JP4984057B2 - Control device for permanent magnet type synchronous motor - Google Patents

Control device for permanent magnet type synchronous motor Download PDF

Info

Publication number
JP4984057B2
JP4984057B2 JP2007117211A JP2007117211A JP4984057B2 JP 4984057 B2 JP4984057 B2 JP 4984057B2 JP 2007117211 A JP2007117211 A JP 2007117211A JP 2007117211 A JP2007117211 A JP 2007117211A JP 4984057 B2 JP4984057 B2 JP 4984057B2
Authority
JP
Japan
Prior art keywords
magnetic flux
value
speed
permanent magnet
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007117211A
Other languages
Japanese (ja)
Other versions
JP2008278594A (en
Inventor
尚史 野村
康 松本
信夫 糸魚川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2007117211A priority Critical patent/JP4984057B2/en
Publication of JP2008278594A publication Critical patent/JP2008278594A/en
Application granted granted Critical
Publication of JP4984057B2 publication Critical patent/JP4984057B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

本発明は、回転子の磁極位置を検出するための磁極位置検出器を持たずに、いわゆるセンサレス制御される永久磁石形同期電動機の制御装置に関し、詳しくは、回転子の速度及び磁極位置を高精度に演算して電動機の電機子電流を制御することにより、永久磁石形同期電動機を安定に制御可能とした制御装置に関するものである。   The present invention relates to a control device for a so-called sensorless controlled permanent magnet synchronous motor without a magnetic pole position detector for detecting the magnetic pole position of a rotor, and more particularly, to increase the rotor speed and the magnetic pole position. The present invention relates to a control device that can stably control a permanent magnet synchronous motor by calculating the accuracy and controlling the armature current of the motor.

永久磁石形同期電動機のセンサレス制御は、制御装置の低価格化を目的として広く実用化されている。このセンサレス制御は、電動機の端子電圧や電機子電流の情報から回転子の速度及び磁極位置を演算し、これらに基づいて電流制御を行うことによりトルク制御や速度制御を実現するものである。   Sensorless control of a permanent magnet type synchronous motor is widely put into practical use for the purpose of reducing the price of the control device. This sensorless control realizes torque control and speed control by calculating the rotor speed and magnetic pole position from information on the terminal voltage and armature current of the motor, and performing current control based on these.

従来のセンサレス制御の代表例として、特許文献1及び非特許文献1に記載されたセンサレス制御方式について説明する。
まず、永久磁石形同期電動機は、回転子の磁極方向をd軸、d軸から90度進んだ方向をq軸と定義した回転座標系で電流制御を行うことで、高性能制御を実現することができる。しかしながら、磁極位置検出器を使用しない場合は、dq軸の角度を直接検出することができないので、制御装置内部にdq軸回転座標系に対応するγδ軸回転座標系を推定し、dq軸成分のd軸電流i,q軸電流iをγδ軸成分のγ軸電流iγ,δ軸電流iδに変換して電流制御を行っている。
As a representative example of conventional sensorless control, the sensorless control methods described in Patent Document 1 and Non-Patent Document 1 will be described.
First, the permanent magnet synchronous motor realizes high-performance control by performing current control in a rotating coordinate system in which the magnetic pole direction of the rotor is defined as the d axis and the direction advanced 90 degrees from the d axis is defined as the q axis. Can do. However, when the magnetic pole position detector is not used, the angle of the dq axis cannot be directly detected. Therefore, a γδ axis rotation coordinate system corresponding to the dq axis rotation coordinate system is estimated inside the control device, and the dq axis component Current control is performed by converting the d-axis current i d and the q-axis current i q into γ-axis current i γ and δ-axis current i δ of the γδ-axis component.

ここで、図4は、dq軸とγδ軸との関係を示しており、θerrはdq軸とγδ軸との角度差である。
dq軸の電気角速度ωとγδ軸の電気角速度ωとが等しい場合、γδ軸における永久磁石形同期電動機の電圧方程式は、数式1によって表される。
Here, FIG. 4 shows the relationship between the dq axis and the γδ axis, and θ err is the angular difference between the dq axis and the γδ axis.
If the electrical angular velocity omega 1 of the electrical angular velocity omega r and γδ axes of the dq-axis are equal, the voltage equation of the permanent magnet synchronous motor in γδ axes is represented by Equation 1.

Figure 0004984057
Figure 0004984057

数式1において、右辺第1項は電機子抵抗rによる電圧降下、右辺第2項は電流微分値に平行でd軸インダクタンスLに比例する過渡電圧、右辺第3項は電機子反作用による電圧降下である。
右辺第3項の電機子反作用による電圧降下は、電機子電流iとq軸インダクタンスLとの積である電機子反作用磁束によって誘導される電圧であり、電機子反作用磁束を90度進ませたベクトルとγδ軸の電気角速度ωとの積に等しい。
また、右辺第4項が拡張誘起電圧と呼ばれる項(γδ軸成分をそれぞれγ軸拡張誘起電圧Eexγ、δ軸拡張誘起電圧Eexδという)であり、数式2によって表される。
In Equation 1, the first term is the voltage drop due to the armature resistance r a, the second term of the right side transient voltage proportional to the parallel current differential value d-axis inductance L d, the third term on the right side voltage by armature reaction It is a descent.
Voltage drop due to the armature reaction in the third term on the right side is the voltage induced by the armature reaction magnetic flux which is the product of the armature current i a and the q-axis inductance L q, Advances the armature reaction magnetic flux 90 degrees Equal to the product of the vector and the electrical angular velocity ω 1 of the γδ axis.
The fourth term on the right-hand side is a term called an expansion induced voltage (γδ axis components are respectively referred to as a γ-axis expansion induced voltage E exγ and a δ-axis expansion induced voltage E exδ ), and is expressed by Equation 2.

Figure 0004984057
Figure 0004984057

なお、拡張誘起電圧は、永久磁石形同期電動機の永久磁石とインダクタンスとに分離した位置情報を一つに集約する作用を果しており、例えば、非特許文献2にも記載されている。   The extended induced voltage has the effect of consolidating the position information separated into the permanent magnet and the inductance of the permanent magnet type synchronous motor into one, and is also described in Non-Patent Document 2, for example.

数式2に示すように、γ軸拡張誘起電圧Eexγ及びδ軸拡張誘起電圧Eexδはdq軸とγδ軸との角度差(以下、磁極位置演算誤差ともいう)θerrの関数であり、磁極位置演算誤差θerrはγ軸拡張誘起電圧ベクトルEexγ及びδ軸拡張誘起電圧Eexδの角度から演算することができる。 As shown in Equation 2, the γ-axis expansion induced voltage E exγ and the δ-axis expansion induced voltage E exδ are functions of the angle difference between the dq axis and the γδ axis (hereinafter also referred to as a magnetic pole position calculation error) θ err , The position calculation error θ err can be calculated from the angles of the γ-axis expansion induced voltage vector E exγ and the δ-axis expansion induced voltage E exδ .

図5は、数式1、数式2による永久磁石形同期電動機の電圧方程式を示すベクトル図である。なお、図5のベクトル図は電動機正転時のものであり、拡張誘起電圧Eexγ,Eexδはq軸方向に発生する。 FIG. 5 is a vector diagram showing voltage equations of the permanent magnet type synchronous motor according to Equations 1 and 2. Note that the vector diagram of FIG. 5 is for the normal rotation of the motor, and the expansion induced voltages E exγ and E exδ are generated in the q-axis direction.

次に、γδ軸回転座標系における速度ω及び磁極位置θの演算方法について説明する。
まず、前述した数式1を変形することにより、γ軸拡張誘起電圧Eexγ及びδ軸拡張誘起電圧Eexδについて数式3を得る。
Next, a method for calculating the speed ω 1 and the magnetic pole position θ 1 in the γδ axis rotation coordinate system will be described.
First, Equation 3 is obtained for the γ-axis expansion induced voltage E exγ and the δ-axis expansion induced voltage E exδ by modifying Equation 1 described above.

Figure 0004984057
Figure 0004984057

また、数式2より、磁極位置演算誤差θerrを数式4により演算する。 Further, the magnetic pole position calculation error θ err is calculated from Equation 2 using Equation 4.

Figure 0004984057
Figure 0004984057

速度演算値(=γδ軸電気角速度ω)は、磁極位置演算誤差θerrを入力とするPI(比例積分)調節器により求めることができ、具体的には数式5により演算する。 The speed calculation value (= γδ-axis electrical angular speed ω 1 ) can be obtained by a PI (proportional integration) adjuster that receives the magnetic pole position calculation error θ err , and is specifically calculated by Equation 5.

Figure 0004984057
Figure 0004984057

磁極位置演算値θは、数式6に示すように速度演算値ωを積分して求める。 The magnetic pole position calculation value θ 1 is obtained by integrating the speed calculation value ω 1 as shown in Equation 6.

Figure 0004984057
Figure 0004984057

数式5、数式6を用いることにより、磁極位置演算誤差θerrを零に収束させて速度ω及び磁極位置θを正確に演算することができる。
このようにして演算した速度ω及び磁極位置θを用いて電流制御や速度制御を行えば、位置検出器を使わなくても高性能に永久磁石形同期電動機を制御することができる。
By using Expressions 5 and 6, the magnetic pole position calculation error θ err can be converged to zero, and the speed ω 1 and the magnetic pole position θ 1 can be accurately calculated.
If current control and speed control are performed using the speed ω 1 and the magnetic pole position θ 1 calculated in this way, the permanent magnet type synchronous motor can be controlled with high performance without using a position detector.

次に、特許文献2に記載されたセンサレス制御方式について説明する。
前述したように、特許文献1及び非特許文献1に記載されたセンサレス制御方式は、数式4によってγ軸拡張誘起電圧Eexγ及びδ軸拡張誘起電圧Eexδから磁極位置演算誤差θerrを演算している。ところで、拡張誘起電圧の振幅Eexは、数式2に示した如く速度ωにほぼ比例するため、低速時には磁極位置演算誤差θerrの演算精度が悪くなるのは明らかである。
そこで、特許文献2に係るセンサレス制御方式では、拡張誘起電圧を誘導する磁束を「拡張磁束」として新たに定義する。
Next, the sensorless control method described in Patent Document 2 will be described.
As described above, the sensorless control methods described in Patent Document 1 and Non-Patent Document 1 calculate the magnetic pole position calculation error θ err from the γ-axis expansion induced voltage E exγ and the δ-axis expansion induced voltage E exδ using Equation 4. ing. By the way, since the amplitude E ex of the expansion induced voltage is almost proportional to the speed ω 1 as shown in Formula 2, it is clear that the calculation accuracy of the magnetic pole position calculation error θ err deteriorates at a low speed.
Therefore, in the sensorless control method according to Patent Document 2, the magnetic flux that induces the expansion induced voltage is newly defined as “expanded magnetic flux”.

磁束によって永久磁石形同期電動機の端子に誘導される電圧が、磁束に対して90度進み、その振幅が速度と磁束との積になることから、拡張誘起電圧を誘導する拡張磁束のベクトル方向をd軸とし、振幅Ψexを数式7により定義する。 The voltage induced by the magnetic flux at the terminal of the permanent magnet synchronous motor advances 90 degrees with respect to the magnetic flux, and its amplitude is the product of the speed and the magnetic flux. The d axis is defined, and the amplitude Ψ ex is defined by Equation 7.

Figure 0004984057
Figure 0004984057

数式2及び数式7より、拡張磁束の振幅Ψexは数式8によって表される。 From Equation 2 and Equation 7, the amplitude Ψ ex of the expanded magnetic flux is expressed by Equation 8.

Figure 0004984057
Figure 0004984057

図6は、拡張誘起電圧と拡張磁束との関係を示すベクトル図である。この図6及び数式7より、γ軸拡張誘起電圧Eexγ、δ軸拡張誘起電圧Eexδとγ軸拡張磁束Ψexγ、δ軸拡張磁束Ψexδとは数式9の関係にある。 FIG. 6 is a vector diagram showing the relationship between the expansion induced voltage and the expansion magnetic flux. 6 and Equation 7, the γ-axis expansion induced voltage E exγ , the δ-axis expansion induced voltage E exδ , the γ-axis expansion magnetic flux ψ exγ , and the δ-axis expansion magnetic flux ψ exδ are in the relationship of Equation 9.

Figure 0004984057
Figure 0004984057

γ軸拡張磁束Ψexγ及びδ軸拡張磁束Ψexδと磁極位置演算誤差θerrとの関係は、数式2及び数式9より、数式10のようになる。 The relationship between the γ-axis expanded magnetic flux ψ exγ and the δ-axis expanded magnetic flux ψ exδ and the magnetic pole position calculation error θ err is expressed by Equation 10 from Equation 2 and Equation 9.

Figure 0004984057
Figure 0004984057

数式8より、拡張磁束の振幅Ψexは、電流微分値が零になる定常状態では、速度ωによらず一定である。このため、数式10によりγ軸拡張磁束Ψexγ及びδ軸拡張磁束Ψexδを用いて磁極位置演算誤差θerrを演算すれば、低速時にも磁極位置演算誤差θerrを高精度に演算することができる。 From Equation 8, the amplitude Ψ ex of the expanded magnetic flux is constant regardless of the speed ω 1 in the steady state where the current differential value is zero. Therefore, be calculated if calculating the magnetic pole position calculation error theta err using γ-axis expansion flux [psi Exganma and δ-axis expansion flux [psi Exderuta by Equation 10, the magnetic pole position calculation error theta err even during low-speed high precision it can.

次いで、特許文献2における磁極位置及び速度の具体的な演算方法について説明する。
まず、拡張磁束のδ軸成分Ψexδを、数式3、数式9より、数式11によって演算する。
Next, a specific calculation method of the magnetic pole position and speed in Patent Document 2 will be described.
First, the δ-axis component Ψ exδ of the expanded magnetic flux is calculated by Expression 11 from Expression 3 and Expression 9.

Figure 0004984057
Figure 0004984057

数式10において、磁極位置演算誤差θerrが零近傍の値である場合、δ軸拡張磁束Ψexδは数式12となる。 In Formula 10, when the magnetic pole position calculation error θ err is a value near zero, the δ-axis expanded magnetic flux Ψ exδ is expressed by Formula 12.

Figure 0004984057
Figure 0004984057

拡張磁束振幅Ψexは、数式8より、d軸電流i及びq軸電流iの関数であるため、δ軸拡張磁束Ψexδを数式13によって線形化した第2のδ軸拡張磁束Ψexδ を導入する。 Since the expanded magnetic flux amplitude Ψ ex is a function of the d-axis current i d and the q-axis current i q according to Equation 8, the second δ-axis expanded magnetic flux ψ exδ obtained by linearizing the δ-axis expanded magnetic flux ψ exδ with Equation 13. ' Introduce.

Figure 0004984057
Figure 0004984057

速度演算値ωは、第2の拡張磁束Ψexδ を入力とする速度演算器としてのPI調節器を用いて、数式14により求められる。 The speed calculation value ω 1 is obtained by Expression 14 using a PI controller as a speed calculator having the second extended magnetic flux Ψ exδ as an input.

Figure 0004984057
Figure 0004984057

なお、磁極位置演算値θは、前述の数式6により、速度演算値ωを積分して求める。 The magnetic pole position calculation value θ 1 is obtained by integrating the speed calculation value ω 1 according to Equation 6 described above.

特許第3411878号公報(段落[0026]〜[0083]、図1等)Japanese Patent No. 3411878 (paragraphs [0026] to [0083], FIG. 1, etc.) 特開2006−67656号公報(段落[0023]〜[0044]、図1等)JP 2006-67656 A (paragraphs [0023] to [0044], FIG. 1 and the like) 田中康司,三木一郎,「拡張誘起電圧を用いた埋込磁石同期電動機の位置センサレス制御」,電気学会論文誌D,Vol.125,No.9,p.833-p.838,2005年Koji Tanaka and Ichiro Miki, “Position Sensorless Control of Embedded Magnet Synchronous Motor Using Extended Inductive Voltage”, IEEJ Transactions D, Vol.125, No.9, p.833-p.838, 2005 市川真士,陳 志謙,冨田 睦雄,道木 慎二,大熊 繁,「拡張誘起電圧モデルに基づく突極型永久磁石同期モータのセンサレス制御」,電気学会論文誌D,Vol.122,No.12,p.1088-p.1096,2002年Shinji Ichikawa, Shiken Chen, Ikuo Hamada, Shinji Michiki, Shigeru Okuma, “Sensorless Control of Salient-Pole Permanent Magnet Synchronous Motor Based on Extended Induced Voltage Model”, IEEJ Transactions D, Vol.122, No.12 , P.1088-p.1096, 2002

特許文献2に示したセンサレス制御方式は、磁束に着目した方式であることから、低速運転時における速度ω及び磁極位置θを高精度に演算できる長所があり、その点では、特許文献1や非特許文献1に係る従来技術の問題点を克服している。
しかし、dq軸とγδ軸との磁極位置演算誤差θerrが零近傍である場合の近似式(数式12)に基づいて速度ω及び磁極位置θを演算しているため、磁極位置演算誤差θerrが大きい場合には正確な演算を行うことができず、制御系が不安定になるという問題がある。
Since the sensorless control method shown in Patent Document 2 is a method that focuses on magnetic flux, there is an advantage that the speed ω 1 and the magnetic pole position θ 1 during low-speed operation can be calculated with high accuracy. And the problems of the prior art related to Non-Patent Document 1 are overcome.
However, since the speed ω 1 and the magnetic pole position θ 1 are calculated based on the approximate expression (Formula 12) when the magnetic pole position calculation error θ err between the dq axis and the γδ axis is near zero, the magnetic pole position calculation error When θ err is large, there is a problem that accurate calculation cannot be performed and the control system becomes unstable.

そこで、本発明の解決課題は、磁極位置演算誤差が大きい場合にも回転子の速度及び磁極位置を正確に演算して、安定した制御を可能にした永久磁石形同期電動機の制御装置を提供することにある。   Accordingly, a problem to be solved by the present invention is to provide a control device for a permanent magnet type synchronous motor that enables stable control by accurately calculating the rotor speed and the magnetic pole position even when the magnetic pole position calculation error is large. There is.

上記課題を解決するため、請求項1に係る永久磁石形同期電動機の制御装置は、磁極位置検出器を用いずに演算により求めた回転子の磁極位置に基づいて永久磁石形同期電動機の電流を制御することにより、前記永久磁石形同期電動機のトルク及び速度を制御する制御装置において、
前記電動機の電機子電流、端子電圧及び磁束をベクトルとしてとらえ、
前記電動機の端子電圧相当値、電機子電流に比例する電機子抵抗電圧降下演算値及び電機子反作用磁束演算値、前記電機子電流の時間微分値に比例する過渡電圧演算値、並びに、前記電動機の速度演算値を用いて拡張誘起電圧を演算する拡張誘起電圧演算手段と、
前記拡張誘起電圧及び前記速度演算値を用いて、拡張磁束を演算する拡張磁束演算手段と、
前記拡張磁束から前記拡張磁束の角度を演算する角度演算手段と、
前記拡張磁束の角度を増幅して前記速度演算値を求める速度演算手段と、
前記速度演算値を増幅して磁極位置演算値を求める磁極位置演算手段と、
を備えたものである。
本発明では、速度等の演算に拡張磁束を用いているため、特許文献1や非特許文献1に係る従来技術に対して電動機の低速運転時にも速度及び磁極位置を高精度に演算することができる。また、特許文献2に係る従来技術と比べて、磁極位置演算誤差が大きい場合でも正確に演算可能である。
In order to solve the above-mentioned problem, a control device for a permanent magnet type synchronous motor according to claim 1 is configured to generate a current of a permanent magnet type synchronous motor based on a magnetic pole position of a rotor obtained by calculation without using a magnetic pole position detector. In the control device for controlling the torque and speed of the permanent magnet type synchronous motor by controlling,
Taking the armature current, terminal voltage and magnetic flux of the motor as vectors,
The terminal voltage equivalent value of the motor, the armature resistance voltage drop calculation value and the armature reaction magnetic flux calculation value proportional to the armature current, the transient voltage calculation value proportional to the time differential value of the armature current, and the motor Extended induced voltage calculation means for calculating the extended induced voltage using the speed calculation value;
An expanded magnetic flux calculating means for calculating an expanded magnetic flux using the expanded induced voltage and the speed calculated value;
Angle calculating means for calculating the angle of the expanded magnetic flux from the expanded magnetic flux;
Speed calculating means for amplifying the angle of the expanded magnetic flux to obtain the speed calculation value;
Magnetic pole position calculation means for amplifying the speed calculation value to obtain a magnetic pole position calculation value;
It is equipped with.
In the present invention, since the extended magnetic flux is used for the calculation of the speed and the like, the speed and the magnetic pole position can be calculated with high accuracy even when the motor is operated at a low speed as compared with the prior arts disclosed in Patent Document 1 and Non-Patent Document 1. it can. Compared to the prior art according to Patent Document 2, even when the magnetic pole position calculation error is large, the calculation can be performed accurately.

請求項2に係る永久磁石形同期電動機の制御装置は、請求項1における拡張磁束演算手段の構成に特徴がある。
すなわち、請求項2に係る発明は、請求項1に記載した制御装置において、前記拡張磁束演算手段が、前記拡張誘起電圧を90度遅らせたベクトルを前記速度演算値により除算して前記拡張磁束を演算するものである。
The control device for a permanent magnet type synchronous motor according to claim 2 is characterized in the configuration of the expanded magnetic flux calculation means in claim 1.
That is, the invention according to claim 2 is the control device according to claim 1, wherein the extended magnetic flux calculating means divides a vector obtained by delaying the extended induced voltage by 90 degrees by the speed calculated value to obtain the extended magnetic flux. It is to calculate.

請求項3に係る永久磁石形同期電動機の制御装置は、請求項2記載の拡張磁束演算手段を改良したものであり、前記拡張磁束演算手段が、前記拡張誘起電圧を90度遅らせたベクトルと前記拡張磁束及び前記速度演算値を乗算してなるベクトルとの偏差を増幅して前記拡張磁束を演算するものである。
請求項2では、速度演算値による除算によって拡張磁束を演算しているが、請求項3に係る発明では、速度演算値による除算を行わずに拡張磁束を演算する。これにより、低速時における拡張磁束、ひいては電動機の速度及び磁極位置をより高精度に求めることができる。
A control apparatus for a permanent magnet synchronous motor according to claim 3 is an improvement of the extended magnetic flux calculation means according to claim 2, wherein the extended magnetic flux calculation means includes a vector obtained by delaying the expansion induced voltage by 90 degrees and the The expansion magnetic flux is calculated by amplifying a deviation from the vector formed by multiplying the expansion magnetic flux and the speed calculation value.
In claim 2, the expanded magnetic flux is calculated by dividing by the speed calculated value. However, in the invention according to claim 3, the expanded magnetic flux is calculated without performing division by the speed calculated value. As a result, the extended magnetic flux at low speed, and hence the speed and magnetic pole position of the motor can be obtained with higher accuracy.

請求項4に係る制御装置は、請求項1〜3の何れか1項に記載した制御装置において、
前記磁極位置演算手段により演算した磁極位置を用いて、前記電機子電流の検出値を回転座標系の二軸成分に変換する電流座標変換手段と、
前記検出値の二軸成分を前記電機子電流の指令値の二軸成分に一致させるような電圧指令値を生成する電流調節手段と、
前記電圧指令値から前記電力変換器の半導体スイッチング素子に対する駆動信号を生成する手段と、を備えたものである。
The control device according to claim 4 is the control device according to any one of claims 1 to 3,
Current coordinate conversion means for converting the detected value of the armature current into a biaxial component of a rotating coordinate system using the magnetic pole position calculated by the magnetic pole position calculation means;
Current adjusting means for generating a voltage command value so as to match the biaxial component of the detected value with the biaxial component of the command value of the armature current;
Means for generating a drive signal for the semiconductor switching element of the power converter from the voltage command value.

本発明に係る永久磁石同期電動機の制御装置によれば、永久磁石形同期電動機をセンサレス制御するための制御装置において、電動機の低速運転時における速度及び磁極位置を従来技術よりも高精度に演算することができ、低速運転時の安定性を改善することができる。   According to the control device for a permanent magnet synchronous motor according to the present invention, in the control device for sensorless control of the permanent magnet type synchronous motor, the speed and magnetic pole position at the time of low speed operation of the motor are calculated with higher accuracy than in the prior art. And can improve the stability during low-speed operation.

以下、図に沿って本発明の実施形態を説明する。まず、図1はこの実施形態に係る制御装置を主回路と共に示したブロック図であり、請求項1,4に係る発明に相当する。
図1に示す主回路において、50は三相交流電源、60は三相交流電圧を整流して直流電圧に変換する整流回路、70はインバータ等の電力変換器、80は永久磁石同期電動機である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a control device according to this embodiment together with a main circuit, and corresponds to the inventions according to claims 1 and 4.
In the main circuit shown in FIG. 1, 50 is a three-phase AC power source, 60 is a rectifier circuit that rectifies and converts a three-phase AC voltage into a DC voltage, 70 is a power converter such as an inverter, and 80 is a permanent magnet synchronous motor. .

以下、制御装置の構成及び動作を説明する。
まず、回転子の磁極位置演算値θと速度演算値ωとを用いて永久磁石形同期電動機80を速度制御する方法について説明する。
速度指令値ωと速度演算値ωとの偏差を減算器16により演算し、この偏差を速度調節器17により増幅してトルク指令値τを演算する。電流指令演算器18は、トルク指令値τから所望のトルクを出力するγ軸電流指令値iγ ,δ軸電流指令値iδ を演算する。
Hereinafter, the configuration and operation of the control device will be described.
First, a method for controlling the speed of the permanent magnet synchronous motor 80 using the rotor magnetic pole position calculation value θ 1 and the speed calculation value ω 1 will be described.
A deviation between the speed command value ω * and the speed calculation value ω 1 is calculated by the subtractor 16, and the deviation is amplified by the speed controller 17 to calculate the torque command value τ * . The current command calculator 18 calculates a γ-axis current command value i γ * and a δ-axis current command value i δ * that output a desired torque from the torque command value τ * .

一方、u相電流検出器11、w相電流検出器11によりそれぞれ検出した相電流検出値i,iを、磁極位置演算値θを用いて電流座標変換器14によりγ軸電流検出値iγ,δ軸電流検出値iδに座標変換する。
前記γ軸電流指令値iγ とγ軸電流検出値iγとの偏差を減算器19aにより求め、この偏差をγ軸電流調節器20aにより増幅してγ軸電圧指令値vγ を演算する。また、δ軸電流指令値iδ とδ軸電流検出値iδとの偏差を減算器19bにより求め、この偏差をδ軸電流調節器20bにより増幅してδ軸電圧指令値vδ を演算する。
上記電圧指令値vγ ,vδ は、電圧座標変換器15によって相電圧指令値v ,v ,v に変換される。
On the other hand, the phase current detection values i u and i w detected by the u-phase current detector 11 u and the w-phase current detector 11 w are converted into the γ-axis current by the current coordinate converter 14 using the magnetic pole position calculation value θ 1. Coordinates are converted to detected values i γ and δ-axis current detected values i δ .
A deviation between the γ-axis current command value i γ * and the detected γ-axis current value i γ is obtained by a subtractor 19a, and this deviation is amplified by a γ-axis current regulator 20a to calculate a γ-axis voltage command value v γ * . To do. Further, the deviation between the δ-axis current command value i δ * and the δ-axis current detection value i δ is obtained by the subtractor 19b, and this deviation is amplified by the δ-axis current regulator 20b to obtain the δ-axis voltage command value v δ * . Calculate.
The voltage command values v γ * and v δ * are converted into phase voltage command values v u * , v v * and v w * by the voltage coordinate converter 15.

PWM回路13は、上記相電圧指令値v ,v ,v と入力電圧検出回路12により検出した入力電圧検出値Edcとから、電力変換器70内部の半導体スイッチング素子をオン・オフ制御するためのゲート信号を生成する。電力変換器70は、上記ゲート信号に基づいて半導体スイッチング素子をオン・オフし、永久磁石形同期電動機80の端子電圧を相電圧指令値v ,v ,v に制御する。 The PWM circuit 13 turns on the semiconductor switching element in the power converter 70 from the phase voltage command values v u * , v v * , v w * and the input voltage detection value E dc detected by the input voltage detection circuit 12. Generate a gate signal for off control. The power converter 70 turns on and off the semiconductor switching element based on the gate signal, and controls the terminal voltage of the permanent magnet type synchronous motor 80 to the phase voltage command values v u * , v v * , and v w * .

次に、この実施形態において、回転子の速度ω及び磁極位置θを演算するための構成及び動作を説明する。
前記拡張誘起電圧演算器30は、数式3のγ軸電圧vγ,δ軸電圧vδをγ軸電圧指令値vγ ,δ軸電圧指令値vδ に置き換えた数式により、γ軸電圧指令値vγ ,δ軸電圧指令値vδ ,γ軸電流検出値iγ,δ軸電流検出値iδ,速度ω及び電動機定数を用いて、γ軸拡張誘起電圧Eexγ,δ軸拡張誘起電圧Eexδを演算する。
Next, in this embodiment, the configuration and operation for calculating the rotor speed ω 1 and the magnetic pole position θ 1 will be described.
The expansion induced voltage calculator 30 uses the γ-axis voltage v γ and the δ-axis voltage v δ in Equation 3 to replace the γ-axis voltage command value v γ * and the δ-axis voltage command value v δ *. Using the command value v γ * , the δ-axis voltage command value v δ * , the γ-axis current detection value i γ , the δ-axis current detection value i δ , the speed ω 1 and the motor constant, the γ-axis expansion induced voltage E exγ , δ The shaft expansion induced voltage E exδ is calculated.

拡張磁束演算器31は、γ軸拡張誘起電圧Eexγ,δ軸拡張誘起電圧Eexδ及び速度ωを用いて、γ軸拡張磁束Ψexγ,δ軸拡張磁束Ψexδを演算する。なお、拡張磁束演算器31の具体的な構成については後述する。
角度演算器32は、拡張磁束Ψexの角度δΨexを数式15により演算する。
Extended flux calculator 31, gamma shaft extension induction voltage E exγ, using δ-axis extended electromotive force E Exderuta and speed omega 1, gamma-axis expansion flux Ψ exγ, calculates the δ-axis expansion flux Ψ exδ. The specific configuration of the expanded magnetic flux calculator 31 will be described later.
Angle calculator 32, the angle [delta] Pusaiex extended flux [psi ex is calculated by Equation 15.

Figure 0004984057
Figure 0004984057

前述した数式10より、拡張磁束の角度δΨexと磁極位置演算誤差θerrとは、数式16の関係にある。 From Equation 10 described above, the expansion magnetic flux angle δ Ψex and the magnetic pole position calculation error θ err are in the relationship of Equation 16.

Figure 0004984057
Figure 0004984057

速度演算器33はPI調節器によって構成されており、数式17を用いて拡張磁束の角度δΨexを増幅することにより速度演算値ωを求める。 The speed calculator 33 is constituted by a PI controller, and a speed calculation value ω 1 is obtained by amplifying the expansion magnetic flux angle δ Ψex using Expression 17.

Figure 0004984057
Figure 0004984057

磁極位置演算器34は積分器によって構成されており、前述の数式6を用いて速度演算値ωを積分することにより磁極位置演算値θを求める。 The magnetic pole position calculator 34 is configured by an integrator, and the magnetic pole position calculation value θ 1 is obtained by integrating the speed calculation value ω 1 using the above-described Expression 6.

次に、前記拡張磁束演算器31の具体的な構成を、図2及び図3を参照して説明する。
まず、図2は、拡張磁束演算器31の第1実施例を示すブロック図であり、請求項2に係る発明に相当する。
数式9に基づき、拡張磁束Ψexは、拡張誘起電圧Eexを90度遅らせたベクトルを速度演算値ωにより除算して数式18のように演算する。
Next, a specific configuration of the expanded magnetic flux calculator 31 will be described with reference to FIGS.
FIG. 2 is a block diagram showing a first embodiment of the expanded magnetic flux calculator 31 and corresponds to the invention according to claim 2.
Based on Expression 9, the extended magnetic flux Ψ ex is calculated as Expression 18 by dividing a vector obtained by delaying the extended induced voltage E ex by 90 degrees by the speed calculation value ω 1 .

Figure 0004984057
Figure 0004984057

図2において、上記の数式18の演算は、ゲイン31a及び除算器31b,31cにより実現される。更に、除算器31b,31cの出力をそれぞれローパスフィルタ31d,31eに通すことでノイズ成分を除去し、最終的なγ軸拡張磁束Ψexγ,δ軸拡張磁束Ψexδを求める。これらのγ軸拡張磁束Ψexγ,δ軸拡張磁束Ψexδは、前述したように角度演算器32に入力される。 In FIG. 2, the calculation of Equation 18 is realized by a gain 31a and dividers 31b and 31c. Further, the noise components are removed by passing the outputs of the dividers 31b and 31c through the low-pass filters 31d and 31e, respectively, and the final γ-axis expanded magnetic flux ψ exγ and δ-axis expanded magnetic flux ψ exδ are obtained. These γ-axis expanded magnetic flux ψ exγ and δ-axis expanded magnetic flux ψ exδ are input to the angle calculator 32 as described above.

前述した特許文献2に係る従来技術では、磁極位置演算誤差θerrが零近傍であると近似し、数式12に示した如くδ軸拡張磁束Ψexδが磁極位置演算誤差θerrにほぼ比例することを利用して速度ω及び磁極位置θを演算している。
これに対し、本実施例では、特許文献2のような近似を行っていないため、磁極位置演算誤差θerrの大きさに関わらず、γ軸拡張磁束Ψexγ及びδ軸拡張磁束Ψexδから求めた拡張磁束の角度δΨexに基づいて速度ω及び磁極位置θを正確に検出することができる。
In the prior art according to Patent Document 2 described above, the magnetic pole position calculation error θ err is approximated to be close to zero, and the δ-axis expanded magnetic flux Ψ exδ is substantially proportional to the magnetic pole position calculation error θ err as shown in Equation 12. Is used to calculate the speed ω 1 and the magnetic pole position θ 1 .
On the other hand, in the present embodiment, since the approximation as in Patent Document 2 is not performed, the γ-axis expanded magnetic flux Ψ exγ and the δ-axis expanded magnetic flux Ψ exδ are obtained regardless of the magnitude of the magnetic pole position calculation error θ err. The speed ω 1 and the magnetic pole position θ 1 can be accurately detected based on the expanded magnetic flux angle δ Ψex .

次に、拡張磁束演算器31の第2実施例を図3に基づいて説明する。
この第2実施例を第1実施例と比較すると、拡張磁束の演算を、除算器を用いずに実現している点に特徴がある。なお、この実施例は、請求項3に係る発明に相当するものである。
Next, a second embodiment of the expanded magnetic flux calculator 31 will be described with reference to FIG.
Compared with the first embodiment, the second embodiment is characterized in that the calculation of the expanded magnetic flux is realized without using a divider. This embodiment corresponds to the invention according to claim 3.

すなわち、図3において、拡張誘起電圧ベクトルEexを90度遅らせたベクトルの各成分であるEexδ,−Eexγを減算器31f,31gにそれぞれ入力すると共に、γ軸拡張磁束Ψexγと速度演算値ωとの積、δ軸拡張磁束Ψexδと速度演算値ωとの積を乗算器31j,31kによりそれぞれ演算する。そして、減算器31fによりEexδと乗算器31jの出力との偏差を求めてγ軸拡張磁束演算部31hに入力すると共に、減算器31gにより−Eexγと乗算器31kの出力との偏差を求めてδ軸拡張磁束演算部31iに入力する。 That is, in FIG. 3, E exδ and −E exγ that are components of a vector obtained by delaying the extended induced voltage vector E ex by 90 degrees are input to the subtractors 31f and 31g, respectively, and the γ-axis expanded magnetic flux Ψ exγ and the speed calculation are performed. The product of the value ω 1 and the product of the δ-axis expanded magnetic flux Ψ exδ and the speed calculation value ω 1 are respectively calculated by the multipliers 31j and 31k. Then, the subtractor 31f obtains the deviation between E exδ and the output of the multiplier 31j and inputs it to the γ-axis expanded magnetic flux calculator 31h, and the subtractor 31g obtains the deviation between −E exγ and the output of the multiplier 31k. And input to the δ-axis expanded magnetic flux calculator 31i.

γ軸拡張磁束演算部31h、δ軸拡張磁束演算部31iでは、それぞれの入力偏差を増幅することでγ軸拡張磁束Ψexγ,δ軸拡張磁束Ψexδを演算する。ここで、γ軸拡張磁束演算部31h、δ軸拡張磁束演算部31iは、積分調節器により構成される。
図3のブロック図による拡張磁束演算器を数式により表現すると、数式19となる。
The γ-axis expanded magnetic flux calculation unit 31h and the δ-axis expanded magnetic flux calculation unit 31i calculate the γ-axis expanded magnetic flux ψ exγ and the δ-axis expanded magnetic flux ψ exδ by amplifying the respective input deviations. Here, the γ-axis expanded magnetic flux calculation unit 31h and the δ-axis expanded magnetic flux calculation unit 31i are configured by an integral controller.
When the expanded magnetic flux calculator according to the block diagram of FIG.

Figure 0004984057
Figure 0004984057

この実施例によれば、第1実施例のように拡張誘起電圧Eexを速度演算値ωにより直接除算して拡張磁束を演算する方法によらないため、γ軸拡張磁束演算部31h及びδ軸拡張磁束演算部31iによりγ軸拡張磁束Ψexγ,δ軸拡張磁束Ψexδを真値に収束させて低速運転時にも拡張磁束を高精度に求めることができ、この拡張磁束の角度を用いて回転子の速度及び磁極位置を正確に演算することができる。 According to this embodiment, unlike the first embodiment, since the expansion induced voltage E ex is not directly calculated by the speed calculation value ω 1 and the expansion magnetic flux is calculated, the γ-axis expansion magnetic flux calculation units 31h and δ are not used. The γ-axis expanded magnetic flux Ψ exγ and the δ-axis expanded magnetic flux Ψ exδ can be converged to true values by the shaft expanded magnetic flux calculation unit 31i, and the expanded magnetic flux can be obtained with high accuracy even during low-speed operation. The rotor speed and magnetic pole position can be accurately calculated.

本発明の実施形態を示すブロック図である。It is a block diagram which shows embodiment of this invention. 拡張磁束演算器の第1実施例を示すブロック図である。It is a block diagram which shows 1st Example of an expansion magnetic flux calculator. 拡張磁束演算器の第2実施例を示すブロック図である。It is a block diagram which shows 2nd Example of an expansion magnetic flux calculator. dq軸とγδ軸との関係を示す図である。It is a figure which shows the relationship between a dq axis | shaft and a (gamma) delta axis | shaft. 数式1、数式2による永久磁石形同期電動機の電圧方程式を示すベクトル図である。It is a vector diagram which shows the voltage equation of the permanent magnet type synchronous motor by Numerical formula 1 and Numerical formula 2. 拡張誘起電圧と拡張磁束との関係を示すベクトル図である。It is a vector diagram which shows the relationship between an expansion induced voltage and an expansion magnetic flux.

符号の説明Explanation of symbols

50:三相交流電源
60:整流回路
70:電力変換器
80:永久磁石形同期電動機
11u:u相電流検出回路
11w:w相電流検出回路
12:入力電圧検出回路
13:PWM回路
14:電流座標変換器
15:電圧座標変換器
16,19a,19b:減算器
17:速度調節器
18:電流指令演算器
20a:γ軸電流調節器
20b:δ軸電流調節器
30:拡張誘起電圧演算器
31a:ゲイン
31b,31c:除算器
31d,31e:ローパスフィルタ
31f,31g:減算器
31h:γ軸拡張磁束演算部
31i:δ軸拡張磁束演算部
31j,31k:乗算器
31:拡張磁束演算器
32:角度演算器
33:速度演算器
34:磁極位置演算器
50: Three-phase AC power supply 60: Rectifier circuit 70: Power converter 80: Permanent magnet synchronous motor 11u: u-phase current detection circuit 11w: w-phase current detection circuit 12: input voltage detection circuit 13: PWM circuit 14: current coordinates Converter 15: Voltage coordinate converters 16, 19a, 19b: Subtractor 17: Speed controller 18: Current command calculator 20a: γ-axis current controller 20b: δ-axis current controller 30: Extended induced voltage calculator 31a: Gain 31b, 31c: Divider 31d, 31e: Low-pass filter 31f, 31g: Subtractor 31h: γ-axis expanded magnetic flux calculator 31i: δ-axis expanded flux calculator 31j, 31k: Multiplier 31: Expanded flux calculator 32: Angle Calculator 33: Speed calculator 34: Magnetic pole position calculator

Claims (4)

磁極位置検出器を用いずに演算により求めた回転子の磁極位置に基づいて、電力変換器により永久磁石形同期電動機の電機子電流を制御し、前記電動機のトルク及び速度を制御する制御装置において、
前記電動機の電機子電流、端子電圧及び磁束をベクトルとしてとらえ、
前記電動機の端子電圧相当値、電機子電流に比例する電機子抵抗電圧降下演算値及び電機子反作用磁束演算値、前記電機子電流の時間微分値に比例する過渡電圧演算値、並びに、前記電動機の速度演算値を用いて拡張誘起電圧を演算する拡張誘起電圧演算手段と、
前記拡張誘起電圧及び前記速度演算値を用いて、拡張磁束を演算する拡張磁束演算手段と、
前記拡張磁束から前記拡張磁束の角度を演算する角度演算手段と、
前記拡張磁束の角度を増幅して前記速度演算値を求める速度演算手段と、
前記速度演算値を増幅して磁極位置演算値を求める磁極位置演算手段と、
を備えたことを特徴とする永久磁石形同期電動機の制御装置。
In a control device for controlling an armature current of a permanent magnet type synchronous motor by a power converter based on a magnetic pole position of a rotor obtained by calculation without using a magnetic pole position detector, and controlling a torque and a speed of the motor ,
Taking the armature current, terminal voltage and magnetic flux of the motor as vectors,
The terminal voltage equivalent value of the motor, the armature resistance voltage drop calculation value and the armature reaction magnetic flux calculation value proportional to the armature current, the transient voltage calculation value proportional to the time differential value of the armature current, and the motor Extended induced voltage calculation means for calculating the extended induced voltage using the speed calculation value;
An expanded magnetic flux calculating means for calculating an expanded magnetic flux using the expanded induced voltage and the speed calculated value;
Angle calculating means for calculating the angle of the expanded magnetic flux from the expanded magnetic flux;
Speed calculating means for amplifying the angle of the expanded magnetic flux to obtain the speed calculation value;
Magnetic pole position calculation means for amplifying the speed calculation value to obtain a magnetic pole position calculation value;
A control device for a permanent magnet type synchronous motor.
請求項1に記載した永久磁石形同期電動機の制御装置において、
前記拡張磁束演算手段は、
前記拡張誘起電圧を90度遅らせたベクトルを前記速度演算値により除算して前記拡張磁束を演算することを特徴とする永久磁石形同期電動機の制御装置。
In the control device for the permanent magnet type synchronous motor according to claim 1,
The expanded magnetic flux calculation means is
A control apparatus for a permanent magnet type synchronous motor, wherein the expansion magnetic flux is calculated by dividing a vector obtained by delaying the expansion induced voltage by 90 degrees by the speed calculation value.
請求項1に記載した永久磁石形同期電動機の制御装置において、
前記拡張磁束演算手段は、
前記拡張誘起電圧を90度遅らせたベクトルと前記拡張磁束及び前記速度演算値を乗算してなるベクトルとの偏差を増幅して前記拡張磁束を演算することを特徴とする永久磁石形同期電動機の制御装置。
In the control device for the permanent magnet type synchronous motor according to claim 1,
The expanded magnetic flux calculation means is
Control of a permanent magnet synchronous motor, wherein the expansion magnetic flux is calculated by amplifying a deviation between a vector obtained by delaying the expansion induced voltage by 90 degrees and a vector obtained by multiplying the expansion magnetic flux and the speed calculation value. apparatus.
請求項1〜3の何れか1項に記載した永久磁石形同期電動機の制御装置において、
前記磁極位置演算手段により演算した磁極位置を用いて、前記電機子電流の検出値を回転座標系の二軸成分に変換する電流座標変換手段と、
前記検出値の二軸成分を前記電機子電流の指令値の二軸成分に一致させるような電圧指令値を生成する電流調節手段と、
前記電圧指令値から前記電力変換器の半導体スイッチング素子に対する駆動信号を生成する手段と、
を備えたことを特徴とする永久磁石形同期電動機の制御装置。
In the control apparatus for the permanent magnet type synchronous motor according to any one of claims 1 to 3,
Current coordinate conversion means for converting the detected value of the armature current into a biaxial component of a rotating coordinate system using the magnetic pole position calculated by the magnetic pole position calculation means;
Current adjusting means for generating a voltage command value so as to match the biaxial component of the detected value with the biaxial component of the command value of the armature current;
Means for generating a drive signal for the semiconductor switching element of the power converter from the voltage command value;
A control device for a permanent magnet type synchronous motor.
JP2007117211A 2007-04-26 2007-04-26 Control device for permanent magnet type synchronous motor Active JP4984057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007117211A JP4984057B2 (en) 2007-04-26 2007-04-26 Control device for permanent magnet type synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007117211A JP4984057B2 (en) 2007-04-26 2007-04-26 Control device for permanent magnet type synchronous motor

Publications (2)

Publication Number Publication Date
JP2008278594A JP2008278594A (en) 2008-11-13
JP4984057B2 true JP4984057B2 (en) 2012-07-25

Family

ID=40055906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007117211A Active JP4984057B2 (en) 2007-04-26 2007-04-26 Control device for permanent magnet type synchronous motor

Country Status (1)

Country Link
JP (1) JP4984057B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101628145B1 (en) * 2014-06-16 2016-06-09 현대자동차 주식회사 Method and system for controlling motor without sensor
JP6675579B2 (en) * 2015-04-02 2020-04-01 富士電機株式会社 Control device for permanent magnet synchronous motor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3411878B2 (en) * 2000-03-06 2003-06-03 株式会社日立製作所 Method for estimating rotor position of synchronous motor, control method without position sensor, and control device
JP3786018B2 (en) * 2002-01-23 2006-06-14 富士電機機器制御株式会社 Control device for synchronous machine
JP4032845B2 (en) * 2002-06-26 2008-01-16 株式会社明電舎 Control device for synchronous motor
JP4583016B2 (en) * 2003-10-02 2010-11-17 東洋電機製造株式会社 Control device for permanent magnet synchronous motor
JP4576857B2 (en) * 2004-03-12 2010-11-10 株式会社富士通ゼネラル Rotor position estimation method, motor control method, and program
JP4342450B2 (en) * 2005-01-06 2009-10-14 三洋電機株式会社 Motor control device and motor drive system having the same

Also Published As

Publication number Publication date
JP2008278594A (en) 2008-11-13

Similar Documents

Publication Publication Date Title
JP5445892B2 (en) Control device for permanent magnet type synchronous motor
JP5223109B2 (en) Control device for permanent magnet type synchronous motor
JP2009136085A (en) Controller of ac motor
JP2009124811A (en) Control device of permanent magnet type synchronous motor
JP5428202B2 (en) Control device for permanent magnet type synchronous motor
JP5321792B2 (en) Control device for permanent magnet type synchronous motor
JP5109790B2 (en) Control device for permanent magnet type synchronous motor
JP5396741B2 (en) Control device for permanent magnet type synchronous motor
JP2016025714A (en) Control device for permanent magnet synchronous motor
JP6473992B2 (en) Motor control device and generator control device
JP6128330B2 (en) Control device for permanent magnet type synchronous motor
JP2009118557A (en) Controller for permanent magnet type synchronous motor
JP5499594B2 (en) Control device for permanent magnet type synchronous motor
JP4984057B2 (en) Control device for permanent magnet type synchronous motor
JP2006158046A (en) Sensorless control method and apparatus of ac electric motor
JP6102516B2 (en) Control method and control device for permanent magnet type synchronous motor
JP5332305B2 (en) Control device for permanent magnet type synchronous motor
JP6675579B2 (en) Control device for permanent magnet synchronous motor
JP7154987B2 (en) Control device for permanent magnet synchronous motor, microcomputer, motor system, and method of operating permanent magnet synchronous motor
JP6848680B2 (en) Synchronous motor control device
JP5499595B2 (en) Control device for permanent magnet type synchronous motor
JP6497584B2 (en) Control device for permanent magnet type synchronous motor
JP6573213B2 (en) Control device for permanent magnet type synchronous motor
JP6565484B2 (en) Power converter
JP5040605B2 (en) Control device for permanent magnet type synchronous motor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080919

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080919

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080919

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120328

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120410

R150 Certificate of patent or registration of utility model

Ref document number: 4984057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250