JP4993084B2 - Laser monitoring device - Google Patents

Laser monitoring device Download PDF

Info

Publication number
JP4993084B2
JP4993084B2 JP2007072318A JP2007072318A JP4993084B2 JP 4993084 B2 JP4993084 B2 JP 4993084B2 JP 2007072318 A JP2007072318 A JP 2007072318A JP 2007072318 A JP2007072318 A JP 2007072318A JP 4993084 B2 JP4993084 B2 JP 4993084B2
Authority
JP
Japan
Prior art keywords
intensity
laser beam
monitoring
reflected light
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007072318A
Other languages
Japanese (ja)
Other versions
JP2008232800A (en
Inventor
勇樹 平岩
武寿 高野
真 山口
強 寺内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2007072318A priority Critical patent/JP4993084B2/en
Publication of JP2008232800A publication Critical patent/JP2008232800A/en
Application granted granted Critical
Publication of JP4993084B2 publication Critical patent/JP4993084B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Description

本発明は、パルスレーザ光を走査して監視対象領域における物体の有無を監視するレーザ監視装置に関する。   The present invention relates to a laser monitoring apparatus that scans pulse laser light to monitor the presence or absence of an object in a monitoring target region.

踏切内における障害物の有無を検出する監視装置として、パルスレーザ光を用いたレーザ監視装置が知られている(例えば特許文献1を参照)。この種のレーザ監視装置は、監視対象領域を見渡し得る所定高さの監視位置から上記監視対象領域の全域に亘ってパルスレーザ光を2次元走査しながら照射し、この走査に同期して上記パルスレーザ光の反射光を受光することで、その走査位置毎に障害物が存在するか否かを検出するものであり、レーザレーダとも称される。   As a monitoring device that detects the presence or absence of an obstacle in a railroad crossing, a laser monitoring device using a pulsed laser beam is known (see, for example, Patent Document 1). This type of laser monitoring apparatus irradiates a pulsed laser beam in a two-dimensional scan from the monitoring position having a predetermined height overlooking the monitoring target area over the entire area of the monitoring target area, and synchronizes with the pulse. By receiving the reflected light of the laser beam, it is detected whether there is an obstacle for each scanning position, and is also called a laser radar.

尚、この種のレーザ監視装置(レーザレーダ)において、その計測の安定性を確保するべく、温度に応じてレーザ光の出力強度を調整したり、また外来ノイズの影響を除去してその測定可能距離を確保するべく、パルスレーザ光の出力停止期間における受光信号に応じて受光アンプのゲインを最適化調整することが提唱されている。(例えば特許文献2,3を参照)。
特開2006−7818号公報 特開平9−318747号公報 特開平9−318749号公報
In this kind of laser monitoring device (laser radar), in order to ensure the stability of the measurement, the output intensity of the laser beam can be adjusted according to the temperature, or the influence of external noise can be removed and measured. In order to ensure the distance, it has been proposed to optimize and adjust the gain of the light receiving amplifier in accordance with the light receiving signal during the output stop period of the pulse laser beam. (See, for example, Patent Documents 2 and 3).
JP 2006-7818 A JP 9-318747 A Japanese Patent Laid-Open No. 9-318749

ところでレーザ監視装置においては、所定の監視対象領域における物体の有無を確実に検出し得る性能を備えることは勿論のことではあるが、長期に亘ってその性能を安定に維持し得ることも重要である。しかしながらレーザ監視装置の構成部品、特にパルスレーザ光を生成するレーザ発振器、例えばレーザダイオードの寿命は、その出力強度や駆動時間に大きく依存する。しかも一般的には監視対象領域の状況は絶えず変化しており、常に安定した監視環境が確保されるとは限らない。   By the way, in the laser monitoring device, of course, it is important to have the capability of reliably detecting the presence or absence of an object in a predetermined monitoring target region, but it is also important that the performance can be stably maintained over a long period of time. is there. However, the lifetime of the components of the laser monitoring device, particularly a laser oscillator that generates pulsed laser light, for example, a laser diode, greatly depends on its output intensity and driving time. Moreover, in general, the situation of the monitoring target area is constantly changing, and a stable monitoring environment is not always ensured.

本発明はこのような事情を考慮してなされたもので、その目的は、監視対象領域の状況変化に応じて長期に亘って安定に所要とする監視性能を維持することのできる簡易な構成のレーザ監視装置を提供することにある。   The present invention has been made in consideration of such circumstances, and its purpose is to provide a simple configuration capable of maintaining the monitoring performance required stably over a long period of time in accordance with a change in the status of the monitoring target area. It is to provide a laser monitoring device.

上述した目的を達成するべく本発明は、監視対象領域の全域に亘ってパルスレーザ光を走査しながら所定の周期で照射し、この走査に同期して前記監視対象領域における前記パルスレーザ光の反射光を受光して前記監対象領域における物体の有無を監視するレーザ監視装置に係り、
前記監視対象領域における物体の有無の監視は、前記パルスレーザ光の走査に同期して検出される前記反射光の受光データを解析して物体を検出すると共に、前記監視対象領域における固定物を監視対象から除外して行われ、
前記検出された物体毎にその平均反射光強度と平均検出距離とを求め、最遠点の物体の平均反射光強度とその有効データ数との積算値が予め設定した指標未満である場合に前記パルスレーザ光の出力強度を増大させ、前記積算値が前記指標以上である場合には反射光強度が飽和しているデータ数が増加するに伴い前記パルスレーザ光の出力強度を減少させるレーザ光強度調整手段を備えたことを特徴としている。
In order to achieve the above-described object, the present invention irradiates a pulsed laser beam over a whole area of the monitoring target area at a predetermined cycle, and reflects the pulsed laser light in the monitoring target area in synchronization with the scanning. The present invention relates to a laser monitoring device that receives light and monitors the presence or absence of an object in the monitored area,
The monitoring of the presence / absence of an object in the monitoring target area is performed by detecting the object by analyzing the received light data of the reflected light detected in synchronization with the scanning of the pulse laser beam and monitoring a fixed object in the monitoring target area. It was excluded from the subject,
For each detected object, the average reflected light intensity and average detection distance are obtained, and when the integrated value of the average reflected light intensity of the object at the farthest point and the number of valid data is less than a preset index, Laser light intensity that increases the output intensity of the pulsed laser beam and decreases the output intensity of the pulsed laser beam as the number of data in which the reflected beam intensity is saturated increases when the integrated value is greater than or equal to the index It is characterized by having adjusting means .

特に前記パルスレーザ光の出力強度を減少させる場合には、例えば反射光強度が飽和しているデータ数が予め設定した閾値を超えるとき、これらの反射光強度が飽和している検出データの平均距離を求める。そして予め求められている検出距離とその検出距離の物体を確実に検出するに必要なパルスレーザ光の出力強度との関係に基づき、上記平均距離に応じた強度まで前記パルスレーザ光の出力強度の減少させるようにすれば良い。   In particular, when reducing the output intensity of the pulsed laser beam, for example, when the number of data in which the reflected light intensity is saturated exceeds a preset threshold, the average distance of the detected data in which the reflected light intensity is saturated Ask for. Based on the relationship between the detection distance obtained in advance and the output intensity of the pulse laser beam necessary for reliably detecting the object at the detection distance, the output intensity of the pulse laser beam is reduced to the intensity corresponding to the average distance. It should be reduced.

上記構成のレーザ監視装置によれば監視対象領域における物体検出状況に応じてパルスレーザ光の出力強度を調整することができるので、例えば前記監視対象領域の最遠点での検出データが物体を認識するのに十分であるか否かを判定し、その判定結果に応じてパルスレーザ光の出力強度を調整して反射光の強度を最適化することができる。特に反射光の強度が物体を認識するのに十分であるような場合には、パルスレーザ光の出力強度を増大させることによりその計測性能を確保することが可能となる。   According to the laser monitoring apparatus having the above configuration, the output intensity of the pulsed laser light can be adjusted according to the object detection status in the monitoring target area. For example, detection data at the farthest point in the monitoring target area recognizes the object. It is possible to determine whether or not the intensity of the reflected light is sufficient by adjusting whether or not the output intensity of the pulse laser beam is adjusted according to the determination result. In particular, when the intensity of the reflected light is sufficient for recognizing an object, the measurement performance can be ensured by increasing the output intensity of the pulse laser beam.

また上述した最遠点からの反射光の受光強度が十分に確保できる状況下においては、例えば近距離からの反射光の強度がその受光性能に比較して飽和していないか否かを判定することで前記パルスレーザ光の出力強度が過剰であるか否かを判断することができる。そしてパルスレーザ光の出力強度が過剰である場合には、その出力強度を低減することで反射光の受光強度の最適化を図ると共に、パルスレーザ光を生成するレーザ発振器、例えばレーザダイオードの駆動条件を緩和してその長寿命化を図ることができる。更にはパルスレーザ光の出力強度を低減した分、その駆動エネルギを抑えて省エネルギ化を図ることが可能となる等の効果が奏せられる。   Further, in a situation where the light reception intensity of the reflected light from the farthest point described above can be sufficiently ensured, for example, it is determined whether or not the intensity of the reflected light from a short distance is not saturated compared to the light reception performance. Thus, it can be determined whether or not the output intensity of the pulse laser beam is excessive. If the output intensity of the pulse laser beam is excessive, the output intensity is reduced to optimize the light reception intensity of the reflected light, and at the same time, the driving conditions of a laser oscillator that generates the pulse laser beam, for example, a laser diode Can be relaxed to extend its life. Furthermore, since the output intensity of the pulse laser beam is reduced, the drive energy can be suppressed and energy can be saved.

以下、図面を参照して本発明の一実施形態に係るレーザ監視装置について説明する。
図1はレーザ監視装置の概略構成図で、1は所定の監視対象領域Aを見渡し得る所定の高さ位置に設けられたセンサヘッドである。このセンサヘッド1には、パルスレーザ光を所定周期で生成して前記監視対象領域Aに向けて出力する投光部2と、上記パルスレーザ光の前記監視対象領域Aにおける反射光を受光する受光部3とが組み込まれている。尚、前記投光部2は、例えばレーザ光源としてのレーザダイオードと、このレーザダイオードから出力されたレーザ光を平行ビーム化するコリメータレンズ等を備えて構成されるものである。また前記受光部3は、例えば光センサとしてのフォトダイオードと、その前面に設けられた集光レンズ等を備えて構成される。
A laser monitoring apparatus according to an embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a laser monitoring apparatus. Reference numeral 1 denotes a sensor head provided at a predetermined height position overlooking a predetermined monitoring target area A. FIG. The sensor head 1 includes a light projecting unit 2 that generates pulsed laser light at a predetermined period and outputs the pulsed laser light toward the monitoring target area A, and a light receiving unit that receives reflected light of the pulsed laser light in the monitoring target area A. Part 3 is incorporated. The light projecting unit 2 includes, for example, a laser diode as a laser light source and a collimator lens that converts the laser light output from the laser diode into a parallel beam. The light receiving unit 3 includes, for example, a photodiode as an optical sensor and a condensing lens provided in front of the photodiode.

特に前記投光部2から出力されたパルスレーザ光は、例えば反射鏡4aおよびハーフミラー4bからなる光学系を介して光学スキャナ5に導かれ、この光学スキャナ5にてその照射方向が一定の周期で2次元偏向制御されている。具体的には光学スキャナ5は、パルスレーザ光を角度θに亘って水平偏向制御(主走査)すると共に、この水平偏向制御に同期して角度φに亘って垂直偏向制御(副走査)し、これによって前記監視対象領域Aの全域に亘って前記パルスレーザ光の照射位置を走査している。そしてパルスレーザ光が照射された物体において生じた反射光は、上記走査に同期して前記光学スキャナ5を介して前記受光部3に導かれて受光され、受光部3はその受光強度に応じたレベルの検出信号を出力する。   In particular, the pulsed laser light output from the light projecting unit 2 is guided to the optical scanner 5 through an optical system including, for example, the reflecting mirror 4a and the half mirror 4b, and the irradiation direction of the optical scanner 5 is constant. 2D deflection control is performed. Specifically, the optical scanner 5 performs horizontal deflection control (main scanning) of the pulse laser beam over an angle θ, and performs vertical deflection control (sub scanning) over an angle φ in synchronization with the horizontal deflection control, Thus, the irradiation position of the pulse laser beam is scanned over the entire monitoring target area A. Then, the reflected light generated in the object irradiated with the pulse laser beam is guided to the light receiving unit 3 through the optical scanner 5 in synchronization with the scanning and received, and the light receiving unit 3 corresponds to the received light intensity. Outputs level detection signal.

尚、前記投光部2は、センサ制御部6の制御の下で所定の周期T毎に発光駆動されると共に、その駆動電圧に応じた強度のパルスレーザ光を出力する。センサ制御部6は、その上位機器であり、パルスレーザ光に対する発光周期調整手段およびレーザ光強度調整手段としての機能を担う情報処理装置(例えばPC)7からの指示に従い、前記パルスレーザ光の生成周期Tとその出力強度Pをそれぞれ可変調整する機能を備える。   The light projecting unit 2 is driven to emit light every predetermined period T under the control of the sensor control unit 6 and outputs pulse laser light having an intensity corresponding to the driving voltage. The sensor control unit 6 is a higher-level device, and generates the pulse laser light in accordance with an instruction from an information processing device (for example, PC) 7 that functions as a light emission period adjusting means and a laser light intensity adjusting means for the pulse laser light. A function of variably adjusting the period T and its output intensity P is provided.

また前記受光部3からの検出信号を入力する検出部8は、前記センサ制御部6の制御の下で前述したパルスレーザ光の生成タイミングに同期して前記検出信号のレベル(反射光の受光強度)を判定し、予め設定した閾値以上の検出信号を物体による前記パルスレーザ光の反射光であるとして検出している。同時に検出部8は上記反射光の検出タイミング(反射光の受光タイミング)と前記パルスレーザ光の出力タイミングとの時間差を求め、これを前記監視対象領域Aにおける物体の検出距離として求めている。このようにして求められた反射波の受光強度Qと検出距離Dとからなる検出データ(Q,D)は、前記光学スキャナ5によるパルスレーザ光の照射方向の情報、つまり偏向情報(θ,φ)と共に前記情報処理装置7に与えられる。そして情報処理装置7は、上記検出データに従って前記監視対象領域Aにおける物体の検出処理を実行すると共に、後述するように検出データを解析して前記センサヘッド1の駆動を制御する。特に監視対象領域Aにおける物体検出状況に応じて前記パルスレーザ光の出力強度Pを可変設定し、また必要に応じて前記前記パルスレーザ光の生成周期Tを可変設定するものとなっている。   The detection unit 8 for inputting the detection signal from the light receiving unit 3 is synchronized with the generation timing of the pulse laser beam described above under the control of the sensor control unit 6 (the received light intensity of the reflected light). ) And a detection signal equal to or greater than a preset threshold value is detected as reflected light of the pulsed laser light from the object. At the same time, the detection unit 8 obtains the time difference between the reflected light detection timing (reflected light reception timing) and the pulse laser light output timing, and obtains this as the object detection distance in the monitoring target region A. The detection data (Q, D) consisting of the received light intensity Q and the detection distance D of the reflected wave obtained in this way is information on the irradiation direction of the pulse laser beam by the optical scanner 5, that is, deflection information (θ, φ). ) And the information processing apparatus 7. Then, the information processing apparatus 7 executes an object detection process in the monitoring target area A according to the detection data and analyzes the detection data as described later to control the driving of the sensor head 1. In particular, the output intensity P of the pulse laser beam is variably set according to the object detection situation in the monitoring target area A, and the generation period T of the pulse laser beam is variably set as necessary.

ここで前述した検出データに基づく前記情報処理装置7での物体検出処理について簡単に説明すると、情報処理装置7は前記パルスレーザ光の偏向走査に同期して、その偏向方向である走査位置(θ,φ)毎に前記検出データ(Q,D)を解析し、例えば同一物体による反射光であると認められる複数点からの検出データを統合してラベリングする。そして同一ラベルが付されて統合された複数の検出データの走査位置(θ,φ)からその大きさを推定して物体検出を行うと共に、前記監視対象領域Aにおける物体の存在位置を検出する。   Here, the object detection process in the information processing device 7 based on the detection data described above will be briefly described. The information processing device 7 synchronizes with the deflection scanning of the pulse laser beam and scan position (θ which is the deflection direction). , φ), the detection data (Q, D) is analyzed and, for example, detection data from a plurality of points recognized as reflected light from the same object are integrated and labeled. Then, the size is estimated from the scanning positions (θ, φ) of the plurality of detection data integrated with the same label, and the object is detected, and the presence position of the object in the monitoring target area A is detected.

図2は上述した物体検出の手法を模式的に示している。例えば前記センサヘッド1から視野し得る監視対象領域Aに図2(a)に示すように物体a1,a2,a3が存在している場合、上記監視対象領域Aをパルスレーザ光によりスキャン(走査)することによって図2(b)に示すように上記各物体a1,a2,a3による反射光が検出される。そしてこれらの反射光は、前記各物体a1,a2,a3の存在領域毎に或るまとまりをなし、それらの各まとまりの大きさは各物体a1,a2,a3の大きさをそれぞれ示すことになる。従ってこれらの反射光のまとまりb1,b2,b3を検出し、その大きさを判定すれば、所定の大きさをなす反射光(検出データ)のまとまりb1,b2,b3を、それぞれ物体として認識することが可能となる。   FIG. 2 schematically shows the above-described object detection method. For example, when the objects a1, a2, and a3 are present in the monitoring target area A that can be viewed from the sensor head 1, as shown in FIG. 2A, the monitoring target area A is scanned with a pulse laser beam (scanning). As a result, the reflected light from the objects a1, a2, and a3 is detected as shown in FIG. These reflected lights form a certain group for each region where the objects a1, a2, and a3 exist, and the size of each group indicates the size of each object a1, a2, and a3. . Therefore, if the b1, b2, b3 of these reflected lights are detected and their sizes are determined, the b1, b2, b3 of reflected lights (detection data) having a predetermined size are recognized as objects, respectively. It becomes possible.

尚、上述した如くして検出される物体の検出位置は、前述したように所定の高さに設けられたセンサヘッド1から監視対象領域Aを視野したときの[θ-φ]座標のものであるので、これを地表面での物体位置として検出する場合には、地表面を表す[x-y]座標との間で前記物体の検出位置を座標変換(投影変換)すれば良い。この座標変換により前記センサヘッド1からの俯瞰に起因する視差の問題を生じることなく、例えば図2(c)に示すように監視対象領域Aにおける物体c1,c2,c3の存在位置を容易に理解することが可能となる。   The detection position of the object detected as described above is the [θ−φ] coordinate when the monitoring target area A is viewed from the sensor head 1 provided at a predetermined height as described above. Therefore, when detecting this as an object position on the ground surface, the detected position of the object may be coordinate-transformed (projected) with respect to the [xy] coordinates representing the ground surface. By this coordinate conversion, the position of the objects c1, c2, and c3 in the monitoring target area A can be easily understood without causing a parallax problem due to the overhead view from the sensor head 1, for example, as shown in FIG. It becomes possible to do.

ここで本装置における特徴的な処理機能について説明する。この実施形態に係るレーザ監視装置においては、前述したようにセンサ制御部6の制御の下でパルスレーザ光の出力強度Pを可変設定し得る機能(レーザ光強度調整手段)を備えている。このパルスレーザ光の出力強度Pの調整は、監視対象領域Aにおける物体検出状況に応じて行われるものであって、概略的には前記監視対象領域Aにて検出された物体からの反射光強度Qに応じて前記パルスレーザ光の出力強度Pを増減することにより実行される。   Here, a characteristic processing function in this apparatus will be described. The laser monitoring apparatus according to this embodiment has a function (laser light intensity adjusting means) that can variably set the output intensity P of the pulsed laser light under the control of the sensor control unit 6 as described above. The adjustment of the output intensity P of the pulse laser beam is performed in accordance with the object detection status in the monitoring target area A, and the reflected light intensity from the object detected in the monitoring target area A is roughly shown. This is performed by increasing / decreasing the output intensity P of the pulse laser beam according to Q.

具体的にはこのレーザ光強度調整手段は、例えば前記情報処理装置7が備える処理機能9として実現される。例えばパルスレーザ光の出力強度Pの調整は、先ず監視対象領域Aにて検出された物体(検出データのまとまり)毎にその平均反射光強度Qaveと平均検出距離Daveとを求め、平均検出距離Daveから求められる最遠点の物体の平均反射光強度Qaveとその物体(検出データのまとまり)を表す有効データ数Mとに従って前記パルスレーザ光の出力強度Pを増大させるか否かを判定することから開始される。そして、例えば最遠点の物体について、指標K
K=[平均反射光強度Qave]×[有効データ数M]
を求め、この指標Kが予め設定した物体検出の最低条件Kminを満たしているか否かを判定し、少なくともこの最低条件Kminを満たすように前記平均反射光強度Qaveを高め、或いは前記有効データ数Mを増大させるべく前記パルスレーザ光の出力強度Pを増大させる。
Specifically, this laser light intensity adjusting means is realized as a processing function 9 provided in the information processing apparatus 7, for example. For example, for adjusting the output intensity P of the pulse laser beam, first, the average reflected light intensity Qave and the average detection distance Dave are obtained for each object (a group of detection data) detected in the monitoring target area A, and the average detection distance Dave is obtained. It is determined whether or not to increase the output intensity P of the pulsed laser light according to the average reflected light intensity Qave of the object at the farthest point obtained from the above and the effective data number M representing the object (a group of detection data). Be started. For example, for the object at the farthest point, the index K
K = [average reflected light intensity Qave] × [number of valid data M]
It is determined whether or not the index K satisfies a preset minimum object detection condition Kmin, and the average reflected light intensity Qave is increased so as to satisfy at least the minimum condition Kmin, or the effective data number M is determined. To increase the output intensity P of the pulse laser beam.

また前記パルスレーザ光の出力強度Pを増大させる必要がない場合には、前記反射光強度Qが飽和しているデータ数Nを求め、そのデータ数Nに応じて前記パルスレーザ光の出力強度Pを減少させる。具体的には反射光強度Qが飽和しているデータ数Nが予め設定した閾値Nmaxを超えるとき、反射光強度Qが飽和している複数の検出データの平均距離Daveに応じた強度まで前記パルスレーザ光の出力強度Pの減少させることで該パルスレーザ光が照射された物体による反射光の強度を全体的に低くし、反射光強度Qが飽和する検出データの数Nを減少させる。   When there is no need to increase the output intensity P of the pulse laser beam, the number N of data in which the reflected light intensity Q is saturated is obtained, and the output intensity P of the pulse laser beam is determined according to the data number N. Decrease. Specifically, when the number N of data in which the reflected light intensity Q is saturated exceeds a preset threshold value Nmax, the pulse is increased to an intensity corresponding to the average distance Dave of a plurality of detection data in which the reflected light intensity Q is saturated. By reducing the output intensity P of the laser light, the intensity of the reflected light by the object irradiated with the pulsed laser light is lowered as a whole, and the number N of detection data in which the reflected light intensity Q is saturated is reduced.

このようにして監視対象領域Aにおける物体の検出状況に応じてパルスレーザ光の出力強度Pを増減制御してその最適化を図れば、最遠点の物体を確実に検出し得る前述した最低条件Kminを満たしながら、検出距離Dが短いが故にその反射光強度Qが飽和してしまうような物体の数(データ数)を減らし、各物体による反射光の強度Qを全体的に抑えることができる。この結果、投光部2の駆動条件を緩和してその長寿命化を図り、更にはパルスレーザ光の出力強度Pを低減した分、その駆動エネルギを抑えて省エネルギ化を図ることができる等の効果が奏せられる。   In this way, if the output intensity P of the pulse laser beam is controlled to increase / decrease in accordance with the detection state of the object in the monitoring target area A and the optimization is performed, the above-mentioned minimum condition that can reliably detect the object at the farthest point While satisfying Kmin, the number (number of data) of objects whose reflected light intensity Q is saturated because the detection distance D is short can be reduced, and the intensity Q of reflected light from each object can be suppressed overall. . As a result, the driving conditions of the light projecting unit 2 can be relaxed to extend its life, and the output intensity P of the pulsed laser beam can be reduced, so that the driving energy can be suppressed to save energy. The effect of.

図3は上述したパルスレーザ光の出力強度Pの増減制御手順の一例を示している。この制御は、先ず監視対象領域Aにおける不変的な固定物に関するデータを取得し、背景データとして物体検出処理から除外するデータを得ることから開始される〈ステップS1〉。この背景データの除外処理は、例えば図4に示すように計測対象物が存在しない状況下において物体検出を行い〈ステップS21〉、これによって検出された物体の位置座標を求める〈ステップS22〉。そしてこれらの物体が前記監視対象領域Aにおける不変的な固定物であるか否かを判定し〈ステップS23〉、不変的な固定物であるならば背景データとして認識対象から除外する為の情報とする〈ステップS24〉。具体的には背景データとして認識された位置からの反射光(検出データ)を監視対象として取り込まないようにマスクする為の情報を作成する。これに加えて地表面による反射光を除去するべく、地表面から高さに対する閾値を設定する〈ステップS25〉。この閾値処理は、前述したパルスレーザ光のスキャン(走査)方向毎に、その最大計測距離を設定することに相当する。   FIG. 3 shows an example of an increase / decrease control procedure for the output intensity P of the pulse laser beam described above. This control is started by first obtaining data relating to an immutable fixed object in the monitoring target area A and obtaining data excluded from the object detection process as background data <step S1>. In the background data exclusion process, for example, as shown in FIG. 4, object detection is performed in a situation where there is no measurement object <step S21>, and the position coordinates of the detected object are obtained <step S22>. Then, it is determined whether or not these objects are immutable fixed objects in the monitoring target area A <step S23>. If they are immutable fixed objects, information for excluding them from the recognition target as background data; <Step S24>. Specifically, information for masking the reflected light (detection data) from the position recognized as background data so as not to be taken in as a monitoring target is created. In addition to this, in order to remove the reflected light from the ground surface, a threshold for the height from the ground surface is set (step S25). This threshold value processing corresponds to setting the maximum measurement distance for each scanning direction of the pulse laser light described above.

以上の初期設定処理を終えたならば、前述した図3に示す処理手順に戻って通常の監視処理を開始する〈ステップS2〉。そしてその検出データを上位の情報処理装置(PC)7に送り、物体の検出処理を実行する〈ステップS3〉。この物体の検出処理については図2を参照して前述した通りである。そして所定のまとまりをなす検出データの集まり毎に、これを前記監視対象領域Aにおいて検出された物体の情報として検出する。この際、前述した如く求められた背景データに従って監視対象領域Aにおける固定物をその監視対象から除外したり、更には地表面からの不要な反射光に対する除去処理を実行する。   When the above initial setting process is completed, the process returns to the process procedure shown in FIG. 3 and the normal monitoring process is started <step S2>. Then, the detection data is sent to the host information processing apparatus (PC) 7 to execute object detection processing (step S3). This object detection process is as described above with reference to FIG. For each collection of detection data forming a predetermined unit, this is detected as information on an object detected in the monitoring target area A. At this time, the fixed object in the monitoring target area A is excluded from the monitoring target in accordance with the background data obtained as described above, and further, a removal process for unnecessary reflected light from the ground surface is executed.

しかる後、検出された物体毎にその検出データからその平均検出距離Daveと平均受光強度Qaveとをそれぞれ求める〈ステップS4〉。そして各物体毎に算出された平均検出距離Daveを相互に比較し、前記監視対象領域Aにおいて前記センサヘッド1が設けられた監視点から最遠点の物体を特定し、この最遠点の物体の検出データについて、その検出性能を評価する為の指標Kを前述したように
K=[平均反射光強度Qave]×[有効データ数M]
として計算する〈ステップS5〉。ちなみに最遠点の物体について計測性能評価の為の指標Kを求めるのは、監視点からの距離が長くなるほど(検出距離Dが長くなるほど)パルスレーザ光およびその反射光が大気中を伝播するに際しての減衰量が多く、また外来ノイズの影響を受け易くなり、その計測条件が悪い為である。
Thereafter, for each detected object, an average detection distance Dave and an average received light intensity Qave are obtained from the detection data (step S4). Then, the average detection distance Dave calculated for each object is compared with each other, and the object farthest from the monitoring point where the sensor head 1 is provided in the monitoring target area A is specified. As described above, the index K for evaluating the detection performance of the detected data of K = [average reflected light intensity Qave] × [number of valid data M]
<Step S5>. Incidentally, the index K for measuring performance evaluation for the object at the farthest point is obtained when the pulse laser beam and its reflected light propagate in the atmosphere as the distance from the monitoring point becomes longer (as the detection distance D becomes longer). This is because there is a large amount of attenuation, and it is easily affected by external noise, and the measurement conditions are poor.

そして上述した如く求めた指標Kについて予め定めた閾値Kminと比較し、その計測条件が最遠点の物体を確実に検出し得る最低条件を満たしているか否かを判定する〈ステップS6〉。指標Kが上記閾値Kminに満たない場合には、例えば平均受光強度Qaveと平均検出距離Daveとの比[Qave/Dave]を評価値とし、図5に示すように予め実験データ等に基づいて設定された上記評価値に対するパルスレーザ光の最適な出力強度Pとの関係を満たすように前記パルスレーザ光の出力強度を増大させる〈ステップS7〉。このパルスレーザ光の出力強度の増大制御は、情報処理装置7からセンサ制御部6に対して出力制御指令を与えることにより実行される。   Then, the index K obtained as described above is compared with a predetermined threshold value Kmin, and it is determined whether or not the measurement condition satisfies the minimum condition for reliably detecting the object at the farthest point (step S6). When the index K is less than the threshold value Kmin, for example, the ratio [Qave / Dave] between the average received light intensity Qave and the average detection distance Dave is used as an evaluation value, and is set in advance based on experimental data as shown in FIG. The output intensity of the pulsed laser beam is increased so as to satisfy the relationship with the optimum output intensity P of the pulsed laser beam with respect to the evaluated value (step S7). The increase control of the output intensity of the pulsed laser light is executed by giving an output control command from the information processing device 7 to the sensor control unit 6.

これに対して前述した指標Kが予め定めた閾値Kminを上回る場合には、少なくとも前記パルスレーザ光の出力強度Pが、最遠点の物体を確実に検出し得る最低の計測条件を満たしていると判断される。そしてこの場合には、逆に前記パルスレーザ光の出力強度Pが過大(過剰)でないかを判断するべく、前述した如く検出された物体の各検出データについてその受光強度Qが飽和しているものを抽出し、受光強度Qが飽和している検出データの総数Nを求める〈ステップS8〉。このようにして求めた受光強度飽和検出データの総数Nを予め設定した閾値Nsatと比較することで前記パルスレーザ光の出力強度Pが過大(過剰)であるか否かを判断する〈ステップS9〉。そしてパルスレーザ光の出力強度Pが過大(過剰)でない場合には、前述したステップS2からの処理に戻って監視対象領域Aにおける物体の監視処理を継続して実行する。   On the other hand, when the above-described index K exceeds a predetermined threshold value Kmin, at least the output intensity P of the pulse laser beam satisfies the minimum measurement condition that can reliably detect the object at the farthest point. It is judged. In this case, on the contrary, the received light intensity Q of each detected data of the object detected as described above is saturated in order to judge whether the output intensity P of the pulse laser beam is excessive (excessive) or not. And the total number N of detected data in which the received light intensity Q is saturated is obtained <step S8>. It is determined whether or not the output intensity P of the pulse laser beam is excessive (excessive) by comparing the total number N of received light intensity saturation detection data thus obtained with a preset threshold value Nsat <step S9>. . If the output intensity P of the pulsed laser beam is not excessive (excessive), the process returns to the process from step S2 described above and the object monitoring process in the monitoring target area A is continued.

しかしパルスレーザ光の出力強度Pが過大(過剰)であると判断した場合には、受光強度Qが飽和している全検出データについてその平均検出距離Dsatを計算し〈ステップS10〉、例えば飽和検出データの総数Nsatとその平均検出距離Dsatとの積[Nsat×Dsat]を評価値とし、図6に示すように実験結果等に基づいて予め求められている上記評価値に対するパルスレーザ光の最適な出力強度Pとの関係を満たすように前記パルスレーザ光の出力強度Pを減少させる〈ステップS11〉。   However, if it is determined that the output intensity P of the pulse laser beam is excessive (excessive), the average detection distance Dsat is calculated for all detection data in which the received light intensity Q is saturated <step S10>, for example, saturation detection The product [Nsat × Dsat] of the total number of data Nsat and the average detection distance Dsat is used as an evaluation value, and the optimum value of the pulse laser beam with respect to the evaluation value obtained in advance based on the experimental results as shown in FIG. The output intensity P of the pulse laser beam is decreased so as to satisfy the relationship with the output intensity P (step S11).

以上のようにして監視対象領域Aにおける物体の検出状況に応じてパルスレーザ光の出力強度Pを増減制御することにより、最遠点の物体を確実に検出し得る計測条件を満たしながら上記パルスレーザ光の出力強度Pを抑えることが可能となり、これによって前記パルスレーザ光の出力強度Pの最適化を図ることができる。しかも物体として検出された反射光の受光強度Qに従ってその計測条件の適否を評価し、最遠点の物体を確実に検出するに必要な計測条件を満たすパルスレーザ光の最低の出力強度Pminを確保しながら、その出力強度Pを簡易に抑えることができる。従ってパルスレーザ光の出力強度Pを抑えた分、例えばレーザ光源としてレーザダイオードの駆動条件を緩和してその長寿命化を図ると共に、省エネルギ化を図ることが可能となる等の実用上多大なる効果が奏せられる。   As described above, by controlling increase / decrease of the output intensity P of the pulse laser beam according to the detection state of the object in the monitoring target area A, the above pulse laser is satisfied while satisfying the measurement condition that can reliably detect the object at the farthest point. It becomes possible to suppress the output intensity P of the light, whereby the output intensity P of the pulse laser beam can be optimized. In addition, the suitability of the measurement conditions is evaluated according to the received light intensity Q of the reflected light detected as the object, and the minimum output intensity Pmin of the pulsed laser beam that satisfies the measurement conditions necessary for reliably detecting the object at the farthest point is ensured. However, the output intensity P can be easily suppressed. Accordingly, for example, the output intensity P of the pulsed laser beam is suppressed, so that, for example, the driving conditions of the laser diode as a laser light source are relaxed to extend its life and energy saving can be achieved. An effect is produced.

尚、本発明は上述した実施形態に限定されるものではない。ここでは過大なパルスレーザ光の出力強度Pを評価する評価値として飽和検出データの総数Nsatとその平均検出距離Dsatとの積[Nsat×Dsat]を用いたが、その他の評価値を用いることも可能である。 The present invention is not limited to the embodiment described above. Here is used a product [Nsat × Dsat] of the total number NSAT saturation detection data as an evaluation value for evaluating the output intensity P of the over large pulse laser light and the average detection distance Dsat, use other evaluation value It is also possible.

またカメラを用いて監視対象領域Aを撮像し、その画像を解析することでパルスレーザ光を用いて実施される物体検出状況を推定し、この推定結果に応じてパルスレーザ光の出力強度Pを調整することも可能である。その他、本発明はその要旨を逸脱しない範囲で種々変形して実施することができる。   Moreover, the object detection situation implemented using a pulsed laser beam is estimated by imaging the monitoring target area A using a camera and analyzing the image, and the output intensity P of the pulsed laser beam is set according to this estimation result. It is also possible to adjust. In addition, the present invention can be variously modified and implemented without departing from the scope of the invention.

レーザ監視装置の概略構成図。The schematic block diagram of a laser monitoring apparatus. レーザ監視装置による物体検出の手法を模式的に示す図。The figure which shows typically the method of the object detection by a laser monitoring apparatus. 本発明の一実施形態に係るレーザ監視装置におけるパルスレーザ光の出力強度制御の処理手順を示す図。The figure which shows the process sequence of output intensity control of the pulsed laser beam in the laser monitoring apparatus which concerns on one Embodiment of this invention. 監視対象領域における固定物の検出処理手順を示す図。The figure which shows the detection processing procedure of the fixed object in the monitoring object area | region. パルスレーザ光の出力強度の増大制御に用いる、平均受光強度Qaveと平均検出距離Daveとの比[Qave/Dave]に対するパルスレーザ光の最適な出力強度Pとの関係を示す図。The figure which shows the relationship with the optimal output intensity P of a pulse laser beam with respect to ratio [Qave / Dave] of the average received light intensity Qave and the average detection distance Dave used for increase control of the output intensity of a pulse laser beam. パルスレーザ光の出力強度の増大制御に用いる、飽和検出データの総数Nsatと平均検出距離Dsatとの積[Nsat×Dsat]に対するパルスレーザ光の最適な出力強度Pとの関係を示す図。The figure which shows the relationship with the optimal output intensity P of a pulse laser beam with respect to the product [Nsat * Dsat] of the total number Nsat of saturation detection data and the average detection distance Dsat used for increase control of the output intensity of a pulse laser beam.

符号の説明Explanation of symbols

1 センサヘッド
2 投光部
3 受光部
5 光学スキャナ
6 センサ制御部
7 情報処理装置
8 検出部
9 レーザ光強度調整手段
DESCRIPTION OF SYMBOLS 1 Sensor head 2 Light projection part 3 Light reception part 5 Optical scanner 6 Sensor control part 7 Information processing apparatus 8 Detection part 9 Laser beam intensity adjustment means

Claims (2)

監視対象領域の全域に亘ってパルスレーザ光を走査しながら所定の周期で照射し、この走査に同期して前記監視対象領域における前記パルスレーザ光の反射光を受光して前記監視対象領域における物体の有無を監視するレーザ監視装置であって、
前記監視対象領域における物体の有無の監視は、前記パルスレーザ光の走査に同期して検出される前記反射光の受光データを解析して物体を検出すると共に、前記監視対象領域における固定物を監視対象から除外して行われ、
前記検出された物体毎にその平均反射光強度と平均検出距離とを求め、最遠点の物体の平均反射光強度とその有効データ数との積算値が予め設定した指標未満である場合に前記パルスレーザ光の出力強度を増大させ、前記積算値が前記指標以上である場合には反射光強度が飽和しているデータ数が増加するに伴い前記パルスレーザ光の出力強度を減少させるレーザ光強度調整手段を備えたことを特徴とするレーザ監視装置。
An object in the monitoring target region is irradiated with a pulse laser beam over a whole area of the monitoring target region and irradiated with a predetermined period, and the reflected light of the pulse laser beam in the monitoring target region is received in synchronization with the scanning. A laser monitoring device for monitoring the presence or absence of
The monitoring of the presence / absence of an object in the monitoring target area is performed by detecting the object by analyzing the received light data of the reflected light detected in synchronization with the scanning of the pulse laser beam and monitoring a fixed object in the monitoring target area. It was excluded from the subject,
For each detected object, the average reflected light intensity and average detection distance are obtained, and when the integrated value of the average reflected light intensity of the object at the farthest point and the number of valid data is less than a preset index, Laser light intensity that increases the output intensity of the pulsed laser beam and decreases the output intensity of the pulsed laser beam as the number of data in which the reflected beam intensity is saturated increases when the integrated value is greater than or equal to the index A laser monitoring apparatus comprising an adjusting means .
前記パルスレーザ光の出力強度の減少は、反射光強度が飽和しているデータ数が予め設定した閾値を超えるとき、反射光強度が飽和している検出データの平均距離に応じた強度まで前記パルスレーザ光の出力強度を減少させるものである請求項1に記載のレーザ監視装置。 The decrease in the output intensity of the pulse laser beam is such that when the number of data in which the reflected light intensity is saturated exceeds a preset threshold, the pulse is reduced to an intensity corresponding to the average distance of the detected data in which the reflected light intensity is saturated. The laser monitoring apparatus according to claim 1 , which reduces the output intensity of laser light.
JP2007072318A 2007-03-20 2007-03-20 Laser monitoring device Expired - Fee Related JP4993084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007072318A JP4993084B2 (en) 2007-03-20 2007-03-20 Laser monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007072318A JP4993084B2 (en) 2007-03-20 2007-03-20 Laser monitoring device

Publications (2)

Publication Number Publication Date
JP2008232800A JP2008232800A (en) 2008-10-02
JP4993084B2 true JP4993084B2 (en) 2012-08-08

Family

ID=39905778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007072318A Expired - Fee Related JP4993084B2 (en) 2007-03-20 2007-03-20 Laser monitoring device

Country Status (1)

Country Link
JP (1) JP4993084B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241273A (en) * 2007-03-26 2008-10-09 Ihi Corp Laser radar device and its control method
JP5190663B2 (en) * 2007-03-27 2013-04-24 スタンレー電気株式会社 Distance image generator
JP4993087B2 (en) * 2007-03-28 2012-08-08 株式会社Ihi Laser monitoring device
JP5472572B2 (en) * 2009-01-27 2014-04-16 株式会社Ihi Laser distance measuring device
JP5190721B2 (en) * 2012-05-09 2013-04-24 スタンレー電気株式会社 Distance image generator
KR20180046332A (en) * 2016-10-25 2018-05-08 전자부품연구원 Optical transmitting and receiving device and method
KR102205177B1 (en) * 2019-05-28 2021-01-20 주식회사 에스원 System to Prevent Close Sensing of Raser Sensor based on Reflection Board and Method thereof
WO2020241294A1 (en) * 2019-05-31 2020-12-03 ソニー株式会社 Signal processing device, signal processing method, and ranging module
KR102430788B1 (en) 2019-11-22 2022-08-10 현대모비스 주식회사 Lidar sensor with parameter optimization function and tof calculation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2641820B2 (en) * 1990-10-20 1997-08-20 富士写真フイルム株式会社 Distance measurement method
JPH05264719A (en) * 1992-03-19 1993-10-12 Nec Corp Laser rader apparatus
JP3183598B2 (en) * 1993-12-14 2001-07-09 三菱電機株式会社 Obstacle detection device
JP3156473B2 (en) * 1993-12-21 2001-04-16 三菱電機株式会社 Vehicle distance measuring device
JP2001280951A (en) * 2000-03-31 2001-10-10 Omron Corp Optical displacement gage
JP3941790B2 (en) * 2004-04-08 2007-07-04 石川島播磨重工業株式会社 Moving object detection apparatus and method
JP4069926B2 (en) * 2005-01-11 2008-04-02 株式会社Ihi Object detection device

Also Published As

Publication number Publication date
JP2008232800A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
JP4993087B2 (en) Laser monitoring device
JP4993084B2 (en) Laser monitoring device
JP6942966B2 (en) Object detection device and mobile device
US10398006B2 (en) Object detection apparatus and moveable apparatus
US20150204977A1 (en) Object detection device and sensing apparatus
CN109188452B (en) Time-of-flight ranging sensor and light source modulation method thereof
JP2007183246A (en) Laser scanning device
JP4940458B2 (en) Object detection device
US8403220B2 (en) Optical code detection with image exposure control
JP2005233716A (en) Radar device
JP2006349694A (en) Object detection device and method
JP6811661B2 (en) Mobile imager and mobile
JP2006209318A (en) Apparatus and method for detecting number of people
US10962644B1 (en) Dynamic laser power control in light detection and ranging (LiDAR) systems
CN103592651A (en) Active-passive imaging system for cat eye target detection
JP5832067B2 (en) Optical distance measuring device
JP5472571B2 (en) Laser distance measuring apparatus and shielding object detection method thereof
JP2023181381A (en) Measuring device, control method, program, and storage medium
JP5602554B2 (en) Optical distance measuring device
TWI393031B (en) Method for adapting an optical navigation device for navigation on a transparent structure and optical navigational device
WO2023181308A1 (en) Computer system, method, and program
JP2011122851A (en) Method and device for detecting object
JP2019128221A (en) Time measurement device, distance measurement device, moving body device, time measurement method, and distance measurement method
JPH10239433A (en) Distance measuring device
JP2019138666A (en) Ranging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120411

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120424

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees