雰囲気中で板温度430〜500℃に30℃/sec以上の昇温速度で急速加熱を行なう。この処理は溶融メッキの濡れ性、またメッキ密着性を確保するために必要である。より良好なパウダリング性を求める時は、加熱の板温の上限は480℃とするのが望ましい。 After the Ni pre-plating, rapid heating is performed at a temperature increase rate of 30 ° C./sec or more at a plate temperature of 430 to 500 ° C. in a non-oxidizing or reducing atmosphere. This treatment is necessary in order to ensure wettability of the molten plating and plating adhesion. When obtaining a better powdering property, the upper limit of the heating plate temperature is preferably 480 ° C.
溶融亜鉛メッキ浴は、Al:0.1〜0.2%と不可避的不純物と残部Znからなる浴を用いる。Al下限未満ではパウダリング性や耐食性が悪化しやすく、上限を超えると塗装性やまた耐食性も悪化しやすいためである。本発明ではメッキ浴に積極的にNiは添加しないが、この点は特許文献5、6と異なり、メッキ層へのNi源としてはNiプレメッキを用いるため、メッキ浴中で生成したNi−Al系のドロスをメッキ層に持ち込んでメッキ層が不均一になり、結果として性能が悪化する等の問題が発生しない。より良好なパウダリング性を求める時は、浴Al濃度下限は0.12%とするのが望ましい。 As the hot dip galvanizing bath, a bath comprising Al: 0.1 to 0.2%, inevitable impurities, and the balance Zn is used. This is because if it is less than the lower limit of Al, powdering properties and corrosion resistance are likely to deteriorate, and if it exceeds the upper limit, paintability and corrosion resistance are also likely to deteriorate. In the present invention, Ni is not positively added to the plating bath, but this point is different from Patent Documents 5 and 6, and Ni pre-plating is used as the Ni source for the plating layer. The dross is brought into the plating layer, the plating layer becomes non-uniform, and as a result, problems such as deterioration in performance do not occur. When obtaining better powdering properties, the lower limit of the bath Al concentration is preferably 0.12%.
メッキ後、ワイピング後に470〜600℃に30℃/sec以上の昇温速度で急速加熱を行い、均熱時間をとらずに冷却するか、または15秒未満の均熱保持の後に冷却することで合金化処理を行う。この規定はΓ層の抑制、特にバラツキの抑制のために極めて重要である。特に昇温速度が30℃/sec未満では、Γ層、そのバラツキとも増加する。
急速加熱を行なった後は、均熱時間をとらずに冷却するか、または短時間(15秒未満の)均熱保持の後に冷却することが重要であり、この場合もこの条件を外れるとΓ層、そのバラツキとも増加する。
After plating, after wiping, rapidly heat to 470-600 ° C at a heating rate of 30 ° C / sec or more, and cool without taking soaking time, or cool after holding soaking for less than 15 seconds Alloying treatment is performed. This regulation is extremely important for the suppression of the Γ layer, particularly for the variation. In particular, when the rate of temperature rise is less than 30 ° C./sec, both the Γ layer and its variation increase.
After rapid heating, it is important to cool without taking a soaking time, or to cool after a short period of time (less than 15 seconds) soaking. The layer and its variation also increase.
なお、通常の極低炭素鋼板は、均熱時間をとらずに冷却することが望ましい。これは均熱時間が不要であるため、炉設備長も短く出来、また均熱のために減速するといったことも不要であって、生産性の点からも有利である。また、P等を添加して強度を向上させた極低炭素鋼板は、合金化が遅い傾向があるので、必要に応じて短時間の均熱保持を行なえばよい。より良好なパウダリング性を求める時は、470〜550℃に30℃/sec以上の昇温速度で急速加熱を行い、均熱時間をとらずに冷却するか、または10秒未満の均熱保持の後に冷却することで合金化処理を行うことが望ましい。 In addition, it is desirable to cool a normal ultra-low carbon steel sheet without taking soaking time. Since this does not require soaking time, the furnace equipment length can be shortened, and it is not necessary to decelerate for soaking, which is advantageous in terms of productivity. Moreover, since the ultra-low carbon steel plate which added P etc. improved the intensity | strength tends to be alloyed slowly, what is necessary is just to perform soaking | uniform-heating maintenance for a short time as needed. When seeking better powdering properties, perform rapid heating to 470-550 ° C at a heating rate of 30 ° C / sec or more, and cool without taking a soaking time, or keep soaking for less than 10 seconds It is desirable to perform the alloying process by cooling after the step.
以下に実施例によって本発明を詳細に説明する。
(実施例1〜13および比較例1〜11)
表1に試験に用いた焼鈍済みの極低炭素鋼板の成分を示す。表2に示す条件によって前処理を行なった後、表3に示すメッキ浴にて電気メッキ(浴温60℃、電流密度30A/dm2)にてNiプレメッキを行なった。
その後、3%H2+N2の雰囲気中で50℃/secの昇温速度にて450℃まで加熱し、ただちに450℃に保温した溶融Znメッキ浴に浸漬し3sec保持の後、ワイピングして目付けを調整し、ワイピング直上で所定の昇温速度と温度、均熱時間にて合金化した。
冷却は、2℃/secの徐冷を10sec行なった後、20℃/secで急冷した。その後0.5%の調質圧延を行なった。
Hereinafter, the present invention will be described in detail by way of examples.
(Examples 1-13 and Comparative Examples 1-11)
Table 1 shows the components of the annealed ultra-low carbon steel sheet used in the test. After pre-treatment under the conditions shown in Table 2, Ni pre-plating was performed by electroplating (bath temperature 60 ° C., current density 30 A / dm 2 ) in the plating bath shown in Table 3.
After that, it is heated to 450 ° C. in a 3% H 2 + N 2 atmosphere at a heating rate of 50 ° C./sec. Then, alloying was performed immediately above the wiping at a predetermined heating rate, temperature, and soaking time.
Cooling was performed by slow cooling at 2 ° C./sec for 10 sec and then rapidly cooling at 20 ° C./sec. Thereafter, 0.5% temper rolling was performed.
表4に示す各種の条件(プレNi付着量、メッキ浴のAl濃度、合金化条件)でサンプルを製造した。なお、目付け量はいずれも50g/m2とした。
表4のサンプルでメッキ層の組成とΓ層厚みを測定した結果を表5に示す。メッキ層を塩酸溶解して、各成分の濃度を求めた。また、Γ層は電解剥離法により10点測定し、その平均値と最大値、最小値を求めた。Γ層のバラツキに関しては、最大値−平均値、平均値−最小値のいずれかでも0.3μmを超えるものは「×」と表記した。
Samples were manufactured under various conditions shown in Table 4 (pre-Ni adhesion amount, Al concentration of plating bath, alloying conditions). The weight per unit area was 50 g / m 2 .
Table 5 shows the results of measuring the composition of the plating layer and the thickness of the Γ layer in the samples of Table 4. The plating layer was dissolved in hydrochloric acid to determine the concentration of each component. Further, the Γ layer was measured at 10 points by the electrolytic stripping method, and the average value, maximum value, and minimum value were obtained. Regarding the variation of the Γ layer, any of the maximum value-average value and the average value-minimum value exceeding 0.3 μm was indicated as “x”.
表6に性能評価結果を示す。性能評価は下記のように行なった。
(1)メッキ外観:目視観察し、不メッキ等の欠陥が一切ないものを「○」、あるものを「△」、甚だしいものを「×」と評価した。
(2)加工性(パウダリング性):防錆油を塗油したサンプルにて、絞り比2.2の条件にて40mmφの円筒プレス(絞り抜き)を行い、その側面をテープ剥離して黒化度によって評価した。黒化度0〜20%未満を「○」、20〜30%未満を「△」、30%以上を「×」と評価した。
Table 6 shows the performance evaluation results. The performance evaluation was performed as follows.
(1) Appearance of plating: Visual observation was conducted, and “◯” was given for those having no defects such as non-plating, “Δ” was given for some, and “X” for severe ones.
(2) Workability (powdering property): A sample coated with rust-preventive oil was subjected to a 40 mmφ cylindrical press (drawing) under the condition of a drawing ratio of 2.2, and the side surface was peeled off with tape to black The degree of conversion was evaluated. The degree of blackening of 0 to less than 20% was evaluated as “◯”, the degree of less than 20 to 30% was evaluated as “Δ”, and 30% or more was evaluated as “x”.
(3)加工性(摺動性):防錆油を塗油したサンプルにて平板連続摺動試験を行った。圧着荷重500kgfにて5回の連続摺動を行ない、5回目の摩擦係数で評価した。摩擦係数0.15未満を「○」、0.15〜0.2未満を「△」、0.2以上を「×」と評価した。
(4)耐食性(塗装キズ部耐赤錆):鋼板サンプルに自動車用のトリカチオン化成処理[下記注1]、カチオン電着塗装[注2](20μm)を施したのち、5mm×50mmのスリット状に塗膜を剥離しメッキ面を露出させ、腐食サイクルテスト[注3]を行なった。10日後の外観で評価した。錆発生なしまたは黄錆のみ発生を「○」、赤錆20%未満を「△」、赤錆20%以上を「×」と評価した。
(3) Workability (slidability): A flat plate continuous sliding test was performed on a sample coated with rust preventive oil. The continuous sliding was performed 5 times with a crimping load of 500 kgf, and the evaluation was made with the fifth coefficient of friction. A coefficient of friction of less than 0.15 was evaluated as “◯”, a value of less than 0.15 to 0.2 as “Δ”, and a value of 0.2 or more as “x”.
(4) Corrosion resistance (coating flaw red rust resistance): Trication conversion treatment for automobiles [below note 1] and cationic electrodeposition coating [note 2] (20 μm) are applied to the steel sheet sample, then into a 5 mm × 50 mm slit shape. The coating film was peeled off to expose the plated surface, and a corrosion cycle test [Note 3] was performed. The appearance was evaluated after 10 days. No occurrence of rust or occurrence of yellow rust was evaluated as “◯”, less than 20% of red rust was evaluated as “Δ”, and 20% or more of red rust was evaluated as “×”.
(5)耐食性(耐孔あき性):ビード付U曲げプレスを行なったサンプルを平滑化した後、40mm×40mmのマスクをして、自動車用のトリカチオン化成処理[注1]、カチオン電着塗装[注2](20μm)を施した。曲げ板と平板とでマスクを除去した未塗装部を内−内になるように0.5mmのスペーサーで合せ、車体ヘムモデルを作製した。このサンプルにて腐食サイクルテスト[注3]を行なった。30日後の外観で評価した。赤錆20%未満を「○」、赤錆20〜50%未満を「△」、赤錆50%以上を「×」と評価した。
(6)塗装性:鋼板サンプルに自動車用のトリカチオン化成処理[注1]、カチオン電着塗装[注2]を施した。電着塗装は、電圧220V、アップスロープ0.5分、通電トータル3分の条件にて行い、試験片(70×150mm)内でのクレーター等の異常の個数をカウントした。異常なしを「○」、1個〜3個未満を「△」、3個以上を「×」と評価した。
[注1]:日本ペイント(株)製SD5000
[注2]:日本ペイント(株)製PN120M
[注3]:SST(6Hr)→ 乾燥50℃45%RH(3Hr)→ 湿潤50℃95%RH(14Hr)→ 乾燥50℃45%RH(1Hr)
そして、下表1〜6から明らかなように、本発明範囲内のものは優れた特性が得られることを確認することができた。
(5) Corrosion resistance (perforation resistance): After smoothing a sample subjected to U-bending press with beads, a 40 mm × 40 mm mask is applied, and trication conversion treatment for automobiles [Note 1], cationic electrodeposition coating [Note 2] (20 μm) was applied. The unpainted portion from which the mask was removed with a bent plate and a flat plate was aligned with a 0.5 mm spacer so as to be inside-in to produce a vehicle body hem model. A corrosion cycle test [Note 3] was performed on this sample. The appearance after 30 days was evaluated. Less than 20% of red rust was evaluated as “◯”, 20 to less than 50% of red rust was evaluated as “Δ”, and 50% or more of red rust was evaluated as “×”.
(6) Paintability: Steel plate samples were subjected to trication conversion treatment [Note 1] and cationic electrodeposition coating [Note 2] for automobiles. Electrodeposition coating was performed under conditions of a voltage of 220 V, an upslope of 0.5 minutes, and a total current of 3 minutes, and the number of abnormalities such as craters in the test piece (70 × 150 mm) was counted. No abnormality was evaluated as “◯”, 1 to less than 3 as “Δ”, and 3 or more as “x”.
[Note 1]: Nippon Paint Co., Ltd. SD5000
[Note 2]: Nippon Paint Co., Ltd. PN120M
[Note 3]: SST (6 Hr) → Dry 50 ° C. 45% RH (3 Hr) → Wet 50 ° C. 95% RH (14 Hr) → Dry 50 ° C. 45% RH (1 Hr)
As can be seen from Tables 1 to 6 below, it was confirmed that excellent characteristics can be obtained with those within the scope of the present invention.
(実施例14〜22および比較例12、13)
表7に試験に用いた焼鈍済みの極低炭素鋼板の成分を示す。表2に示す条件によって前処理を行なった後、表3に示すメッキ浴にて電気メッキ(浴温60℃、電流密度30A/dm2)にてNiプレメッキを行なった。
その後、4%H2+N2の雰囲気中で50℃/secの昇温速度にて455℃まで加熱し、ただちに450℃に保温した溶融Znメッキ浴に浸漬し2.5sec保持の後、ワイピングして目付けを調整し、ワイピング直上で50℃/secにて昇温し、4sec保定の後、50℃/secで急冷した。その後0.5%の調質圧延を行なった。
(Examples 14 to 22 and Comparative Examples 12 and 13)
Table 7 shows the components of the annealed ultra-low carbon steel sheet used in the test. After pre-treatment under the conditions shown in Table 2, Ni pre-plating was performed by electroplating (bath temperature 60 ° C., current density 30 A / dm 2 ) in the plating bath shown in Table 3.
After that, it was heated to 455 ° C. at a temperature increase rate of 50 ° C./sec in an atmosphere of 4% H 2 + N 2 , immediately immersed in a molten Zn plating bath kept at 450 ° C., held for 2.5 sec, and then wiped. The basis weight was adjusted, the temperature was increased immediately above the wiping at 50 ° C./sec, and after holding for 4 sec, it was rapidly cooled at 50 ° C./sec. Thereafter, 0.5% temper rolling was performed.
(比較例14)
表7に試験に用いた焼鈍済みの極低炭素鋼板の成分を示す。表2に示す条件によって前処理を行なった後、4%H2+N2の雰囲気中で20℃/secの昇温速度にて650℃まで加熱し、60sec保定の後、455℃まで放冷して450℃に保温した溶融Znメッキ浴に浸漬し2.5sec保持の後、ワイピングして目付けを調整し、ワイピング直上で50℃/secにて昇温し、4sec保定の後、50℃/secで急冷した。その後0.5%の調質圧延を行なった。
(Comparative Example 14)
Table 7 shows the components of the annealed ultra-low carbon steel sheet used in the test. After pre-processing under the conditions shown in Table 2, the sample was heated to 650 ° C. at a rate of temperature increase of 20 ° C./sec in an atmosphere of 4% H 2 + N 2 , kept at 60 sec, and then allowed to cool to 455 ° C. After immersing in a hot-dip Zn plating bath kept at 450 ° C. and holding for 2.5 seconds, wiping is performed to adjust the basis weight, the temperature is raised directly above the wiping at 50 ° C./sec, and after holding for 4 seconds, 50 ° C./sec. It was cooled quickly. Thereafter, 0.5% temper rolling was performed.
表8に示す各種の条件(プレNi付着量、メッキ浴のAl濃度、合金化条件)でサンプルを製造した。なお、目付け量はいずれも50g/m2とした。
表8のサンプルでメッキ層の組成とΓ層厚みを測定した結果を表9に示す。メッキ層を塩酸溶解して、各成分の濃度を求めた。またΓ層は電解剥離法により10点測定し、その平均値と最大値、最小値を求めた。Γ層のバラツキに関しては、最大値−平均値、平均値−最小値のいずれかでも0.3μmを超えるものは「×」と表記した。
Samples were produced under various conditions shown in Table 8 (pre-Ni adhesion amount, Al concentration of plating bath, alloying conditions). The weight per unit area was 50 g / m 2 .
Table 9 shows the results of measuring the composition of the plating layer and the thickness of the Γ layer in the samples shown in Table 8. The plating layer was dissolved in hydrochloric acid to determine the concentration of each component. Further, the Γ layer was measured at 10 points by the electrolytic stripping method, and the average value, the maximum value, and the minimum value were obtained. Regarding the variation of the Γ layer, any of the maximum value-average value and the average value-minimum value exceeding 0.3 μm was indicated as “x”.
表10に性能評価結果を示す。性能評価は先の例と同様に行なった。ただし、「加工性(パウダリング)」についてはより厳しい条件(絞り比2.3)で行なった。評価基準等は先の例と同じである。また、ここでは先の例の評価に加えて、低温チッピング性を追加した。低温チッピング性は、次のように行なった。
先の評価項目(6)の方法で電着塗装まで行なった後、更にポリエステル系中塗り塗料30μmおよび上塗り塗料40μm塗装した後、1日放置した(サイズは70mm×150mm)。前記塗装サンプルをドライアイスによって−20℃に冷却し、エア圧2kgf/cm2にて約0.4gの砕石(10個)を垂直に照射し、チッピングによって浮き上がった塗膜を除去した後、剥離径の最大値を測定した。剥離径4mm未満を「○」、4mm〜6mm未満を「△」、6mm以上を「×」と評価した。
Table 10 shows the performance evaluation results. The performance evaluation was performed in the same manner as in the previous example. However, “workability (powdering)” was performed under more severe conditions (drawing ratio 2.3). The evaluation criteria are the same as in the previous example. Here, in addition to the evaluation of the previous example, low temperature chipping property was added. The low temperature chipping property was performed as follows.
After the electrodeposition coating was performed by the method of the previous evaluation item (6), the polyester-based intermediate coating material 30 μm and the top coating material 40 μm were further applied, and then left for 1 day (size is 70 mm × 150 mm). The coated sample is cooled to −20 ° C. with dry ice, and approximately 0.4 g of crushed stone (10 pieces) is vertically irradiated at an air pressure of 2 kgf / cm 2 to remove the paint film that has been lifted by chipping, and then peeled off. The maximum diameter was measured. The peel diameter of less than 4 mm was evaluated as “◯”, 4 mm to less than 6 mm as “Δ”, and 6 mm or more as “x”.
以上の様に、本発明範囲内のものは優れた特性が得られることを確認することができた。 As described above, it was confirmed that excellent characteristics can be obtained in the scope of the present invention.
本発明により、主に自動車用に用いられる極低炭素鋼板を原板として、優れた耐食性、加工性、塗装性を有した合金化溶融亜鉛メッキ鋼板が得られ、その産業上の利用価値は多大である。
According to the present invention, an alloyed hot-dip galvanized steel sheet having excellent corrosion resistance, workability, and paintability is obtained using an ultra-low carbon steel sheet mainly used for automobiles as a base plate, and its industrial utility value is great. is there.
Claims (1)
無酸化または還元性雰囲気中で板温度430〜500℃に30℃/sec以上の昇温速度で急速加熱を行なった後、Al:0.1〜0.2質量%を含有する溶融Znメッキ浴中でメッキし、After rapid heating in a non-oxidizing or reducing atmosphere at a plate temperature of 430 to 500 ° C. at a heating rate of 30 ° C./sec or more, a molten Zn plating bath containing Al: 0.1 to 0.2% by mass Plated inside,
ワイピング後に470〜600℃に30℃/sec以上の昇温速度で急速加熱を行い、均熱時間をとらずに冷却するか、または15秒未満の均熱保持の後に冷却することを特徴とする耐食性、加工性、塗装性に優れた合金化溶融亜鉛メッキ鋼板の製造方法。After wiping, rapid heating is performed at 470 to 600 ° C. at a heating rate of 30 ° C./sec or more, and cooling is performed without taking a soaking time, or cooling is performed after holding the soaking for less than 15 seconds. A method for producing galvannealed steel sheets with excellent corrosion resistance, workability, and paintability.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006105110A JP5020526B2 (en) | 2005-04-06 | 2006-04-06 | Alloyed hot-dip galvanized steel sheet with excellent corrosion resistance, workability, and paintability and method for producing the same |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005109399 | 2005-04-06 | ||
JP2005109399 | 2005-04-06 | ||
JP2005239384 | 2005-08-22 | ||
JP2005239384 | 2005-08-22 | ||
JP2006105110A JP5020526B2 (en) | 2005-04-06 | 2006-04-06 | Alloyed hot-dip galvanized steel sheet with excellent corrosion resistance, workability, and paintability and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007084913A JP2007084913A (en) | 2007-04-05 |
JP5020526B2 true JP5020526B2 (en) | 2012-09-05 |
Family
ID=37972188
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006105110A Active JP5020526B2 (en) | 2005-04-06 | 2006-04-06 | Alloyed hot-dip galvanized steel sheet with excellent corrosion resistance, workability, and paintability and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5020526B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4855290B2 (en) * | 2007-02-09 | 2012-01-18 | 新日本製鐵株式会社 | Hot-dip galvanized steel sheet and method for producing alloyed hot-dip galvanized steel sheet |
JP4987510B2 (en) * | 2007-03-01 | 2012-07-25 | 新日本製鐵株式会社 | Alloyed hot-dip galvanized steel sheet with excellent paint sharpness and press formability and method for producing the same |
JP5014940B2 (en) * | 2007-09-27 | 2012-08-29 | 新日本製鐵株式会社 | Alloyed hot-dip galvanized steel sheet excellent in deep drawability and manufacturing method of alloyed hot-dip galvanized steel sheet |
JP5206114B2 (en) * | 2008-05-21 | 2013-06-12 | 新日鐵住金株式会社 | Alloyed hot-dip galvanized steel sheet with excellent workability, plating adhesion, corrosion resistance, and appearance quality |
JP2010007093A (en) * | 2008-06-24 | 2010-01-14 | Jfe Steel Corp | Steel sheet having excellent surface quality after plating |
JP5584998B2 (en) * | 2009-05-15 | 2014-09-10 | 新日鐵住金株式会社 | Manufacturing method of galvannealed steel sheet with excellent appearance and press formability |
JP6089895B2 (en) * | 2013-04-02 | 2017-03-08 | 新日鐵住金株式会社 | Alloyed hot-dip galvanized steel sheet with excellent chipping resistance |
BR112015027009A2 (en) * | 2013-05-01 | 2017-07-25 | Nippon Steel & Sumitomo Metal Corp | galvanized steel sheet and method to produce the same |
US10294551B2 (en) | 2013-05-01 | 2019-05-21 | Nippon Steel & Sumitomo Metal Corporation | High-strength low-specific-gravity steel sheet having superior spot weldability |
JP6645031B2 (en) * | 2015-05-14 | 2020-02-12 | 日本製鉄株式会社 | Manufacturing method of galvannealed steel sheet |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2804167B2 (en) * | 1990-04-27 | 1998-09-24 | 日新製鋼株式会社 | Alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same |
JP2783452B2 (en) * | 1990-10-09 | 1998-08-06 | 新日本製鐵株式会社 | Manufacturing method of galvannealed steel sheet |
JPH04276055A (en) * | 1991-02-28 | 1992-10-01 | Nisshin Steel Co Ltd | Manufacture of differential galvannealed steel |
JPH04341549A (en) * | 1991-05-16 | 1992-11-27 | Kawasaki Steel Corp | Production of galvanized steel sheet |
JPH0688187A (en) * | 1992-09-03 | 1994-03-29 | Nkk Corp | Production of alloyed galvannealed steel sheet |
JPH073417A (en) * | 1993-06-18 | 1995-01-06 | Nippon Steel Corp | Highly corrosion resistant galvannealed steel sheet |
JPH11315360A (en) * | 1998-05-06 | 1999-11-16 | Nippon Steel Corp | Galvannealed steel sheet excellent in plating adhesion, and its manufacture |
JP2003253416A (en) * | 2002-02-27 | 2003-09-10 | Jfe Steel Kk | Hot-dip zincing steel sheet |
-
2006
- 2006-04-06 JP JP2006105110A patent/JP5020526B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007084913A (en) | 2007-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5020526B2 (en) | Alloyed hot-dip galvanized steel sheet with excellent corrosion resistance, workability, and paintability and method for producing the same | |
US9334555B2 (en) | Hot dip galvannealed steel sheet and method for producing the same | |
KR101721483B1 (en) | Galvanized steel sheet for press-forming | |
KR101679159B1 (en) | Hot-dip galvanized steel sheet | |
WO2013103117A1 (en) | Hot-dip galvannealed steel sheet | |
TW201434617A (en) | Hot-dip galvanized steel sheet | |
JP3885763B2 (en) | Hot-dip galvanized steel sheet for quenching, its manufacturing method and use | |
JP4331915B2 (en) | High strength and high ductility hot dip galvanized steel sheet excellent in fatigue durability and corrosion resistance and method for producing the same | |
JP5907324B1 (en) | High strength hot dip galvanized steel sheet | |
JP3631710B2 (en) | Si-containing high-strength hot-dip galvanized steel sheet with excellent corrosion resistance and ductility and method for producing the same | |
JP4720618B2 (en) | Alloyed hot-dip galvanized steel sheet and method for producing the same | |
JP4629138B2 (en) | Alloy hot-dip galvanized steel sheet | |
JP2003328099A (en) | Production method for high-strength hot-dip galvanized steel sheet | |
JP6518949B2 (en) | Method of manufacturing hot-dip galvanized steel sheet and hot-dip galvanized steel sheet | |
JP7247946B2 (en) | Hot-dip galvanized steel sheet and its manufacturing method | |
JP5206114B2 (en) | Alloyed hot-dip galvanized steel sheet with excellent workability, plating adhesion, corrosion resistance, and appearance quality | |
JP3078456B2 (en) | Manufacturing method of high-strength hot-dip galvanized steel sheet | |
JP6089895B2 (en) | Alloyed hot-dip galvanized steel sheet with excellent chipping resistance | |
JP4855290B2 (en) | Hot-dip galvanized steel sheet and method for producing alloyed hot-dip galvanized steel sheet | |
JP6037056B2 (en) | Hot-dip galvanized steel sheet | |
JP6136672B2 (en) | High strength galvannealed steel sheet and method for producing the same | |
JP7495009B2 (en) | Steel plate for hot pressing, manufacturing method of steel plate for hot pressing, and manufacturing method of hot pressing member | |
JP5128619B2 (en) | Alloy hot-dip galvanized steel sheet | |
KR102697682B1 (en) | Galvanized steel sheet for hot stamping | |
WO2021193038A1 (en) | Raw cold-rolled steel plate with iron-based coating, method for manufacturing raw cold-rolled steel plate with iron-based coating, method for manufacturing cold-rolled steel plate with iron-based coating, method for manufacturing steel plate plated with molten zinc, and method for manufacturing steel plate plated with alloyed molten zinc |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080807 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081201 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110816 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111003 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120228 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120427 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120605 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120613 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5020526 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150622 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150622 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150622 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |