JP4991884B2 - Image processing apparatus and image processing method - Google Patents
Image processing apparatus and image processing method Download PDFInfo
- Publication number
- JP4991884B2 JP4991884B2 JP2010002590A JP2010002590A JP4991884B2 JP 4991884 B2 JP4991884 B2 JP 4991884B2 JP 2010002590 A JP2010002590 A JP 2010002590A JP 2010002590 A JP2010002590 A JP 2010002590A JP 4991884 B2 JP4991884 B2 JP 4991884B2
- Authority
- JP
- Japan
- Prior art keywords
- resolution
- video signal
- image
- super
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012545 processing Methods 0.000 title claims description 157
- 238000003672 processing method Methods 0.000 title claims description 11
- 238000006243 chemical reaction Methods 0.000 claims description 52
- 238000000034 method Methods 0.000 claims description 38
- 230000008859 change Effects 0.000 claims description 12
- 230000005540 biological transmission Effects 0.000 claims description 5
- 230000007423 decrease Effects 0.000 claims description 3
- 230000008569 process Effects 0.000 description 23
- 238000007781 pre-processing Methods 0.000 description 17
- 230000000875 corresponding effect Effects 0.000 description 14
- 238000012805 post-processing Methods 0.000 description 12
- 238000001514 detection method Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 230000006872 improvement Effects 0.000 description 9
- 230000009467 reduction Effects 0.000 description 6
- 238000012937 correction Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000000750 progressive effect Effects 0.000 description 4
- 239000000470 constituent Substances 0.000 description 3
- 230000005236 sound signal Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000013213 extrapolation Methods 0.000 description 2
- 238000003702 image correction Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000004313 glare Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Images
Landscapes
- Television Systems (AREA)
Description
本発明は、映像を高解像度化する技術に関し、特に、映像の情報量やノイズ量等に応じて高解像度化する画像処理装置、画像処理方法に関するものである。 The present invention relates to a technology for increasing the resolution of a video, and more particularly to an image processing apparatus and an image processing method for increasing the resolution according to the amount of information and noise of the video.
近年、PC(Personal Computer)とテレビジョンの融合が進み、SD(Standard Definition)サイズを超えた、ハイビジョン放送等のいわゆるHD(High Definition)サイズの高解像度のディスプレイで映像を視聴する機会が増えている。 In recent years, the fusion of PC (Personal Computer) and television has progressed, and the opportunity to view video on a high-definition display of so-called HD (High Definition) size, such as high-definition broadcasting, exceeding the SD (Standard Definition) size has increased. Yes.
しかし、SDテレビ放送される映像、あるいはDVDに記録された映像等は解像度が低く、ユーザがHDサイズ(特に、1920×1080のいわゆるフルHDサイズ)の映像を視聴する場合には、その映像の画像を高解像度に変換する必要がある。この点、従来から、画像の画素値を線形内挿や3次畳み込み内挿することによって、画像を高解像度化することが行われていたが、鮮鋭な画像が得られないという問題があった。 However, a video broadcast on an SD TV or a video recorded on a DVD has a low resolution, and when a user views a video of HD size (especially 1920 × 1080 so-called full HD size), The image needs to be converted to high resolution. In this regard, conventionally, image resolution has been increased by linear interpolation or cubic convolution interpolation of image pixel values, but there has been a problem that a sharp image cannot be obtained. .
そこで、このような問題を解決するために、画像を伸張すると同時に、当該伸張処理により生じた画像の画素と画素の間に高い周波数成分の画素を補間して、鮮鋭な高解像度の画像を得ることができる超解像度化技術の研究が行われている(例えば、特許文献1、特許文献2)。
Therefore, in order to solve such a problem, the image is decompressed and at the same time, a pixel having a high frequency component is interpolated between pixels of the image generated by the decompression process to obtain a sharp high-resolution image. Research on super-resolution technology that can be performed is performed (for example,
超解像度化技術によれば、映像の鮮鋭感が増すので、シャープな映像・クリアな映像をユーザは楽しむことができる。しかしながら、上述した映像は、BS(Broadcasting Satellite)放送、CS(Communications Satellite)放送、あるいは地上波デジタル放送、地上波アナログ放送やインターネット等の様々な手段で提供され、提供される映像の情報量も多岐に亘り、そのノイズ量の大きさ等も様々である。従って、単に映像に対して一律に超解像度処理を施した場合、例えば、情報量の少ないCS放送で提供される映像に含まれていたノイズが目立ってしまい、超解像度処理による映像の鮮明さが薄らいでしまうという問題があった。 According to the super-resolution technology, the sharpness of the image is increased, so that the user can enjoy a sharp image and a clear image. However, the above-mentioned video is provided by various means such as BS (Broadcasting Satellite) broadcast, CS (Communications Satellite) broadcast, terrestrial digital broadcast, terrestrial analog broadcast, and the Internet, and the amount of information of the provided video is also large. There are a wide variety of noise levels. Therefore, when the super-resolution processing is simply applied to the video, for example, the noise included in the video provided by the CS broadcast with a small amount of information becomes conspicuous, and the clearness of the video by the super-resolution processing is remarkable. There was a problem of fading.
また、従来から、映像を鮮鋭化する方法として、画像のエッジを立てることによって、映像を見かけ上鮮鋭にするシャープネス処理がある。このシャープネス処理は、映像の種類に応じて鮮鋭化することが行われているが、新たに高周波成分の画素を生成するという点で、超解像度化技術とシャープネス処理とは全く異なる技術であり、シャープネス処理で行われている鮮鋭化の処理と同様の手法によって鮮鋭化の度合いを調整することが困難であるという問題があった。 Conventionally, as a method of sharpening an image, there is a sharpness process that makes the image appear sharp by raising an edge of the image. This sharpness process is sharpened according to the type of video, but it is a technology that is completely different from super resolution technology and sharpness processing in that it newly generates high frequency component pixels. There has been a problem that it is difficult to adjust the degree of sharpening by the same method as the sharpening processing performed in the sharpness processing.
本発明は、上記に鑑みてなされたものであって、映像の放送波の種別に応じて適切に画像変換を行うことができる画像処理装置、画像処理方法を提供することを目的とする。 The present invention has been made in view of the above, and an object thereof is to provide an image processing apparatus and an image processing method capable of appropriately performing image conversion according to the type of video broadcast wave.
上述した課題を解決し、目的を達成するために、本実施形態にかかる画像処理装置は、第1解像度の第1映像信号を、当該第1映像信号の画素に対して挿入される高周波成分の画素の割合を示すパラメータに応じて、前記第1解像度よりも高い第2解像度の第2映像信号に変換する画像変換手段と、前記第1映像信号の放送波の種類に応じて、前記パラメータを変更するように制御する制御手段と、前記放送波の種類に応じて変更される前記パラメータの変更をユーザに許可する設定手段と、を備えることを特徴とする。
また、本実施形態にかかる画像処理装置は、第1解像度の第1映像信号を、当該第1映像信号の画素に対して挿入される高周波成分の画素の割合を示すパラメータに応じて、前記第1解像度よりも高い第2解像度の第2映像信号に変換する画像変換手段と、前記第1映像信号の放送波の種類に応じて、映像信号の送信量が少ない放送波の種類ほど前記割合が小さくなるように前記パラメータを変更する制御手段と、を備えることを特徴とする。
In order to solve the above-described problems and achieve the object , the image processing apparatus according to the present embodiment includes a first video signal having a first resolution and a high-frequency component inserted into a pixel of the first video signal. According to a parameter indicating the ratio of pixels, an image conversion means for converting to a second video signal having a second resolution higher than the first resolution, and according to the type of broadcast wave of the first video signal, the parameter is changed. Control means for controlling to change, and setting means for allowing the user to change the parameter that is changed according to the type of the broadcast wave.
Further, the image processing apparatus according to the present embodiment is configured such that the first video signal having the first resolution is converted into the first video signal in accordance with a parameter indicating a ratio of high frequency component pixels to be inserted with respect to the pixels of the first video signal. According to the image conversion means for converting to a second video signal having a second resolution higher than one resolution and the type of broadcast wave of the first video signal, the type of broadcast wave having a smaller transmission amount of the video signal has a higher ratio. And a control means for changing the parameter so as to be small .
また、本実施形態にかかる画像処理方法は、画像変換手段が、第1解像度の第1映像信号を、当該第1映像信号の画素に対して挿入される高周波成分の画素の割合を示すパラメータに応じて、前記第1解像度よりも高い第2解像度の第2映像信号に変換する画像変換ステップと、制御手段が、前記第1映像信号の放送波の種類に応じて、前記パラメータを変更するように制御する制御ステップと、設定手段が、前記放送波の種類に応じて変更される前記パラメータの変更をユーザに許可する設定ステップと、を含むことを特徴とする。
また、本実施形態にかかる画像処理方法は、画像変換手段が、第1解像度の第1映像信号を、当該第1映像信号の画素に対して挿入される高周波成分の画素の割合を示すパラメータに応じて、前記第1解像度よりも高い第2解像度の第2映像信号に変換する画像変換ステップと、制御手段が、前記第1映像信号の放送波の種類に応じて、映像信号の送信量が少ない放送波の種類ほど前記割合が小さくなるように前記パラメータを変更する制御ステップと、を含むことを特徴とする。
In the image processing method according to the present embodiment, the image conversion means uses the first video signal having the first resolution as a parameter indicating the ratio of high-frequency component pixels to be inserted with respect to the pixels of the first video signal. In response, the image conversion step of converting the second video signal having the second resolution higher than the first resolution, and the control means change the parameter according to the type of broadcast wave of the first video signal. And a setting step in which the setting means permits the user to change the parameter that is changed according to the type of the broadcast wave.
In the image processing method according to the present embodiment, the image conversion means uses the first video signal having the first resolution as a parameter indicating the ratio of high-frequency component pixels to be inserted with respect to the pixels of the first video signal. Accordingly, the image conversion step of converting to a second video signal having a second resolution higher than the first resolution, and the control means, depending on the type of broadcast wave of the first video signal, the transmission amount of the video signal is And a control step of changing the parameter so that the ratio decreases as the number of broadcast waves decreases .
本発明によれば、映像の放送波の種別に応じて適切に画像変換を行うことができる、という効果を奏する。 According to the present invention, there is an effect that image conversion can be appropriately performed according to the type of video broadcast wave.
以下に添付図面を参照して、この発明にかかる画像処理装置および画像処理方法の最良な実施の形態を詳細に説明する。 Exemplary embodiments of an image processing apparatus and an image processing method according to the present invention are explained in detail below with reference to the accompanying drawings.
(第1の実施の形態)
図1は、本実施形態に係る画像表示装置100のシステムを概略的に示したブロック図である。同図に示したように、画像表示装置100は、映像信号入力部11と、メイン処理部12と、画像処理装置に対応する高解像度化部13と、動画改善処理部14と、表示処理部15と、表示部16と、音声処理部17と、音声出力部18とを備えている。
(First embodiment)
FIG. 1 is a block diagram schematically showing a system of the
映像信号入力部11は、表示の対象となる映像信号が入力される部位であって、デジタル放送受信部111と、IPTV(インターネットプロコトルTV)信号処理部112と、インターネット等のIP網を介して送信されるデータを受信するインターネット信号処理部113と、アナログ信号の入力を受け付ける外部入力部114とを備えている。ここで「映像信号」とは、静止画像や動画像からなる画像信号の他、音声信号をも含む概念である。
The video
尚、映像信号には、その映像が提供される形態の種類(例えば、放送波の場合には、映像信号の送信量である情報量が異なるBS放送、CS放送、地上波デジタル放送、地上波アナログ放送等の放送波の種類、あるいは映像信号のビットレートの大きさ、HDMI(High-Definition Multimedia Interface)等の外部接続されたDVD等の媒体の再生機器やゲーム機とのインタフェースの規格情報等)を示すソースコード(例えば、BS放送であれば「1」、CS放送であれば「2」、地上波デジタル放送であれば「3」、地上波アナログ放送であれば「4」、HDMIであれば「H」等。また、情報量が映像信号の送信量である場合には、byteやbpsの数値の大きさ)が含まれている。尚、これらのソースコードは上述した各数値によって簡略化して説明するものとし、以下では、放送波の種類を例に説明している。 It should be noted that the video signal includes the type of form in which the video is provided (for example, in the case of a broadcast wave, BS broadcast, CS broadcast, terrestrial digital broadcast, terrestrial Type of broadcast wave such as analog broadcasting, bit rate of video signal, standard information of interface with playback devices and game machines of externally connected media such as DVD (High-Definition Multimedia Interface) ), For example, “1” for BS broadcast, “2” for CS broadcast, “3” for digital terrestrial broadcast, “4” for analog terrestrial broadcast, HDMI If it is the amount of information is the amount of transmission of the video signal, the number of bytes or the size of bps) is included. Note that these source codes are described in a simplified manner with the above-described numerical values, and in the following, the types of broadcast waves are described as an example.
デジタル放送受信部111は、BS、CS、地上波等のデジタル放送を受信するためのデジタルアンテナ1111と、デジタル放送を選局するためのデジタルチューナ1112と、デジタル放送を復調しデジタルの映像信号としてメイン処理部12に出力するデジタル信号復調部1113とを有している。
The digital broadcast receiver 111 includes a digital antenna 1111 for receiving digital broadcasts such as BS, CS, and terrestrial waves, a
IPTV信号処理部112は、専用のIP網を介して送信されるIP放送を受信し、デジタルの映像信号としてメイン処理部12に出力する。
The IPTV
インターネット信号処理部113は、インターネット等のIP網を介して送信されるデータ(静止画像や動画像)を受信し、デジタルの映像信号としてメイン処理部12に出力する。
The Internet
外部入力部114は、アナログ放送を受信するためのアナログアンテナ1141と、アナログ放送を選局するためのアナログチューナ1142と、アナログ信号にA/D変換等の信号処理を施し、デジタルの映像信号としてメイン処理部12に出力する外部入力信号処理部1143とを有している。なお、外部入力信号処理部1143は、ゲーム機やPC(Personal Computer)、DVD(Digital Versatile Disk)プレーヤ等の外部機器と接続するための端子を有し(図示せず)、当該入力端子を介して外部機器から入力されるアナログ信号に対しても信号処理を施すものとする。
The
図2は、メイン処理部12の機能的構成を示すブロック図である。図2に示すように、メイン処理部12は、操作受信部121と、ソース判断部122と、制御部123と、フラッシュメモリ19とを有している。
FIG. 2 is a block diagram illustrating a functional configuration of the
操作受信部121は、後述するように、操作部200であるリモコンから指定された放送波の種類等の選択する旨の信号(以下、選択信号と呼ぶ。)を受信し、受信した選択信号に応じたソースコードを後述するソース判断部122に出力する。
As will be described later, the
具体的には、ユーザは、操作部200の放送波を切り替えるチャンネルボタン等(不図示)を押下することによって、図3に示すように、放送波の種類やチャンネル(図3では、BSデジタル放送の1チャンネルが選択された例を示している。)、外部接続機器(例えば、DVDプレーヤやゲーム機)の再生画面等を選択する。操作受信部121は、このとき出力される選択信号を受信し、ソース判断部122に出力する。
Specifically, as shown in FIG. 3, the user presses a channel button or the like (not shown) for switching broadcast waves on the
上述した各種のソースコードは、後述するように、制御部123において映像信号から分離された画像信号に対して行う超解像度処理のレベルを示す超解像度パラメータに対応づけられており、これらの各種のソースコードの種類をユーザが指定することによって、あるいは後述するように、ソース判断部122が映像信号に含まれるソースコードの種類を自動的に識別することによって、ソースコードに応じた超解像度処理が行われる。
The various source codes described above are associated with super resolution parameters indicating the level of super resolution processing performed on the image signal separated from the video signal in the
図2に戻り、ソース判断部122は、デジタル信号復調部1113、IPTV信号処理部112、インターネット信号処理部113、外部入力信号処理部1143からの映像信号を受信すると、その映像信号に含まれるソースコードの種類を判断し、判断したソースコードの種類を、映像信号入力部11から受信した映像信号とともに後述する制御部123に出力する。
Returning to FIG. 2, upon receiving video signals from the digital
ソース判断部122は、さらに、操作受信部121が操作部200から指定されたソースコードを受信しているか否かを判断し、操作部200から指定されたソースコードを受信していると判断した場合には、指定されたソースコードの種類を制御部123に出力するとともに、フラッシュメモリ19に書き込む。
The
制御部123は、ソース判断部122がソースコードを判断した後、映像信号を画像信号と音声信号とに分離し、所定の画像処理を施した画像信号を高解像度化部13に出力するとともに、音声信号を音声処理部17に出力する。また、画像信号と共に、ソース判断部122から受け取ったソースコードの種類を示す識別信号を、後述する高解像度化部13に送信する。
After the
ここで、制御部123が施す画像処理としては、入力された画像信号の解像度を所定の解像度(例えば、1280×720等)に変換するスケーリング処理等が挙げられる。
Here, the image processing performed by the
フラッシュメモリ19は、上述したように、操作受信部121が操作部200からソースコードを受信した場合のソースコードの種類を記憶する。続いて、高解像度化部13について説明する。
As described above, the
図4は、図1に示す高解像度化部13の機能構成を示すブロック図である。図4に示すように、高解像度化部13は、前処理部131と、超解像度変換処理部132と、後処理部133と、EEPROMメモリ20とを備えている。
FIG. 4 is a block diagram showing a functional configuration of the
前処理部131は、メイン処理部12から入力された画像信号に対し、インターレース・プログレッシブ変換処理や、ノイズを除去するノイズリダクション処理等の画像処理(以下、前処理と呼ぶ。)を施し、処理済みの映像信号を超解像度変換処理部132に出力する。また、前処理部131は、メイン処理部12から受信したソースコードの種類を、後述する超解像度変換処理部132に出力する。なお、上記ソースコードに関する識別信号は、メイン処理部12から前処理部131を通らずに超解像度処理部132に入力されてもよい。
The
具体的には、前処理部131は、インターレース・プログレッシブ変換処理として、入力された画像信号における画像の動きを検出して静止画と動画とを判定し、静止画と判定したときには静止画用の補間処理を行い、動画と判定したときには動画用の補間処理を行う。
Specifically, as the interlace / progressive conversion process, the
また、前処理部131は、ノイズリダクション処理として、画像信号における画像の輪郭補整や、画像ボケやギラツキ感の低減、過度なイコライジング(高域強調)を抑える補正、水平方向にカメラが移動する際のブレ改善等の処理を行う。
In addition, the
超解像度変換処理部132は、前処理部131から入力される低解像度フレームを、高解像度化するための画像処理(以下、「超解像度変換処理」という。)を施して、HDサイズの高解像度の動画データのフレーム(以下、「高解像度フレーム」という。)を生成し、後処理部133に出力する。
The super-resolution
ここで、超解像度変換処理とは、第1解像度である低解像度の画像信号から本来の画素値を推定して画素を増やすことにより、第2解像度である高解像度の画像信号を復元する鮮鋭化処理を意味する。ここで、本来の画素値とは、例えば、低解像度(第1解像度)の画像信号を得たときと同じ被写体を、高解像度(第2解像度)の画像信号の画素数を持つカメラで撮像したときに得られる画像信号の各画素が持つ値を指す。 Here, the super-resolution conversion processing is a sharpening that restores a high-resolution image signal that is the second resolution by estimating the original pixel value from the low-resolution image signal that is the first resolution and increasing the number of pixels. Means processing. Here, the original pixel value is, for example, an image of the same subject as that obtained when a low-resolution (first resolution) image signal is obtained with a camera having the number of pixels of the high-resolution (second resolution) image signal. It refers to the value of each pixel of the image signal that is sometimes obtained.
また、「推定して画素を増やす」とは、画像の特徴を捕らえて、相関性があるという画像の特徴を利用して周辺(同一フレーム内またはフレーム間)の画像から本来の画素値を推定して画素を増やすことを意味する。なお、超解像度変換処理については、特開2007−310837号公報、特開2008−98803号公報や特開2000−188680号公報等に開示された公知・公用の技術を用いることが可能である。本実施の形態の超解像度変換処理の技術としては、例えば、入力画像の標本化周期で決まるナイキスト周波数より高い周波数成分を有する画像を復元する技術を用いる。 Also, “estimate and increase pixels” means to capture the image features and use the image features that are correlated to estimate the original pixel value from the surrounding (within the same frame or between frames) image This means increasing the number of pixels. For the super-resolution conversion processing, it is possible to use a publicly known / public technique disclosed in Japanese Unexamined Patent Application Publication No. 2007-310837, Japanese Unexamined Patent Application Publication No. 2008-98803, Japanese Unexamined Patent Application Publication No. 2000-188680, and the like. As a technique for the super-resolution conversion processing of the present embodiment, for example, a technique for restoring an image having a frequency component higher than the Nyquist frequency determined by the sampling period of the input image is used.
例えば、特開2007−310837号公報に開示された超解像度変換処理を用いる場合には、複数の中解像度フレームのそれぞれに対してフレーム中の注目画素を含む注目画像領域中の画素値の変化パターンに最も近い複数の注目画像領域に対応する複数の対応点を基準フレームの中から選択し、対応点での輝度の標本値を対応点に対応している注目画素の画素値に設定し、複数の標本値の大きさと、複数の対応点の配置とに基づいて、基準フレームの画素数よりも多い画素数の高解像度フレームであって基準フレームに対応する高解像度フレームの画素値を算出することにより、低解像度の画像信号から本来の画素値を推定して画素を増やすことにより、高解像度の画像信号を復元する。 For example, when using the super-resolution conversion process disclosed in Japanese Patent Application Laid-Open No. 2007-310837, the change pattern of the pixel value in the target image area including the target pixel in the frame for each of a plurality of medium resolution frames. Select a plurality of corresponding points corresponding to a plurality of target image areas closest to the reference frame from the reference frame, set the sample value of the luminance at the corresponding point to the pixel value of the target pixel corresponding to the corresponding point, and Calculating a pixel value of a high-resolution frame corresponding to the reference frame, which is a high-resolution frame having a number of pixels larger than the number of pixels of the reference frame, based on the size of the sample value and the arrangement of a plurality of corresponding points. Thus, the original pixel value is estimated from the low resolution image signal and the number of pixels is increased to restore the high resolution image signal.
また、特開2008−98803号公報に開示された同一フレーム画像内の自己合同位置探索を利用した超解像度変換処理を用いる場合には、中解像度フレームの探索領域の各画素の誤差を比較して最小となる第1の画素位置を算出し、第1の画素位置及びこの第1の誤差、第1の画素の周辺の第2の画素位置及びこの第2の誤差に基づいて、探索領域のなかで誤差が最小となる位置を小数精度で算出する。そして、この位置を終点及び注目画素を始点とする小数精度ベクトルを算出し、小数精度ベクトルを用いて、探索領域に含まれない画面上の画素を終点とする、小数精度ベクトルの外挿ベクトルを算出する。そして、小数精度ベクトル、外挿ベクトル及び画像信号から取得された画素値に基づいて、画像信号に含まれる画素数よりも多い画素数の高解像度画像の画素値を算出する。超解像度変換処理部132は、このような処理を行うことにより、低解像度の画像信号から本来の画素値を推定して画素を増やすことにより、高解像度の画像信号を復元する。
In addition, when using the super-resolution conversion process using self-congruent position search in the same frame image disclosed in Japanese Patent Application Laid-Open No. 2008-98803, the error of each pixel in the search area of the medium resolution frame is compared. The minimum first pixel position is calculated, and based on the first pixel position and the first error, the second pixel position around the first pixel, and the second error, The position where the error is minimized is calculated with decimal precision. Then, a decimal precision vector with this position as the end point and the target pixel as the start point is calculated, and an extrapolation vector of the decimal precision vector with the pixel on the screen not included in the search region as the end point is calculated using the decimal precision vector. calculate. Then, based on the decimal precision vector, the extrapolation vector, and the pixel value acquired from the image signal, the pixel value of the high-resolution image having a larger number of pixels than the number of pixels included in the image signal is calculated. By performing such processing, the super-resolution
また、特開2000−188680号公報に開示された複数フレーム画像間でのマッピングを利用した超解像度変換処理を用いることもできる。 Also, a super-resolution conversion process using mapping between a plurality of frame images disclosed in Japanese Patent Laid-Open No. 2000-188680 can be used.
ただし、超解像度変換処理部132における超解像度変換処理の手法は、上記に限定されるものではなく、低解像度の画像信号から本来の画素値を推定して画素を増やすことにより、高解像度の画像信号を復元する処理であれば、あらゆる手法を適用することができる。
However, the method of the super resolution conversion processing in the super resolution
また、超解像度変換処理部132は、前処理部131がノイズリダクション処理等を行った後の画像信号、およびソースコードの種類を示す識別信号を受け取ると、後述するEEPROMメモリ20から、そのソースコードの種類に対応する超解像度パラメータを取得する。
When the super-resolution
図5は、EEPROMメモリ20が記憶するパラメータの例を示す図である。図5に示すように、EEPROMメモリ20には、ソースコードおよびその種類と、超解像度パラメータとが対応付けて記憶されている。 FIG. 5 is a diagram illustrating an example of parameters stored in the EEPROM memory 20. As shown in FIG. 5, the EEPROM memory 20 stores source codes and their types, and super-resolution parameters in association with each other.
ここで、超解像度パラメータとは、超解像度変換処理の強さを数値で表現したものである。例えば、画素間に挿入する高周波成分の画素数、挿入対象となる画素に対する高周波成分の画素の割合が高い、すなわち超解像度パラメータの数値が大きいほど鮮鋭化のゲインが高く、超解像度変換処理が強くなることを示すものであり、超解像度処理の手法に応じて適宜設定することができる。図5に示す超解像度パラメータは、全ての画素に対して超解像度処理を行う場合を100として、全体の画素数に対して画素間に挿入する高周波成分の画素の割合を示している。このように、超解像度処理を行う指標をパラメータ形式で記憶することによって、超解像度処理の基準に仕様変更が生じた場合であっても、容易にかつ迅速にその仕様変更に対応することができる。 Here, the super resolution parameter is a numerical expression of the strength of the super resolution conversion process. For example, the number of high-frequency component pixels to be inserted between pixels and the ratio of high-frequency component pixels to the pixel to be inserted is high, that is, the larger the numerical value of the super-resolution parameter, the higher the sharpening gain and the stronger the super-resolution conversion processing. This can be appropriately set according to the super-resolution processing method. The super-resolution parameter shown in FIG. 5 indicates the ratio of high-frequency component pixels inserted between pixels with respect to the total number of pixels, where 100 is the case where super-resolution processing is performed on all pixels. As described above, by storing the index for performing the super-resolution processing in the parameter format, even if the specification change occurs in the super-resolution processing standard, it is possible to easily and quickly cope with the specification change. .
また、超解像度変換処理部132は、取得した超解像度パラメータに従って、上述した超解像度処理を行い、超解像度処理を行った画像信号を後述する後処理部133に出力する。
The super-resolution
具体的には、超解像度変換処理部132は、例えば、前処理部131から受け取ったソースコードの種類が「1」(すなわちCS放送)である場合には、図5に示すように、超解像度パラメータとして「10」を取得し、取得したパラメータに従って、上述した超解像度処理を行う。
Specifically, for example, when the type of the source code received from the
なお、CS放送の場合は、BS放送に比べて超解像度パラメータの値が小さく設定されているが、その理由は、CS放送の場合はBS放送に比べて情報量が少なく、強度な超解像度処理を行うと、その超解像度処理による画像の鮮明化の効果に比して、ノイズの増加が大きく、超解像度処理による鮮明な映像を効果的に得られないためである。また、外部接続された機器から提供される映像信号には、放送波の通信によって提供される映像信号に比べてノイズが少ないため、超解像度パラメータの値を小さく設定している。このように、図5に示す超解像度パラメータは放送波の種類、すなわち情報量の多寡に応じて設定されている。尚、上述した超解像度パラメータの値の設定は、ユーザによって任意に設定できるものとする。続いて、後処理部133について説明する。
In the case of CS broadcasting, the value of the super resolution parameter is set to be smaller than that of BS broadcasting. The reason is that in the case of CS broadcasting, the amount of information is smaller than that of BS broadcasting, and strong super resolution processing is performed. This is because the increase in noise is large compared to the effect of sharpening the image by the super-resolution processing, and a clear video by the super-resolution processing cannot be obtained effectively. In addition, since the video signal provided from an externally connected device has less noise than the video signal provided by broadcast wave communication, the value of the super-resolution parameter is set small. As described above, the super-resolution parameter shown in FIG. 5 is set according to the type of broadcast wave, that is, the amount of information. Note that the above-described super-resolution parameter value can be arbitrarily set by the user. Subsequently, the
後処理部133は、超解像度変換処理部132から入力される画像信号に対し、ガンマ補正やホワイトバランス調整等の画像補正処理(以下、後処理と呼ぶ。)を施し、動画改善処理部14に出力する。続いて、図1に戻り、動画改善処理部14について説明する。
The
動画改善処理部14は、後処理部133から受け取った画像信号に対して、倍速処理を行う。具体的には、60fps(Frame Per Second)で送信される映像信号を120fpsにフレームレート変換する処理を行うことにより、横、縦、斜め方向や回転する被写体など動きのある部分の映像ブレを低減し、ノイズも効果的に抑えて、流れるテロップや動きの速いスポーツシーンがくっきりと表示される。そして、フレームレート変換された画像信号を表示処理部15に出力する。
The moving image
なお、補間処理の方法としては、特開2008−35404号公報に記載されたブロックマッチング法による動きベクトル検出に基づいた補間生成処理方法等、一般的に行われているフレーム画像の補間方法に従って補間フレーム画像を生成し、補間することも可能である。さらに、補間フレーム画像の枚数についても任意に定めることができる。 As a method of interpolation processing, interpolation is performed in accordance with a generally performed frame image interpolation method such as an interpolation generation processing method based on motion vector detection by a block matching method described in Japanese Patent Application Laid-Open No. 2008-35404. It is also possible to generate and interpolate frame images. Furthermore, the number of interpolated frame images can be arbitrarily determined.
表示処理部15は、画像信号を表示部16に出力するためのドライバ等から構成され、動画改善処理部14から受け取った画像信号を表示部16に表示させる。
The
表示部16は、LCD(Liquid Crystal Display)、プラズマパネル、SED(Surface-conduction Electron-emitter Display)パネル等のディスプレイから構成され、表示処理部15からの制御を受けた画像信号を表示する。
The
操作部200は、リモートコントローラ等の遠隔操作装置から構成され、ユーザがチャンネル選択ボタン(不図示)を押下した場合に、その選択信号をメイン処理部12に送信する。
The
続いて、上述した画像表示装置100で行われる実行処理について説明する。
Subsequently, an execution process performed in the above-described
図6は、画像表示装置100が、映像信号を受信し、放送波等の種類に応じて超解像度変換処理を行う場合の処理手順を示すフローチャートである。
FIG. 6 is a flowchart illustrating a processing procedure when the
本図に示すように、メイン処理部12のソース判断部122は、操作受信部121が操作部200から選択信号を受信しているか否かを判断する(ステップS601)。
As shown in the figure, the
ソース判断部122が、操作受信部121が操作部200から選択信号を受信していると判定した場合には(ステップS601;Yes)、選択信号に対応するソースコードを取得してフラッシュメモリ19に記憶させる(ステップS602)。
When the
一方、操作受信部121が操作部200から選択信号を受信していないと判定した場合には(ステップS601;No)、画像信号に含まれるソースコードを取得する(ステップS603)。
On the other hand, when the
その後、ソース判断部122は、ステップS602またはステップS603で取得したソースコードと共に、画像信号を高解像度化部13に送信する(ステップS604)。
Thereafter, the
高解像度化部13の前処理部131は、ソース判断部122から画像信号を受け取ると、インターレース・プログレッシブ変換処理やノイズリダクション処理等の画像処理を行い、メイン処理部12から受け取ったソースコードとともに、画像信号を超解像度変換処理部132に出力する(ステップS605)。
When the
超解像度変換処理部132は、前処理部131からソースコードおよび画像信号を受け取ると、受け取ったソースコードに対応する超解像度パラメータを、EEPROM20から取得する(ステップS606)。
Upon receiving the source code and the image signal from the
そして、超解像度変換処理部132は、取得した超解像度パラメータの値に応じた超解像度処理を画像信号に対して行う(ステップS607)。その後、超解像度変換処理部132は、超解像度処理を行った画像信号を後処理部133に出力し、後処理部133は、ガンマ補正等の補正処理を行い、動画改善処理部14に出力する(ステップS608)。以降、表示処理部15を介して画像信号が表示部16に表示される。
Then, the super resolution
このように、メイン処理部12のソース判断部122が、映像の情報量の多寡を判定し、判定した種類に応じて超解像度処理のレベルを決定した上で映像を超解像度化するので、映像に対して適切に超解像度化処理を行うことができる。
As described above, the
なお、上述した実施の形態では、提供される映像信号の情報量として、ユーザが操作部200から指定した放送波の種類に応じて超解像度パラメータを取得したが、例えば図7に示すような番組情報の中から番組を選択し、その番組のジャンル情報(例えば、映画、スポーツ等)に応じて超解像度パラメータを取得することも可能である。この場合、ジャンル情報を含めた番組情報は放送局からの放送信号に重畳されて送信される。
In the above-described embodiment, the super resolution parameter is acquired as the information amount of the provided video signal according to the type of broadcast wave designated by the user from the
(第2の実施の形態)
上述した第1の実施の形態においては、外部から受信した映像信号の情報量の多寡に応じて、例えば、放送波の種類を例にとり説明したが、受信する放送波の種類によって、その放送波に含まれるノイズ量も変化する。このような場合、ノイズ量が多いにもかかわらず、超解像度変換処理を強くかけてしまうと、逆にそのノイズが目立ってしまう場合も存在する。そこで、放送波の種類等の情報量に代えて、映像信号に含まれるノイズ量に応じて超解像度変換処理を行う場合について説明する。
(Second Embodiment)
In the first embodiment described above, according to the amount of information of the video signal received from the outside, for example, the type of broadcast wave has been described as an example. However, depending on the type of broadcast wave received, the broadcast wave The amount of noise contained in also changes. In such a case, even if the amount of noise is large, if the super-resolution conversion process is applied strongly, the noise may be conspicuous. Accordingly, a case will be described in which super-resolution conversion processing is performed in accordance with the amount of noise included in the video signal instead of the amount of information such as the type of broadcast wave.
図8は、第2の実施の形態に係る画像表示装置(不図示)のメイン処理部82の構成を示すブロック図である。第2の実施の形態にかかる画像表示装置200のメイン処理部82は、ソース判断部122に代えて、ノイズ量検出部822を備えている点で第1の実施の形態にかかるメイン処理部12とは異なっている。以下の説明では、上述した第1の実施の形態と同一の構成要素には同一の符号を付してその説明を省略している。
FIG. 8 is a block diagram showing a configuration of the
ノイズ量検出部822は、デジタル信号復調部1113、IPTV信号処理部112、インターネット信号処理部113、外部入力信号処理部1143からの映像信号を受信すると、その映像信号に含まれるノイズ量を検出し、検出したノイズ量を、映像信号入力部11から受信した映像信号とともに後述する制御部123に出力する。その後、制御部123を介して、映像信号とノイズ量を出力する。そして、超解像度変換処理部132は、図9に示すように、EEPROM20にノイズ量に対応付けて記憶された超解像度パラメータを取得し、取得した超解像度パラメータに従って、超解像度処理を行う。その後、第1の実施の形態と同様に、後処理や動画改善等の各処理が行われる。
When receiving a video signal from the digital
図9に示すように、ノイズ量と超解像度パラメータとは、ノイズ量が多いほど超解像度を弱くかけるように、ノイズ量が少ないほど超解像度を強くかけるように対応付けられている。これは、ノイズ量が多い場合には、超解像度変換処理による画像の鮮鋭化に比して、ノイズが目立ってしまうからであり、上述した対応関係に従ってノイズ量と超解像度パラメータとを記憶することによって、ノイズ量に応じて適切に超解像度変換処理を行うことができる。 As shown in FIG. 9, the noise amount and the super-resolution parameter are associated with each other so that the higher the noise amount, the weaker the super-resolution, and the smaller the noise amount, the stronger the super-resolution. This is because when the amount of noise is large, the noise becomes conspicuous as compared with the sharpening of the image by the super-resolution conversion process, and the noise amount and the super-resolution parameter are stored according to the above-described correspondence relationship. Thus, the super-resolution conversion process can be appropriately performed according to the amount of noise.
なお、たとえノイズ量が多い映像信号を受信した場合であっても、ノイズリダクション処理で十分にノイズ量を除去し、その除去後の映像信号のノイズ量を検出して、超解像度処理を強くかけることも可能である。 Even if a video signal with a large amount of noise is received, the noise amount is sufficiently removed by noise reduction processing, the amount of noise in the video signal after the removal is detected, and super-resolution processing is strongly applied. It is also possible.
続いて、第2の実施の形態における画像表示装置200で行われる実行処理について、図10を参照しながら説明する。なお、第1の実施の形態にかかる処理と同じ処理内容についてはその説明を省略している。
Subsequently, an execution process performed by the
まず、ノイズ量検出部822が、受信した画像信号のノイズ量を検出し(ステップS1001)、受信した画像信号とノイズ量を高解像度化部13に送信する(ステップS1002)。なお、ノイズリダクション処理後にノイズ量を検出してもよいことは既に述べたとおりである。
First, the noise
高解像度化部13の前処理部131は、ソース判断部122から画像信号を受け取ると、インターレース・プログレッシブ変換処理等の画像処理を行い、メイン処理部12から受け取ったノイズ量と画像信号を超解像度変換処理部132に出力する(ステップS1003)。
When the
超解像度変換処理部132は、前処理部131からノイズ量および画像信号を受け取ると、受け取ったノイズ量に対応する超解像度パラメータを、EEPROM20から取得する(ステップS1004)。
Upon receiving the noise amount and the image signal from the
そして、超解像度変換処理部132は、取得した超解像度パラメータの値に応じた超解像度処理を画像信号に対して行う(ステップS1005)。その後、第1の実施の形態と同様に後処理を行い(ステップS1006)。以降、表示処理部15を介して画像信号が表示部16に表示される。
Then, the super resolution
このように、メイン処理部12のノイズ量検出822が、映像信号のノイズ量を検出し、検出したノイズ量の多寡に応じて超解像度処理のレベルを決定した上で映像を超解像度化するので、映像に対して適切に超解像度化処理を行うことができる。
As described above, the
なお、本発明は、上記実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化することができる。また、上記実施の形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成することができる。例えば、実施の形態に示される全構成要素からいくつかの構成要素を削除してもよい。さらに、異なる実施の形態にわたる構成要素を適宜組み合わせても良い。 It should be noted that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
例えば、ソース判断部122やノイズ量検出部822に代えて、映像信号が入力される外部入力端子の種類(D端子、HDMI端子、アナログ端子など)を検出する端子検出部を設け、その検出結果に応じて超解像度処理の程度を変えてもよい。
For example, instead of the
さらに、ソース判断部122やノイズ量検出部822に代えて、入力される映像信号の解像度を情報量として検出する解像度検出部を設け、その検出結果に応じて超解像度処理の程度を変えることも可能である。この場合、解像度の情報は、例えば、放送信号に含まれているものとする。このように、本実施形態では、情報量やノイズ量や端子の種類など、広い意味で入力ソースの違いに基づいて、超解像度処理の程度を変えることができる。
Furthermore, instead of the
また、本実施の形態では、本発明の画像処理装置を、表示部16、表示処理部15、音声出力部18および音声処理部17を有するデジタルTV等の画像表示装置100に適用した例をあげて説明したが、表示部16、表示処理部15、音声出力部18および音声処理部17を有さない、例えば、チューナやセットトップボックス等にも本発明の画像処理装置を適用することができる。
In this embodiment, an example in which the image processing apparatus of the present invention is applied to an
以上のように、本発明にかかる画像処理装置、画像処理方法は、映像を高解像度化する際に有用であり、特に、映像の情報量やノイズ量等に応じて超解像度処理する技術に適している。 As described above, the image processing apparatus and the image processing method according to the present invention are useful for increasing the resolution of a video, and are particularly suitable for a technique for performing super-resolution processing in accordance with the amount of video information and the amount of noise. ing.
100 画像表示装置
11 映像信号入力部
12 メイン処理部
13 高解像度化部
14 動画改善処理部
15 表示処理部
16 表示部
17 音声処理部
18 音声出力部
19 フラッシュメモリ
20 EEPROMメモリ
111 デジタル放送受信部
112 IPTV信号処理部
113 インターネット信号処理部
114 外部入力部
121 操作受信部
122 ソース判断部
123 制御部
131 前処理部
132 超解像度変換処理部
133 後処理部
200 操作部(リモート・コントローラ)
1111 デジタルアンテナ
1112 デジタルチューナ
1113 デジタル信号復調部
1141 アナログアンテナ
1142 アナログチューナ
1143 外部入力信号処理部
DESCRIPTION OF
1111
Claims (8)
前記第1映像信号の放送波の種類に応じて、前記パラメータを変更するように制御する制御手段と、
前記放送波の種類に応じて変更される前記パラメータの変更をユーザに許可する設定手段と、
を備えることを特徴とする画像処理装置。 A second video having a second resolution higher than the first resolution in accordance with a parameter indicating a ratio of high-frequency component pixels inserted into the first video signal with respect to the first video signal. Image conversion means for converting to a signal;
Control means for controlling to change the parameter according to the type of broadcast wave of the first video signal;
Setting means for allowing a user to change the parameter that is changed according to the type of the broadcast wave;
An image processing apparatus comprising:
前記第1映像信号の放送波の種類に応じて、映像信号の送信量が少ない放送波の種類ほど前記割合が小さくなるように前記パラメータを変更する制御手段と、 Control means for changing the parameter so that the ratio decreases as the type of broadcast wave with a smaller transmission amount of the video signal according to the type of broadcast wave of the first video signal;
を備えることを特徴とする画像処理装置。 An image processing apparatus comprising:
前記制御手段は、指定された前記放送波の種類に応じて、前記パラメータを変更するように制御すること、
を特徴とする請求項1又は2に記載の画像処理装置。 It further comprises a designation accepting means for accepting designation of the type of broadcast wave by a user operation,
The control means performs control to change the parameter according to the type of the specified broadcast wave;
The image processing apparatus according to claim 1, wherein:
を特徴とする請求項1乃至3のいずれか一項に記載の画像処理装置。 The image converting means, the image processing apparatus according to any one of claims 1 to 3, characterized in that converting the higher than the first resolution a second resolution of the video signal by using a super-resolution technique .
を特徴とする請求項1乃至4のいずれか一項に記載の画像処理装置。 The type of the broadcast wave includes BS broadcast, CS broadcast, terrestrial digital broadcast, terrestrial analog broadcast,
The image processing apparatus according to any one of claims 1 to 4, characterized in.
を更に備えたことを特徴とする請求項1乃至5のいずれか一項に記載の画像処理装置。 Display means for displaying an image of the second video signal;
The image processing apparatus according to any one of claims 1 to 5, further comprising a.
制御手段が、前記第1映像信号の放送波の種類に応じて、前記パラメータを変更するように制御する制御ステップと、
設定手段が、前記放送波の種類に応じて変更される前記パラメータの変更をユーザに許可する設定ステップと、
を含むことを特徴とする画像処理方法。 The image converting means converts the first video signal having the first resolution to a second higher than the first resolution in accordance with a parameter indicating a ratio of high-frequency component pixels to be inserted with respect to the pixels of the first video signal. An image conversion step of converting into a second video signal of resolution;
A control step for controlling the parameter to change according to the type of broadcast wave of the first video signal;
A setting step for allowing the user to change the parameter that is changed according to the type of the broadcast wave;
An image processing method comprising:
制御手段が、前記第1映像信号の放送波の種類に応じて、映像信号の送信量が少ない放送波の種類ほど前記割合が小さくなるように前記パラメータを変更する制御ステップと、 A control step, wherein the control means changes the parameter according to the type of broadcast wave of the first video signal so that the ratio becomes smaller as the type of broadcast wave with a smaller transmission amount of the video signal;
を含むことを特徴とする画像処理方法。 An image processing method comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010002590A JP4991884B2 (en) | 2010-01-08 | 2010-01-08 | Image processing apparatus and image processing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010002590A JP4991884B2 (en) | 2010-01-08 | 2010-01-08 | Image processing apparatus and image processing method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008201201A Division JP4444354B2 (en) | 2008-08-04 | 2008-08-04 | Image processing apparatus and image processing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010093856A JP2010093856A (en) | 2010-04-22 |
JP4991884B2 true JP4991884B2 (en) | 2012-08-01 |
Family
ID=42256025
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010002590A Active JP4991884B2 (en) | 2010-01-08 | 2010-01-08 | Image processing apparatus and image processing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4991884B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014136552A1 (en) | 2013-03-08 | 2014-09-12 | シャープ株式会社 | Image processing device |
WO2024142523A1 (en) * | 2022-12-27 | 2024-07-04 | パナソニックIpマネジメント株式会社 | Video signal processing device, video signal processing method, and program |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2913669B2 (en) * | 1989-06-13 | 1999-06-28 | ソニー株式会社 | Feedback clamp circuit |
US20020126910A1 (en) * | 2001-01-02 | 2002-09-12 | Eastman Kodak Company | Method of calculating noise from multiple digital images utilizing common noise characteristics |
JP2004140624A (en) * | 2002-10-18 | 2004-05-13 | Fuji Photo Film Co Ltd | Device and method for image data correction |
JP2006060335A (en) * | 2004-08-18 | 2006-03-02 | Sharp Corp | Image processing apparatus |
JP2006221221A (en) * | 2005-02-08 | 2006-08-24 | Seiko Epson Corp | Generation of high resolution image using two or more low resolution image |
JP2007060457A (en) * | 2005-08-26 | 2007-03-08 | Hitachi Ltd | Image signal processor and processing method |
JP2007163562A (en) * | 2005-12-09 | 2007-06-28 | Sharp Corp | Video display device and video display method |
JP4444354B2 (en) * | 2008-08-04 | 2010-03-31 | 株式会社東芝 | Image processing apparatus and image processing method |
-
2010
- 2010-01-08 JP JP2010002590A patent/JP4991884B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010093856A (en) | 2010-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4444354B2 (en) | Image processing apparatus and image processing method | |
US8581906B2 (en) | Image processing apparatus and image processing method | |
US8385422B2 (en) | Image processing apparatus and image processing method | |
US8373700B2 (en) | Image processing apparatus | |
JP4521468B1 (en) | Image processing apparatus and image processing method | |
JP4435251B2 (en) | VIDEO DISPLAY DEVICE, VIDEO REPRODUCTION DEVICE, VIDEO DISPLAY METHOD, AND VIDEO REPRODUCTION METHOD | |
JP4427592B2 (en) | Image processing apparatus and image processing method | |
US7983454B2 (en) | Image processing apparatus and image processing method for processing a flesh-colored area | |
JP5178579B2 (en) | Image processing device | |
JP4543116B1 (en) | Image processing apparatus and image processing method | |
JP4991884B2 (en) | Image processing apparatus and image processing method | |
KR101648449B1 (en) | Method of processing image in a display apparatus and the display apparatus | |
JP5066041B2 (en) | Image signal processing apparatus and image signal processing method | |
JP4869302B2 (en) | Image processing apparatus and image processing method | |
JP5010671B2 (en) | VIDEO DISPLAY DEVICE, VIDEO REPRODUCTION DEVICE, VIDEO DISPLAY METHOD, AND VIDEO REPRODUCTION METHOD | |
JP2010039135A (en) | Image processor and image processing method | |
JP2010199994A (en) | Image processing apparatus | |
JP4897036B2 (en) | Image processing apparatus and image processing method | |
JP5075923B2 (en) | Image processing apparatus and image processing method | |
JP2012004890A (en) | Video signal output device, and video signal output method | |
JP2010081510A (en) | Video processing apparatus, and video processing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A132 Effective date: 20111122 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120106 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120410 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120507 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4991884 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150511 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313121 Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |