JP5005309B2 - Gas shielded arc welding flux cored wire for high strength steel - Google Patents
Gas shielded arc welding flux cored wire for high strength steel Download PDFInfo
- Publication number
- JP5005309B2 JP5005309B2 JP2006271314A JP2006271314A JP5005309B2 JP 5005309 B2 JP5005309 B2 JP 5005309B2 JP 2006271314 A JP2006271314 A JP 2006271314A JP 2006271314 A JP2006271314 A JP 2006271314A JP 5005309 B2 JP5005309 B2 JP 5005309B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- welding
- mgo
- tio
- cored wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003466 welding Methods 0.000 title claims description 99
- 229910000831 Steel Inorganic materials 0.000 title claims description 43
- 239000010959 steel Substances 0.000 title claims description 43
- 230000004907 flux Effects 0.000 title claims description 28
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 42
- 229910052749 magnesium Inorganic materials 0.000 claims description 17
- 229910052804 chromium Inorganic materials 0.000 claims description 11
- 229910052750 molybdenum Inorganic materials 0.000 claims description 11
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- 229910052796 boron Inorganic materials 0.000 claims description 10
- 229910052748 manganese Inorganic materials 0.000 claims description 10
- 229910001515 alkali metal fluoride Inorganic materials 0.000 claims description 9
- 229910001618 alkaline earth metal fluoride Inorganic materials 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 229910000272 alkali metal oxide Inorganic materials 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 8
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 230000001105 regulatory effect Effects 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 description 47
- 239000002184 metal Substances 0.000 description 47
- 239000002893 slag Substances 0.000 description 25
- 239000007789 gas Substances 0.000 description 19
- 239000011324 bead Substances 0.000 description 13
- 230000000694 effects Effects 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 10
- 229910045601 alloy Inorganic materials 0.000 description 8
- 239000000956 alloy Substances 0.000 description 8
- 238000005336 cracking Methods 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000009863 impact test Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 238000005242 forging Methods 0.000 description 3
- 229910001512 metal fluoride Inorganic materials 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- 229910002593 Fe-Ti Inorganic materials 0.000 description 2
- 229910001563 bainite Inorganic materials 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 229910017060 Fe Cr Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910002544 Fe-Cr Inorganic materials 0.000 description 1
- 229910002551 Fe-Mn Inorganic materials 0.000 description 1
- 229910017082 Fe-Si Inorganic materials 0.000 description 1
- 229910017116 Fe—Mo Inorganic materials 0.000 description 1
- 229910017133 Fe—Si Inorganic materials 0.000 description 1
- -1 MgO Chemical class 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/3053—Fe as the principal constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/02—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
- B23K35/0255—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
- B23K35/0261—Rods, electrodes, wires
- B23K35/0266—Rods, electrodes, wires flux-cored
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/36—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/36—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
- B23K35/3601—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
- B23K35/3602—Carbonates, basic oxides or hydroxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/36—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
- B23K35/3601—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
- B23K35/3603—Halide salts
- B23K35/3605—Fluorides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/36—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
- B23K35/368—Selection of non-metallic compositions of core materials either alone or conjoint with selection of soldering or welding materials
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Nonmetallic Welding Materials (AREA)
- Arc Welding In General (AREA)
Description
本発明は、耐力が620MPa級以上の高張力鋼のガスシールドアーク溶接に使用するのに好適のフラックス入りワイヤに関し、特に、低温靭性が優れた溶接金属が得られ、全姿勢溶接での溶接作業性及び耐割れ性が優れた高張力鋼用ガスシールドアーク溶接フラックス入りワイヤに関する。 The present invention relates to a flux-cored wire suitable for use in gas shielded arc welding of high-strength steel having a yield strength of 620 MPa or more, and in particular, a weld metal having excellent low-temperature toughness is obtained, and welding work in all-position welding The present invention relates to a gas-shielded arc welding flux-cored wire for high-strength steel having excellent properties and crack resistance.
近時の鋼構造物の大型化に伴い、構造物の軽量化が図られるようになり、このため、鋼構造物への高張力鋼の適用が進んでいる。特に、海洋構造物及び圧力容器等の分野では、鋼構造物の良好な低温靭性が必要であり、これを満足する溶接材料の需要が高まっている。これまで、被覆アーク溶接及びサブマージアーク溶接等では、低温靭性が優れた溶接材料が適用されているが、作業能率、溶接作業性及び適用姿勢等の面で課題があるのが現状である。このため、高能率、優れた低温靭性及び全姿勢溶接で良好な溶接作業性の3特性が優れたフラックス入りワイヤが強く要望されている。 With the recent increase in the size of steel structures, the weight of the structures has been reduced. For this reason, the application of high-tensile steel to steel structures is progressing. In particular, in the fields of offshore structures and pressure vessels, good low-temperature toughness of steel structures is necessary, and the demand for welding materials that satisfy them is increasing. So far, welding materials with excellent low-temperature toughness have been applied to covered arc welding, submerged arc welding, and the like, but there are problems in terms of work efficiency, welding workability, application posture, and the like. For this reason, there is a strong demand for a flux-cored wire excellent in three characteristics of high efficiency, excellent low-temperature toughness, and good welding workability in all-position welding.
このような高性能のフラックス入りワイヤとして、種々のものが開発されている。その一例として、特許文献1には、引張強度:690MPa級の高張力鋼用のガスシールドアーク溶接フラックス入りワイヤが開示されているが、このフラックス入りワイヤは、ワイヤ全重量に対し、TiO2、金属フッ化物、C、Si、Mn、Ni、Cr、Mo、Cu、Mg、Ti及びBの含有量、並びにワイヤ中のMg量/金属フッ化物量比の適正範囲を規定し、良好な溶接作業性と、長時間PWHT(溶接後熱処理:Post Weld Heat Treatment)後の高温強度及び低温靭性を確保するというものである。 Various types of such high performance flux cored wires have been developed. As an example, Patent Document 1 discloses a gas shielded arc welding flux-cored wire for high-strength steel having a tensile strength of 690 MPa. This flux-cored wire is composed of TiO 2 with respect to the total weight of the wire, Good welding work by prescribing the appropriate range of metal fluoride, C, Si, Mn, Ni, Cr, Mo, Cu, Mg, Ti, and B content, and the Mg content / metal fluoride content ratio in the wire And high temperature strength and low temperature toughness after long time PWHT (Post Weld Heat Treatment).
また、特許文献2には、TiO2、MgO及びMnOを主成分とするチタニヤ系フラックスが充填された高張力鋼用フラックス入りワイヤが開示されている。この従来技術は、高張力鋼用フラックス入りワイヤのC、Mn、Ni及びMoの含有量を規定し、更にTiO2/MgO比の最適化並びにCo及びCr添加により、良好な溶接作業性及び靭性を確保するというものである。 Patent Document 2 discloses a high-strength steel flux cored wire filled with a titania-based flux mainly composed of TiO 2 , MgO, and MnO. This prior art regulates the contents of C, Mn, Ni and Mo in high-strength steel flux cored wire, and further improves the welding workability and toughness by optimizing the TiO 2 / MgO ratio and adding Co and Cr. Is to secure.
また、特許文献3には、引張強度が680N/mm2級以上の高張力鋼用のガスシールドアーク溶接フラックス入りワイヤが開示されている。この従来技術は、ワイヤ全重量に対し、C、Si、Mn、P、S、Ni、Cr及びMoの含有量の適正範囲を規定し、Taの添加量を規制することにより、小入熱から大入熱までの広い使用範囲において母材強度に相当した強度及び良好な靭性を確保し、更に作業能率向上のため、フラックス中の金属粉の重量比率を規定するというものである。 Patent Document 3 discloses a gas-shielded arc welding flux-cored wire for high-strength steel having a tensile strength of 680 N / mm grade 2 or higher. This conventional technology defines the appropriate range of the content of C, Si, Mn, P, S, Ni, Cr and Mo with respect to the total weight of the wire, and regulates the amount of Ta added, thereby reducing the heat input. In the wide range of use up to large heat input, the strength corresponding to the strength of the base material and good toughness are ensured, and the weight ratio of the metal powder in the flux is specified in order to improve the work efficiency.
更に、特許文献4には、チタニヤ系のガスシールドアーク溶接用フラックス入りワイヤに関するものであり、このフラックス入りワイヤに対し、MgO及び金属フッ化物を添加することにより、溶融金属からの溶融スラグの浮上分離を促進し、溶接金属中の酸素量を低減し、溶接金属の低温靭性を改善するという方法が提案されている。 Furthermore, Patent Document 4 relates to a titania-based flux-cored wire for gas shielded arc welding, and by adding MgO and metal fluoride to the flux-cored wire, floating of molten slag from the molten metal. Methods have been proposed that promote separation, reduce the amount of oxygen in the weld metal, and improve the low temperature toughness of the weld metal.
しかしながら、上述の各従来技術においては、−30〜−40℃におけるシャルピー衝撃値により低温靭性を評価しているため、その目的も、−30〜−40℃程度の低温靭性の確保にある。しかしながら、海洋構造物等の極低温下で使用される構造物への適用を考慮した場合、上述の温度域で高靭性が得られても不十分であり、−60℃程度の極低温域での高靱性の確保が必要である。 However, in each of the above-described conventional techniques, the low temperature toughness is evaluated based on the Charpy impact value at −30 to −40 ° C., and the purpose is also to secure the low temperature toughness of about −30 to −40 ° C. However, when considering application to structures used at extremely low temperatures, such as offshore structures, it is not sufficient even if high toughness is obtained in the above temperature range, and in a very low temperature range of about −60 ° C. It is necessary to ensure high toughness.
また、特許文献1及び特許文献3に開示された技術では、チタニヤ系フラックスに対するMgO添加による作用効果が開示されていない。更に、特許文献4では全姿勢溶接での溶接作業性の向上は課題とされておらず、また特許文献4で規定されているTiO2/MgO比では、立向上進溶接でのビード形状が不良となってしまう。このため、ポジショナ等での溶接箇所の展開による姿勢の変更が不可能な大型構造物を現地で溶接する際には、その溶接ワイヤの適用が困難であるという問題点がある。 In addition, the techniques disclosed in Patent Document 1 and Patent Document 3 do not disclose the effect of adding MgO to the titania-based flux. Furthermore, in Patent Document 4, improvement in welding workability in all-position welding is not considered as a problem, and with the TiO 2 / MgO ratio specified in Patent Document 4, the bead shape in vertical improvement welding is poor. End up. For this reason, there is a problem that it is difficult to apply the welding wire when welding a large structure that cannot be changed in posture by development of the welded portion with a positioner or the like on site.
特許文献2では、150A程度の比較的低電流において立向上進溶接での溶接作業性を評価し、TiO2/MgO比の範囲を決定しているが、150A程度の低電流では、溶接施工能率向上を目的としてフラックス入りワイヤ(FCW)を適用することの効果が得にくい。一方、溶接施工能率の向上のために、220A程度の高電流を使用すると、特許文献2に規定されているTiO2/MgO比では、ビード形状不良が発生し、又は溶接不可になる可能性が極めて高い。 In Patent Document 2, the welding workability in vertical welding is evaluated at a relatively low current of about 150 A, and the range of the TiO 2 / MgO ratio is determined, but at a low current of about 150 A, the welding operation efficiency is determined. It is difficult to obtain the effect of applying a flux-cored wire (FCW) for the purpose of improvement. On the other hand, if a high current of about 220 A is used to improve the welding efficiency, a bead shape failure may occur at the TiO 2 / MgO ratio defined in Patent Document 2, or welding may become impossible. Extremely expensive.
このように、従来技術では、更に一層の低温域での靭性確保、全姿勢溶接での良好な溶接作業性、溶接施工能率向上、優れた耐割れ性を満足する高張力鋼用フラックス入りワイヤは得られておらず、その開発が強く要望されている。 As described above, in the conventional technology, the flux-cored wire for high-tensile steel satisfying toughness securing at a further lower temperature range, good welding workability in all-position welding, improved welding work efficiency, and excellent crack resistance is provided. It has not been obtained and its development is strongly desired.
本発明はかかる問題点に鑑みてなされたものであって、耐力620MPa級以上の高張力鋼の溶接において、−60℃程度での低温靭性に優れた溶接金属が得られ、また、全姿勢溶接において良好な溶接作業性を確保でき、溶接施工能率が向上し、且つ溶接金属の耐割れ性が優れた高張力鋼用ガスシールドアーク溶接フラックス入りワイヤを提供することを目的とする。 The present invention has been made in view of such problems, and in welding high-tensile steel having a yield strength of 620 MPa or higher, a weld metal having excellent low temperature toughness at about −60 ° C. can be obtained. An object of the present invention is to provide a gas-shielded arc-welded flux-cored wire for high-strength steel that can secure good welding workability, improve welding work efficiency, and has excellent weld metal crack resistance.
本発明に係る高張力鋼用ガスシールドアーク溶接フラックス入りワイヤは、ワイヤ全質量に対して、C;0.02乃至0.14質量%、Si;0.4乃至1.1質量%、Mn;0.8乃至3.0質量%、Ni;0.2乃至3.1質量%、Ti;0.2質量%以下、Cr及びMoの少なくとも1種;総量で0.1乃至4.0質量%を含有し、TiO2及びMgOを総量で5.0乃至7.2質量%含有し、更に、N;0.0150質量%以下に規制し、残部が不可避的不純物及びFeからなり、MgOの含有量とTiO2の含有量との比をx(=MgO/TiO2)とし、関数F(x)をF(x)=37.2×x−0.0665−30で表したとき、0.05≦x≦0.22、11≦F(x)≦15であることを特徴とする。 The gas-shielded arc welding flux cored wire for high-strength steel according to the present invention is C: 0.02 to 0.14 mass%, Si; 0.4 to 1.1 mass%, Mn; 0.8 to 3.0% by mass, Ni: 0.2 to 3.1% by mass, Ti; 0.2% by mass or less, at least one of Cr and Mo; 0.1 to 4.0% by mass in total TiO 2 and MgO in a total amount of 5.0 to 7.2% by mass, further, N: regulated to 0.0150% by mass or less, the balance is inevitable impurities and Fe, and MgO is contained When the ratio of the amount and the content of TiO 2 is x (= MgO / TiO 2 ), and the function F (x) is expressed by F (x) = 37.2 × x− 0.0665-30 , it is 0. 05 ≦ x ≦ 0.22 and 11 ≦ F (x) ≦ 15.
また、本発明に係る他の高張力鋼用ガスシールドアーク溶接フラックス入りワイヤは、ワイヤ全質量に対して、C;0.02乃至0.14質量%、Si;0.4乃至1.1質量%、Mn;0.8乃至3.0質量%、Ni;0.2乃至3.1質量%、Ti;0.2質量%以下、Cr及びMoの少なくとも1種;総量で0.1乃至4.0質量%を含有し、TiO2及びMgOを総量で5.0乃至7.2質量%含有し、更に、アルカリ金属フッ化物、アルカリ金属酸化物、アルカリ土類金属フッ化物、アルカリ土類金属酸化物、B、Al及びMgの少なくとも1つを総量で2.0質量%以下含有し、更に、N;0.0150質量%以下に規制し、残部が不可避的不純物及びFeからなり、MgOの含有量とTiO2の含有量との比をx(=MgO/TiO2)とし、関数F(x)をF(x)=37.2×x−0.0665−30で表したとき、0.05≦x≦0.22、11≦F(x)≦15であることを特徴とする。 Further, another high-strength steel gas shielded arc welding flux cored wire according to the present invention is C: 0.02 to 0.14 mass%, Si; 0.4 to 1.1 mass based on the total mass of the wire. %, Mn; 0.8 to 3.0 mass%, Ni; 0.2 to 3.1 mass%, Ti; 0.2 mass% or less, at least one of Cr and Mo; 0.1 to 4 in total 0.0 mass%, TiO 2 and MgO in a total amount of 5.0 to 7.2 mass%, and further, alkali metal fluoride, alkali metal oxide, alkaline earth metal fluoride, alkaline earth metal It contains at least one of oxide, B, Al, and Mg in a total amount of 2.0% by mass or less, and further, N: is regulated to 0.0150% by mass or less, and the balance is inevitable impurities and Fe. the x (= MgO ratio between the content and the content of TiO 2 TiO 2) and then, when expressed function F (x) F (x) = 37.2 in × x -0.0665 -30, 0.05 ≦ x ≦ 0.22,11 ≦ F (x) ≦ 15 It is characterized by being.
本発明によれば、−60℃程度の低温においても溶接金属の良好な低温靭性が得られ、全姿勢溶接での優れた溶接作業性及び溶接施工能率が得られ、耐割れ性が優れた溶接金属を得ることができる。 According to the present invention, good low temperature toughness of the weld metal can be obtained even at a low temperature of about −60 ° C., excellent welding workability and welding work efficiency in all position welding can be obtained, and welding with excellent crack resistance. Metal can be obtained.
以下、本発明の実施形態について具体的に説明する。本発明者等は、高張力鋼用ガスシールドアーク溶接フラックス入りワイヤの低温靭性を向上させるために有効な合金成分及びスラグ造滓剤について、種々の検討を行い、この結果、高張力鋼用ガスシールドアーク溶接フラックス入りワイヤ中の合金成分の添加量と溶接金属の低温靭性との関係を明らかにした。更に、良好な低温靭性及び溶接作業性を確保するTiO2量とMgO量との関係を見出した。また、溶接金属の靭性は、合金成分の相互的な作用による影響があるため、溶接金属の低温靭性に及ぼす高張力鋼用ガスシールドアーク溶接フラックス入りワイヤ中の各種合金成分の影響について調査した結果、以下の知見を得た。 Hereinafter, embodiments of the present invention will be specifically described. The present inventors have conducted various studies on alloy components and slag forging agents effective for improving the low temperature toughness of gas shielded arc welding flux cored wire for high strength steel. The relationship between the amount of alloy components added in the shielded arc welding flux cored wire and the low temperature toughness of the weld metal was clarified. Further, the present inventors have found a relationship between the amount of TiO 2 and the amount of MgO that ensure good low temperature toughness and welding workability. In addition, because the toughness of weld metal is affected by the interaction of alloy components, the results of investigating the effects of various alloy components in the high-strength steel gas shielded arc welding flux cored wire on the low temperature toughness of weld metal The following findings were obtained.
先ず、耐力620MPa級以上の高張力鋼の溶接においては、高張力鋼用ガスシールドアーク溶接フラックス入りワイヤ中のC、Cr、Ti、Moの増加に伴って靭性が低下する傾向があり、特にC、Tiの含有による影響が大きい。 First, in the welding of high-strength steel with a yield strength of 620 MPa or higher, the toughness tends to decrease with an increase in C, Cr, Ti, and Mo in the gas-shielded arc welding flux-cored wire for high-strength steel. The influence of Ti content is large.
Tiの増加により、溶接金属中の固溶Tiが増大し、再熱部ではTiCが析出するため、核生成能が低下する。これにより、粗大なラス状ベイナイトが支配的となり、靭性が大きく低下する。なお、再熱部とは溶接金属の後続パス(後続電極による溶接パス)による熱影響部を指す。また、Cの増加により、溶接金属に島状マルテンサイトが生成し、靭性が劣化する。 Due to the increase in Ti, the solute Ti in the weld metal increases, and TiC precipitates in the reheated portion, so that the nucleation ability decreases. Thereby, coarse lath bainite becomes dominant and toughness is greatly reduced. The reheat portion refers to a heat affected zone caused by a subsequent pass of the weld metal (welding pass by the subsequent electrode). Further, due to the increase in C, island-shaped martensite is generated in the weld metal and the toughness is deteriorated.
逆に、Si、Mn、Niの添加は靭性が向上する傾向があり、特にSi及びMnの含有による靱性向上効果が大きい。Mn及びSiの含有量の増加により、溶接金属中の酸素量が低減され、良好な靭性を確保することができる。 On the contrary, the addition of Si, Mn, and Ni tends to improve toughness, and the effect of improving toughness due to the inclusion of Si and Mn is particularly great. By increasing the contents of Mn and Si, the amount of oxygen in the weld metal is reduced, and good toughness can be ensured.
MgOは、種々のスラグ造滓剤の中でも最も脱酸力の強い塩基性スラグ造滓剤の1つである。チタニヤ系FCWにおいて、スラグ造滓剤としてMgOを添加することで、溶接金属中の酸素濃度を大幅に低減することができ、低温靭性が大幅に改善する。 MgO is one of the most basic slag fouling agents having the strongest deoxidizing power among various slag fouling agents. In the titania-based FCW, by adding MgO as a slag forging agent, the oxygen concentration in the weld metal can be greatly reduced, and the low-temperature toughness is greatly improved.
一方、チタニヤ系フラックスにおけるMgO添加では、スラグ粘性及び融点が低下するため、全姿勢溶接、特に立向上進溶接でのビード形状が凸になる等、溶接作業性を劣化させる要因となる。スラグの粘性及び融点低下により溶融スラグが凝固しにくく、流れ落ちやすくなる。それによって、スラグによる溶融金属の垂れ落ち抑制が難しくなり、MgO多量添加では垂れ落ちが発生し、溶接困難になる。 On the other hand, when MgO is added to the titania-based flux, the slag viscosity and the melting point are lowered, and this causes deterioration in welding workability such as a bead shape being convex in all-position welding, particularly vertical welding. As the viscosity and melting point of the slag decrease, the molten slag is difficult to solidify and easily flows down. As a result, it becomes difficult to suppress dripping of the molten metal by slag, and dripping occurs when a large amount of MgO is added, which makes welding difficult.
そこで、本発明者等による種々の検討の結果、TiO2量とMgO量の関係をMgO/TiO2比として整理することで、低温靭性改善に効果があり、全姿勢溶接での溶接作業性が確保できる最適バランスを見出すことが可能になった。ここで、MgOはMgOの量と、金属Mg及びMg化合物の量を酸化物量に換算した値との合計である。金属Mg及びMg化合物は、MgOと同様溶接金属の脱酸効果が強く、低温靭性改善には大きな効果があるが、多量添加するとビード形状不良、垂れ落ちによる溶接不可を招くものである。そのため、この金属Mg及びMg化合物の量を酸化物量に換算し、MgO量として整理することで、低温靭性及び全姿勢溶接での溶接作業性に影響を与える因子を明らかにすることができた。 Therefore, as a result of various studies by the present inventors, by arranging the relationship between the TiO 2 amount and the MgO amount as the MgO / TiO 2 ratio, there is an effect in improving low temperature toughness, and welding workability in all-position welding is improved. It became possible to find the optimal balance that could be secured. Here, MgO is the sum of the amount of MgO and the value obtained by converting the amounts of metal Mg and Mg compound into the amount of oxide. Metal Mg and Mg compound, like MgO, have a strong deoxidation effect on weld metal and have a great effect on improving low-temperature toughness. However, if added in a large amount, bead shape failure and inability to weld due to dripping are caused. Therefore, the factors affecting the low temperature toughness and welding workability in all-position welding could be clarified by converting the amount of the metal Mg and Mg compound into the amount of oxide and arranging it as the amount of MgO.
しかしながら、MgO/TiO2比の最適化だけでは、全姿勢溶接での溶接作業性を評価するには十分ではない。立向上進溶接でのビード形状には、スラグ量が大きく関係しており、このスラグ量を規定することが重要である。 However, optimization of the MgO / TiO 2 ratio alone is not sufficient to evaluate the welding workability in all-position welding. The slag amount is greatly related to the bead shape in vertical improvement welding, and it is important to define the slag amount.
スラグ量過少の場合、立向上進溶接において溶融金属を抑えるスラグの絶対量が確保できないため、凸ビード又は垂れ落ちが発生してしまう。逆に、スラグ量過多の場合、アークが溶融スラグ中に埋もれてしまい、アーク安定性が劣化し、スパッタ発生量が著しく増加する傾向が認められる。 When the amount of slag is too small, the absolute amount of slag that suppresses the molten metal in the vertical improvement welding cannot be secured, so that convex beads or sagging occurs. On the contrary, when the amount of slag is excessive, the arc is buried in the molten slag, the arc stability is deteriorated, and the amount of spatter generated tends to increase remarkably.
このことから、MgO/TiO2比(各化合物の質量比)の最適バランスを確保した上で、最適スラグ量を規定することによって、全姿勢溶接での良好な溶接作業性が確保できる。加えて、上述の合金成分最適化と合わせることにより、低温靭性との両立が可能となる。 From this, it is possible to ensure good welding workability in all-position welding by ensuring the optimum balance of the MgO / TiO 2 ratio (mass ratio of each compound) and defining the optimum slag amount. In addition, by combining with the above-described alloy component optimization, it is possible to achieve both low temperature toughness.
本発明は、以上の知見をもとにワイヤ中の合金成分の適正化及びスラグ造滓剤の成分最適化(MgO/TiO2比、スラグ量)により、本発明の課題を解決するものである。 The present invention solves the problems of the present invention by optimizing the alloy components in the wire and optimizing the components (MgO / TiO 2 ratio, slag amount) of the slag forging agent based on the above knowledge. .
次に、本発明の高張力鋼用ガスシールドアーク溶接フラックス入りワイヤについて、成分添加理由及びその組成限定理由について説明する。なお、以下に示す成分は、ワイヤ全重量あたりの成分を示す。本発明に係る高張力鋼用フラックス入りワイヤは、鋼製外皮と充填フラックスとからなり、以下に示す成分は、鋼製外皮の組成成分及び/又は充填フラックスの含有成分として、添加されるものである。 Next, the reason for component addition and the reason for limiting the composition of the gas-shielded arc welding flux cored wire for high-strength steel of the present invention will be described. In addition, the component shown below shows the component per wire total weight. The high-strength steel flux cored wire according to the present invention comprises a steel outer shell and a filling flux, and the components shown below are added as a composition component of the steel outer shell and / or a containing component of the filling flux. is there.
「C:0.02乃至0.14質量%」
Cは、溶接金属の強度確保において極めて重要な成分である。本実施形態に係る高張力鋼用ガスシールドアーク溶接フラックス入りワイヤにおいて、C含有量が0.02質量%未満では、620MPa級以上の耐力を確保することができない。また、C含有量が0.14%を超えると溶接金属の強度が増加し、低温割れ感受性が著しく高まる。従って、本実施形態に係る高張力鋼用ガスシールドアーク溶接フラックス入りワイヤのC含有量は0.02乃至0.14質量%とし、より好ましくは0.02乃至0.08質量%とする。
“C: 0.02 to 0.14 mass%”
C is a very important component in securing the strength of the weld metal. In the high strength steel gas shielded arc welding flux cored wire according to the present embodiment, when the C content is less than 0.02% by mass, a 620 MPa class or higher proof stress cannot be ensured. On the other hand, when the C content exceeds 0.14%, the strength of the weld metal is increased, and the cold cracking sensitivity is remarkably increased. Therefore, the C content in the high strength steel gas shielded arc welding flux cored wire according to the present embodiment is 0.02 to 0.14 mass%, more preferably 0.02 to 0.08 mass%.
「Si:0.4乃至1.1質量%」
Siは、脱酸剤であり、溶接金属の強度確保及び酸素量低減の効果を有する元素である。本実施形態に係る高張力鋼用ガスシールドアーク溶接フラックス入りワイヤにおいて、Si含有量が0.4質量%未満では、脱酸不足となりブローホール発生及び靭性不良となる。一方、Si含有量が1.1質量%を超えると、溶接金属の粘性が高くなり、母材へのなじみが悪くなる等溶接作業性が劣化する。従って、本実施形態に係る高張力鋼用ガスシールドアーク溶接フラックス入りワイヤのSi含有量は0.4乃至1.1質量%とし、より好ましくは0.4乃至0.9質量%とする。
“Si: 0.4 to 1.1 mass%”
Si is a deoxidizer and is an element having the effect of ensuring the strength of the weld metal and reducing the amount of oxygen. In the gas shielded arc welding flux-cored wire for high-strength steel according to this embodiment, when the Si content is less than 0.4 mass%, deoxidation is insufficient and blowholes are generated and toughness is poor. On the other hand, when the Si content exceeds 1.1% by mass, the welding workability deteriorates, for example, the viscosity of the weld metal increases and the conformity to the base material deteriorates. Therefore, the Si content of the high-strength steel gas shielded arc welding flux cored wire according to this embodiment is 0.4 to 1.1 mass%, more preferably 0.4 to 0.9 mass%.
「Mn:0.8乃至3.0質量%」
Mnは、Siと同じく脱酸剤として使用する他、溶接金属の靭性向上に有効である。本実施形態に係る高張力鋼用ガスシールドアーク溶接フラックス入りワイヤにおいて、Mn含有量が0.8質量%未満では、脱酸不足となり、ブローホール発生及び靭性不良となる。一方、Mn含有量が3.0質量%を超えると、溶接金属の強度が増加し、低温割れ感受性が著しく高まる。従って、本実施形態に係る高張力鋼用ガスシールドアーク溶接フラックス入りワイヤのMn含有量は0.8乃至3.0質量%とし、より好ましくは2.1乃至2.9質量%とする。
“Mn: 0.8 to 3.0% by mass”
Mn is used as a deoxidizing agent in the same manner as Si and is effective for improving the toughness of weld metal. In the gas shielded arc welding flux-cored wire for high-strength steel according to this embodiment, if the Mn content is less than 0.8% by mass, deoxidation is insufficient, and blowholes are generated and toughness is poor. On the other hand, if the Mn content exceeds 3.0% by mass, the strength of the weld metal is increased, and the cold cracking sensitivity is remarkably increased. Therefore, the Mn content of the high-strength steel gas shielded arc welding flux cored wire according to this embodiment is 0.8 to 3.0 mass%, more preferably 2.1 to 2.9 mass%.
「Ni:0.2乃至3.1質量%」
Niは、溶接金属の強度及び靭性確保において極めて重要な成分である。本実施形態に係る高張力鋼用ガスシールドアーク溶接フラックス入りワイヤにおいて、Ni含有量が0.2質量%未満では、十分な靭性改善効果が得られず、Ni含有量が3.1%を超えると高温割れの危険性が高まる。従って、本実施形態に係る高張力鋼用ガスシールドアーク溶接フラックス入りワイヤのNi含有量は0.2乃至3.1質量%とし、より好ましくは0.8乃至2.7質量%とする。
“Ni: 0.2 to 3.1 mass%”
Ni is a very important component in securing the strength and toughness of the weld metal. In the high strength steel gas shielded arc welding flux cored wire according to the present embodiment, if the Ni content is less than 0.2% by mass, a sufficient toughness improving effect cannot be obtained, and the Ni content exceeds 3.1%. And the risk of hot cracking increases. Therefore, the Ni content of the high strength steel gas shielded arc welding flux cored wire according to the present embodiment is 0.2 to 3.1% by mass, more preferably 0.8 to 2.7% by mass.
「Ti:0.2質量%以下」
Tiの少量添加は、結晶粒の微細化に効果があるが、0.2質量%を超えるTi添加では、溶接金属中の固溶Tiが増大し、再熱部ではTiCが析出するため、核生成能が低下する。これにより、粗大なラス状ベイナイトが支配的となり、靭性が大きく低下する。従って、本実施形態に係る高張力鋼用ガスシールドアーク溶接フラックス入りワイヤのTi含有量は0.2質量%以下に規制する。但し、本発明では、Ti無添加であっても、他合金成分の適正化により良好な低温靭性を確保することが可能である。なお、Tiは金属Ti、Fe−Ti等のTi合金で添加することとする。
“Ti: 0.2% by mass or less”
The addition of a small amount of Ti is effective for refining crystal grains. However, when Ti addition exceeds 0.2% by mass, solid solution Ti in the weld metal increases and TiC precipitates in the reheated part. Productivity decreases. Thereby, coarse lath bainite becomes dominant and toughness is greatly reduced. Therefore, the Ti content of the high-strength steel gas shielded arc welding flux cored wire according to the present embodiment is restricted to 0.2% by mass or less. However, in the present invention, even when Ti is not added, good low temperature toughness can be ensured by optimizing other alloy components. Ti is added as a Ti alloy such as metal Ti or Fe—Ti.
「N:0.0150質量%以下」
Nは0.0150質量%を超えると、溶接金属中のN量が増加し、ブローホールが発生し、更に、靭性劣化の原因となる。このため、Nは0.0150質量%以下とする。
“N: 0.0150 mass% or less”
If N exceeds 0.0150% by mass, the amount of N in the weld metal increases, blowholes are generated, and further toughness deterioration occurs. For this reason, N is made into 0.0150 mass% or less.
「Cr+Mo:0.1乃至4.0質量%」
Crは、安定的に強度を確保することができ、また、Moは安定的な強度確保が可能であり、また、その添加により、結晶粒の微細化を図ることができ、低温靭性が向上する成分である。本発明に係る高張力鋼用ガスシールドアーク溶接フラックス入りワイヤにおいて、Cr及びMoのいずれか一方又は双方を含有するが、Cr+Mo含有量(Cr又はMoの単独添加であればその量、Cr及びMoの複合添加であれば総量)が0.1質量%未満では、十分な強度を確保することができない。一方、Cr+Mo含有量が4.0質量%を超えると、溶接金属の強度が増加するとともに靭性が劣化し、また低温割れの原因にもなる。従って、本発明の高張力鋼用ガスシールドアーク溶接フラックス入りワイヤのCr+Mo含有量は0.1乃至4.0質量%とし、より好ましくは0.2乃至1.1質量%とする。
“Cr + Mo: 0.1 to 4.0 mass%”
Cr can secure the strength stably, Mo can secure the stable strength, and the addition can refine the crystal grains and improve the low temperature toughness. It is an ingredient. The gas-shielded arc welding flux cored wire for high-strength steel according to the present invention contains either one or both of Cr and Mo, but Cr + Mo content (if Cr or Mo is added alone, Cr, Mo If the total amount is less than 0.1% by mass, sufficient strength cannot be ensured. On the other hand, if the Cr + Mo content exceeds 4.0% by mass, the strength of the weld metal increases, the toughness deteriorates, and it causes cold cracking. Accordingly, the Cr + Mo content of the high-strength steel gas shielded arc welding flux cored wire of the present invention is 0.1 to 4.0% by mass, more preferably 0.2 to 1.1% by mass.
「TiO2+MgO:5.0乃至7.2質量%」
本発明の高張力鋼用ガスシールドアーク溶接フラックス入りワイヤにおいて、TiO2+MgO含有量(TiO2及びMgOの含有量合計)が5.0質量%未満では、スラグ量過少により、立向上進溶接において、溶接金属をスラグにより抑えることができず、垂れ落ちてしまう。一方、TiO2+MgO含有量が7.2質量%を超えると、スラグ量過多により、アークが溶融スラグ中に埋もれてしまい、アーク安定性が劣化し、スパッタ発生量が増加する。従って、TiO2+MgO含有量は5.0乃至7.2質量%とする。
“TiO 2 + MgO: 5.0 to 7.2% by mass”
In the gas shielded arc welding flux-cored wire for high-tensile steel of the present invention, when the TiO 2 + MgO content (the total content of TiO 2 and MgO) is less than 5.0% by mass, the slag amount is too small. The weld metal cannot be suppressed by the slag and falls down. On the other hand, if the content of TiO 2 + MgO exceeds 7.2% by mass, the arc is buried in the molten slag due to the excessive amount of slag, the arc stability is deteriorated, and the amount of spatter generated increases. Therefore, the content of TiO 2 + MgO is set to 5.0 to 7.2% by mass.
「アルカリ金属フッ化物、アルカリ金属酸化物、アルカリ土類金属フッ化物、アルカリ土類金属酸化物、B、Al及び/又はMg:含有する場合は総量で2.0質量%以下」
アルカリ金属フッ化物、アルカリ金属酸化物、アルカリ土類金属フッ化物、アルカリ土類金属酸化物、B、Al及びMgは、含有されていても良いが、含有されていなくてもよい。しかし、これらの元素又は化合物を含有する場合は、総量で2.0質量%以下にする。アルカリ金属フッ化物、アルカリ金属酸化物、アルカリ土類金属フッ化物、アルカリ土類金属酸化物は、アーク安定性を向上させ、スパッタを減少させる。また、Bは溶接金属の靭性を向上させる。Al及びMgは脱酸剤として添加される。これらの物質は、総量で2.0質量%を超えて含有されると、本発明の効果を阻害するので、これらの物質の含有量は総量で2.0質量%以下とする。
“Alkali metal fluoride, alkali metal oxide, alkaline earth metal fluoride, alkaline earth metal oxide, B, Al and / or Mg: 2.0% by mass or less in total when contained”
Alkali metal fluoride, alkali metal oxide, alkaline earth metal fluoride, alkaline earth metal oxide, B, Al and Mg may be contained, but may not be contained. However, when these elements or compounds are contained, the total amount is set to 2.0% by mass or less. Alkali metal fluorides, alkali metal oxides, alkaline earth metal fluorides, and alkaline earth metal oxides improve arc stability and reduce spatter. B improves the toughness of the weld metal. Al and Mg are added as deoxidizers. If these substances are contained in a total amount exceeding 2.0% by mass, the effects of the present invention are inhibited, so the content of these substances is 2.0% by mass or less in total.
「MgO/TiO2比x:0.05乃至0.22」
MgOの含有量と、TiO2の含有量との比x(=MgO/TiO2)が0.22を超えると、立向上進溶接において、溶接金属を垂れ落ちさせやすい成分であるMgO量がTiO2量に比べて相対的に過大となるため、溶接中にスラグが流れ落ちやすくなり、スラグにより溶融金属の垂れ落ちを抑制することが難しくなる。そのため、ビード形状が凸となるか又は垂れ落ちする。一方、後述する関数F(x)の上限値が15であるため、必然的にMgO/TiO2比xの下限値は0.05となる。従って、MgO/TiO2比xは0.05乃至0.22とする。
“MgO / TiO 2 ratio x: 0.05 to 0.22”
When the ratio x (= MgO / TiO 2 ) between the content of MgO and the content of TiO 2 exceeds 0.22, the amount of MgO, which is a component that tends to sag the weld metal, is increased in TiO 2 Since it becomes comparatively excessive as compared with 2 amounts, the slag easily flows down during welding, and it becomes difficult to suppress the dripping of the molten metal by the slag. Therefore, the bead shape becomes convex or hangs down. On the other hand, since the upper limit value of a function F (x) described later is 15, the lower limit value of the MgO / TiO 2 ratio x is inevitably 0.05. Therefore, the MgO / TiO 2 ratio x is set to 0.05 to 0.22.
「F(x):11乃至15」
F(x)は下記数式1によって与えられる。ここで、x=MgO/TiO2であり、MgOはMgOと金属Mg、Mg化合物の酸化物換算の合計である。TiO2は、TiO2として添加されたものの量である。
“F (x): 11 to 15”
F (x) is given by Equation 1 below. Here, x = MgO / TiO 2 , and MgO is the total oxide equivalent of MgO, metal Mg, and Mg compound. TiO 2 is the amount added as TiO 2 .
F(x)は、実験的に求めたMgO/TiO2比xと低温靭性との関係を示す式である。この関係式は、以下に示す各種合金及びスラグ造滓剤の成分範囲において、十数種類のワイヤを使用し、その溶着金属の−60℃でのシャルピー衝撃試験結果とワイヤ成分中のMgO/TiO2比xとの関係を統計処理により算出したものである。
C:0.02乃至0.14質量%
Si:0.4乃至1.1質量%
Mn:0.8乃至3.0質量%
Ni:0.2乃至3.1質量%
Cr:0.1乃至4.0質量%
Mo:0.1乃至4.0質量%
Ti:0乃至0.2質量%
Fe:84.1乃至90.1質量%
N:0.0150質量%以下
その他の成分(B,Na,F,K,Li,Al,Ca,Mg,P,S):0.10乃至3.25質量%
TiO2:3.5乃至7.8質量%
MgO:0.1乃至5.0質量%
F (x) is an equation showing the relationship between the experimentally obtained MgO / TiO 2 ratio x and low temperature toughness. This relational expression shows that in the component ranges of various alloys and slag making agents shown below, ten or more kinds of wires are used, the Charpy impact test result of the weld metal at −60 ° C., and MgO / TiO 2 in the wire component. The relationship with the ratio x is calculated by statistical processing.
C: 0.02 to 0.14% by mass
Si: 0.4 to 1.1% by mass
Mn: 0.8 to 3.0% by mass
Ni: 0.2 to 3.1% by mass
Cr: 0.1 to 4.0% by mass
Mo: 0.1 to 4.0% by mass
Ti: 0 to 0.2% by mass
Fe: 84.1 to 90.1% by mass
N: 0.0150 mass% or less Other components (B, Na, F, K, Li, Al, Ca, Mg, P, S): 0.10 to 3.25 mass%
TiO 2 : 3.5 to 7.8% by mass
MgO: 0.1 to 5.0% by mass
図1は、本発明者等の実験により求めたF(x)値と−60℃でのシャルピー衝撃値(以下、vE−60℃という)との関係を示すグラフ図である。F(x)とvE−60℃とは単調減少の関係にあり、F(x)≦15ではvE−60℃≧47Jとなり、優れた低温靭性を有することが分かる。また、MgO/TiO2比xの上限値が0.22であるため、必然的にF(x)の下限値は11となる。従って、このF(x)により高強度鋼用ガスシールドアーク溶接フラックス入りワイヤのワイヤ成分と溶接金属の低温靭性の関係を高精度で推定することが可能である。 FIG. 1 is a graph showing the relationship between the F (x) value determined by the inventors' experiment and the Charpy impact value at −60 ° C. (hereinafter referred to as vE-60 ° C.). F (x) and vE-60 ° C. are in a monotonically decreasing relationship, and when F (x) ≦ 15, vE−60 ° C. ≧ 47 J, and it can be seen that it has excellent low-temperature toughness. Further, since the upper limit value of the MgO / TiO 2 ratio x is 0.22, the lower limit value of F (x) is inevitably 11. Therefore, the relationship between the wire component of the gas-shielded arc welding flux-cored wire for high-strength steel and the low-temperature toughness of the weld metal can be estimated with high accuracy by this F (x).
本発明に係るフラックス入りワイヤの残りの主要成分は、鋼製外皮、充填フラックス中に含まれる各種Fe合金(Fe−Si、Fe−Mn、Fe−Cr、Fe−Mo、Fe−Ti等)及び鉄粉から由来するFeである。このFeは、ワイヤ全重量あたり80質量%以上含まれる。その他、本発明のフラックス入りワイヤには、アルカリ金属フッ化物、同酸化物、アルカリ土類金属フッ化物、同酸化物、B、Al、Mg等が含有されている。 The remaining main components of the flux-cored wire according to the present invention are steel outer sheath, various Fe alloys (Fe-Si, Fe-Mn, Fe-Cr, Fe-Mo, Fe-Ti, etc.) contained in the filled flux and Fe derived from iron powder. This Fe is contained in an amount of 80% by mass or more based on the total weight of the wire. In addition, the flux-cored wire of the present invention contains alkali metal fluoride, the same oxide, alkaline earth metal fluoride, the same oxide, B, Al, Mg and the like.
本試験に使用したフラックス入りワイヤのN量は0.0150質量%以下である。このN量が0.0150質量%を超える場合、溶接金属中のN量が増加し、ブローホールが多発する。 The N content of the flux-cored wire used in this test is 0.0150% by mass or less. When this N amount exceeds 0.0150 mass%, the N amount in the weld metal increases and blow holes occur frequently.
以下、本発明の実施例の効果について、本発明の範囲から外れる比較例と比較して説明する。先ず、本発明の実施例及び比較例のワイヤとして、下記表3乃至表5に示すワイヤ成分(ワイヤ全質量に対する割合)及びF(x)値のワイヤを使用した。これらの供試ワイヤのフープ組成を下記表6に示す。表7は、実施例及び比較例のワイヤで使用したフープ種類を示す対照表である。この表7に示すように、表3及び表4に示す各ワイヤはこの表6に記載のA又はBのフープを使用した。なお、実施例及び比較例のワイヤにおいて、その他の添加成分はP、S、Nb、Vである。 Hereinafter, the effect of the Example of this invention is demonstrated compared with the comparative example which remove | deviates from the scope of the present invention. First, as the wires of Examples and Comparative Examples of the present invention, the wire components (ratio to the total mass of the wire) and F (x) values shown in Tables 3 to 5 below were used. The hoop compositions of these test wires are shown in Table 6 below. Table 7 is a comparison table showing the types of hoops used in the wires of Examples and Comparative Examples. As shown in Table 7, A or B hoops shown in Table 6 were used for the wires shown in Table 3 and Table 4. In addition, in the wire of an Example and a comparative example, other addition components are P, S, Nb, and V.
(下向溶接)
表1は下向溶接のときの溶接条件を示す。この表1に示す溶接条件にてHT780鋼を溶接して、溶着金属を作製した。この溶着金属から引張試験片(JIS Z3111 A1号)及びシャルピー衝撃試験片(JIS Z3111 A4号)を採取し、機械試験を実施した。その結果、得られた0.2%耐力及びシャルピー衝撃値の測定値、並びに溶接作業性の評価結果を下記表8及び表9に示す。表8及び表9において、総合評価欄は、○が良好、×が不可である。
(Downward welding)
Table 1 shows the welding conditions for downward welding. HT780 steel was welded under the welding conditions shown in Table 1 to prepare a weld metal. Tensile test pieces (JIS Z3111 A1) and Charpy impact test pieces (JIS Z3111 A4) were collected from this weld metal and subjected to mechanical tests. As a result, the obtained 0.2% yield strength and measured value of Charpy impact value, and the evaluation results of welding workability are shown in Table 8 and Table 9 below. In Table 8 and Table 9, in the comprehensive evaluation column, ○ is good and x is not possible.
なお、溶着金属の0.2%耐力が620MPa以上、−60℃でのシャルピー衝撃値が27J以上であれば機械的性質が良好と判断した。更に、−60℃でのシャルピー衝撃値が47J以上であれば、優れた低温靭性を有していると判断した。 In addition, if the 0.2% yield strength of the weld metal was 620 MPa or more and the Charpy impact value at −60 ° C. was 27 J or more, it was judged that the mechanical properties were good. Furthermore, when the Charpy impact value at −60 ° C. was 47 J or more, it was judged to have excellent low temperature toughness.
溶接条件は以下のとおりである。
シールドガス:80%Ar−20%CO2、25リットル/分
ワイヤ径:1.2mm
溶接姿勢:下向
供試鋼板:JIS G 3128 SHY685(板厚:20mm)
開先形状:45°V
開先ギャップ:12mm
The welding conditions are as follows.
Welding posture: Downward Test steel plate: JIS G 3128 SHY685 (plate thickness: 20 mm)
Groove shape: 45 ° V
Groove gap: 12mm
(すみ肉溶接)
表2はすみ肉溶接における溶接条件を示す。表2に示す溶接条件にて、立向上進すみ肉溶接を行い、立向上進溶接における溶接作業性を評価した。図2はビード形状の評価方法を示す図である。この際、すみ肉ビードの脚長Lと余盛高さHに関し、ビードの垂れ易さを評価するため、L/Hを使用し、このL/Hの値が10以上であれば良好と判断した。なお、ビードが垂れ落ち、溶接不可となった場合はL/Hの値を0とした。
(Fillet welding)
Table 2 shows the welding conditions in fillet welding. Under the welding conditions shown in Table 2, standing improvement progress fillet welding was performed, and welding workability in standing improvement progress welding was evaluated. FIG. 2 is a diagram showing a bead shape evaluation method. At this time, regarding the leg length L and surplus height H of the fillet bead, L / H was used in order to evaluate the ease of drooping of the bead, and it was determined that the value was 10 or more when this L / H value was 10 or more. . In addition, the value of L / H was set to 0 when the bead dripped and welding became impossible.
溶接条件は以下のとおりである。
シールドガス:80%Ar−20%CO2、25リットル/分
ワイヤ径:1.2mm
溶接姿勢:立向上進
供試鋼板:JIS G 3128 SHY685(板厚:12mm)
開先ギャップ:0mm
The welding conditions are as follows.
Welding posture: Standing improvement test steel plate: JIS G 3128 SHY685 (plate thickness: 12 mm)
Groove gap: 0mm
また、これらの下向溶接及びすみ肉溶接の溶接試験において、低温割れ、高温割れの評価方法は以下のとおりである。即ち、低温割れは、溶接後96時間放置した後、裏当て金を切削し、超音波探傷試験(JIS Z 3060)、磁粉探傷試験(JIS G 0565)により欠陥の有無を確認した。更に、破面をSEM(Scanning Electron Microscope)により観察し、割れの形態を確認した。 In these downward welding and fillet welding tests, the evaluation methods for cold cracking and hot cracking are as follows. That is, the low temperature cracking was allowed to stand for 96 hours after welding, and then the backing metal was cut, and the presence or absence of defects was confirmed by ultrasonic testing (JIS Z 3060) and magnetic particle testing (JIS G 0565). Furthermore, the fracture surface was observed by SEM (Scanning Electron Microscope), and the form of the crack was confirmed.
また、高温割れは、溶接後、裏当て金を切削し、超音波探傷試験(JIS Z 3060)、放射線透過試験(JIS Z 3104)により欠陥の有無を確認した。更に、破面をSEMにより観察し、割れの形態を確認した。 In addition, after the welding, the cracking of the backing metal was cut and the presence or absence of defects was confirmed by an ultrasonic flaw detection test (JIS Z 3060) and a radiation transmission test (JIS Z 3104). Furthermore, the fracture surface was observed by SEM, and the form of the crack was confirmed.
また、引張試験及びシャルピー衝撃試験は、JIS Z 3111溶着金属の引張及び衝撃試験方法に準拠した。 Moreover, the tensile test and the Charpy impact test were based on the tensile and impact test method of JIS Z 3111 weld metal.
なお、表3及び表4において、その他の欄に記載の数値の内訳は、アルカリ金属フッ化物、アルカリ金属酸化物、アルカリ土類金属フッ化物、アルカリ土類金属酸化物、B、Al及びMgと、不可避的不純物(P,S,V,Nb)との総量である。但し、不可避的不純物の量は全て0.1質量%であり、従って、例えば、表4の実施例17は、その他が1.0質量%であるが、アルカリ金属フッ化物、アルカリ金属酸化物、アルカリ土類金属フッ化物、アルカリ土類金属酸化物、B、Al及びMgの総量が0.9質量%、不可避的不純物が0.1質量%である。また、実施例20は、アルカリ金属フッ化物、アルカリ金属酸化物、アルカリ土類金属フッ化物、アルカリ土類金属酸化物、B、Al及びMgが含まれておらず、その他の欄の数値は、不可避的不純物の量である。 In Tables 3 and 4, the numerical values described in the other columns are alkali metal fluorides, alkali metal oxides, alkaline earth metal fluorides, alkaline earth metal oxides, B, Al, and Mg. , And the total amount of inevitable impurities (P, S, V, Nb). However, the amounts of unavoidable impurities are all 0.1% by mass, and therefore, for example, Example 17 in Table 4 is 1.0% by mass for others, but alkali metal fluoride, alkali metal oxide, The total amount of alkaline earth metal fluoride, alkaline earth metal oxide, B, Al and Mg is 0.9% by mass, and unavoidable impurities are 0.1% by mass. In addition, Example 20 does not contain alkali metal fluoride, alkali metal oxide, alkaline earth metal fluoride, alkaline earth metal oxide, B, Al, and Mg, and the values in other columns are as follows: The amount of inevitable impurities.
上記表8及び表9は、これらの試験結果を示す。実施例1乃至5及び実施例17乃至21は、0.2%耐力(PS)と、−60℃における低温靭性と、ビード形状を含む溶接作業性との全てで、優れた特性が得られた。これに対し、比較例6乃至16及び比較例22乃至30は、これらの特性のいずれかが低いものであった。 Table 8 and Table 9 above show the test results. In Examples 1 to 5 and Examples 17 to 21, excellent characteristics were obtained in all of 0.2% proof stress (PS), low temperature toughness at −60 ° C., and welding workability including a bead shape. . On the other hand, Comparative Examples 6 to 16 and Comparative Examples 22 to 30 were low in any of these characteristics.
Claims (2)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006271314A JP5005309B2 (en) | 2006-10-02 | 2006-10-02 | Gas shielded arc welding flux cored wire for high strength steel |
CN2007101411720A CN101157164B (en) | 2006-10-02 | 2007-08-13 | Gas coverage arc welding compound core solder wire for steel with high tension |
SG200706368-8A SG141332A1 (en) | 2006-10-02 | 2007-08-30 | Flux-cored wire for gas-shielded arc welding of high tensile strength steel |
NO20074783A NO344763B1 (en) | 2006-10-02 | 2007-09-19 | Welding wire with flux core for arc welding with shielding steel of high tensile strength |
SE0702122A SE532239C2 (en) | 2006-10-02 | 2007-09-24 | Wax welding wire for gas arc welding of steel with high tensile strength |
KR1020070098727A KR100922095B1 (en) | 2006-10-02 | 2007-10-01 | Flux-cored wire for gas-shielded arc welding |
NL1034459A NL1034459C2 (en) | 2006-10-02 | 2007-10-02 | Flux core wire for gas arc welding of high tensile steel. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006271314A JP5005309B2 (en) | 2006-10-02 | 2006-10-02 | Gas shielded arc welding flux cored wire for high strength steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008087043A JP2008087043A (en) | 2008-04-17 |
JP5005309B2 true JP5005309B2 (en) | 2012-08-22 |
Family
ID=39305464
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006271314A Active JP5005309B2 (en) | 2006-10-02 | 2006-10-02 | Gas shielded arc welding flux cored wire for high strength steel |
Country Status (7)
Country | Link |
---|---|
JP (1) | JP5005309B2 (en) |
KR (1) | KR100922095B1 (en) |
CN (1) | CN101157164B (en) |
NL (1) | NL1034459C2 (en) |
NO (1) | NO344763B1 (en) |
SE (1) | SE532239C2 (en) |
SG (1) | SG141332A1 (en) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4209913B2 (en) * | 2006-12-15 | 2009-01-14 | 株式会社神戸製鋼所 | Flux-cored wire for gas shielded arc welding |
JP5400472B2 (en) * | 2009-05-20 | 2014-01-29 | 株式会社神戸製鋼所 | Flux cored wire |
JP5416605B2 (en) * | 2010-02-02 | 2014-02-12 | 株式会社神戸製鋼所 | Flux cored wire |
JP5415998B2 (en) * | 2010-03-11 | 2014-02-12 | 株式会社神戸製鋼所 | Flux-cored wire for gas shielded arc welding |
JP5662086B2 (en) * | 2010-09-03 | 2015-01-28 | 日鐵住金溶接工業株式会社 | Flux-cored wire for Ar-CO2 mixed gas shielded arc welding |
CN102554494A (en) * | 2010-12-17 | 2012-07-11 | 江苏耐尔冶电集团有限公司 | Novel high wear resistant flux-cored wire |
KR101220618B1 (en) * | 2010-12-27 | 2013-01-10 | 주식회사 포스코 | Flux cored arc weld wire having excellent workability and low-temperature toughness in weld metal joint and weld metal joint using the same |
JP5606985B2 (en) | 2011-04-08 | 2014-10-15 | 株式会社神戸製鋼所 | Weld metal with excellent resistance to hydrogen embrittlement |
CN102181814B (en) * | 2011-05-20 | 2012-07-25 | 河海大学 | Cored wire for high amorphous content wear-resistant anticorrosive coating layer |
CN102181813B (en) * | 2011-05-20 | 2012-09-26 | 河海大学 | Cored wire for electric arc spraying of amorphous and nano-crystalline anti-cavitation coating layer |
CN102310301B (en) * | 2011-08-25 | 2012-07-04 | 张家港市亨昌焊材有限公司 | Flux-cored wire |
US10316395B2 (en) | 2012-10-09 | 2019-06-11 | The Esab Group, Inc. | Low-manganese gas-shielded flux cored welding electrodes |
JP6257193B2 (en) * | 2013-07-12 | 2018-01-10 | 株式会社神戸製鋼所 | Flux-cored wire for overlay welding |
CN103878501A (en) * | 2013-11-29 | 2014-06-25 | 中国船舶重工集团公司第七二五研究所 | Metal-cored seamless flux-cored wire for high-strength steel |
CN104289825A (en) * | 2014-08-27 | 2015-01-21 | 洛阳双瑞特种合金材料有限公司 | Steel seamless flux-cored wire used in mixed gas of AR and CO2 |
SG11201702429UA (en) | 2014-10-15 | 2017-04-27 | Kobe Steel Ltd | Wire containing flux for gas shield arc welding |
JP6382117B2 (en) | 2015-01-16 | 2018-08-29 | 日鐵住金溶接工業株式会社 | Flux-cored wire for Ar-CO2 mixed gas shielded arc welding |
JP6437327B2 (en) | 2015-01-28 | 2018-12-12 | 日鐵住金溶接工業株式会社 | Flux-cored wire for carbon dioxide shielded arc welding |
CN104722962B (en) * | 2015-04-10 | 2016-06-29 | 首钢总公司 | High-strength steel high-strength tenacity gas-shielded flux-cored wire |
JP2017094360A (en) | 2015-11-25 | 2017-06-01 | 日鐵住金溶接工業株式会社 | Flux-cored wire for shield-arc welding using argon-carbon dioxide gas mixture |
KR101795970B1 (en) * | 2016-10-11 | 2017-11-09 | 주식회사 포스코 | Cold-rolled steel sheet for flux cored wire and manufacturing the same |
JP6832830B2 (en) * | 2017-10-25 | 2021-02-24 | 株式会社神戸製鋼所 | Flux-filled wire for submerged arc welding and materials for submerged arc welding |
JP2020055036A (en) * | 2018-10-01 | 2020-04-09 | リンカーン グローバル,インコーポレイテッド | Additive manufacturing using aluminum-containing wire |
KR102353730B1 (en) * | 2019-12-20 | 2022-01-19 | 주식회사 포스코 | Cold-rolled steel sheet for flux cored wire and manufacturing the same |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61286089A (en) * | 1985-06-11 | 1986-12-16 | Daido Steel Co Ltd | Gas shielded arc welding method |
JPS6233094A (en) * | 1985-07-31 | 1987-02-13 | Daido Steel Co Ltd | Flux cored wire for welding |
JPS6233093A (en) * | 1985-07-31 | 1987-02-13 | Daido Steel Co Ltd | Flux cored wire for welding |
JP2723335B2 (en) * | 1990-04-13 | 1998-03-09 | 新日本製鐵株式会社 | Flux-cored wire for gas shielded arc welding |
JPH0813432B2 (en) * | 1991-03-28 | 1996-02-14 | 株式会社神戸製鋼所 | Flux-cored wire for carbon dioxide shield arc welding for Cr-Mo steel |
JP2908585B2 (en) * | 1991-04-09 | 1999-06-21 | 日鐵溶接工業株式会社 | Flux-cored wire for gas shielded arc welding |
KR0134561B1 (en) * | 1993-03-31 | 1998-06-15 | 가메다카 소키치 | Low-fume flux-cored wire for use in gas-shielded arc welding |
JP3758040B2 (en) * | 2002-07-26 | 2006-03-22 | 株式会社神戸製鋼所 | Flux-cored wire for gas shielded arc welding for low alloy heat resistant steel |
KR100578750B1 (en) | 2003-12-10 | 2006-05-12 | 고려용접봉 주식회사 | Metal-based flux cored wire having excelent weldability for high tensile strength steel |
JP4509807B2 (en) | 2005-01-18 | 2010-07-21 | 日鐵住金溶接工業株式会社 | Flux-cored wire for high-tensile steel welding |
CN1709636A (en) * | 2005-07-18 | 2005-12-21 | 门树槐 | Pipe die build-up welding cored wire |
CN1739907A (en) * | 2005-09-15 | 2006-03-01 | 姜春 | High hardness submerged arc welding wire |
-
2006
- 2006-10-02 JP JP2006271314A patent/JP5005309B2/en active Active
-
2007
- 2007-08-13 CN CN2007101411720A patent/CN101157164B/en active Active
- 2007-08-30 SG SG200706368-8A patent/SG141332A1/en unknown
- 2007-09-19 NO NO20074783A patent/NO344763B1/en not_active IP Right Cessation
- 2007-09-24 SE SE0702122A patent/SE532239C2/en not_active IP Right Cessation
- 2007-10-01 KR KR1020070098727A patent/KR100922095B1/en active IP Right Grant
- 2007-10-02 NL NL1034459A patent/NL1034459C2/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
NO344763B1 (en) | 2020-04-20 |
JP2008087043A (en) | 2008-04-17 |
NO20074783L (en) | 2008-04-03 |
CN101157164B (en) | 2010-06-02 |
SG141332A1 (en) | 2008-04-28 |
CN101157164A (en) | 2008-04-09 |
SE532239C2 (en) | 2009-11-17 |
NL1034459C2 (en) | 2008-10-16 |
NL1034459A1 (en) | 2008-04-08 |
KR100922095B1 (en) | 2009-10-16 |
SE0702122L (en) | 2008-04-03 |
KR20080030936A (en) | 2008-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5005309B2 (en) | Gas shielded arc welding flux cored wire for high strength steel | |
US20220281024A1 (en) | Flux-cored wire, manufacturing method of welded joint, and welded joint | |
JP5768547B2 (en) | High-strength steel flux cored wire for gas shielded arc welding | |
US10870178B2 (en) | Flux-cored wire for arc welding of duplex stainless steel and weld metal | |
JP2010110817A (en) | Low-hydrogen coated electrode | |
JP5387192B2 (en) | Flux-cored wire for gas shield welding | |
JP6953869B2 (en) | Flux-cored wire for gas shielded arc welding and welding joint manufacturing method | |
JP4209913B2 (en) | Flux-cored wire for gas shielded arc welding | |
KR20190037286A (en) | Flux cored wire and weld metal for gas shield arc welding | |
KR101583197B1 (en) | Bonded flux for submerged arc welding | |
JP6155810B2 (en) | High Ni flux cored wire for gas shielded arc welding | |
JP6891630B2 (en) | Flux-cored wire for gas shielded arc welding and welding joint manufacturing method | |
CN112512742B (en) | Solid welding wire and method for manufacturing welded joint | |
JP2019048324A (en) | Flux-cored wire for gas shield arc-welding, and method of manufacturing weld joint | |
JP6953870B2 (en) | Flux-cored wire for gas shielded arc welding and welding joint manufacturing method | |
JP2019048323A (en) | Flux-cored wire for gas shield arc-welding, and method of manufacturing weld joint | |
WO2020012925A1 (en) | Flux-cored wire for two-phase stainless steel welding, welding method and welding metal | |
JP2020015092A (en) | Flux-cored wire for welding two-phase stainless steel, welding method and weld metal | |
JP6829111B2 (en) | Filling material for TIG welding | |
WO2018047879A1 (en) | Flux cored wire for gas shield arc welding and welding metal | |
CN111886110B (en) | Flux-cored wire | |
JP2022157454A (en) | Manufacturing method for flux-cored cut wire and weld joint | |
JP3547282B2 (en) | Low hydrogen coated arc welding rod | |
JP2017164768A (en) | HIGH Ni FLUX-CORED WIRE FOR GAS SHIELDED ARC WELDING AND METHOD OF MANUFACTURING WELDED JOINT | |
JP2022124267A (en) | Wire with flux |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081210 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120228 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120426 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120522 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120523 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150601 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5005309 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |