JP5009035B2 - Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent appearance - Google Patents

Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent appearance Download PDF

Info

Publication number
JP5009035B2
JP5009035B2 JP2007108519A JP2007108519A JP5009035B2 JP 5009035 B2 JP5009035 B2 JP 5009035B2 JP 2007108519 A JP2007108519 A JP 2007108519A JP 2007108519 A JP2007108519 A JP 2007108519A JP 5009035 B2 JP5009035 B2 JP 5009035B2
Authority
JP
Japan
Prior art keywords
plating
steel sheet
hot
appearance
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007108519A
Other languages
Japanese (ja)
Other versions
JP2008266685A (en
Inventor
賢一郎 松村
敏 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007108519A priority Critical patent/JP5009035B2/en
Publication of JP2008266685A publication Critical patent/JP2008266685A/en
Application granted granted Critical
Publication of JP5009035B2 publication Critical patent/JP5009035B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明方法は、外観に優れた高張力合金化溶融亜鉛めっき鋼板の製造方法に関するものである。   The method of the present invention relates to a method for producing a high-tensile alloyed hot-dip galvanized steel sheet having an excellent appearance.

合金化溶融亜鉛めっき鋼板は耐食性、塗装密着性等に優れ、自動車用鋼板を中心に建材、家電など幅広く使用されている。   Alloyed hot-dip galvanized steel sheets are excellent in corrosion resistance, paint adhesion, etc., and are widely used in building materials, home appliances, etc. mainly on steel sheets for automobiles.

特に国内自動車向けの防錆鋼板としては合金化溶融亜鉛めっき鋼板が極めて多く、自動車用途としての各種観点から材料の開発が進められている。   In particular, as rust-proof steel sheets for domestic automobiles, there are extremely many alloyed hot-dip galvanized steel sheets, and materials are being developed from various viewpoints for automobile applications.

自動車用途として、求められる品質や性能には多くのものがあるが、特に車体外面を構成するボディーに関しては、外観の良さと成形性が重視される。外観の良さは自動車として組み上げて、塗装した後の外観品位であり、防錆鋼板にわずかな不めっきや汚れなどがあると、塗装後の外観品位を大きく損ねてしまう。また、昨今の自動車衝突安全性への高まりにともない、高張力鋼板への要望も高い。   There are many required qualities and performances for automotive applications, but especially for the body constituting the outer surface of the vehicle body, good appearance and moldability are emphasized. The good appearance is the appearance quality after assembling as an automobile and painting, and if the rust-proof steel plate has slight unplating or dirt, the appearance quality after painting is greatly impaired. In addition, with the recent increase in automobile crash safety, there is a high demand for high-tensile steel sheets.

これらの要望に対し、鉄鋼各社は、溶融めっきの製造ラインのハード的な対策と鋼材に関するソフト的な対策を進めてきた。溶融めっきラインには、各種の様式が存在するが、大きく分類すると2種類がある。それは、旧式の無酸化炉−還元炉方式と、全還元炉方式である。   In response to these demands, steel companies have promoted hardware measures for hot-dip plating production lines and soft measures for steel materials. There are various types of hot dip plating lines, but there are two types when roughly classified. These are the old-style non-oxidation furnace-reduction furnace system and the total reduction furnace system.

無酸化炉−還元炉方式の特徴は、圧延油が付着したままの冷延鋼板を無酸化炉で圧延油を燃焼、除去させることで焼鈍前の入側に脱脂セクションを持たずに、無酸化炉内で圧延油を焼却して連続して溶融めっきできる。溶融めっきの方式としては合理的であるものの、焼鈍後に残存する鋼板上の炭素によるめっき外観汚れが発生し、特に自動車のボディなどの高い外観品位を要求される用途には適さない。   The feature of the non-oxidation furnace-reduction furnace method is that the cold rolled steel sheet with the rolling oil adhered is burned and removed in a non-oxidizing furnace, so there is no degreasing section on the entry side before annealing, and no oxidation The rolling oil can be incinerated in the furnace and continuously hot-plated. Although it is reasonable as a method of hot dipping, it is not suitable for applications that require high appearance quality such as automobile bodies, because the plating appearance stains due to carbon on the steel sheet remaining after annealing occur.

このため昨今、無酸化炉の替わりに入側に脱脂のセクションを有することで、鋼板に付着した塗油を洗浄し炉内に持ち込まないようにする全還元炉方式が主流になっているのが現状である。   For this reason, in recent years, instead of a non-oxidizing furnace, there is a degreasing section on the entry side, so that the all-reduction furnace method that cleans the oil adhering to the steel plate and prevents it from being brought into the furnace has become the mainstream. Currently.

一方、成形性と高強度化の観点から、鋼板の成形性向上、高強度化が進み、これらを両立させるために、主にC、Mn、PやSiなどを添加することで高強度化を図り、ユーザーニーズに応えている。また強度確保と軽量化拡大のため、Mn,P、Siを添加した高強度鋼板が自動車の内部部品用途から、前述のボディなどの高い外観品位を要求される用途にまで拡大されている。   On the other hand, from the viewpoint of formability and high strength, steel sheet formability improvement and high strength have progressed, and in order to achieve both of these, the addition of C, Mn, P, Si, etc. mainly increases the strength. In response to user needs. In order to secure strength and increase weight reduction, high-strength steel sheets added with Mn, P, and Si have been expanded from applications for internal parts of automobiles to applications requiring high appearance quality such as the aforementioned body.

ところが、成形性向上と高強度化を両立させるために添加しているMnやP、Siは熱延工程、焼鈍工程等で鉄の変態域、例えば800℃前後まで鋼板が加熱された際、粒界に偏析したり、酸化物として析出する特徴がある。、このため熱延や焼鈍炉内で発生した鋼板表面のPやSiの濃度分布が残ったままめっきされるため、この濃度ばらつきが溶融めっき後の加熱合金化過程において、亜鉛と鉄の反応をばらつかせ、筋状や点状の模様を発生させてしまう。この模様は全還元炉方式においても、焼鈍の還元炉の還元雰囲気が鉄を還元するのみでP、Siの酸化を抑制できないことから、同様に発生する。さらにこの模様は成形後の化成処理や塗装にも影響を及ぼし、同様の模様を浮き上がらせてしまう。Mn、P、Siを添加した高強度鋼板の模様も、人目につかない自動車の内部部品に使用されるならばある程度許容されていたが、ボディなど人目につき、高い外観品位を要求される用途には耐えられず大きな問題となっていた。   However, Mn, P, and Si added in order to achieve both formability improvement and high strength, when the steel sheet is heated to the iron transformation region, for example, around 800 ° C. in the hot rolling process, annealing process, etc. It is characterized by segregation at the boundary or precipitation as an oxide. For this reason, since the P and Si concentration distribution on the steel plate surface generated in the hot rolling and annealing furnace remains plated, this concentration variation causes the reaction between zinc and iron in the hot alloying process after hot dipping. Disperse, causing streaks and dots. This pattern also occurs in the all-reduction furnace method because the reduction atmosphere of the annealing reduction furnace only reduces iron and cannot suppress the oxidation of P and Si. Furthermore, this pattern also affects the chemical conversion treatment and coating after molding, and the same pattern is raised. Patterns of high-strength steel sheets with Mn, P, and Si added were acceptable to some extent if used for invisible automobile internal parts, but for applications that require high appearance quality per person such as the body. It was a big problem because I couldn't stand it.

この問題に対し、特許文献1や特許文献2では、焼鈍にて生じたPやSiの表面濃化物を酸洗や研削等の手法により除去することでばらつきを消失させている。しかし、特許文献1では、焼鈍後に酸洗するわけであるから、大気に接触させることなく、溶融亜鉛めっきを主体とする溶融金属中を通板せしめる一般の溶融めっきラインとは異なる構成を取らざるを得ず、また、特許文献2では、焼鈍終了後、溶融金属中を通板せしめるまでに研削工程を必要とするなど、いずれも設備制約が極めて大きい。特許文献3では鋼中のS含有量を制御することで外観改善を図っているが、脱硫コストを強いる上、基本的には極低炭素軟鋼に関する内容であり、MnやP、Siを添加した高張力鋼においては効果は決して十分でない。特許文献4では、Mn化合物を焼鈍に先立ち鋼板へ付与することで合金化のばらつきを抑制している。ただし、その付与法は水溶液の塗布であり、金属Mnの付与ではなくMn酸化物であることによりハースロールへの酸化物のピックアップ問題は避けられず、外板へのリスクは大きい。また特許文献5では、焼鈍に先立ちNiなどをプレ電気めっきすることでめっき密着不良や合金化不良を改善している。電気めっきは、電気にて強制的に電析させる手段であるため、焼鈍にて生じた局部的なPやSiの表面濃化物の有無、多少に関わらず均一に付着せしめる。したがって均一に付着させることが長所である電気めっき方法では、局部的にMnやP、Siが表面濃化した部分と濃化していない部分とで付与せしめた金属の効果の程度が同等であり、MnやP、Siの表面濃化が起きている部分での合金化ばらつきは解消できない。   With respect to this problem, in Patent Document 1 and Patent Document 2, the variation is eliminated by removing the surface concentrate of P or Si generated by annealing by a technique such as pickling or grinding. However, in Patent Document 1, since pickling is performed after annealing, a configuration different from that of a general hot dipping line in which molten metal mainly composed of hot dip galvanizing is allowed to pass through without being brought into contact with the atmosphere is required. In addition, in Patent Document 2, all of the equipment restrictions are extremely large, such as requiring a grinding process after passing through the molten metal after completion of annealing. Patent Document 3 attempts to improve the appearance by controlling the S content in the steel, but in addition to forcing desulfurization costs, it is basically related to ultra-low carbon mild steel, and Mn, P, and Si are added. The effect is never enough in high-strength steel. In patent document 4, the dispersion | variation in alloying is suppressed by providing a Mn compound to a steel plate prior to annealing. However, the application method is application of an aqueous solution, and the problem of picking up the oxide to the hearth roll is inevitable because it is Mn oxide rather than application of metal Mn, and the risk to the outer plate is great. Moreover, in patent document 5, the plating adhesion defect and alloying defect are improved by carrying out pre electroplating of Ni etc. prior to annealing. Since electroplating is a means for forcibly electrodepositing with electricity, it is uniformly deposited regardless of the presence or absence of local P or Si surface concentrates produced by annealing. Therefore, in the electroplating method which is an advantage to uniformly adhere, the degree of the effect of the metal imparted by the portion where the surface concentration of Mn, P, Si is locally concentrated and the portion where it is not concentrated is equivalent, The variation in alloying at the portion where the surface concentration of Mn, P, or Si occurs cannot be eliminated.

特開平7−70723号公報JP-A-7-70723 特許2576329号公報Japanese Patent No. 2576329 特開2005−2363号公報JP 2005-2363 A 特開平11−131204号公報JP-A-11-131204 特開昭57−188662号公報Japanese Unexamined Patent Publication No. 57-188862

本発明は上記の問題に鑑み、還元炉方式の溶融めっき設備において、高張力鋼板に含まれるMnやP、Siなどの表面濃化により引き起こされる合金化のばらつきとそれに伴う表面品位の劣化を改善することを目的とする外観品位に優れた高張力合金化溶融亜鉛めっき鋼板の製造方法を提供するものである。   In view of the above problems, the present invention improves the variation in alloying caused by the surface concentration of Mn, P, Si, etc. contained in high-strength steel sheets and the accompanying deterioration in surface quality in the reduction furnace type hot-dip plating equipment. An object of the present invention is to provide a method for producing a high-tensile alloyed hot-dip galvanized steel sheet having excellent appearance quality.

本発明者らは前記の高強度鋼板表面のP、Mn、Siの濃度分布による模様部分を調査したところ、模様部分では局部的に合金化が遅れており、部分的にめっきの厚みが小さくなることで、筋模様等を発生させていることを突き止めた。次に合金化の遅延を発生させている原因を検討したところ、MnやP、Siの濃化により合金化反応の差異が発生し、結果としてめっき厚みの差を引き起こしていたことを見出した。   When the present inventors investigated the pattern part by the density distribution of P, Mn, and Si on the surface of the high-strength steel sheet, alloying was delayed locally in the pattern part, and the plating thickness was partially reduced. As a result, it was found that streaks were generated. Next, when the cause of the delay in alloying was examined, it was found that a difference in alloying reaction occurred due to the concentration of Mn, P, and Si, resulting in a difference in plating thickness.

したがって、合金化反応の速度差による模様の発生を抑制するには、表面濃化を抑制するか、表面濃化しても合金化速度差を生まないような手段を考える必要がある。前者については、工業的生産において鋼板表面への元素の濃化をゼロにするのは現実的ではなく、後者についてさらに検討を重ねた。   Therefore, in order to suppress the generation of a pattern due to the difference in the speed of the alloying reaction, it is necessary to consider a means for suppressing the surface concentration or preventing the difference in the alloying speed even when the surface is concentrated. As for the former, it is not realistic to make element concentration zero on the steel sheet surface in industrial production, and the latter was further studied.

表面濃化によって遅延の生じる合金化反応は、鋼板が溶融亜鉛に浸漬した際に生じる鋼板地鉄のFeと溶融亜鉛中のAlによって発生するFe−Al合金層(バリア層)が、鋼板成分やその部分的濃化によって崩壊遅延を起こすことに起因しており、鋼中のMnやP、Siが高かったり、局部的に表面濃化した場合、前記バリア層の崩壊が遅れることで合金化反応に遅延や差異が生じることを見出した。したがって、単にバリア層を崩壊するだけでは合金化反応の差異を小さくする手段にならず、表面濃化した部分のバリア層の崩壊を優先的に早くして、その他の部分の崩壊速度とあわせることが必要である。   The alloying reaction, which is delayed by surface concentration, is caused by the Fe-Al alloy layer (barrier layer) generated by Fe in the steel sheet and Al in the molten zinc generated when the steel sheet is immersed in molten zinc. This is due to the fact that the partial concentration causes the decay delay, and when the Mn, P, and Si in the steel are high, or when the surface is locally concentrated, the alloying reaction is delayed by the decay of the barrier layer. We found that delays and differences occur. Therefore, simply disintegrating the barrier layer is not a means of reducing the difference in the alloying reaction, but preferentially speeds up the disintegration of the surface-enriched barrier layer to match the disintegration rate of the other portions. is required.

次に、MnやP、Siが表面濃化した部分のバリア層の崩壊を優先的に早くする手段を検討したところ、NiやCoを置換めっきすることで、表面濃化した部分に優先的にNiやCoが付着して、バリア層の崩壊を促進させることを見出すとともに、置換めっきの条件と鋼成分とに相関があることを見出した。   Next, when the means for preferentially accelerating the breakdown of the barrier layer in the portion where Mn, P, and Si are surface concentrated is examined, Ni and Co are preferentially applied to the surface concentrated portion by substitution plating. It has been found that Ni or Co adheres to promote the collapse of the barrier layer, and that there is a correlation between the conditions of displacement plating and the steel components.

本発明は上記の知見に基づきなされたもので、本発明の要旨とするところは、以下のとおりである。   The present invention has been made based on the above findings, and the gist of the present invention is as follows.

(1) 質量%で、
C:0.0001〜0.15%、
Si:0.005〜1.0%、
Mn:0.001〜2.5%、
P:0.005〜0.2%、
S:0.0001〜0.03%、
Al:0.001〜4%、
N:0.0001〜0.02%、
を含有し、かつPおよびSiがSi+P≦1.0%であり残Feおよび不可避的不純物を含有する高張力鋼板を、全還元炉方式の溶融亜鉛めっき設備を用いて焼鈍した後、該鋼板を大気に接触させることなく、溶融亜鉛めっきを主体とする溶融金属中を通板せしめ、次いで加熱合金化する合金化溶融亜鉛めっき鋼板の製造方法において、焼鈍前にあらかじめ置換めっきにて、NiまたはCoを金属量で0.1g/m以上、1.0g/m以下付着させることを特徴とする外観に優れた高張力合金化溶融亜鉛めっき鋼板の製造方法にある。
(1) In mass%,
C: 0.0001 to 0.15%,
Si: 0.005 to 1.0%,
Mn: 0.001 to 2.5%,
P: 0.005-0.2%
S: 0.0001 to 0.03%,
Al: 0.001 to 4%,
N: 0.0001 to 0.02%,
And a high-tensile steel plate containing P and Si with Si + P ≦ 1.0% and containing residual Fe and inevitable impurities using an all-reduction furnace type hot-dip galvanizing equipment, In a manufacturing method of an alloyed hot-dip galvanized steel sheet, which is made to pass through a molten metal mainly composed of hot-dip galvanized plating without being exposed to the atmosphere, and then heat-alloyed, Ni or Co in advance by substitution plating before annealing. Is in a method for producing a high-tensile galvannealed steel sheet having an excellent appearance, characterized in that 0.1 g / m 2 or more and 1.0 g / m 2 or less are attached in terms of metal amount.

(2) (1)の置換めっきがさらに、下記(A)式を満足することを特徴とする外観に優れた高張力合金化溶融亜鉛めっき鋼板の製造方法にある。{[t]・(Si/28+P/31+C/12)}/{[C]・[T]}≦1×10−4 ・ ・ ・(A)
ここで[C]:置換めっきに使用する金属の溶液濃度mol/l、[T]:置換めっき時の温度(K)、[t]:置換めっき時間(秒)
(2) The displacement plating of (1) further satisfies the following formula (A), and is a method for producing a high-tensile alloyed hot-dip galvanized steel sheet having an excellent appearance. {[t] · (Si / 28 + P / 31 + C / 12)} / {[C] · [T]} ≦ 1 × 10 −4.
Here, [C]: Solution concentration mol / l of metal used for displacement plating, [T]: Temperature during displacement plating (K), [t]: displacement plating time (seconds)

(3) (1)または(2)に記載の鋼板に、さらに質量%で、
Nb:0.001〜1%、
Ti:0.001〜1%、
V:0.001〜1%、
Zr:0.001〜1%、
Hf:0.001〜1%、
Ta:0.001〜1%、
Ce:0.001〜1%、
Mo:0.001〜1%、
Cr:0.001〜1%、
Ni:0.001〜1%、
Cu:0.001〜0.5%、
Co:0.001〜1%、
W:0.001〜1%、
Mg:0.001〜0.1%、
B:0.0001〜0.01%、
Y:0.001〜1%、
REM:0.0001〜0.01%、
Ca:0.0001〜0.01%、
の1種または2種以上を含有させることを特徴とする外観に優れた高張力合金化溶融亜鉛めっき鋼板の製造方法にある。
(3) In the steel plate according to (1) or (2), further in mass%,
Nb: 0.001 to 1%,
Ti: 0.001 to 1%,
V: 0.001 to 1%,
Zr: 0.001 to 1%,
Hf: 0.001 to 1%,
Ta: 0.001 to 1%,
Ce: 0.001 to 1%,
Mo: 0.001 to 1%,
Cr: 0.001 to 1%,
Ni: 0.001 to 1%,
Cu: 0.001 to 0.5%,
Co: 0.001-1%,
W: 0.001 to 1%,
Mg: 0.001 to 0.1%,
B: 0.0001 to 0.01%
Y: 0.001 to 1%,
REM: 0.0001 to 0.01%,
Ca: 0.0001 to 0.01%,
In the manufacturing method of the high-tensile-alloyed hot-dip galvanized steel sheet excellent in appearance characterized by containing one or more of the above.

以上述べたように、本発明は、高張力合金化溶融亜鉛めっき鋼板に発生しやすい模様を消失させ、自動車外板に厳しく要求される外観品位を安定させる手段を提供したものであり、産業への貢献はきわめて大きい。   As described above, the present invention provides means for eliminating the patterns that are likely to occur in high-tensile alloyed hot-dip galvanized steel sheets and stabilizing the appearance quality strictly required for automobile outer panels. The contribution of is extremely large.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

まず本発明における溶融亜鉛めっき設備は、全還元炉であることが前提である。   First, the hot dip galvanizing equipment in the present invention is premised on being a total reduction furnace.

ここで全還元方式とは、Feにとっての還元雰囲気、例えば水素−窒素雰囲気などの雰囲気が、焼鈍炉内全体を構成している溶融めっき設備を言う。   Here, the total reduction system refers to a hot dipping facility in which a reducing atmosphere for Fe, for example, an atmosphere such as a hydrogen-nitrogen atmosphere constitutes the entire annealing furnace.

焼鈍に先立ち鋼板に付与するNi、Coが、鋼板表面のMnやP、Siなどの濃化部分に優先的に置換めっきされる理由は明らかではないが、以下のように推察する。置換めっきは、鋼板の母材成分たる鉄と置換めっきされる鉄より電位的に貴な金属との電位差により金属が析出する反応であるため、鉄が溶出しやすい環境にあれば、置換めっきしやすい。鋼中にMnやP、Siなどが添加されると、鋼板内で局部電池を作り、局部的に鉄が溶出しやすくなるため、濃化したところにNiやCoは優先置換される。   The reason why Ni and Co imparted to the steel plate prior to annealing is preferentially replaced by plating on the concentrated portion of Mn, P, Si, etc. on the steel plate surface is not clear, but is presumed as follows. Displacement plating is a reaction in which metal precipitates due to a potential difference between the iron that is the base metal component of the steel sheet and the metal that is more precious than the iron to be replaced. Cheap. When Mn, P, Si, or the like is added to the steel, a local battery is formed in the steel plate, and iron is likely to elute locally, so that Ni or Co is preferentially substituted at the concentrated position.

なお、置換めっきとは、鉄より貴な電位を有する金属イオンと鉄との電位差によって金属が析出し鉄が溶解する電気化学反応であり、電流を強制的に印加し、鉄との電子交換をさせる必要のない電気めっきとは異なるめっきである。置換めっきは、鉄より貴な電位を有する金属イオンを含む水溶液に鋼板を接触させることで反応が進むものであり、一切の電流の印加も必要がない。外部から通電した場合には、その電流が微弱であっても電気めっきとして区別され、本発明への効果が現れない。また、還元補助剤を加えることで、母材と溶液中の金属イオンとの電子交換を生じさせない無電解めっきは、母材との電子交換が行われないため、置換めっきとは区別され、本発明の効果が現れない。   Displacement plating is an electrochemical reaction in which a metal precipitates due to a potential difference between iron and a metal ion having a potential nobler than iron and the iron dissolves, and an electric current is forcibly applied to exchange electrons with iron. It is a plating different from the electroplating that does not need to be performed. In displacement plating, the reaction proceeds by bringing a steel sheet into contact with an aqueous solution containing metal ions having a potential more noble than iron, and it is not necessary to apply any current. When energized from the outside, even if the current is weak, it is distinguished as electroplating and the effect on the present invention does not appear. In addition, electroless plating that does not cause electron exchange between the base material and metal ions in the solution by adding a reduction auxiliary agent is distinguished from displacement plating because electron exchange with the base material is not performed. The effect of the invention does not appear.

付与されたNiやCoがバリア層を崩壊させる理由も明らかではないが、バリア層の構成をする鉄と一部が置き換わり、崩壊しやすくなったものと推察する。   The reason why the Ni or Co imparted causes the barrier layer to collapse is not clear, but it is assumed that the iron constituting the barrier layer is partly replaced and is easily collapsed.

置換めっきにて付着させるNiやCoの量は0.1g/m以上であることが好ましく、0.1g/m未満では模様を打ち消す効果が乏しい。また1.0g/m以上付与しても効果が飽和するため、コストを考慮し1.0g/m以下とする。ラインで置換めっきを行う時間が数秒程度であることを考慮すると、0.1g/m以上、0.5g/m以下が操業しやすく、さらに好ましい。 The amount of Ni or Co deposited by displacement plating is preferably 0.1 g / m 2 or more, and if it is less than 0.1 g / m 2 , the effect of canceling the pattern is poor. Moreover, since an effect will be saturated even if it gives 1.0g / m < 2 > or more, considering cost, it shall be 1.0 g / m < 2 > or less. Considering that the time for performing substitution plating in the line is about several seconds, 0.1 g / m 2 or more and 0.5 g / m 2 or less are easy to operate, and more preferable.

次に、本発明の合金化溶融亜鉛めっき鋼の鋼成分について説明する。   Next, the steel components of the galvannealed steel of the present invention will be described.

C:0.0001〜0.15%
Cは鋼の強化元素であるが、C量が0.15%を超えると脆化しやすくなるため、上限を0.15%とする。また、線状マーク等の模様の発生はC:0.0051%以上のものに特に多く、本発明は、0.0051%以上のC量を含む鋼板に対してさらに有効である。なお、高張力鋼板には、極低炭素鋼の種類もあるため、特に下限は定めないが、不可避的に0.0001%以上は含まれる。
C: 0.0001 to 0.15%
C is a strengthening element of steel, but if the amount of C exceeds 0.15%, it tends to become brittle, so the upper limit is made 0.15%. In addition, the occurrence of patterns such as linear marks is particularly large in C: 0.0051% or more, and the present invention is more effective for a steel sheet containing a C amount of 0.0051% or more. In addition, since there is also a kind of ultra-low carbon steel in the high-tensile steel plate, a lower limit is not particularly defined, but unavoidably 0.0001% or more is included.

Si:0.005〜1.0%
Siは鋼の固溶強化、脱酸の効果を有する元素である。しかし、1.0%超添加すると溶融亜鉛めっき時にめっきのむらや不めっきなどが発生し、本発明の手段でも模様を完全には消失できなくさせてしまうため、上限を1.0%とする。下限は特に定めないが、ランクフォード値などの材質を悪化させずに高強度化できる数少ない元素であるとともに、コスト的にも有利な強化元素であり、鋼の高強度には、0.005%以上添加することが好ましい。
Si: 0.005 to 1.0%
Si is an element having the effects of solid solution strengthening and deoxidation of steel. However, if over 1.0% is added, uneven plating or non-plating occurs during hot dip galvanizing, and the pattern cannot be completely eliminated even by means of the present invention, so the upper limit is made 1.0%. Although the lower limit is not particularly defined, it is one of the few elements that can be strengthened without deteriorating the material such as the Rankford value, and is a strengthening element advantageous in terms of cost. 0.005% for high strength of steel It is preferable to add more.

Mn:0.001〜2.5%
Mnも鋼の高強度化、脱酸の効果を有する元素である。しかし、2.5%超添加すると脆化しやすくなり、伸びなどの材質が落ちる。また、溶融亜鉛めっき時にめっきの濡れ性を阻害し、まためっき密着性も劣化させるだけでなく、置換めっきを用いてもめっき模様を消失できなくなるため、上限を2.5%とする。0.001%未満では強度が確保できないため下限を0.001%とする。
Mn: 0.001 to 2.5%
Mn is also an element having the effect of increasing the strength of steel and deoxidizing. However, if added over 2.5%, it becomes brittle and material such as elongation falls. Further, not only the wettability of the plating is hindered during hot dip galvanization, but also the plating adhesion is deteriorated, and the plating pattern cannot be lost even if displacement plating is used, so the upper limit is set to 2.5%. If less than 0.001%, the strength cannot be secured, so the lower limit is made 0.001%.

P:0.005〜0.2%
Pは鋼の高強度化に必須な元素の一つである。特にランクフォード値などの材質を悪化させずに高強度化できる数少ない元素であり、鋼の高強度化の観点から0.005%以上が好ましい。しかし、0.2%超添加すると脆化しやすくなるうえ、溶融亜鉛めっき時にめっきのむらや不めっきなどが発生し、本発明の手段でも模様を完全には消失できなくさせてしまうため上限を0.2%とする。なお、自動車用途の高強度鋼板として340MPa〜980MPaが多用されることを考慮すると、高強度化と脆性バランスを考慮し、0.01〜0.1%がさらに好ましい。
P: 0.005-0.2%
P is one of the elements essential for increasing the strength of steel. In particular, it is a few elements that can increase the strength without deteriorating the material such as the Rankford value, and 0.005% or more is preferable from the viewpoint of increasing the strength of the steel. However, if added over 0.2%, embrittlement is likely to occur, plating unevenness or non-plating occurs during hot dip galvanizing, and the pattern cannot be completely eliminated even by the means of the present invention, so the upper limit is set to 0. 2%. In consideration of the fact that 340 MPa to 980 MPa is frequently used as a high-strength steel sheet for automobiles, 0.01 to 0.1% is more preferable in consideration of increasing strength and brittle balance.

S:0.0001〜0.03%以下
Sは不純物であり、加工性や熱間脆性を劣化させるため少ないほうが望ましいが極低化は経済的に不利であるため下限を0.0001%とした。また0.03%超添加すると溶接性や、鋳造時や熱延時の製造性に悪影響を及ぼすため0.03%以下とする。
S: 0.0001 to 0.03% or less S is an impurity, and it is desirable to reduce the amount because it deteriorates workability and hot brittleness. However, since the extremely low is economically disadvantageous, the lower limit is set to 0.0001%. . Further, if added over 0.03%, the weldability and the manufacturability during casting and hot rolling are adversely affected, so the content is made 0.03% or less.

Al:0.001〜4%
Alは脱酸た強度延性バランスを向上させたり、めっきの合金化挙動を促進させるため0.001%以上添加する。しかし4%超では溶接性やめっき濡れ性、製造性に悪影響が出るため上限を4%とした。
Al: 0.001 to 4%
Al is added in an amount of 0.001% or more in order to improve the deoxidized strength ductility balance or to promote the alloying behavior of the plating. However, if it exceeds 4%, the weldability, plating wettability and manufacturability are adversely affected, so the upper limit was made 4%.

N:0.0001〜0.02%
Nは不純物であり、加工性や熱間脆性を劣化させるため少ないほうが望ましいが極低化は経済的に不利であるため下限を0.0001%とした。また焼付硬化性や強度向上を狙って添加する場合でも0.02%超では材質劣化の方が大きく、上限を0.02%とした。
N: 0.0001 to 0.02%
N is an impurity, and it is desirable to reduce the N content because it degrades workability and hot brittleness. However, since the extremely low is economically disadvantageous, the lower limit is set to 0.0001%. Moreover, even when adding for the purpose of improving bake hardenability and strength, if it exceeds 0.02%, the material deterioration is larger, and the upper limit is made 0.02%.

なお、本発明が対象とする高張力鋼板は、Si+P≦1.0%である。図1に鋼中Si濃度、鋼中P濃度と不めっきや材質劣化が発生する領域を示す。図中の○は不めっきや模様等の異常が認められなかったものを、×は不めっきまたは模様の発生が顕著だったものを、▲は材質上問題があったものを、▼は材質上問題があり、不めっきまたは模様の発生も顕著だった例をプロットしたものである。Si+Pが1.0%を超えると、溶融亜鉛めっき時にめっきのむらや不めっきなどが顕著に発生し、本発明の手段でも模様を完全には消失できない。また、Pが0.2%をこえると、材質上の問題があるため、これ以下とする。図1における白色領域の範囲が本発明の範囲に相当する。   In addition, the high-tensile steel plate which this invention makes object is Si + P <= 1.0%. FIG. 1 shows the Si concentration in steel, the P concentration in steel, and the region where non-plating or material deterioration occurs. ○ in the figure indicates that no abnormalities such as unplating or pattern were observed, × indicates that there was no significant plating or patterning, ▲ indicates that there was a problem with the material, and ▼ indicates that there was a problem with the material This is a plot of an example where there was a problem and the occurrence of non-plating or pattern was remarkable. When Si + P exceeds 1.0%, uneven plating or non-plating occurs during hot dip galvanizing, and the pattern cannot be completely eliminated even by the means of the present invention. Further, if P exceeds 0.2%, there is a problem in the material, so it is set below this. The range of the white region in FIG. 1 corresponds to the range of the present invention.

さらに本発明においては、置換めっきされる金属の水溶液中の金属イオン濃度C(mol/l)、置換めっきする温度T(K)、置換めっきする時間t(秒)と、鋼成分C濃度(%)、P濃度(%)、Si濃度(%)とで、下記(A)式を満足することがさらに好ましい。図2に鋼中Si+P濃度、(A)式左辺の値と本発明の範囲およびさらに好ましい範囲をデータのプロットともに示す。図中の◎は、不めっきやむら等がなく均一外観であるもの、○は外観のむらや模様がほとんどなく、自動車向け内板部品に使用可能なレベルのもの、×は不めっきや模様が顕著に生じた例をプロットしたものである。その作用機構は明らかではないが、図2において、斜線範囲内に維持することで外観やめっき密着性をさらに改善できる。
{[t]・(Si/28+P/31+C/12)}/{[C]・[T]}≦1×10−4 ・ ・ ・(A)
ここで[C]:置換めっきに使用する金属の溶液濃度mol/l、[T]:置換めっき時の温度(K)、[t]:置換めっき時間(秒)、Si、P、C:各成分の質量%である。
Further, in the present invention, the metal ion concentration C (mol / l) in the aqueous solution of the metal to be displacement plated, the temperature T (K) for displacement plating, the time t (second) for displacement plating, and the steel component C concentration (%) ), P concentration (%), and Si concentration (%), it is more preferable to satisfy the following formula (A). FIG. 2 shows the Si + P concentration in steel, the value on the left side of formula (A), the range of the present invention, and a more preferable range together with data plots. ◎ in the figure indicates a uniform appearance with no plating or unevenness, ○ indicates that there is almost no unevenness or pattern in the appearance and is a level that can be used for automotive interior parts, and × indicates that there is no plating or pattern This is a plot of the example that occurred. The mechanism of action is not clear, but the appearance and plating adhesion can be further improved by maintaining within the shaded area in FIG.
{[T] · (Si / 28 + P / 31 + C / 12)} / {[C] · [T]} ≦ 1 × 10 −4.
Here, [C]: solution concentration mol / l of metal used for displacement plating, [T]: temperature during displacement plating (K), [t]: displacement plating time (seconds), Si, P, C: each It is the mass% of an ingredient.

なお、上式の左辺の下限は定めないが、左辺を小さくすることは、置換めっきされる水溶液中の金属イオン濃度を大きくしたり、置換めっきする温度を高めたり、置換めっきする時間を長くする必要がある、などコストアップや生産性低下の方向であるため、1×10−8程度までの条件が好ましい。 Although the lower limit of the left side of the above equation is not defined, reducing the left side increases the metal ion concentration in the aqueous solution to be replaced, increases the temperature for replacement plating, or lengthens the time for replacement plating. Since it is in the direction of cost increase and productivity reduction such as necessity, conditions up to about 1 × 10 −8 are preferable.

本発明では、さらに必要に応じて下記の元素のうち1種または2種以上を添加することも好ましい。   In the present invention, it is also preferable to add one or more of the following elements as necessary.

Nb:0.001〜1%
Nbは強度のさらなる向上を目的として、微細な炭化物、窒化物または炭窒化物を形成して鋼板を強化することができる。その効果を発揮するためには0.001%以上の添加を必要とするが、1%超添加すると延性が劣化してしまうため上限を1%とした。
Nb: 0.001 to 1%
Nb can strengthen the steel sheet by forming fine carbides, nitrides or carbonitrides for the purpose of further improving the strength. In order to exhibit the effect, 0.001% or more of addition is required, but if added over 1%, the ductility deteriorates, so the upper limit was made 1%.

Ti:0.001〜1%
Tiも同様に強度のさらなる向上を目的として、微細な炭化物、窒化物または炭窒化物を形成して鋼板を強化することができる。その効果を発揮するためには0.001%以上の添加を必要とするが、1%超添加すると延性が劣化してしまうため上限を1%とした。
Ti: 0.001 to 1%
Similarly, Ti can reinforce the steel sheet by forming fine carbides, nitrides or carbonitrides for the purpose of further improving the strength. In order to exhibit the effect, 0.001% or more of addition is required, but if added over 1%, the ductility deteriorates, so the upper limit was made 1%.

V:0.001〜1%
Vも同様に強度のさらなる向上を目的として、微細な炭化物、窒化物または炭窒化物を形成して鋼板を強化することができる。その効果を発揮するためには0.001%以上の添加を必要とするが、1%超添加すると延性が劣化してしまうため上限を1%とした。
V: 0.001 to 1%
V can similarly strengthen the steel sheet by forming fine carbides, nitrides or carbonitrides for the purpose of further improving the strength. In order to exhibit the effect, 0.001% or more of addition is required, but if added over 1%, the ductility deteriorates, so the upper limit was made 1%.

Zr:0.001〜1%
Zrも同様に強度のさらなる向上を目的として、微細な炭化物、窒化物または炭窒化物を形成して鋼板を強化することができる。その効果を発揮するためには0.001%以上の添加を必要とするが、1%超添加すると延性が劣化してしまうため上限を1%とした。
Zr: 0.001 to 1%
Similarly, Zr can strengthen steel sheets by forming fine carbides, nitrides or carbonitrides for the purpose of further improving the strength. In order to exhibit the effect, 0.001% or more of addition is required, but if added over 1%, the ductility deteriorates, so the upper limit was made 1%.

Hf:0.001〜1%
Hfも同様に強度のさらなる向上を目的として、微細な炭化物、窒化物または炭窒化物を形成して鋼板を強化することができる。その効果を発揮するためには0.001%以上の添加を必要とするが、1%超添加すると延性が劣化してしまうため上限を1%とした。
Hf: 0.001 to 1%
Similarly, Hf can reinforce the steel sheet by forming fine carbide, nitride or carbonitride for the purpose of further improving the strength. In order to exhibit the effect, 0.001% or more of addition is required, but if added over 1%, the ductility deteriorates, so the upper limit was made 1%.

Ta:0.001〜1%
Taも同様に強度のさらなる向上を目的として、微細な炭化物、窒化物または炭窒化物を形成して鋼板を強化することができる。その効果を発揮するためには0.001%以上の添加を必要とするが、1%超添加すると延性が劣化してしまうため上限を1%とした。
Ta: 0.001 to 1%
Similarly, Ta can reinforce the steel sheet by forming fine carbides, nitrides or carbonitrides for the purpose of further improving the strength. In order to exhibit the effect, 0.001% or more of addition is required, but if added over 1%, the ductility deteriorates, so the upper limit was made 1%.

Ce:0.001〜1%
Ceはめっき濡れ性や加工性を向上させるために0.001%以上添加する。しかし1%超添加すると鋳造時や熱延時の製造性に影響が出たり延性が低下するため上限を1%とした。
Ce: 0.001 to 1%
Ce is added in an amount of 0.001% or more in order to improve plating wettability and workability. However, if over 1% is added, the manufacturability at the time of casting or hot rolling is affected or the ductility is lowered, so the upper limit was made 1%.

Mo:0.001〜1%
Moは耐食性工場および硬度向上を目的として添加する0.001%以上の添加でその効果が出るが、1%超転換するとフェライトを硬化させ延性が低化するため上限を1%とした。
Mo: 0.001 to 1%
The effect of Mo is added by adding 0.001% or more, which is added for the purpose of improving corrosion resistance and hardness, but if it exceeds 1%, the ferrite is hardened and the ductility is lowered, so the upper limit was made 1%.

Cr:0.001〜1%
0.001%以上の添加で強度が向上する。しかし1%超添加すると加工性に悪影響が出るため上限を1%とした。
Cr: 0.001 to 1%
Addition of 0.001% or more improves strength. However, if over 1% is added, the workability is adversely affected, so the upper limit was made 1%.

Ni:0.001〜1%
0.001%以上の添加で強度が向上したり、Cuを添加した場合の熱延時の製造性低下を回避する。しかし1%超添加すると加工性に悪影響が出るため上限を1%とした。
Ni: 0.001 to 1%
Addition of 0.001% or more avoids a decrease in manufacturability during hot rolling when the strength is improved or Cu is added. However, if over 1% is added, the workability is adversely affected, so the upper limit was made 1%.

Cu:0.001〜0.5%
0.001%以上の添加で強度や耐食性が向上する。しかし0.5%超添加すると熱延での加工性に大きな悪影響が出るため上限を0.5%とした。
Cu: 0.001 to 0.5%
Addition of 0.001% or more improves strength and corrosion resistance. However, if added over 0.5%, the workability in hot rolling is greatly adversely affected, so the upper limit was made 0.5%.

Co:0.001〜1%
0.001%以上の添加で強度が向上する。しかし1%超添加すると加工性に悪影響が出るため上限を1%とした。
Co: 0.001 to 1%
Addition of 0.001% or more improves strength. However, if over 1% is added, the workability is adversely affected, so the upper limit was made 1%.

W:0.001〜1%
0.001%以上の添加で強度が向上する。しかし1%超添加すると加工性に悪影響が出るため上限を1%とした。
W: 0.001 to 1%
Addition of 0.001% or more improves strength. However, if over 1% is added, the workability is adversely affected, so the upper limit was made 1%.

Mg:0.001〜0.1%
Mgはめっき濡れ性やあ構成を向上させるために0.001%以上添加する。しかし0.1%超添加すると添加合金コストが大きくかかる上、鋳造時や熱延時の製造性に影響が出たり延性が低下するため上限を0.1%とした。
Mg: 0.001 to 0.1%
Mg is added in an amount of 0.001% or more in order to improve the plating wettability and the structure. However, if the content exceeds 0.1%, the added alloy costs are increased, and the manufacturability at the time of casting or hot rolling is affected or the ductility is lowered, so the upper limit was made 0.1%.

B:0.0001〜0.01%
Bは0.0001%以上添加すると強度や2次加工性が向上する。しかし0.01%超添加すると加工性が劣化するため上限を0.01%とした。
B: 0.0001 to 0.01%
When B is added in an amount of 0.0001% or more, strength and secondary workability are improved. However, if added over 0.01%, the workability deteriorates, so the upper limit was made 0.01%.

Y:0.001〜1%
Yはめっき濡れ性や加工性を向上させるために0.001%以上添加する。しかし1%超添加すると鋳造時や熱延時の製造性に影響が出たり延性が低下するため上限を1%とした。
Y: 0.001 to 1%
Y is added in an amount of 0.001% or more in order to improve plating wettability and workability. However, if over 1% is added, the manufacturability at the time of casting or hot rolling is affected or the ductility is lowered, so the upper limit was made 1%.

REM:0.0001〜0.01%
REMはめっき濡れ性や局部延性などの加工性を向上させるために0.0001%以上添加する。しかし0.01%超添加すると鋳造時や熱延時の製造性に影響が出たり延性が低下するため上限を0.01%とした。
REM: 0.0001 to 0.01%
REM is added in an amount of 0.0001% or more in order to improve workability such as plating wettability and local ductility. However, if over 0.01% is added, the manufacturability at the time of casting or hot rolling is affected or the ductility is lowered, so the upper limit was made 0.01%.

Ca:0.0001〜0.01%
Caはめっき濡れ性や局部延性などの加工性を向上させるために0.0001%以上添加する。しかし0.01%超添加すると鋳造時や熱延時の製造性に影響が出たり延性が低下するため上限を1%とした。
Ca: 0.0001 to 0.01%
Ca is added in an amount of 0.0001% or more in order to improve workability such as plating wettability and local ductility. However, if over 0.01% is added, the manufacturability at the time of casting or hot rolling will be affected or the ductility will be lowered, so the upper limit was made 1%.

NiまたはCoを置換めっきするための条件は定めないが、例えば硫酸浴、ハロゲン化物浴などを使用し、浴温50〜90℃で浸漬またはスプレー、塗布などの手段を用いることができる。置換めっき後は、残液による汚れを防止するために、リンスにより置換めっき浴を洗い流すことが好ましい。   Although conditions for displacement plating of Ni or Co are not defined, for example, a sulfuric acid bath, a halide bath, or the like is used, and means such as dipping, spraying, or coating can be used at a bath temperature of 50 to 90 ° C. After displacement plating, it is preferable to rinse away the displacement plating bath by rinsing in order to prevent contamination by residual liquid.

また、加熱合金化の手段は、外観品位を損ねないために、直火バーナーなどの外部加熱ではなく、内部加熱であることが好ましく、誘導加熱方式が適する。   The heating alloying means is preferably internal heating rather than external heating such as a direct flame burner so that appearance quality is not impaired, and an induction heating method is suitable.

合金化温度は、加熱炉直上の板温度を各種温度計で測定した温度とし、その温度については特に限定せず、鋼種、生産速度、浴中のAl濃度、焼鈍条件、その他の条件に応じて決められた温度あるいは温度範囲でかまわない。例えば450℃から650℃が採用することができる。   The alloying temperature is the temperature measured on the plate temperature just above the heating furnace with various thermometers, and the temperature is not particularly limited, depending on the steel type, production rate, Al concentration in the bath, annealing conditions, and other conditions. It does not matter at a predetermined temperature or temperature range. For example, 450 ° C. to 650 ° C. can be employed.

ここで、各種温度計とは、接触式の温度計や放射温度計といった非接触式の温度計などいずれでもかまわない。   Here, the various thermometers may be any of non-contact thermometers such as contact thermometers and radiation thermometers.

溶融亜鉛めっき浴の温度は従来から適用されている条件で良く、例えば、440℃〜480℃といった条件が適用できる。また、溶融金属としては、亜鉛主体であれば不可避的にPb、Cd、Ni、Fe、Al、Ti、Nb、Mg、Mn、等を含んでも良く、さらに、めっき層の品質等を向上するために、Mg、Ti、Mn、Fe、Ni、Co、Alを所定量添加してもよい。このようにして溶融亜鉛めっきを30〜200g/m施すことにより、種々の用途に適用することができる。 The temperature of the hot dip galvanizing bath may be a conventionally applied condition. For example, a condition of 440 ° C. to 480 ° C. can be applied. Further, the molten metal may inevitably contain Pb, Cd, Ni, Fe, Al, Ti, Nb, Mg, Mn, etc. as long as it is mainly composed of zinc, and in order to improve the quality of the plating layer, etc. In addition, a predetermined amount of Mg, Ti, Mn, Fe, Ni, Co, and Al may be added. Thus, it can apply to various uses by performing hot-dip galvanization 30-200 g / m < 2 >.

このようにして得られた溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板表面に塗装性や溶接性、潤滑性、耐食性等を改善する目的で、必要に応じて各種の電気めっきやクロメート処理、潤滑性向上処理、りん酸塩処理、樹脂塗布処理、溶接性向上処理等を施すことができる。   Various electroplating, chromate treatment, and lubrication are performed as necessary for the purpose of improving the paintability, weldability, lubricity, corrosion resistance, etc. on the surface of the galvanized steel sheet and galvannealed steel sheet thus obtained. A property improving process, a phosphate process, a resin coating process, a weldability improving process, etc. can be performed.

次に、本発明の実施例を比較例とともにあげる。   Next, the Example of this invention is given with a comparative example.

供試材は表1に成分を示す板厚1.2mmの冷延鋼板を用いた。置換めっきは、表2−1および表2−2に示すように各種の置換めっき浴と処理条件を採用し各種金属を付着させた。また、置換めっき法を用いた場合は、(A)式の左辺の値を算出し、表2−1および表2−2に示した。焼鈍条件は鋼板温度800℃、ラジアントチューブによる全還元炉方式で加熱し、炉内雰囲気の条件は、5%水素−残窒素の還元ガスを用い、酸素濃度10ppm、露点−40℃である。溶融亜鉛めっき浴の組成は、0.13%Al、0.03%Fe残り亜鉛とした。浴温度は460℃とした。溶融めっきは、実施例、比較例ともに浴中の通板時間を3秒とし、Nガスワイパーにて亜鉛の付着量を50g/mに調整した。また、誘導加熱方式またはガス加熱方式の加熱設備を用い、合金化温度500℃でめっきを施した後、気水冷却にて室温まで冷却した。作成したサンプルの評価は、外観、めっき密着性について調べた。評価の外観は、目視外観と加工後外観の両者を評価した。目視外観は、めっきままのサンプルを目視で評価し、不めっきやむら等がなく均一外観であり、自動車向け外板、例えば外部から目視できるフェンダー、ルーフ等の部品に使用可能なものを◎、外観のむらや模様がほとんどなく、自動車向け内板、例えばボディ内部の部品に使用可能なものを○、不めっきはないものの、外観にむらや模様が顕著に観察され、自動車内外板向け材料として不適なものを△、不めっきが生じ実用不可のものを×で評価した。また、加工後外観とは、合金化溶融亜鉛めっき鋼板を砥石がけし、外観に筋やむら等が現れない均一外観であるものを○、外観にむらや模様が観察されるものを×で評価した。 The test material used was a cold-rolled steel sheet having a thickness of 1.2 mm and the components shown in Table 1. As shown in Table 2-1 and Table 2-2, displacement plating employs various displacement plating baths and processing conditions to deposit various metals. Moreover, when the displacement plating method was used, the value of the left side of (A) type | formula was computed and it showed to Table 2-1 and Table 2-2. The annealing conditions were a steel plate temperature of 800 ° C., heating by a radiant tube all-reduction furnace method, and the furnace atmosphere conditions were 5% hydrogen-remaining nitrogen reducing gas, oxygen concentration 10 ppm, dew point -40 ° C. The composition of the hot dip galvanizing bath was 0.13% Al and 0.03% Fe remaining zinc. The bath temperature was 460 ° C. In hot dip plating, in both the examples and comparative examples, the plate passing time in the bath was 3 seconds, and the amount of zinc deposited was adjusted to 50 g / m 2 with an N 2 gas wiper. In addition, using an induction heating type or gas heating type heating facility, plating was performed at an alloying temperature of 500 ° C., and then cooled to room temperature by air-water cooling. Evaluation of the prepared sample was examined for appearance and plating adhesion. As for the appearance of evaluation, both the visual appearance and the appearance after processing were evaluated. The visual appearance is a visual evaluation of the as-plated sample, and it has a uniform appearance with no unplating or unevenness, etc., which can be used for automotive outer plates, such as fenders and roofs that can be seen from the outside, Almost no appearance irregularities and patterns, ○ for inner plates for automobiles, such as those that can be used for parts inside the body, although there is no non-plating, irregularities and patterns are noticeably observed on the outer appearance and are not suitable as materials for inner and outer plates of automobiles The case was evaluated as “な”, and the case where non-plating occurred and impractical was evaluated as “×”. In addition, the post-process appearance is evaluated by ◯ when the alloyed hot-dip galvanized steel sheet is ground with a whetstone and the appearance is uniform with no streaks or irregularities appearing. did.

また、その他の品質としてめっき密着性を評価し、Fe含有率10mass%の合金化溶融亜鉛めっき鋼板を60°V曲げし、曲げ部分のめっき剥離幅を測定した。評価は剥離幅3mm以内を◎、剥離幅3mm超、6mm以内を○、剥離幅6mm超を×とした。結果を表2に示す。   In addition, as another quality, plating adhesion was evaluated, an alloyed hot-dip galvanized steel sheet having an Fe content of 10 mass% was bent at 60 ° V, and the plating peeling width of the bent portion was measured. In the evaluation, the peeling width within 3 mm was marked with ◎, the peeling width over 3 mm, within 6 mm with ◯, and the peeling width over 6 mm with x. The results are shown in Table 2.

表2−1の本発明例1〜44は何れも、外観、めっき密着性に優れた。さらに前記(A)式を満足した実施例では、特に外観に優れた。一方、表2−2に示す付着量が少なかったり付着させなかった比較例45〜48、53〜65、67〜72では目視外観や加工後外観に劣った。また処理法に電析(電気めっき法)を用いた比較例49〜52、61〜64、66、67、71ではめっきまま、または加工後のいずれかの外観改善に至らなかった。さらにMn濃度が大きすぎたり、P+Si濃度が大きすぎた鋼種を用いた比較例73〜80では置換めっきによる改善がかなわなかった。   Inventive Examples 1 to 44 in Table 2-1 were all excellent in appearance and plating adhesion. Furthermore, in the examples satisfying the formula (A), the appearance was particularly excellent. On the other hand, in Comparative Examples 45 to 48, 53 to 65, and 67 to 72 in which the adhesion amount shown in Table 2-2 was small or not adhered, the visual appearance and the appearance after processing were inferior. Further, in Comparative Examples 49 to 52, 61 to 64, 66, 67, and 71 using electrodeposition (electroplating method) as the treatment method, the appearance was not improved either as plated or after processing. Further, in Comparative Examples 73 to 80 using steel types in which the Mn concentration was too high or the P + Si concentration was too high, the improvement by substitution plating could not be achieved.

Figure 0005009035
Figure 0005009035

Figure 0005009035
Figure 0005009035

Figure 0005009035
Figure 0005009035

鋼中Si濃度、鋼中P濃度と不めっきや材質劣化が発生する領域を示した図である。It is the figure which showed the area | region where Si density | concentration in steel, P density | concentration in steel, and non-plating and material deterioration generate | occur | produce. 鋼中Si+P濃度、(A)式左辺の値と本発明の範囲およびさらに好ましい範囲をデータのプロットともに示した図である。It is the figure which showed the Si + P density | concentration in steel, the value of the left side of (A) type | formula, the range of this invention, and the more preferable range with the plot of data.

Claims (3)

質量%で、
C:0.0001〜0.15%、
Si:0.005〜1.0%、
Mn:0.001〜2.5%、
P:0.005〜0.2%、
S:0.0001〜0.03%、
Al:0.001〜4%、
N:0.0001〜0.02%、
を含有し、かつPおよびSiが
Si+P≦1.0%
であり残Feおよび不可避的不純物を含有する高張力鋼板を、全還元炉方式の溶融亜鉛めっき設備を用いて焼鈍した後、該鋼板を大気に接触させることなく、溶融亜鉛めっきを主体とする溶融金属中を通板せしめ、次いで加熱合金化する合金化溶融亜鉛めっき鋼板の製造方法において、焼鈍前にあらかじめ置換めっきにて、NiまたはCoを金属量で0.1g/m以上、1.0g/m以下付着させることを特徴とする外観に優れた高張力合金化溶融亜鉛めっき鋼板の製造方法。
% By mass
C: 0.0001 to 0.15%,
Si: 0.005 to 1.0%,
Mn: 0.001 to 2.5%,
P: 0.005-0.2%
S: 0.0001 to 0.03%,
Al: 0.001 to 4%,
N: 0.0001 to 0.02%,
And P and Si are Si + P ≦ 1.0%
After annealing a high-tensile steel plate containing residual Fe and unavoidable impurities using a hot-dip galvanizing facility of the all-reduction furnace method, the hot-dip galvanizing is mainly performed without bringing the steel plate into contact with the atmosphere. In a method for producing an alloyed hot-dip galvanized steel sheet, which is made to pass through a metal and then heat-alloyed, Ni or Co is added in a metal amount of 0.1 g / m 2 or more and 1.0 g in advance by displacement plating before annealing. / M 2 or less, A method for producing a high-tensile galvannealed steel sheet having an excellent appearance, characterized by being adhered.
請求項1の置換めっきがさらに、下記(A)式を満足することを特徴とする外観に優れた高張力合金化溶融亜鉛めっき鋼板の製造方法。
{[t]・(Si/28+P/31+C/12)}/{[C]・[T]}≦1×10−4 ・ ・ ・ (A)
[C]:置換めっきに使用する金属の溶液濃度mol/l
[T]:置換めっき時の温度(K)
[t]:置換めっき時間(秒)
The method for producing a high-tensile alloyed hot-dip galvanized steel sheet excellent in appearance, wherein the displacement plating of claim 1 further satisfies the following formula (A).
{[T] · (Si / 28 + P / 31 + C / 12)} / {[C] · [T]} ≦ 1 × 10 −4 (A)
[C]: Solution concentration mol / l of metal used for displacement plating
[T]: Temperature during displacement plating (K)
[T]: displacement plating time (seconds)
請求項1または請求項2に記載の鋼板に、さらに質量%で、
Nb:0.001〜1%、
Ti:0.001〜1%、
V:0.001〜1%、
Zr:0.001〜1%、
Hf:0.001〜1%、
Ta:0.001〜1%、
Ce:0.001〜1%、
Mo:0.001〜1%、
Cr:0.001〜1%、
Ni:0.001〜1%、
Cu:0.001〜0.5%、
Co:0.001〜1%、
W:0.001〜1%、
Mg:0.001〜0.1%、
B:0.0001〜0.01%、
Y:0.001〜1%、
REM:0.0001〜0.01%、
Ca:0.0001〜0.01%、
の1種または2種以上を含有させることを特徴とする外観に優れた高張力合金化溶融亜鉛めっき鋼板の製造方法。
In the steel plate according to claim 1 or 2, further in mass%,
Nb: 0.001 to 1%,
Ti: 0.001 to 1%,
V: 0.001 to 1%,
Zr: 0.001 to 1%,
Hf: 0.001 to 1%,
Ta: 0.001 to 1%,
Ce: 0.001 to 1%,
Mo: 0.001 to 1%,
Cr: 0.001 to 1%,
Ni: 0.001 to 1%,
Cu: 0.001 to 0.5%,
Co: 0.001-1%,
W: 0.001 to 1%,
Mg: 0.001 to 0.1%,
B: 0.0001 to 0.01%
Y: 0.001 to 1%,
REM: 0.0001 to 0.01%,
Ca: 0.0001 to 0.01%,
A method for producing a high-tensile alloyed hot-dip galvanized steel sheet excellent in appearance, characterized by containing one or more of the above.
JP2007108519A 2007-04-17 2007-04-17 Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent appearance Active JP5009035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007108519A JP5009035B2 (en) 2007-04-17 2007-04-17 Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent appearance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007108519A JP5009035B2 (en) 2007-04-17 2007-04-17 Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent appearance

Publications (2)

Publication Number Publication Date
JP2008266685A JP2008266685A (en) 2008-11-06
JP5009035B2 true JP5009035B2 (en) 2012-08-22

Family

ID=40046568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007108519A Active JP5009035B2 (en) 2007-04-17 2007-04-17 Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent appearance

Country Status (1)

Country Link
JP (1) JP5009035B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101277886B1 (en) 2011-06-28 2013-06-21 현대제철 주식회사 1GPa GRADE HIGH TENSION STEEL AND WELDING METHOD FOR SOFTENED REGION REDUCTION OF THE STEEL
CN104862629B (en) * 2015-05-27 2017-09-26 武汉钢铁有限公司 A kind of direct hot galvanizing method of hot rolled thin strip reduced based on CO
CN105603307A (en) * 2016-02-01 2016-05-25 东莞品派实业投资有限公司 Aluminum alloy for automobile outer cover part and preparation method thereof
CN105950982A (en) * 2016-07-13 2016-09-21 芜湖恒固混凝土材料有限公司 Metal material for concrete mixing tank and preparation method thereof
KR102467206B1 (en) * 2018-07-30 2022-11-16 닛폰세이테츠 가부시키가이샤 Hot-dip galvanizing treatment method, manufacturing method of alloyed hot-dip galvanized steel sheet using the hot-dip galvanizing treatment method, manufacturing method of hot-dip galvanized steel sheet using the hot-dip galvanizing treatment method, alloyed hot-dip galvanized steel sheet and hot-dip galvanized steel sheet
CN114702241B (en) * 2022-03-24 2023-07-07 成都光明光电股份有限公司 Near infrared light absorbing glass, element and filter

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774472B2 (en) * 1990-07-04 1995-08-09 株式会社神戸製鋼所 Multi-layer alloy electric plated steel sheet
JPH05320945A (en) * 1992-05-22 1993-12-07 Sumitomo Metal Ind Ltd Galvannealed steel sheet and its manufacture
JP3148881B2 (en) * 1994-08-19 2001-03-26 新日本製鐵株式会社 Hot-dip galvanized steel sheet with excellent scratch resistance and plating adhesion
JP3879266B2 (en) * 1998-08-04 2007-02-07 住友金属工業株式会社 Alloyed hot-dip galvanized steel sheet excellent in formability and manufacturing method thereof
JP4264167B2 (en) * 1999-09-10 2009-05-13 新日本製鐵株式会社 Hot-dip steel sheet with excellent corrosion resistance
JP2001220657A (en) * 2000-02-07 2001-08-14 Nippon Steel Corp Hot dip galvanized steel sheet and its manufacturing method
JP4702974B2 (en) * 2000-03-28 2011-06-15 日新製鋼株式会社 Alloyed hot-dip galvanized high-tensile steel plate with excellent workability and method for producing the same
JP3598087B2 (en) * 2001-10-01 2004-12-08 新日本製鐵株式会社 High-strength galvannealed steel sheet with excellent workability and method for producing the same
JP3912181B2 (en) * 2002-03-28 2007-05-09 Jfeスチール株式会社 Composite structure type high-tensile hot-dip galvanized cold-rolled steel sheet excellent in deep drawability and stretch flangeability and manufacturing method thereof
JP4172268B2 (en) * 2002-12-27 2008-10-29 Jfeスチール株式会社 Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent stretch flangeability, strength-ductility balance, and strain age hardening characteristics
JP2005307283A (en) * 2004-04-22 2005-11-04 Nippon Steel Corp Method for producing cold rolled steel sheet comprising easily oxidizable component

Also Published As

Publication number Publication date
JP2008266685A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
JP5391572B2 (en) Cold rolled steel sheet, hot dip plated steel sheet, and method for producing the steel sheet
CN108603263B (en) High yield ratio type high strength galvanized steel sheet and method for producing same
JP4837604B2 (en) Alloy hot-dip galvanized steel sheet
JP4329639B2 (en) Steel plate for heat treatment with excellent liquid metal brittleness resistance
JP6376310B1 (en) High-strength hot-dip galvanized hot-rolled steel sheet and manufacturing method thereof
JP5741413B2 (en) Alloyed hot-dip galvanized steel strip and method for producing the same
JP5009035B2 (en) Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent appearance
US11807924B2 (en) Al plated welded pipe for hardening use and Al plated hollow member and method for producing same
WO2017131055A1 (en) High-yield ratio high-strength galvanized steel sheet, and method for producing same
JP6249140B1 (en) High yield ratio type high strength galvanized steel sheet and method for producing the same
CN116419989A (en) Galvanized steel sheet, electrodeposition-coated steel sheet, automobile part, method for producing electrodeposition-coated steel sheet, and method for producing galvanized steel sheet
JP5741412B2 (en) Alloyed hot-dip galvanized steel strip and method for producing the same
JP2012255204A (en) Surface treated steel sheet excellent in corrosion resistance after coating, method for producing the same, and automobile part produced using the same
JP3885763B2 (en) Hot-dip galvanized steel sheet for quenching, its manufacturing method and use
CN111936659A (en) High-strength alloyed hot-dip galvanized steel sheet and method for producing same
JP2018090879A (en) Steel plate for hot press molding, method for producing hot press molding, and hot press molding
JP4629138B2 (en) Alloy hot-dip galvanized steel sheet
JPH05255799A (en) Hot dip plated hot rolled high strength steel sheet excellent in workability and its manufacture
JP3898924B2 (en) High-strength hot-dip galvanized steel sheet excellent in appearance and workability and its manufacturing method
JP7269524B2 (en) hot stamping material
JP7247946B2 (en) Hot-dip galvanized steel sheet and its manufacturing method
KR20120041619A (en) Galvanizing steel sheet having good galvanizabilty and adhesion and method for manufacturing the same
JP5245376B2 (en) Alloyed hot dip galvanized steel sheet using steel sheet for galvannealed alloy with excellent bake hardenability
JP7173368B2 (en) HOT PRESS MEMBER, HOT PRESS STEEL STEEL, AND METHOD FOR MANUFACTURING HOT PRESS MEMBER
JP2002317245A (en) High strength galvanized steel sheet having excellent press workability and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120530

R151 Written notification of patent or utility model registration

Ref document number: 5009035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350