JP5007916B2 - Magnetic sensor - Google Patents

Magnetic sensor Download PDF

Info

Publication number
JP5007916B2
JP5007916B2 JP2006087356A JP2006087356A JP5007916B2 JP 5007916 B2 JP5007916 B2 JP 5007916B2 JP 2006087356 A JP2006087356 A JP 2006087356A JP 2006087356 A JP2006087356 A JP 2006087356A JP 5007916 B2 JP5007916 B2 JP 5007916B2
Authority
JP
Japan
Prior art keywords
film
layer
fixed
svgmr
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006087356A
Other languages
Japanese (ja)
Other versions
JP2007263654A (en
Inventor
文雄 白崎
泰典 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2006087356A priority Critical patent/JP5007916B2/en
Publication of JP2007263654A publication Critical patent/JP2007263654A/en
Application granted granted Critical
Publication of JP5007916B2 publication Critical patent/JP5007916B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Description

本願発明は、非接触で磁気媒体との変位を測定するために使用される磁気センサで、ス
ピンバルブ巨大磁気抵抗効果膜および、スピンバルブ巨大磁気抵抗効果膜と同じ電気抵抗
の温度特性をもつ固定抵抗膜を備えた磁気センサに関するものである。
The present invention is a magnetic sensor used to measure displacement with a magnetic medium in a non-contact manner, and has a temperature characteristic of the same electric resistance as a spin valve giant magnetoresistive film and a spin valve giant magnetoresistive film. The present invention relates to a magnetic sensor provided with a resistive film.

工業計測の分野では、磁気媒体と非接触で位置や回転角等の物理的変量を検出するため
に、ホール素子のような低価格の感磁素子が多く使用されている。高感度で検出を行う必
要がある場合には、磁気媒体との相対速度が再生出力に依存しない異方性磁気抵抗効果膜
(以下、AMR膜と言う)を有する磁気センサが使用されている。しかしAMR膜を用い
た磁気センサは、磁気抵抗変化率が3%程度と小さいため、得られる出力信号電圧が小さ
い。そこで、磁気抵抗変化率が大きく、回路上では単純な2端子の抵抗として取り扱える
という利点がある巨大磁気抵抗効果膜(GMR膜)を備えた磁気センサが注目され、その
実用化が検討されている。
In the field of industrial measurement, low-cost magnetosensitive elements such as Hall elements are often used to detect physical variables such as position and rotation angle without contact with a magnetic medium. When it is necessary to perform detection with high sensitivity, a magnetic sensor having an anisotropic magnetoresistive film (hereinafter referred to as an AMR film) whose relative speed with respect to a magnetic medium does not depend on reproduction output is used. However, a magnetic sensor using an AMR film has a small rate of change in magnetoresistance of about 3%, so that the output signal voltage obtained is small. Therefore, a magnetic sensor having a giant magnetoresistive film (GMR film) having a large magnetoresistive change rate and an advantage that it can be handled as a simple two-terminal resistor on a circuit has been attracting attention, and its practical application has been studied. .

巨大磁気抵抗効果膜は、非磁性層を介して隣り合う磁性層の磁化方向が互いに逆向きに
なっている結合型GMR人工格子膜(以下、結合型GMR膜と言う)が知られている。結
合型GMR膜は磁界変化に対する抵抗変化特性がAMR膜と同じであるため、容易にAM
R膜からの置き換えが可能である。結合型GMR膜は抵抗変化率が10%以上と大きいの
で大出力を得ることができる。しかし、最大抵抗変化を起こす動作磁界強度が大きいので
、大型の動作磁界発生手段が必要となる。また、結合型GMR膜の電気抵抗がAMR膜の
1/2〜1/3程度と小さいため、磁気センサの低消費電力化が難しい。そのため、結合
型GMR膜を用いた磁気センサの用途は、制限を受けるという問題がある。
As the giant magnetoresistive film, a coupled GMR artificial lattice film (hereinafter referred to as a coupled GMR film) in which the magnetization directions of adjacent magnetic layers are opposite to each other via a nonmagnetic layer is known. Since the combined GMR film has the same resistance change characteristic with respect to the magnetic field change as the AMR film, it is easy to use AM.
Replacement from the R film is possible. Since the combined GMR film has a large resistance change rate of 10% or more, a large output can be obtained. However, since the operating magnetic field intensity causing the maximum resistance change is large, a large operating magnetic field generating means is required. In addition, since the electrical resistance of the coupled GMR film is as small as about 1/2 to 1/3 that of the AMR film, it is difficult to reduce the power consumption of the magnetic sensor. Therefore, there is a problem that the use of the magnetic sensor using the coupled GMR film is limited.

比較的弱い磁場強度領域で結合型GMR膜と同程度の磁気抵抗変化率を示す膜として、
スピンバルブ型巨大磁気抵抗効果膜(以下、SVGMR膜と言う)がある。SVGMR膜
はハードディスク記憶装置(HDD)の磁気ヘッドに用いられている。SVGMR膜は、
特許文献1に開示されているように、外部磁界の方向が変化しても磁化方向が変化しない
磁化固定層と非磁性導電層、外部磁界の変化に追従して磁化方向が変化する磁化自由層か
ら構成されている。SVGMR膜を加工したセンサ素子(以下、SVGMR素子と言う)
は、結合型GMR膜を加工したセンサ素子に比べ電気抵抗が5〜6倍大きいので、磁気セ
ンサに用いた時低消費電力化が行ない易い。また、1〜160(A/m)[約0.006
〜20(Oe)]と比較的小さい磁場強度領域で動作すると言う特徴がある。以降、本願
の磁気抵抗効果膜は、特に断りのない限りSVGMR膜と言う。
As a film showing a magnetoresistance change rate comparable to that of a coupled GMR film in a relatively weak magnetic field strength region,
There is a spin valve type giant magnetoresistive film (hereinafter referred to as SVGMR film). The SVGMR film is used for a magnetic head of a hard disk storage device (HDD). The SVGMR film is
As disclosed in Patent Document 1, a magnetization fixed layer and a nonmagnetic conductive layer whose magnetization direction does not change even if the direction of the external magnetic field changes, and a magnetization free layer whose magnetization direction changes following the change of the external magnetic field It is composed of Sensor element processed SVGMR film (hereinafter referred to as SVGMR element)
Since the electric resistance is 5 to 6 times larger than that of a sensor element obtained by processing a coupled GMR film, it is easy to reduce power consumption when used in a magnetic sensor. Moreover, 1-160 (A / m) [about 0.006
˜20 (Oe)] and operates in a relatively small magnetic field strength region. Hereinafter, the magnetoresistive film of the present application is referred to as an SVGMR film unless otherwise specified.

特許第3040750号 公報Japanese Patent No. 3040750

図10に、磁気センサと磁気媒体を示す。回転する磁気媒体61に所定の間隔(ギャッ
プ)を持って対向して磁気センサ60を配している。磁気センサ60は複数の磁気センサ
素子51からなり、磁気センサ素子51は、磁界により電気抵抗が変化するSVGMR素
子27と、固定抵抗膜で形成した固定抵抗素子28が直列に接続されている。固定抵抗素
子28の他端は接地、SVGMR素子27の他端は電源電圧Vccに接続している。SV
GMR素子27と固定抵抗素子28の接続点31から中点電位を取り、この電圧が磁気セ
ンサ60の出力電圧となる。固定抵抗素子28は磁界によって電気抵抗が変化しないので
電気抵抗は略一定であり、SVGMRセンサ素子27の比較抵抗として働く。SVGMR
素子27が磁気媒体61の漏洩磁界を検知すると、電気抵抗が変化して中点電位が変化す
る。この中点電位の変化を磁気媒体と磁気センサの相対位置信号として検出する。
FIG. 10 shows a magnetic sensor and a magnetic medium. A magnetic sensor 60 is arranged to face the rotating magnetic medium 61 with a predetermined gap (gap). The magnetic sensor 60 includes a plurality of magnetic sensor elements 51. In the magnetic sensor element 51, an SVGMR element 27 whose electric resistance is changed by a magnetic field and a fixed resistance element 28 formed of a fixed resistance film are connected in series. The other end of the fixed resistance element 28 is grounded, and the other end of the SVGMR element 27 is connected to the power supply voltage Vcc. SV
A midpoint potential is taken from the connection point 31 between the GMR element 27 and the fixed resistance element 28, and this voltage becomes the output voltage of the magnetic sensor 60. Since the fixed resistance element 28 does not change its electric resistance due to a magnetic field, the electric resistance is substantially constant and functions as a comparison resistance of the SVGMR sensor element 27. SVGMR
When the element 27 detects the leakage magnetic field of the magnetic medium 61, the electrical resistance changes and the midpoint potential changes. This change in the midpoint potential is detected as a relative position signal between the magnetic medium and the magnetic sensor.

2個の磁気センサ素子51を用いてブリッジを組むこともできる。図11に、ブリッジ
を組んだ磁気センサ素子52を示す。磁気センサ素子51を逆方向で並列接続した形であ
る。この様にブリッジを組むことで、磁界により電気抵抗が変化するSVGMRセンサ素
子27aと27bで、より電気抵抗の変化量を増幅する効果が得られる。接続点34aと
34b間で、図10の接続点31の約2倍の出力電圧が得られる。
A bridge can be formed by using two magnetic sensor elements 51. FIG. 11 shows a magnetic sensor element 52 having a bridge. The magnetic sensor element 51 is connected in parallel in the reverse direction. By assembling the bridge in this manner, the effect of amplifying the amount of change in electrical resistance can be obtained with the SVGMR sensor elements 27a and 27b whose electrical resistance changes due to a magnetic field. Between the connection points 34a and 34b, an output voltage approximately twice that of the connection point 31 in FIG. 10 is obtained.

しかし、SVGMR膜と銅(Cu)などの金属導体からなる固定抵抗膜を用いて、磁気
センサ素子51を形成した場合、電気抵抗の温度特性の違いから、磁気センサが高温もし
くは低温にさらされる周囲環境で使用されると、磁気センサ素子の中点電位が変化して精
度良く変位を検出できなくなる。磁気センサを車載用センサとして使用する場合、150
℃以上の耐熱性が要求されるが、例えばCuの温度係数が4.3×10−3(deg.
)であるのに対して、SVGMR素子の温度係数は1.0〜1.3×10−3(deg
−1)であり等しくないため、周囲温度の変化によりブリッジ回路の中点電位が変化す
ることになる。他の導体に用いられる金属のアルミニウムや金、銀の温度係数も4.0〜
4.2×10−3(deg.−1)であり、SVGMR素子の温度係数との差が大きい。
However, when the magnetic sensor element 51 is formed using the SVGMR film and a fixed resistance film made of a metal conductor such as copper (Cu), the magnetic sensor is exposed to high temperature or low temperature due to the difference in temperature characteristics of electric resistance. When used in an environment, the midpoint potential of the magnetic sensor element changes and the displacement cannot be detected accurately. When using a magnetic sensor as an in-vehicle sensor, 150
Although heat resistance of at least ° C. is required, for example, the temperature coefficient of Cu is 4.3 × 10 −3 (deg.
1 ), whereas the temperature coefficient of the SVGMR element is 1.0 to 1.3 × 10 −3 (deg).
. −1 ) and they are not equal, the midpoint potential of the bridge circuit changes due to changes in the ambient temperature. The temperature coefficient of metal aluminum, gold, and silver used for other conductors is 4.0 to 4.0.
4.2 × 10 −3 (deg. −1 ), and the difference from the temperature coefficient of the SVGMR element is large.

SVGMR膜の温度係数と近い金属は合金系から選ぶことができる。例えば、アルミニ
ウム・マンガンを含んだニッケル合金のアルメル、銅と亜鉛の合金の黄銅、白金とロジウ
ムの合金があり、これらの温度係数は1.2〜1.4×10−3(deg.−1)とSV
GMR膜と非常に近いが、同じ値ではない。また、SVGMR膜とシート抵抗値が異なる
ため、素子の形状や厚みを変えて電気抵抗値を合わせることが非常に難しい。また、固定
抵抗膜を得るために余分な製膜装置やスパッターターゲット材が必要となる。
A metal close to the temperature coefficient of the SVGMR film can be selected from an alloy system. For example, there are nickel alloy alumel containing aluminum and manganese, copper and zinc alloy brass, platinum and rhodium alloy, and the temperature coefficient thereof is 1.2 to 1.4 × 10 −3 (deg. −1) . ) And SV
Very close to GMR film but not the same value. Also, since the sheet resistance value is different from that of the SVGMR film, it is very difficult to match the electric resistance value by changing the shape and thickness of the element. Further, an extra film forming apparatus and a sputtering target material are required to obtain the fixed resistance film.

本願発明の目的は、電気抵抗値と電気抵抗の温度特性が同じSVGMR膜と固定抵抗膜
で形成した素子で磁気センサ素子を構成し、周囲温度変化に対しても安定した出力特性が
得られる磁気センサを提供することである。
The object of the present invention is to form a magnetic sensor element with an element formed of an SVGMR film and a fixed resistance film having the same electric resistance value and temperature characteristic of electric resistance, and to obtain a stable output characteristic with respect to changes in ambient temperature. It is to provide a sensor.

本願発明の磁気センサは、外部磁界に反応して電気抵抗が変化する磁気抵抗効果膜で形
成したセンサ素子と、磁気抵抗効果膜と電気抵抗の温度特性が等しく、外部磁界がない状
態での電気抵抗も等しく、外部磁界でほとんど抵抗変化しない固定抵抗膜で形成したセン
サ素子で、ブリッジ回路を形成していることが好ましい。
The magnetic sensor of the present invention has a sensor element formed of a magnetoresistive effect film whose electrical resistance changes in response to an external magnetic field, and the magnetoresistive effect film and the electrical resistance have the same temperature characteristics and no electrical field in the absence of an external magnetic field. It is preferable that a bridge circuit is formed by a sensor element formed of a fixed resistance film which has the same resistance and hardly changes its resistance with an external magnetic field.

磁気抵抗効果膜が基板上に形成された単層または複数層からなる下地層と、非磁性導電
層と、非磁性導電層を挟む磁化固定層および磁化自由層と、磁化固定層の隣に形成される
反強磁性層からなる多層部と、最上位に形成される保護膜とから構成されるSVGMR膜
とすることが好ましい。
A magnetoresistive film formed on a substrate is formed of a single layer or a plurality of layers, a nonmagnetic conductive layer, a magnetization fixed layer and a magnetization free layer sandwiching the nonmagnetic conductive layer, and formed next to the magnetization fixed layer. Preferably, the SVGMR film is composed of a multilayer portion made of an antiferromagnetic layer and a protective film formed on the uppermost layer.

多層部で磁化固定層および/または磁化自由層は、単層または複数層からなることが好
ましい。
In the multilayer portion, the magnetization fixed layer and / or the magnetization free layer is preferably composed of a single layer or a plurality of layers.

SVGMR膜は、ボトムタイプやトップタイプ、積層フェリ固定層タイプ、積層フェリ
自由層タイプ、スピンフィルタータイプのいずれの構造のSVGMR膜でも良い。また、
いずれかの積層界面で界面の平坦化を目的として、プラズマ処理を施すことができる。
The SVGMR film may be an SVGMR film having any structure of a bottom type, a top type, a laminated ferri pinned layer type, a laminated ferri free layer type, and a spin filter type. Also,
Plasma treatment can be performed for the purpose of planarizing the interface at any of the stacked interfaces.

固定抵抗膜は磁気抵抗効果膜と同じ材料で構成され、一部積層順を入れ替えた構成とす
ることが好ましい。
The fixed resistance film is preferably made of the same material as that of the magnetoresistive effect film, and a part of the stacking order is preferably changed.

ブリッジ回路を構成する固定抵抗膜は、SVGMR膜の非磁性導電層と磁化自由層の積
層順、もしくは非磁性導電層と磁化固定層の積層順を入れ替えた構造とすることで、非磁
性導電層を介しての磁化自由層と磁化固定層間のスピン依存散乱をなくし、GMR効果が
発現しない構造にすることができる。また、固定抵抗膜はSVGMR膜と同じ材料で同じ
膜厚を用いているため、電気抵抗値が同じで電気抵抗の温度特性も同じとなるので、周囲
温度の変化による中点電位の変化を抑えることができる。
The fixed resistance film constituting the bridge circuit has a structure in which the stacking order of the nonmagnetic conductive layer and the magnetization free layer of the SVGMR film or the stacking order of the nonmagnetic conductive layer and the magnetization fixed layer is switched. Thus, the spin-dependent scattering between the magnetization free layer and the magnetization fixed layer through the film can be eliminated, and a structure in which the GMR effect is not exhibited can be obtained. Further, since the fixed resistance film uses the same material and the same film thickness as the SVGMR film, the electric resistance value is the same and the temperature characteristics of the electric resistance are the same, so that the change in the midpoint potential due to the change in the ambient temperature is suppressed. be able to.

磁気抵抗効果膜と固定抵抗膜が同一の基板上に形成されていることが好ましい。   It is preferable that the magnetoresistive film and the fixed resistance film are formed on the same substrate.

SVGMR膜と固定抵抗膜は、フォトリソプロセスとスパッタ成膜プロセスを組合わせ
ることで、同一基板上に直接形成することができる。SVGMR膜と固定抵抗膜は、一部
積層順を入れ替えただけの構成であるため、同じスパッタ装置で成膜可能で膜厚分布も等
しく成膜することができるため、電気抵抗値と電気抵抗の温度特性のバラツキを低減でき
る。
The SVGMR film and the fixed resistance film can be directly formed on the same substrate by combining the photolithography process and the sputter film formation process. Since the SVGMR film and the fixed resistance film have a configuration in which the stacking order is partially changed, they can be formed with the same sputtering apparatus and can have the same film thickness distribution. Variations in temperature characteristics can be reduced.

固定抵抗膜は非磁性導電層の膜厚を変えることで、電気抵抗値を調整することができる
ことができる。
The fixed resistance film can be adjusted in electric resistance value by changing the film thickness of the nonmagnetic conductive layer.

固定抵抗膜に流れるセンス電流の殆どは非磁性導電層を流れるため、その電気抵抗値は
非磁性導電層の膜厚に最も良く反応する。そのため、非磁性導電層以外の膜厚を変更する
ことなく、非磁性導電層の膜厚調整だけで抵抗膜の電気抵抗値を微調整することができる
Since most of the sense current flowing through the fixed resistance film flows through the nonmagnetic conductive layer, the electric resistance value reacts best with the film thickness of the nonmagnetic conductive layer. Therefore, the electrical resistance value of the resistance film can be finely adjusted only by adjusting the film thickness of the nonmagnetic conductive layer without changing the film thickness other than the nonmagnetic conductive layer.

SVGMR膜と固定抵抗膜は、膜の積層順が一部違うだけであるため電気抵抗値は同じ
とすることができる。また、電気抵抗の温度特性が等しいSVGMR膜と固定抵抗膜で磁
気センサ素子を構成することで、周囲温度変化に対して安定した出力特性が得られる磁気
センサを実現できる。
The SVGMR film and the fixed resistance film can have the same electric resistance value because they are only partially different from each other in the stacking order of the films. Further, by configuring the magnetic sensor element with the SVGMR film and the fixed resistance film having the same temperature characteristics of electric resistance, a magnetic sensor that can obtain stable output characteristics with respect to changes in ambient temperature can be realized.

以下本発明を図面を参照しながら実施例に基づいて詳細に説明する。説明を判り易くす
るため、同一の部品、部位には同じ符号を用いている。SVGMR膜や固定抵抗膜とこれ
らを用いて形成した素子は同じ様に用いている。例えば、SVGMR膜はSVGMR膜だ
けでなくSVGMR膜を用いて形成した素子を指す場合もある。
Hereinafter, the present invention will be described in detail based on examples with reference to the drawings. In order to make the explanation easy to understand, the same reference numerals are used for the same parts and parts. The SVGMR film and the fixed resistance film and elements formed using these are used in the same manner. For example, the SVGMR film may refer to an element formed using not only the SVGMR film but also the SVGMR film.

実施したSVGMR膜と固定抵抗膜の詳細を述べる前に、図1を用いてSVGMR膜の
積層順を一部変えることで、固定抵抗膜となる理由を詳細に説明する。図1は、反強磁性
層下置タイプ(ボトムタイプ)のSVGMR膜と固定抵抗膜を表している。図1a)は、
基板11上に下地層12、反強磁性層13、磁化固定層14、非磁性導電層15、磁化自
由層16、保護層17の順でスパッタ成膜したボトムタイプのSVGMR膜101である
。外部磁界により磁化自由層16の磁化が回転し、磁化固定層14の磁化方向と成す相対
角度によって電気抵抗が変化する。図1b)は、SVGMRの一部積層順を変えた固定抵
抗膜102で、基板11上に下地層12、反強磁性層13、磁化固定層14、磁化自由層
16、非磁性導電層15、保護層17の順にスパッタ成膜している。固定抵抗膜102は
、SVGMR膜101の磁化自由層16と非磁性導電層15の積層順序を入れ替えた構造
となっている。このため、非磁性導電層15を介してのGMR効果が発現しなくなり、外
部磁界による固定抵抗膜102の電気抵抗値の変化がほぼゼロとなる。
Before describing the details of the implemented SVGMR film and the fixed resistance film, the reason why the SVGMR film becomes a fixed resistance film by partially changing the stacking order of the SVGMR film will be described in detail with reference to FIG. FIG. 1 shows a SVGMR film and a fixed resistance film of an antiferromagnetic layer bottom type (bottom type). FIG. 1a)
This is a bottom type SVGMR film 101 formed by sputtering a base layer 12, an antiferromagnetic layer 13, a magnetization fixed layer 14, a nonmagnetic conductive layer 15, a magnetization free layer 16, and a protective layer 17 in this order on a substrate 11. The magnetization of the magnetization free layer 16 is rotated by the external magnetic field, and the electrical resistance changes depending on the relative angle formed with the magnetization direction of the magnetization fixed layer 14. FIG. 1 b) shows a fixed resistance film 102 in which the order of partial stacking of SVGMR is changed. On the substrate 11, an underlayer 12, an antiferromagnetic layer 13, a magnetization fixed layer 14, a magnetization free layer 16, a nonmagnetic conductive layer 15, Sputter deposition is performed in the order of the protective layer 17. The fixed resistance film 102 has a structure in which the stacking order of the magnetization free layer 16 and the nonmagnetic conductive layer 15 of the SVGMR film 101 is switched. For this reason, the GMR effect through the nonmagnetic conductive layer 15 does not appear, and the change in the electric resistance value of the fixed resistance film 102 due to the external magnetic field becomes almost zero.

非磁性導電層15と磁化自由層16の積層順序を入れ替えると、固定抵抗膜102のG
MR効果の発現がなくなる理由は、SVGMR素子の積層構造中でセンス電流の大部分が
流れる非磁性導電層15の位置の移動を最小にするためである。例えば、スピンバルブ構
造を基にして、その材料、各層の成膜条件、膜厚を実質的に変更せず、単にGMR効果を
発現させなくするためには、非磁性導電層15と磁化固定層14を入れ替えても良い。し
かし磁化固定層14は反強磁性層13と接することで交換結合により磁化方向が強く固定
され、外部磁界に反応しにくくなっている。したがって磁化固定層と反強磁性層を分離す
ることは、磁化固定層の磁化固定強度を弱めることになり好ましくない。
If the stacking order of the nonmagnetic conductive layer 15 and the magnetization free layer 16 is changed, the G of the fixed resistance film 102 is changed.
The reason for the disappearance of the MR effect is to minimize the movement of the position of the nonmagnetic conductive layer 15 through which most of the sense current flows in the stacked structure of the SVGMR element. For example, on the basis of the spin valve structure, the nonmagnetic conductive layer 15 and the magnetization fixed layer may be used in order to prevent the GMR effect from being manifested without substantially changing the material, film forming conditions and film thickness of each layer. 14 may be replaced. However, the magnetization fixed layer 14 is in contact with the antiferromagnetic layer 13 so that the magnetization direction is strongly fixed by exchange coupling, and it is difficult to react to an external magnetic field. Therefore, it is not preferable to separate the magnetization fixed layer and the antiferromagnetic layer because the magnetization fixed strength of the magnetization fixed layer is weakened.

非磁性導電層15と磁化固定層14とを入れ替える場合は、図2b)に示すような積層
順とすることが良い。反強磁性層13も同時に入れ替えることが好ましく、固定抵抗膜1
02’の積層構造は、下地層12/非磁性導電層15/反強磁性層13/磁化固定層14
/磁化自由層16/保護層17とする必要がある。しかし、図2b)の固定抵抗膜102
’の積層構造では非磁性導電層15の位置が、図2a)のSVGMR膜101の非磁性導
電層15の位置と大きく差があるため、同じスパッタ装置内で成膜を行っても膜厚の厚い
反強磁性膜13の影響で、膜厚や膜厚分布を制御することが難しい。このことからも、非
磁性導電層15と磁化自由層16を入れ替えて、固定抵抗膜102を得る、図1a)が好
ましいものである。
When the nonmagnetic conductive layer 15 and the magnetization fixed layer 14 are exchanged, the stacking order as shown in FIG. It is preferable to replace the antiferromagnetic layer 13 at the same time, and the fixed resistance film 1
The layered structure of 02 ′ has the following: underlayer 12 / nonmagnetic conductive layer 15 / antiferromagnetic layer 13 / magnetization fixed layer 14
/ Magnetization free layer 16 / protection layer 17 is required. However, the fixed resistive film 102 in FIG.
In the stacked structure of ', the position of the nonmagnetic conductive layer 15 is greatly different from the position of the nonmagnetic conductive layer 15 of the SVGMR film 101 in FIG. 2a). Due to the influence of the thick antiferromagnetic film 13, it is difficult to control the film thickness and film thickness distribution. Also from this, the non-magnetic conductive layer 15 and the magnetization free layer 16 are interchanged to obtain the fixed resistance film 102. FIG. 1a) is preferable.

SVGMR膜101と固定抵抗膜102の各々の電気抵抗の変化量dRについて説明す
る。SVGMR膜101の抵抗変化量をdR1、固定抵抗膜102の抵抗変化量をdR2
とすると、dR1=〔GMR効果による抵抗変化量〕+〔AMR効果による抵抗変化量〕
+〔温度変化による抵抗変化量〕、dR2=〔AMR効果による抵抗変化量〕+〔温度変
化による抵抗変化量〕と表せる。SVGMR膜101に流れるセンス電流の殆どは非磁性
導電層15を流れ、固定抵抗膜102のセンス電流も大部分が非磁性導電層15を流れる
。また、シャント電流の多くは積層膜中で最も膜厚が厚い反強磁性層13を流れるため、
磁化固定層14と磁化自由層16に流れる電流はごく僅かとなる。そのため、〔AMR効
果による抵抗変化量〕は〔GMR効果による抵抗変化量〕に比べ極めて小さく、無視でき
るレベルとなる。もし、〔AMR効果による抵抗変化量〕が僅か存在したとしても、使用
される材料、膜厚が互いに等しいSVGMR膜101と固定抵抗膜102で、図11に示
した様なブリッジ回路を組み差動をとることで、〔AMR効果による抵抗変化量〕をキャ
ンセルすることができる。
The amount of change dR in the electrical resistance of each of the SVGMR film 101 and the fixed resistance film 102 will be described. The resistance change amount of the SVGMR film 101 is dR1, and the resistance change amount of the fixed resistance film 102 is dR2.
Then, dR1 = [resistance variation due to GMR effect] + [resistance variation due to AMR effect]
+ [Resistance change amount due to temperature change], dR2 = [resistance change amount due to AMR effect] + [resistance change amount due to temperature change]. Most of the sense current flowing through the SVGMR film 101 flows through the nonmagnetic conductive layer 15, and most of the sense current of the fixed resistance film 102 flows through the nonmagnetic conductive layer 15. In addition, since most of the shunt current flows through the antiferromagnetic layer 13 having the largest film thickness in the laminated film,
The current flowing in the magnetization fixed layer 14 and the magnetization free layer 16 is very small. Therefore, the [resistance change amount due to the AMR effect] is extremely smaller than the [resistance change amount due to the GMR effect], and can be ignored. Even if there is a small amount of [resistance change due to the AMR effect], the SVGMR film 101 and the fixed resistance film 102 having the same material and film thickness are combined to form a bridge circuit as shown in FIG. By taking the above, it is possible to cancel the [resistance change amount due to the AMR effect].

磁気センサ60を、室内の様な温度変化が小さい周囲環境で使用する場合は、前述した
〔温度変化による抵抗変化量〕を無視することができる。しかし、例えば100℃以上の
高温もしくは0℃以下の低温の苛酷な周囲環境で使用する場合は、〔温度変化による抵抗
変化量〕を無視することができなくなる。図11に示した様なブリッジ回路を、材料が異
なるSVGMR膜と固定抵抗膜で構成した場合、SVGMR膜と固定抵抗膜の電気抵抗の
温度特性の違いから、〔温度変化による抵抗変化量〕に差が生じて中点電位が変化し精度
の高い測定ができなくなる。本願特許のSVGMR膜101と固定抵抗膜102は使用す
る材料が同じで、多層膜を構成する各層の膜厚も同じであるため、温度が大きく変化する
周囲環境で使用しても〔温度変化による抵抗変化量〕に差が生じないので、中点電位が変
化することはなく、精度の高い測定ができる磁気センサを提供できるものである。
When the magnetic sensor 60 is used in an ambient environment where the temperature change is small, such as in a room, the above-described [resistance change amount due to temperature change] can be ignored. However, for example, when used in a severe ambient environment at a high temperature of 100 ° C. or higher or a low temperature of 0 ° C. or lower, [resistance change due to temperature change] cannot be ignored. When the bridge circuit as shown in FIG. 11 is composed of an SVGMR film and a fixed resistance film made of different materials, due to the difference in temperature characteristics of the electrical resistance between the SVGMR film and the fixed resistance film, the resistance change amount due to temperature change is A difference occurs and the midpoint potential changes, making it impossible to measure with high accuracy. Since the SVGMR film 101 and the fixed resistance film 102 of the present patent application use the same material and the film thickness of each layer constituting the multilayer film is the same, even if it is used in an ambient environment where the temperature changes greatly [ Since there is no difference in the resistance change amount], the midpoint potential does not change, and a magnetic sensor capable of measuring with high accuracy can be provided.

図3に、実施したSVGMR膜111と固定抵抗膜112の積層構造を断面図を用い、
各層の材料と膜厚を示す。図3a)に示すSVGMR膜111は、電気絶縁性もしくは絶
縁層を有する基板11側からNiFeCr(4nm)/MnPt(15nm)/CoFe
(2nm)/Cu(2nm)/CoFe(1nm)−NiFe(3nm)/Ta(3nm
)の順にスパッタ膜を積層した。NiFeCrが下地層12、MnPtが反強磁性層13
、基板側のCoFeが磁化固定層14、Cuが非磁性導電層15、保護層側のCoFeと
NiFeが磁化自由層16、Taが保護層17と、図1a)に対応している。図1a)で
は、磁化自由層16は1層で表していたが、実施するときはCoFeとNiFeの2層膜
としている。非磁性導電層15のCuとNiFeを直接積層する場合に比べ、CuとNi
Feの間に薄くCoFeを挿入することで、磁気抵抗変化率が大きくなる。そのため、磁
化自由層16はCoFeとNiFeの2層膜とした。磁化自由層16を4層とする時も、
非磁性導電層15のCuと磁化自由層16のCoFeとNiFeの積層順は、磁気抵抗変
化率の面から変えることはない。
FIG. 3 is a cross-sectional view of the stacked structure of the SVGMR film 111 and the fixed resistance film 112 that is implemented.
The material and film thickness of each layer are shown. The SVGMR film 111 shown in FIG. 3A) is NiFeCr (4 nm) / MnPt (15 nm) / CoFe from the side of the substrate 11 having an electrical insulating or insulating layer.
(2 nm) / Cu (2 nm) / CoFe (1 nm) -NiFe (3 nm) / Ta (3 nm
Sputtered films were stacked in the order of NiFeCr is the underlayer 12, and MnPt is the antiferromagnetic layer 13.
The substrate side CoFe corresponds to the magnetization fixed layer 14, Cu corresponds to the nonmagnetic conductive layer 15, CoFe and NiFe on the protection layer side correspond to the magnetization free layer 16, Ta corresponds to the protection layer 17, and FIG. In FIG. 1 a), the magnetization free layer 16 is represented by one layer, but when implemented, it is a two-layer film of CoFe and NiFe. Compared to the case where Cu and NiFe of the nonmagnetic conductive layer 15 are directly laminated, Cu and Ni
By inserting CoFe thinly between Fe, the magnetoresistance change rate is increased. Therefore, the magnetization free layer 16 is a two-layer film of CoFe and NiFe. When the magnetization free layer 16 has four layers,
The stacking order of Cu of the nonmagnetic conductive layer 15 and CoFe and NiFe of the magnetization free layer 16 is not changed from the aspect of magnetoresistance change rate.

図3b)にSVGMR膜111と組み合わせる固定抵抗膜112を示す。図3a)と図
3b)の間に、矢印で入れ替えた層を示している。SVGMR膜111の非磁性導電層1
5と磁化自由層16の積層順序を入れ替えたものである。また、磁化自由層16のCoF
eとNiFeの入れ替えた。磁化自由層16のCoFeとNiFeの入れ替えを行わない
と、磁化固定層14のCoFeと連続積層されることになり、CoFeの膜厚が厚くなる
。強磁性体であるCoFeの膜厚が増加することは、前述した〔AMR効果による抵抗変
化量〕の増加につながるため好ましくない。固定抵抗膜112は、基板11側からNiF
eCr(4nm)/MnPt(15nm)/CoFe(2nm)/NiFe(3nm)−
CoFe(1nm)/Cu(2nm)/Ta(3nm)の順に積層した。
FIG. 3 b) shows a fixed resistance film 112 combined with the SVGMR film 111. Layers swapped by arrows are shown between FIGS. 3a) and 3b). Nonmagnetic conductive layer 1 of SVGMR film 111
5 and the magnetization order of the magnetization free layer 16 are interchanged. Further, the CoF of the magnetization free layer 16
e and NiFe were replaced. If the replacement of CoFe and NiFe of the magnetization free layer 16 is not performed, the CoFe of the magnetization fixed layer 14 is continuously laminated, and the thickness of the CoFe increases. An increase in the film thickness of CoFe, which is a ferromagnetic material, is not preferable because it leads to an increase in the aforementioned [resistance change amount due to the AMR effect]. The fixed resistance film 112 is NiF from the substrate 11 side.
eCr (4 nm) / MnPt (15 nm) / CoFe (2 nm) / NiFe (3 nm) −
CoFe (1 nm) / Cu (2 nm) / Ta (3 nm) were laminated in this order.

図4に、SVGMR膜111と固定抵抗膜112の、シート抵抗(Rs)および磁気抵
抗変化率(dR/R)の温度特性を示す。RsおよびdR/Rの測定は、試料膜を真空中
で室温から350℃までヒーター加熱し、4端子法で測定を行なった。dR/Rの測定は
、磁化固定層の磁化方向およびこれと反対方向に、それぞれ最大7.9(kA/m)(1
00(Oe))の磁界を印加して測定を行なった。室温におけるSVGMR膜111のR
sは19.6(Ω/□)、dR/Rは9.2(%)、固定抵抗膜112のRsは19.4
(Ω/□)、dR/Rは0.2%以下であった。固定抵抗膜112のdR/R0.2%は
、測定器の測定限界値より低い値であるので磁気抵抗変化率は略ゼロと言えるレベルであ
る。図示していないが、電気抵抗の温度特性は、室温〜350℃の温度範囲でSVGMR
膜111と固定抵抗膜112のRsは同じの温度特性を示し、電気抵抗の温度係数は1.
2x10−3(deg.−1)であった。SVGMR膜111のdR/Rは温度の上昇と
ともに減少するが、固定抵抗膜112のdR/Rは温度によらず略ゼロで磁気抵抗効果を
示さなかった。SVGMR膜111と固定抵抗膜112で形成したセンサ素子で、図10
、図11に示した磁気センサ素子51,52を形成することで、磁気センサ60の周囲温
度の変化によっても中点電位が変化しない磁気センサが得られた。
FIG. 4 shows the temperature characteristics of the sheet resistance (Rs) and magnetoresistance change rate (dR / R) of the SVGMR film 111 and the fixed resistance film 112. Rs and dR / R were measured by heating the sample film in a vacuum from room temperature to 350 ° C. and measuring by a four-terminal method. The measurement of dR / R is a maximum of 7.9 (kA / m) (1 in the magnetization direction of the magnetization fixed layer and the opposite direction, respectively.
Measurement was performed by applying a magnetic field of 00 (Oe). R of SVGMR film 111 at room temperature
s is 19.6 (Ω / □), dR / R is 9.2 (%), and Rs of the fixed resistance film 112 is 19.4.
(Ω / □) and dR / R were 0.2% or less. Since dR / R 0.2% of the fixed resistance film 112 is a value lower than the measurement limit value of the measuring instrument, the magnetoresistance change rate is a level that can be said to be substantially zero. Although not shown, the temperature characteristic of the electrical resistance is SVGMR in the temperature range of room temperature to 350 ° C.
Rs of the film 111 and the fixed resistance film 112 show the same temperature characteristic, and the temperature coefficient of the electric resistance is 1.
2 × 10 −3 (deg. −1 ). Although the dR / R of the SVGMR film 111 decreases as the temperature increases, the dR / R of the fixed resistance film 112 is substantially zero regardless of the temperature and does not exhibit a magnetoresistive effect. FIG. 10 shows a sensor element formed by the SVGMR film 111 and the fixed resistance film 112.
By forming the magnetic sensor elements 51 and 52 shown in FIG. 11, a magnetic sensor in which the midpoint potential does not change even when the ambient temperature of the magnetic sensor 60 changes is obtained.

図5に、本願発明の第2の実施例である反強磁性層上置タイプ(トップタイプ)のSV
GMR膜と固定抵抗膜を示している。実施例1の反強磁性層下置タイプ(ボトムタイプ)
SVGMR膜の積層順を略逆にした構造である。図5a)に示す様に、基板11側から下
地層12、磁化自由層16、非磁性導電層15、磁化固定層14、反強磁性層13、保護
層17でSVGMR膜121を形成している。材料と膜厚は、基板11側からNiFeC
r(4nm)/NiFe(3nm)−CoFe(1nm)/Cu(2nm)/CoFe(
2nm)/MnPt(15nm)/Ta(3nm)の順にスパッタ膜を積層した、反強磁
性層上置タイプ(トップタイプ)のSVGMR膜121である。図5b)に固定抵抗膜1
22を示す。SVGMR膜121の非磁性導電層15と磁化自由層16の順を入れ替えて
いるので、基板11側から下地層12、非磁性導電層15、磁化自由層16、磁化固定層
14、反強磁性層13、保護層17で固定抵抗膜122を形成している。膜材料と膜厚は
、基板11側からNiFeCr(4nm)/Cu(2nm)/CoFe(1nm)−Ni
Fe(3nm)/CoFe(2nm)/MnPt(15nm)/Ta(3nm)の順にス
パッタ膜を積層した。
FIG. 5 shows an antiferromagnetic layer-mounted type (top type) SV according to a second embodiment of the present invention.
A GMR film and a fixed resistance film are shown. Antiferromagnetic layer bottom type (bottom type) of Example 1
This is a structure in which the stacking order of the SVGMR films is substantially reversed. As shown in FIG. 5 a), the SVGMR film 121 is formed from the base layer 12, the magnetization free layer 16, the nonmagnetic conductive layer 15, the magnetization fixed layer 14, the antiferromagnetic layer 13, and the protective layer 17 from the substrate 11 side. . The material and film thickness are NiFeC from the substrate 11 side.
r (4 nm) / NiFe (3 nm) -CoFe (1 nm) / Cu (2 nm) / CoFe (
2 nm) / MnPt (15 nm) / Ta (3 nm) in this order, an antiferromagnetic layer placed type (top type) SVGMR film 121 in which sputtering films are stacked in this order. Fig. 5b) shows the fixed resistive film 1
22 is shown. Since the order of the nonmagnetic conductive layer 15 and the magnetization free layer 16 of the SVGMR film 121 is switched, the base layer 12, the nonmagnetic conductive layer 15, the magnetization free layer 16, the magnetization fixed layer 14, and the antiferromagnetic layer are arranged from the substrate 11 side. 13, the fixed resistance film 122 is formed by the protective layer 17. The film material and the film thickness are NiFeCr (4 nm) / Cu (2 nm) / CoFe (1 nm) -Ni from the substrate 11 side.
Sputtered films were stacked in the order of Fe (3 nm) / CoFe (2 nm) / MnPt (15 nm) / Ta (3 nm).

図6に、本願発明の第3の実施例であるボトム積層フェリ固定層タイプのSVGMR膜
と固定抵抗膜を示している。図6a)に示す様に、基板11側からNiFeCr(4nm
)/MnPt(12nm)/CoFe(1.8nm)−Ru(0.9nm)−CoFe(
2.2nm)/Cu(2nm)/CoFe(1nm)−NiFe(2nm)/Ta(3n
m)の順にスパッタ膜を積層したボトム積層フェリ固定層タイプのSVGMR膜131で
ある。NiFeCrが下地層12、MnPtが反強磁性層13、下地層側のRuとこれを
挟むCoFeが磁化固定層14、Cuが非磁性導電層15、保護層側のCoFeとNiF
eが磁化自由層16、Taが保護層17にそれぞれ対応する。図5b)に固定抵抗膜13
2を示す。SVGMR膜131の非磁性導電層15と磁化自由層16の積層順を入れ替え
、また磁化自由層のCoFeとNiFeの順を入れ替えた。膜材料と膜厚は、基板11側
からNiFeCr(4nm)/MnPt(12nm)/CoFe(1.8nm)−Ru(
0.9nm)−CoFe(2.2nm)/NiFe(2nm)−CoFe(1nm)/C
u(2nm)/Ta(3nm)の順に積層した。
FIG. 6 shows a bottom laminated ferri-fixed layer type SVGMR film and a fixed resistance film according to a third embodiment of the present invention. As shown in FIG. 6a), NiFeCr (4 nm) is formed from the substrate 11 side.
) / MnPt (12 nm) / CoFe (1.8 nm) -Ru (0.9 nm) -CoFe (
2.2 nm) / Cu (2 nm) / CoFe (1 nm) -NiFe (2 nm) / Ta (3 n
This is a bottom laminated ferri-fixed layer type SVGMR film 131 in which sputtered films are laminated in the order of m). NiFeCr is the underlayer 12, MnPt is the antiferromagnetic layer 13, Ru on the underlayer side and CoFe sandwiching the Ru are magnetization fixed layers 14, Cu is the nonmagnetic conductive layer 15, CoFe and NiF on the protective layer side
e corresponds to the magnetization free layer 16, and Ta corresponds to the protective layer 17. FIG. 5b) shows the fixed resistance film 13.
2 is shown. The stacking order of the nonmagnetic conductive layer 15 and the magnetization free layer 16 of the SVGMR film 131 was switched, and the order of CoFe and NiFe of the magnetization free layer was switched. The film material and film thickness are determined from the substrate 11 side by NiFeCr (4 nm) / MnPt (12 nm) / CoFe (1.8 nm) -Ru (
0.9 nm) -CoFe (2.2 nm) / NiFe (2 nm) -CoFe (1 nm) / C
The layers were stacked in the order of u (2 nm) / Ta (3 nm).

図7に、本願発明の第4の実施例であるボトム積層フェリ固定層および積層フェリ自由
層タイプのSVGMR膜と固定抵抗膜を示している。図7a)に示す様に、基板11側か
らNiFeCr(4nm)/MnPt(12nm)/CoFe(1.5nm)−Ru(0
.9nm)−CoFe(2nm)/Cu(2nm)/CoFe(1nm)−NiFe(2
nm)−Ru(0.9nm)−NiFe(2nm)/Ta(3nm)の順にスパッタ膜を
積層したボトム積層フェリ固定層および積層フェリ自由層タイプのSVGMR膜141で
ある。NiFeCrが下地層12、MnPtが反強磁性層13、下地層側のRuとこれを
挟むCoFeが磁化固定層14、Cuが非磁性導電層15、保護層側のCoFeとこれに
接するRuを挟むNiFeが磁化自由層16、Taが保護層17にそれぞれ対応する。図
7b)の固定抵抗膜142は、SVGMR膜141の非磁性導電層15と磁化自由層16
の積層順を入れ替え、また磁化自由層のCoFeと磁化自由層の基板側のNiFeとを入
れ替えた。膜材料と膜厚は、基板11側からNiFeCr(4nm)/MnPt(12n
m)/CoFe(1.5nm)−Ru(0.9nm)−CoFe(2nm)/NiFe(
2nm)−CoFe1nm)−Ru(0.9nm)−NiFe(2nm)/Cu(2nm
)/Ta(3nm)の順に積層した。
FIG. 7 shows a bottom laminated ferri-fixed layer and laminated ferri-free layer type SVGMR film and a fixed resistance film according to a fourth embodiment of the present invention. As shown in FIG. 7a), NiFeCr (4 nm) / MnPt (12 nm) / CoFe (1.5 nm) -Ru (0
. 9 nm) -CoFe (2 nm) / Cu (2 nm) / CoFe (1 nm) -NiFe (2
nm) -Ru (0.9 nm) -NiFe (2 nm) / Ta (3 nm) in this order are a bottom laminated ferri pinned layer and a laminated ferri free layer type SVGMR film 141 in this order. NiFeCr is the underlayer 12, MnPt is the antiferromagnetic layer 13, Ru on the underlayer side and CoFe sandwiching this are the magnetization fixed layer 14, Cu is the nonmagnetic conductive layer 15, CoFe on the protective layer side and Ru in contact therewith are sandwiched NiFe corresponds to the magnetization free layer 16, and Ta corresponds to the protective layer 17. The fixed resistance film 142 shown in FIG. 7b) is composed of the nonmagnetic conductive layer 15 and the magnetization free layer 16 of the SVGMR film 141.
The order of stacking was changed, and CoFe of the magnetization free layer and NiFe on the substrate side of the magnetization free layer were changed. The film material and film thickness are determined from the substrate 11 side by NiFeCr (4 nm) / MnPt (12 n
m) / CoFe (1.5 nm) -Ru (0.9 nm) -CoFe (2 nm) / NiFe (
2 nm) -CoFe 1 nm) -Ru (0.9 nm) -NiFe (2 nm) / Cu (2 nm
) / Ta (3 nm).

図8に、本願発明の第5の実施例であるトップ積層フェリ固定層タイプのSVGMR膜
と固定抵抗膜を示している。図8a)に示す様に、基板11側からNiFeCr(4nm
)/NiFe(2nm)−CoFe(1nm)/Cu(2nm)/CoFe(2nm)−
Ru(0.9nm)−CoFe(1.5nm)/MnPt(12nm)/Ta(3nm)
の順にスパッタ膜を積層させたトップ積層フェリ固定層タイプのSVGMR膜151であ
る。NiFeCrが下地層12、下地層に接するNiFeとこの上に成膜されるCoFe
が磁化自由層16、Cuが非磁性導電層15、保護層側のRuとこれを挟むCoFeが磁
化固定層16、MnPtが反強磁性層13、Taが保護層17にそれぞれ対応する。図8
b)に示す固定抵抗膜152は、SVGMR膜151の非磁性導電層15と磁化自由層1
6の積層順序を入れ替え、また磁化自由層のCoFeとNiFeを入れ替えた。膜材料と
膜厚は、基板11側からNiFeCr(4nm)/Cu(2nm)/CoFe(1nm)
−NiFe(2nm)/CoFe(2nm)−Ru(0.9nm)−CoFe(1.5n
m)/MnPt(12nm)/Ta(3nm)の順に積層した。
FIG. 8 shows a top laminated ferri-fixed layer type SVGMR film and a fixed resistance film according to a fifth embodiment of the present invention. As shown in FIG. 8a), NiFeCr (4 nm) is formed from the substrate 11 side.
) / NiFe (2 nm) -CoFe (1 nm) / Cu (2 nm) / CoFe (2 nm)-
Ru (0.9 nm) -CoFe (1.5 nm) / MnPt (12 nm) / Ta (3 nm)
The top laminated ferri-fixed layer type SVGMR film 151 in which the sputtered films are laminated in this order. NiFeCr is an underlayer 12, NiFe in contact with the underlayer, and CoFe formed thereon
Represents the magnetization free layer 16, Cu represents the nonmagnetic conductive layer 15, Ru on the protective layer side and CoFe sandwiching the Ru correspond to the magnetization fixed layer 16, MnPt corresponds to the antiferromagnetic layer 13, and Ta corresponds to the protective layer 17, respectively. FIG.
The fixed resistance film 152 shown in b) includes the nonmagnetic conductive layer 15 of the SVGMR film 151 and the magnetization free layer 1.
The stacking order of No. 6 was changed, and CoFe and NiFe of the magnetization free layer were changed. The film material and the film thickness are NiFeCr (4 nm) / Cu (2 nm) / CoFe (1 nm) from the substrate 11 side.
-NiFe (2 nm) / CoFe (2 nm) -Ru (0.9 nm) -CoFe (1.5 n
m) / MnPt (12 nm) / Ta (3 nm).

図9に、本願発明の第6の実施例であるトップ積層フェリ固定層および積層フェリ自由
層タイプのSVGMR膜と固定抵抗膜を示している。図9a)に示す様に、基板11側か
らNiFeCr(4nm)/NiFe(2nm)−Ru(0.9nm)−NiFe(2n
m)−CoFe(1nm)/Cu(2nm)/CoFe(2nm)−Ru(0.9nm)
−CoFe(1.5nm)/MnPt(12nm)/Ta(3nm)の順にスパッタ膜を
積層した、トップ積層フェリ固定層および積層フェリ自由層タイプのSVGMR膜161
である。NiFeCrが下地層12、下地層側のRuとこれを挟むNiFe、およびこの
上に成膜されるCoFeが磁化自由層16、Cuが非磁性導電層15、保護層側のRuと
これを挟むCoFeが磁化固定層16、MnPtが反強磁性層13、Taが保護層17に
それぞれ対応する図9b)に示す固定抵抗膜162は、SVGMR膜161の非磁性導電
層15と磁化自由層16の積層順を入れ替え、また磁化自由層のCoFeと磁化自由層の
保護層側のNiFeを入れ替えた。膜材料と膜厚は、基板11側からNiFeCr(4n
m)/Cu(2nm)/NiFe(2nm)−Ru(0.9nm)−CoFe(1nm)
−NiFe(2nm)/CoFe(2nm)−Ru(0.9nm)−CoFe(1.5n
m)/MnPt(12nm)/Ta(3nm)の順に積層した。
FIG. 9 shows a top laminated ferri-fixed layer and laminated ferri-free layer type SVGMR film and fixed resistance film according to a sixth embodiment of the present invention. As shown in FIG. 9a), NiFeCr (4 nm) / NiFe (2 nm) -Ru (0.9 nm) -NiFe (2n) from the substrate 11 side.
m) -CoFe (1 nm) / Cu (2 nm) / CoFe (2 nm) -Ru (0.9 nm)
-Top laminated ferri pinned layer and laminated ferri free layer type SVGMR film 161 in which sputtered films are laminated in the order of CoFe (1.5 nm) / MnPt (12 nm) / Ta (3 nm)
It is. NiFeCr is the underlayer 12, Ru on the underlayer side and NiFe sandwiching this, and CoFe deposited thereon is the magnetization free layer 16, Cu is the nonmagnetic conductive layer 15, Ru on the protective layer side and CoFe sandwiching this 9b), in which MnPt corresponds to the antiferromagnetic layer 13 and Ta corresponds to the protective layer 17, respectively, is a stack of the nonmagnetic conductive layer 15 and the magnetization free layer 16 of the SVGMR film 161. The order was changed, and CoFe of the magnetization free layer and NiFe on the protective layer side of the magnetization free layer were changed. The film material and film thickness were determined from NiFeCr (4n from the substrate 11 side.
m) / Cu (2 nm) / NiFe (2 nm) -Ru (0.9 nm) -CoFe (1 nm)
-NiFe (2 nm) / CoFe (2 nm) -Ru (0.9 nm) -CoFe (1.5 n
m) / MnPt (12 nm) / Ta (3 nm).

実施例2〜6についても、実施例1と同様にブリッジ回路を形成するSVGMR膜と固
定抵抗膜のRsは同じで、また室温〜350℃の温度範囲でRsの温度特性も同じであっ
た。温度係数は実施例2〜6の全ての膜で1.〜1.2x10−3(deg.−1)の範
囲にあり良く一致した。またSVGMR膜と積層順序を入れ替えた実施例2〜6のいずれ
の固定抵抗膜も、室温〜350℃の温度範囲でdR/Rは0.2%以下であった。dR/
R0.2%以下は、測定器の測定限界値より低い値であるので磁気抵抗変化率は略ゼロと
言えるレベルである。
Also in Examples 2 to 6, the SVGMR film and the fixed resistance film forming the bridge circuit had the same Rs as in Example 1, and the temperature characteristics of Rs were the same in the temperature range of room temperature to 350 ° C. The temperature coefficient is 1. for all the membranes of Examples 2-6. It was in the range of ˜1.2 × 10 −3 (deg. −1 ) and agreed well. Further, in any of the fixed resistance films of Examples 2 to 6 in which the stacking order was changed from that of the SVGMR film, dR / R was 0.2% or less in a temperature range of room temperature to 350 ° C. dR /
Since R0.2% or less is a value lower than the measurement limit value of the measuring instrument, it can be said that the magnetoresistance change rate is substantially zero.

本願発明の反強磁性層下置タイプ(ボトムタイプ)のSVGMR膜と固定抵抗膜を説明する図である。It is a figure explaining the SVGMR film | membrane and fixed resistance film | membrane of the antiferromagnetic layer bottom type (bottom type) of this invention. 本願発明の非磁性伝導層と磁化固定層とを入れ替えるときの積層構造を説明する図である。It is a figure explaining the laminated structure when replacing the nonmagnetic conductive layer and magnetization fixed layer of this invention. 本願発明の反強磁性層下置タイプ(ボトムタイプ)のSVGMR膜と固定抵抗膜の積層構造を説明する図である。It is a figure explaining the laminated structure of a SVGMR film | membrane and fixed resistance film | membrane of the antiferromagnetic layer bottom type (bottom type) of this invention. SVGMR膜と固定抵抗膜の、シート抵抗(Rs)および磁気抵抗変化率(dR/R)の温度特性を説明する図である。It is a figure explaining the temperature characteristic of sheet resistance (Rs) and magnetoresistance change rate (dR / R) of a SVGMR film | membrane and a fixed resistance film | membrane. 本願発明の第2の実施例である反強磁性層上置タイプ(トップタイプ)のSVGMR膜と固定抵抗膜の積層構造を説明する図である。It is a figure explaining the laminated structure of the SVGMR film | membrane of an antiferromagnetic layer on-board type (top type) and a fixed resistance film | membrane which is 2nd Example of this invention. 本願発明の第3の実施例であるボトム積層フェリ固定層タイプのSVGMR膜と固定抵抗膜の積層構造を説明する図である。It is a figure explaining the laminated structure of the bottom laminated ferri fixed layer type SVGMR film | membrane and fixed resistance film | membrane which is the 3rd Example of this invention. 本願発明の第4の実施例であるボトム積層フェリ固定層および積層フェリ自由層タイプのSVGMR膜と固定抵抗膜の積層構造を説明する図である。It is a figure explaining the laminated structure of the bottom laminated ferri fixed layer and laminated ferri free layer type SVGMR film | membrane and fixed resistance film which are the 4th Example of this invention. 本願発明の第5の実施例であるトップ積層フェリ固定層タイプのSVGMR膜と固定抵抗膜の積層構造を説明する図である。It is a figure explaining the laminated structure of the top laminated ferri fixed layer type SVGMR film | membrane and fixed resistance film which is the 5th Example of this invention. 本願発明の第6の実施例であるトップ積層フェリ固定層および積層フェリ自由層タイプのSVGMR膜と固定抵抗膜の積層構造を説明する図である。It is a figure explaining the laminated structure of the top laminated ferri fixed layer and laminated ferri free layer type SVGMR film | membrane and fixed resistance film which are the 6th Example of this invention. 磁気センサと磁気媒体を説明する図である。It is a figure explaining a magnetic sensor and a magnetic medium. ブリッジを組んだ磁気センサ素子を説明する図である。It is a figure explaining the magnetic sensor element which built the bridge.

符号の説明Explanation of symbols

11 基板、12 下地層、
13 反強磁性層、14 磁化固定層、
15 非磁性導電層、16 磁化自由層、
17 保護層、27 SVGMR素子、
28 固定抵抗素子、31,32,33,34 端子、
51,52 磁気センサ素子、60 磁気センサ、
61 磁気媒体、
101,111,121,131,141,151,161 SVGMR膜、
102,112,122,132,142,152,162 固定抵抗膜。
11 substrate, 12 underlayer,
13 antiferromagnetic layer, 14 magnetization fixed layer,
15 nonmagnetic conductive layer, 16 magnetization free layer,
17 protective layer, 27 SVGMR element,
28 fixed resistance elements, 31, 32, 33, 34 terminals,
51, 52 Magnetic sensor element, 60 Magnetic sensor,
61 magnetic media,
101, 111, 121, 131, 141, 151, 161 SVGMR film,
102, 112, 122, 132, 142, 152, 162 Fixed resistance film.

Claims (2)

外部磁界に反応して電気抵抗が変化する磁気抵抗効果膜で形成したセンサ素子と、固定抵抗膜で形成したセンサ素子で、ブリッジ回路を形成しており、
前記固定抵抗膜で形成したセンサ素子は、電気抵抗の温度特性が磁気抵抗効果膜と同等であり、外部磁界がない状態での電気抵抗が磁気抵抗効果膜と同等であり、外部磁界によって電気抵抗がほとんど変化せず、
前記固定抵抗膜及び磁気抵抗効果膜は積層膜であり、
前記固定抵抗膜は、磁気抵抗効果膜と同じ材料で構成され、磁気抵抗効果膜の積層順序に対して、一部積層順序を入れ替えた構成にしてあり、
前記磁気抵抗効果膜で形成したセンサ素子で検知可能な磁界を漏洩する磁気媒体を有し、
前記磁気媒体は回転可能であり、
前記ブリッジ回路は、前記磁気媒体の周面に対向しており、
前記固定抵抗膜の非磁性導電層は磁気抵抗効果膜の非磁性導電層と膜厚が異なることを特徴とする磁気センサ。
A bridge circuit is formed with a sensor element formed of a magnetoresistive film whose electric resistance changes in response to an external magnetic field and a sensor element formed of a fixed resistance film,
The sensor element formed of the fixed resistance film has a temperature characteristic of electric resistance equivalent to that of the magnetoresistive effect film, electric resistance in the absence of an external magnetic field is equivalent to that of the magnetoresistive effect film, and electric resistance is generated by the external magnetic field. Is almost unchanged,
The fixed resistance film and the magnetoresistive film are laminated films,
The fixed resistance film is made of the same material as the magnetoresistive effect film, and is configured such that the stacking order of the magnetoresistive effect film is partially replaced with a stacking order.
A magnetic medium that leaks a magnetic field detectable by a sensor element formed of the magnetoresistive film;
The magnetic medium is rotatable;
The bridge circuit is opposed to the peripheral surface of the magnetic medium,
The nonmagnetic conductive layer of the fixed resistance film is different in thickness from the nonmagnetic conductive layer of the magnetoresistive effect film.
前記磁気抵抗効果膜が、基板上に形成された下地層と、非磁性導電層と、前記非磁性導電層を挟む磁化固定層および磁化自由層と、磁化固定層の隣に形成される反強磁性層とを有するスピンバルブ型巨大磁気抵抗効果膜(SVGMR膜)であることを特徴とする請求項1に記載の磁気センサ。
The magnetoresistive effect film is formed adjacent to the underlayer formed on the substrate, the nonmagnetic conductive layer, the magnetization fixed layer and the magnetization free layer sandwiching the nonmagnetic conductive layer, and the magnetization fixed layer. The magnetic sensor according to claim 1 , wherein the magnetic sensor is a spin valve type giant magnetoresistive film (SVGMR film) having a magnetic layer.
JP2006087356A 2006-03-28 2006-03-28 Magnetic sensor Expired - Fee Related JP5007916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006087356A JP5007916B2 (en) 2006-03-28 2006-03-28 Magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006087356A JP5007916B2 (en) 2006-03-28 2006-03-28 Magnetic sensor

Publications (2)

Publication Number Publication Date
JP2007263654A JP2007263654A (en) 2007-10-11
JP5007916B2 true JP5007916B2 (en) 2012-08-22

Family

ID=38636797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006087356A Expired - Fee Related JP5007916B2 (en) 2006-03-28 2006-03-28 Magnetic sensor

Country Status (1)

Country Link
JP (1) JP5007916B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5250109B2 (en) 2009-06-12 2013-07-31 アルプス・グリーンデバイス株式会社 Magnetic balanced current sensor
WO2011111648A1 (en) * 2010-03-12 2011-09-15 アルプス電気株式会社 Magnetism sensor and magnetic-balance current sensor using same
WO2011111493A1 (en) 2010-03-12 2011-09-15 アルプス・グリーンデバイス株式会社 Current sensor
JP5487402B2 (en) 2010-08-23 2014-05-07 アルプス・グリーンデバイス株式会社 Magnetic balanced current sensor
WO2012090631A1 (en) * 2010-12-27 2012-07-05 アルプス・グリーンデバイス株式会社 Electromagnetic proportional current sensor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3964055B2 (en) * 1998-07-30 2007-08-22 アルプス電気株式会社 Magnetoresistive element sensor, potentiometer and encoder using the same, and method for manufacturing magnetoresistive element sensor
JP2000180524A (en) * 1998-12-16 2000-06-30 Tdk Corp Magnetic field sensor
JP2005195413A (en) * 2004-01-06 2005-07-21 Hitachi Metals Ltd Magnetic assembly and magnetoresistive effect type magnetic sensor
JP4668818B2 (en) * 2006-03-13 2011-04-13 アルプス電気株式会社 Magnetic sensor

Also Published As

Publication number Publication date
JP2007263654A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
JP4105142B2 (en) Current sensor
JP4131869B2 (en) Current sensor
EP2302406B1 (en) Magnetic sensor and manufacturing method thereof
JPH1070325A (en) Sensor for detecting external magnetic field
JP5888402B2 (en) Magnetic sensor element
CN113167846B (en) Magnetic sensor with series resistors for asymmetric sense field range
CN111426994A (en) Stray field robust XMR sensor using perpendicular anisotropy
JP4232808B2 (en) Magnetic encoder device
CN103314304A (en) Electromagnetic proportional current sensor
JP2011047929A (en) Magnetic sensor
JP6725667B2 (en) Exchange coupling film, magnetoresistive effect element and magnetic detection device using the same
JP5007916B2 (en) Magnetic sensor
JP2018073913A (en) Magnetic sensor and production method thereof
JP7022764B2 (en) Magnetic field application bias film and magnetic detection element and magnetic detection device using this
JP5447616B2 (en) Manufacturing method of magnetic sensor
JP2011027633A (en) Magnetic sensor and manufacturing method thereof
JP4411223B2 (en) In-vehicle GMR angle sensor
JP6039697B2 (en) Giant magnetoresistive effect element and current sensor using the same
JP2010112881A (en) Magnetic encoder
JPH07297465A (en) Huge magnetic reluctance sensor with insulation pinned layer
JP5184380B2 (en) Magnetic detector
JP2006208255A (en) Sensor for detecting angle
JP2003282999A (en) Magnetic sensor
JP6040523B2 (en) Power detection sensor
JP5849654B2 (en) Current sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5007916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120520

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees