JP4974834B2 - Brazing material - Google Patents

Brazing material Download PDF

Info

Publication number
JP4974834B2
JP4974834B2 JP2007261376A JP2007261376A JP4974834B2 JP 4974834 B2 JP4974834 B2 JP 4974834B2 JP 2007261376 A JP2007261376 A JP 2007261376A JP 2007261376 A JP2007261376 A JP 2007261376A JP 4974834 B2 JP4974834 B2 JP 4974834B2
Authority
JP
Japan
Prior art keywords
mass
brazing material
less
brazing
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007261376A
Other languages
Japanese (ja)
Other versions
JP2009090304A (en
Inventor
忠男 恩沢
忠男 松
孝純 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
TOKYO BRAZE CO Ltd
Original Assignee
Daido Steel Co Ltd
TOKYO BRAZE CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, TOKYO BRAZE CO Ltd filed Critical Daido Steel Co Ltd
Priority to JP2007261376A priority Critical patent/JP4974834B2/en
Publication of JP2009090304A publication Critical patent/JP2009090304A/en
Application granted granted Critical
Publication of JP4974834B2 publication Critical patent/JP4974834B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)

Description

本発明は、ろう付け材料に関する。   The present invention relates to a brazing material.

特公平07−17975号公報Japanese Patent Publication No. 07-17975 特開昭59−220299号公報JP 59-220299 A 特許第3092114公報Japanese Patent No. 3092114

セラミックス同士やセラミックスと金属との接合を行なう際に、いわゆる活性金属法が採用されている。活性金属法は、TiやZrの活性金属粉末とCuやNiなどの比較的低融点の残部組成金属粉末とを混合して接合用ペーストとし、これを被接合部材の接合面に塗布して加熱し接合する方法である。しかし、この方法は、加熱前の接合用ペーストが活性金属粉末と残部組成金属粉末との単なる混合体であり、接合時の合金化が十分に進みにくく、強度的に不十分となりやすい問題がある。   A so-called active metal method is employed when joining ceramics or ceramics to a metal. In the active metal method, an active metal powder such as Ti or Zr and a residual metal powder having a relatively low melting point such as Cu or Ni are mixed to form a bonding paste, which is applied to the bonding surface of the member to be bonded and heated. And joining. However, this method has a problem that the bonding paste before heating is simply a mixture of the active metal powder and the remaining composition metal powder, and the alloying at the time of bonding is not sufficiently advanced, and the strength tends to be insufficient. .

また、TiやTi合金の接合にはTi−Cu−Niの積層箔のろう材が使用されている。このろう材は、接合強度が高く、また耐食性にも優れているが、融点が930℃程度と高く、かつ単金属の箔を積層したタイプのろう材であるため、ろう材の加工性が極めて悪い欠点がある。また、TiやTi合金を被接合部材として(以下、Ti系被接合部材という)、その接合に使用する場合、Tiのβ変態点が883℃であることから、上記ろう材では接合温度が該β変態点を超え、Ti系被接合部材の組織が変態により粗大化しやすく強度低下を招く問題がある。   In addition, a brazing material of a laminated foil of Ti—Cu—Ni is used for joining Ti and Ti alloys. This brazing material has high bonding strength and excellent corrosion resistance, but has a melting point as high as about 930 ° C. and is a brazing material in which single metal foils are laminated. There are bad drawbacks. Further, when Ti or a Ti alloy is used as a member to be joined (hereinafter referred to as a Ti-based member to be joined), and the β transformation point of Ti is 883 ° C., the brazing material has a joining temperature of There is a problem that the β transformation point is exceeded, and the structure of the Ti-based member is likely to be coarsened by transformation, leading to a decrease in strength.

そこで、Tiを含有するろう材の加工性を改善するために、配合した合金原料を溶湯から急冷し、非晶質薄帯としたろう材が、例えば特許文献1,2に開示されている。また、特許文献3には、TiとZrとからなる主成分金属に、副成分金属としてCu及びNiの少なくともいずれかを含有させたろう材が開示されている。Niの添加により、ろう材の耐食性と強度とが双方とも向上する利点がある。   In order to improve the workability of the brazing material containing Ti, for example, Patent Documents 1 and 2 disclose brazing materials in which a blended alloy raw material is quenched from a molten metal to form an amorphous ribbon. Patent Document 3 discloses a brazing material in which a main component metal made of Ti and Zr contains at least one of Cu and Ni as a subcomponent metal. The addition of Ni has the advantage that both the corrosion resistance and strength of the brazing material are improved.

しかしながら、近年、金属成分としてのNiは生体への影響懸念から次第に敬遠されるようになってきており、Niを含有せずとも耐食性と強度とが双方とも優れた高性能のろう付け材料が望まれている。特に、Ti系被接合部材がめがねフレームなど人体に直接接触した状態で使用されるものについては、Niフリーな高強度及び高耐食性のろう付け材料の開発が切望されている。   However, in recent years, Ni as a metal component has gradually been shunned due to concerns about impact on the living body, and a high performance brazing material excellent in both corrosion resistance and strength is desired without containing Ni. It is rare. In particular, for materials used in a state where the Ti-based member is in direct contact with the human body, such as a spectacle frame, the development of a brazing material having high strength and high corrosion resistance that is Ni-free is eagerly desired.

本発明の課題は、Ti及びZrを含有したろう付け材料において、Niを含有せずとも強度と耐食性との双方に優れ、生体適合性の良好なろう付け材料を提供することにある。   An object of the present invention is to provide a brazing material containing Ti and Zr, which is excellent in both strength and corrosion resistance and has good biocompatibility without containing Ni.

課題を解決するための手段及び作用・効果Means and actions / effects for solving the problems

上記の課題を解決するために、本発明のろう付け材料は、
Cu:10質量%以上30質量%以下、
Co:5質量%以上20質量%以下、をそれぞれ含有し、
残部が、30質量%以上のTi、20質量%以上のZr及び不可避不純物からなり、Ti+とZrとの合計を60質量%以上80質量%以下となしたことを特徴とする。
In order to solve the above problems, the brazing material of the present invention comprises:
Cu: 10% by mass or more and 30% by mass or less,
Co: 5% by mass or more and 20% by mass or less, respectively,
The balance is 30% by mass or more of Ti, 20% by mass or more of Zr and inevitable impurities, and the total of Ti + and Zr is 60% by mass or more and 80% by mass or less.

本発明のろう付け材料は、上記組成を採用することにより、比較的低融点でセラミックスや、特にTi系被接合部材との濡れ性に優れ、かつ高強度であり、また、耐食性(特に塩化物中での耐食性)に優れる。そして、Niが不可避不純物レベルに抑えられ、実質的に含有されないので、歯科用材料やインプラント材など、生体用材料としての適合性も良好である。生体用以外にも、例えば海水との接触環境下で使用される部材(例えば熱交換器等)の接合にも好適に採用できる。Ni含有量は、100ppm未満であることが望ましい。   By adopting the above composition, the brazing material of the present invention has a relatively low melting point, excellent wettability with ceramics, particularly Ti-based bonded members, and high strength, and also has corrosion resistance (especially chloride). Excellent corrosion resistance. And since Ni is suppressed to an inevitable impurity level and is not substantially contained, compatibility as a biomaterial such as a dental material or an implant material is also good. In addition to the living body, it can be suitably used for joining members (for example, heat exchangers) used in a contact environment with seawater, for example. The Ni content is desirably less than 100 ppm.

特に、Ti系被接合部材に適用する場合、すなわちTi又はTi合金の接合に使用する場合は、ろう付け材料の融点が883℃(すなわち、Tiのβ変態点)未満にすることが、ろう付け処理時にTi系被接合部材の組織がβ変態により粗大化することを防止する観点において望ましい。なお、ろう付け材料の融点は、材料の示差熱分析を行なったとき、その分析曲線上に現れる吸熱ピーク点を示す温度として定義する。   In particular, when applied to a Ti-based member to be joined, that is, when used for joining of Ti or Ti alloy, the brazing material should have a melting point lower than 883 ° C. (that is, the β transformation point of Ti). This is desirable from the viewpoint of preventing the structure of the Ti-based member to be coarsened due to β transformation during processing. The melting point of the brazing material is defined as a temperature indicating an endothermic peak point appearing on the analysis curve when the differential thermal analysis of the material is performed.

以下、本発明のろう付け材料の組成限定理由について説明する。
(1)Cu:10質量%以上30質量%以下
Cuはろう付け材料の濡れ性を改善し、また、Ti,Zrとの共晶形成によりろう付け材料の低融点化に寄与する。ただし、Cu含有量が30質量%を超えると耐食性が損なわれることにつながる。他方、Cu含有量が10質量%未満では、ろう付け材料の低融点化(特に、Tiのβ変態点である883℃以下にすること)とが困難になり、ろう付け強度の低下を招きやすくなる。Cu含有量は、より望ましくは10質量%以上20質量%以下とするのがよい。
Hereinafter, the reasons for limiting the composition of the brazing material of the present invention will be described.
(1) Cu: 10% by mass or more and 30% by mass or less Cu improves the wettability of the brazing material and contributes to lowering the melting point of the brazing material by forming a eutectic with Ti and Zr. However, if the Cu content exceeds 30% by mass, the corrosion resistance is impaired. On the other hand, if the Cu content is less than 10% by mass, it becomes difficult to lower the melting point of the brazing material (particularly, to be 883 ° C. or less, which is the β transformation point of Ti), and the brazing strength is likely to be lowered. Become. The Cu content is more preferably 10% by mass or more and 20% by mass or less.

(2)Co:5質量%以上20質量%以下
Coはろう付け材料の耐食性を向上させ、また、Cuと同様にろう付け材料の低融点化に寄与する。ただし、Co含有量が5質量%未満では耐食性改善効果が顕著でなくなる。また、Co含有量が20質量%を超えると濡れ性が悪化し、接合後の強度低下を招く。Co含有量は、より望ましくは10質量%以上20質量%以下とするのがよい。
(2) Co: 5% by mass or more and 20% by mass or less Co improves the corrosion resistance of the brazing material and contributes to lowering the melting point of the brazing material in the same manner as Cu. However, if the Co content is less than 5% by mass, the effect of improving corrosion resistance is not significant. On the other hand, when the Co content exceeds 20% by mass, the wettability deteriorates and the strength after bonding is reduced. More preferably, the Co content is 10% by mass or more and 20% by mass or less.

(3)Ti,Zr:不可避不純物を除く残部
ただし、Ti:30質量%以上、Zr:20質量%以上、
TiとZrの合計が60質量%以上80質量%以下、
TiとZrは、活性金属として本発明のろう付け材料の主成分をなすものである。TiとZrの合計が60質量%未満になると、残部組成をなすCu及びCoを上記組成範囲を充足するように選択したとき、ろう付け材料の融点が高くなりすぎ、ろう付け強度の低下を招くことにつながる。また、TiとZrの合計が80質量%を超えると、低融点化に寄与するCu及びCoの含有代が圧迫され、ろう付け材料の融点の上昇を招きやすくなるほか、濡れ性悪化によるろう付け強度低下にもつながる。また、Ti−Zr二元系は、30原子%Zr付近に共融点が存在し、Ti単体金属と比較して約100℃、Zr単体金属と比較して約240℃、融点が下がることが知られており、TiとZrとを適当な比率で共配合してろう付け材料に適用することにより、ろう付け材料の低融点化に寄与する。しかし、TiとZrの合計が60質量%以上に確保されることから、Tiが30質量%未満になるか、Zrが20質量%未満になるとTi側ないしZr側に組成が偏り、ろう付け材料の融点が高くなりすぎることにつながる。
(3) Ti, Zr: remainder excluding inevitable impurities However, Ti: 30% by mass or more, Zr: 20% by mass or more,
The total of Ti and Zr is 60% by mass or more and 80% by mass or less,
Ti and Zr form the main components of the brazing material of the present invention as active metals. When the total of Ti and Zr is less than 60% by mass, the melting point of the brazing material becomes too high when Cu and Co constituting the remaining composition are selected so as to satisfy the above composition range, resulting in a decrease in brazing strength. It leads to things. Moreover, if the total of Ti and Zr exceeds 80% by mass, the content of Cu and Co, which contributes to lowering the melting point, is pressed, and the melting point of the brazing material is likely to increase, and brazing due to deterioration of wettability. It also leads to a decrease in strength. In addition, the Ti—Zr binary system has a eutectic point near 30 atomic% Zr, and it is known that the melting point is lowered by about 100 ° C. compared to a single Ti metal and about 240 ° C. compared to a Zr single metal. Therefore, Ti and Zr are co-blended in an appropriate ratio and applied to the brazing material, which contributes to lowering the melting point of the brazing material. However, since the total of Ti and Zr is secured to 60% by mass or more, when Ti is less than 30% by mass or Zr is less than 20% by mass, the composition is biased to the Ti side or Zr side, and the brazing material Leads to the melting point of being too high.

本発明によるろう付け材料は、材料形態として粉末及び急冷箔帯のいずれも採用でき、被接合部材の形態に適宜選択することができる。急冷箔帯は結晶質箔と異なり柔軟性に富み、加工も容易である。いずれも、単体金属の粉末や箔の複合体ではなく、溶融状態を一旦経由して合金化した状態となっている必要がある。急冷箔帯の場合は、被接合部材に挟み込んで加熱するだけでろう付けできる。このような急冷薄帯は、例えば、母合金を石英などのるつぼで溶解し、スリットあるいは微細孔から高速回転しているCu等の冷却ロール上に噴射することにより、非晶質薄帯として製造できる。このときの冷却速度は、10K/秒以上10K/秒以下に設定するのがよい。また、急冷箔帯の厚さは、例えば10μm以上50μm以下に設定するのがよい。急冷箔帯の厚さが10μm未満では連続した均質な薄帯の製造が困難となり、箔が断続化したり孔が多数形成された箔となる不都合があり、30μmを超えると冷却速度が不十分となり、非晶質化が進まず脆弱な箔となる不都合がある。 The brazing material according to the present invention can employ either a powder or a quenched foil strip as a material form, and can be appropriately selected as a form of a member to be joined. Unlike the crystalline foil, the quenched foil strip is rich in flexibility and easy to process. In any case, it is not a complex of a single metal powder or foil, but must be in an alloyed state once through a molten state. In the case of a quenched foil strip, brazing can be achieved by simply sandwiching and heating between the members to be joined. Such a quenched ribbon is manufactured as an amorphous ribbon by, for example, melting a mother alloy with a crucible such as quartz and spraying it onto a cooling roll such as Cu rotating at high speed from a slit or a fine hole. it can. The cooling rate at this time is preferably set to 10 5 K / second or more and 10 6 K / second or less. Further, the thickness of the quenched foil strip is preferably set to, for example, 10 μm or more and 50 μm or less. If the thickness of the quenching foil strip is less than 10 μm, it is difficult to produce a continuous and homogeneous thin strip, and there is a disadvantage that the foil is intermittently formed or a foil having a large number of holes. If it exceeds 30 μm, the cooling rate is insufficient. However, there is a disadvantage that the amorphization does not proceed and a fragile foil is formed.

一方、粉末の場合は、該粉末を有機溶剤やバインダーと混練してペースト状とし、被接合部材の適用面に塗布して使用することができる。この場合、スクリーン印刷法等を採用すれば、適用面が微小な場合、あるいは多数の個所を一度に接合する場合のいずれにおいても好適であり、ディスペンサーを用いて適用面にろう付け材料を自動供給することも可能である。粉末の粒径は、標準ふるい通過径にて250μm以下となっているのが塗布均一性を確保する観点にて望ましく、150μm以下であればより好ましい。特に、スクリーン印刷に適用する場合は、上記粒径は45μm以下となっていることが望ましい。他方、金属粉末の化学安定性や取り扱い性を考慮すれば、該粒径は、平均粒径にて25μm以上であることが望ましい。なお、このようなろう付け材料の粉末は、例えば、アトマイズ法や混合法(例えば、メカニカルアロイング法)などにより製造できる。   On the other hand, in the case of powder, the powder can be kneaded with an organic solvent or binder to form a paste, which can be applied to the application surface of the member to be joined. In this case, adopting a screen printing method, etc., is suitable for applications where the application surface is very small, or when joining a large number of locations at once. Brazing material is automatically supplied to the application surface using a dispenser. It is also possible to do. The particle diameter of the powder is preferably 250 μm or less at the standard sieve passage diameter from the viewpoint of ensuring coating uniformity, and more preferably 150 μm or less. In particular, when applied to screen printing, the particle size is desirably 45 μm or less. On the other hand, considering the chemical stability and handleability of the metal powder, the particle size is desirably 25 μm or more in terms of average particle size. Such a powder of brazing material can be produced by, for example, an atomizing method or a mixing method (for example, a mechanical alloying method).

本発明によるろう付け材料によりろう付け可能な被接合部材の材質は、該ろう付け材料より高融点の金属及びセラミックスのいずれも採用できる。金属の場合は、Ti、Zr、W、Mo(あるいはそれらを主成分とする合金)や、ステンレス鋼、工具鋼、インバー等のFe系合金を例示できる。また、セラミックスの場合は、酸化アルミニウムや酸化ジルコニウムあなどの酸化物系セラミックス、炭化珪素などの炭化物系セラミックス、窒化珪素、窒化チタンなどの窒化物系セラミックスなどを例示できる。ただし、いずれも上記のものに限定されない。   As the material of the member to be joined that can be brazed with the brazing material according to the present invention, any of metals and ceramics having a melting point higher than that of the brazing material can be adopted. In the case of metals, examples thereof include Ti, Zr, W, Mo (or alloys containing them as main components), and Fe-based alloys such as stainless steel, tool steel, and invar. In the case of ceramics, oxide ceramics such as aluminum oxide and zirconium oxide, carbide ceramics such as silicon carbide, and nitride ceramics such as silicon nitride and titanium nitride can be exemplified. However, none is limited to the above.

以下、本発明の効果を確認するために行なった実験結果について説明する。
(実施例1)
表1のNo.1〜14(No1〜6が実施例、他は比較例である)の各種組成となるように原料を配合し、ボタン型アーク溶解炉で溶解して合金化した。それら合金を石英ノズルに入れ、Ar減圧雰囲気下高周波で溶解後、周速約30m/秒で回転するCu製ロール上に噴射して急冷箔帯を得た。箔帯の厚みは20〜30μmであり、幅は20mmである。また、No1〜6の実施例箔帯は全て柔軟性があり、X線回折によりアモルファスであることを確認している。他方、比較例のNo.7〜No.14については、No.8の組成においては箔帯化ができなかったが、他は箔帯が製造できた。
Hereinafter, experimental results performed to confirm the effects of the present invention will be described.
Example 1
No. in Table 1 The raw materials were blended so as to have various compositions of 1 to 14 (Nos. 1 to 6 are Examples and others are comparative examples), and melted and alloyed in a button type arc melting furnace. These alloys were put in a quartz nozzle, melted at a high frequency under an Ar reduced pressure atmosphere, and then sprayed onto a Cu roll rotating at a peripheral speed of about 30 m / sec to obtain a quenched foil strip. The thickness of the foil strip is 20-30 μm and the width is 20 mm. Moreover, the Example foil strips of Nos. 1 to 6 are all flexible and have been confirmed to be amorphous by X-ray diffraction. On the other hand, no. 7-No. For No. 14, no. In the composition of No. 8, a foil band could not be formed, but in the other cases, a foil band could be manufactured.

Figure 0004974834
Figure 0004974834

上記材料については熱分析を行ない、融点を測定した。結果を表1に示す。No1〜6の実施例材の融点は、いずれもTiのβ変態温度(883℃)以下であることがわかる。なお、比較例材のNo.9は980℃と上記β変態温度を超える融点を示し、TiやTi合金の接合には適さないことがわかる。   About the said material, the thermal analysis was conducted and melting | fusing point was measured. The results are shown in Table 1. It turns out that melting | fusing point of the Example material of No1-6 is all below (beta) transformation temperature (883 degreeC) of Ti. The comparative material No. No. 9 shows a melting point exceeding 980 ° C. and the β transformation temperature, which is not suitable for joining Ti or Ti alloy.

次に、純Tiの丸棒(平行部φ6mm)の端面間に上記各ろう付け材料薄帯を挟み込んで突き合わせ、高周波通電により900℃で5分加熱することによりろう付けを行なった。なお、加熱時には、材料がずれないよう、圧力約1MPaにて加圧保持した。ろう付け後の部材は、所定の試験片形状に加工して室温にて引張試験を行ない、引張強度を測定した。なお、被接合部材として使用した純Ti丸棒の引張強度は360MPaである。結果を表1に示す。No.8,13,14を除き実施例材及び比較例材ともに、接合面ではなく被接合部材(母材)側にて破断した。そして、実施例材の強度は、いずれも上記母材強度(360MPa)の90%以上の高強度を示すことがわかる。他方、Co含有量が不足するNo.7では、引張強度がやや劣っている。また、No.8,13,14の比較例は接合面での破壊がみられ、強度は極めて低いことがわかる。   Next, the brazing material ribbons were sandwiched between end faces of pure Ti round bars (parallel portion φ6 mm), and brazed by heating at 900 ° C. for 5 minutes by high-frequency energization. During heating, the pressure was maintained at a pressure of about 1 MPa so that the material would not shift. The member after brazing was processed into a predetermined test piece shape, subjected to a tensile test at room temperature, and measured for tensile strength. In addition, the tensile strength of the pure Ti round bar used as a member to be joined is 360 MPa. The results are shown in Table 1. No. Except for 8, 13 and 14, both the example material and the comparative example material were broken on the joined member (base material) side, not on the joining surface. And it turns out that the intensity | strength of an Example material shows the high intensity | strength of 90% or more of the said base material intensity | strength (360 MPa) all. On the other hand, no. In No. 7, the tensile strength is slightly inferior. No. It can be seen that the comparative examples 8, 13, and 14 show breakage at the joint surface and the strength is extremely low.

次の、表1の各組成のうち、比較例材のNo.9を除く各組成について、同様に材料を配合してマグネシアるつぼに入れ、高周波加熱で溶融し、その溶湯を直径4mmのノズルから落下させつつ、2MPaの圧力にてアルゴンガスを吹きつけ、ガスアトマイズ法により合金粉末を作製した。得られた粉末は目開き150μmのふるいを通し、通過した粉末を試料として得た。いずれの粉末もほぼ球形であり、X線回折により結晶質であることを確認している。   Of the following compositions in Table 1, the comparative material No. For each composition except 9, the materials were similarly mixed and put in a magnesia crucible, melted by high frequency heating, and the molten metal was dropped from a nozzle with a diameter of 4 mm, and argon gas was blown at a pressure of 2 MPa, and the gas atomization method Thus, an alloy powder was prepared. The obtained powder was passed through a sieve having an opening of 150 μm, and the passed powder was obtained as a sample. All the powders are almost spherical and confirmed to be crystalline by X-ray diffraction.

この粉末を、周知のバインダー及び有機溶剤と混練してペーストに調製した。該ペーストを、肉厚1mm、外径14mm、長さ6mmの純Ti製のパイプの端面と、直径25mmの純Ti製の円板との間に塗布して重ね合わせ、真空ろう付け炉内にて900℃で20分加熱してろう付けを行なった。接合後の各試験品は、6質量%FeCl水溶液中にて、50℃で24時間浸漬し、その後取り出して腐食減量を測定した。なお、腐食減量は、腐食前試験片重量をW0、腐食後試験片重量をWとして、{(W0−W)/W0}×100(%)にて算出した。該腐食減量が3%未満のものを良好(◎)、3%以上5%未満のものを可(○)、5%以上のものを不可(△)として評価した。結果を表1に示す。実施例材はいずれも耐食性は良好であり、接合時の濡れ性も良好であった。他方、Coの含有が不十分な比較例材であるNo.7、No.10は、いずれも耐食性が不十分である。 This powder was kneaded with a known binder and an organic solvent to prepare a paste. The paste is applied between the end face of a pure Ti pipe having a wall thickness of 1 mm, an outer diameter of 14 mm, and a length of 6 mm and a pure Ti disk having a diameter of 25 mm, and is placed in a vacuum brazing furnace. And brazing was carried out by heating at 900 ° C. for 20 minutes. Each test article after joining was immersed in a 6 mass% FeCl 3 aqueous solution at 50 ° C. for 24 hours, and then taken out to measure corrosion weight loss. Corrosion weight loss was calculated as {(W0−W) / W0} × 100 (%), where W0 is the weight of the specimen before corrosion and W is the weight of the specimen after corrosion. The corrosion weight loss of less than 3% was evaluated as good (◎), 3% or more but less than 5% was acceptable (◯), and 5% or more was evaluated as unacceptable (Δ). The results are shown in Table 1. All of the example materials had good corrosion resistance and good wettability during bonding. On the other hand, No. 1 which is a comparative material with insufficient Co content. 7, no. No. 10 has insufficient corrosion resistance.

以上のごとく、本発明の実施例材にかかるNo.1〜No.6の各ろう付け材料は、いずれもNiを含有したNo.11,No.12のろう付け材料と、強度及び耐食性ともまったく遜色ない結果が得られており、Ti及びZrを含有したろう付け材料において、Niを含有せずとも強度と耐食性との双方に優れ、生体適合性の良好なろう付け材料が実現していることが明らかである。   As mentioned above, No. concerning the example material of the present invention. 1-No. Each brazing material of No. 6 contains Ni. 11, no. 12 brazing materials and strength and corrosion resistance were obtained, and the brazing material containing Ti and Zr is excellent in both strength and corrosion resistance and biocompatibility without containing Ni. It is clear that a good brazing material is realized.

Claims (4)

Cu:10質量%以上30質量%以下、
Co:5質量%以上20質量%以下、をそれぞれ含有し、
残部が、30質量%以上のTi、20質量%以上のZr及び不可避不純物からなり、TiとZrとの合計を60質量%以上80質量%以下となしたことを特徴とするろう付け材料。
Cu: 10% by mass or more and 30% by mass or less,
Co: 5% by mass or more and 20% by mass or less, respectively,
A brazing material characterized in that the balance is 30% by mass or more of Ti, 20% by mass or more of Zr and inevitable impurities, and the total of Ti and Zr is 60% by mass or more and 80% by mass or less.
Ni含有量が100ppm未満である請求項1記載のろう付け材料。   The brazing material according to claim 1, wherein the Ni content is less than 100 ppm. Ti又はTi合金の接合に使用され、融点が800℃以上883℃未満である請求項1又は請求項2に記載のろう付け材料。   The brazing material according to claim 1 or 2, which is used for joining Ti or a Ti alloy and has a melting point of 800 ° C or higher and lower than 883 ° C. 材料形態が粉末あるいは急冷箔帯よりなることを特徴とする請求項1ないし請求項3のいずれか1項に記載のろう付け材料。   The brazing material according to any one of claims 1 to 3, wherein the material form is a powder or a quenched foil strip.
JP2007261376A 2007-10-04 2007-10-04 Brazing material Expired - Fee Related JP4974834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007261376A JP4974834B2 (en) 2007-10-04 2007-10-04 Brazing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007261376A JP4974834B2 (en) 2007-10-04 2007-10-04 Brazing material

Publications (2)

Publication Number Publication Date
JP2009090304A JP2009090304A (en) 2009-04-30
JP4974834B2 true JP4974834B2 (en) 2012-07-11

Family

ID=40662820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007261376A Expired - Fee Related JP4974834B2 (en) 2007-10-04 2007-10-04 Brazing material

Country Status (1)

Country Link
JP (1) JP4974834B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5627935B2 (en) 2009-07-24 2014-11-19 山陽特殊製鋼株式会社 Ti brazing filler metal
KR101781692B1 (en) * 2015-09-24 2017-09-28 공주대학교 산학협력단 Brazing filler alloy composition with lower melting point for the brazing of titanium alloys
CN110193683B (en) * 2018-02-26 2022-01-28 南京理工大学 Brazing filler metal for TiAl-Ni dissimilar material connection
CN115446496A (en) * 2022-09-21 2022-12-09 华东理工大学 Copper-containing nickel-based brazing filler metal and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116350A (en) * 1982-12-23 1984-07-05 Masaaki Naga Alloy foil strip formed by quick liquid cooling for brazing
JPH0717975B2 (en) * 1983-01-11 1995-03-01 郁男 岡本 Amorphous alloy foil strip for brazing
JPH07252561A (en) * 1994-03-15 1995-10-03 Takeshi Masumoto Ti-zr alloy

Also Published As

Publication number Publication date
JP2009090304A (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP6472834B2 (en) Method for forming sintered nickel-titanium-rare earth (Ni-Ti-RE) alloy
Pang et al. A multicomponent TiZr-based amorphous brazing filler metal for high-strength joining of titanium alloy
JP5627935B2 (en) Ti brazing filler metal
JP5008969B2 (en) Alloy for liquid phase diffusion bonding
CN106392363B (en) Titanium-zirconium-based amorphous alloy brazing filler metal with low Cu and Ni contents and without Si element and preparation method thereof
JP6439795B2 (en) Ni-based amorphous alloy ribbon for brazing and stainless steel joint using the same
JP4974834B2 (en) Brazing material
JP2018508361A (en) Brazing alloy
JP2004052112A (en) Molybdenum alloy
JP2007301570A (en) Solder alloy
EP2897762B1 (en) Brazing alloys
JP3737056B2 (en) High strength Zr-based metallic glass
JP3682885B2 (en) Ti-based brazing and brazing structure using Ti-based brazing
JP3205466B2 (en) Sn-based low melting point brazing material
JP7192165B1 (en) Composite material
JP2010284722A (en) Alloy for joining
JP4554250B2 (en) Ti-based alloy shape memory element
JP3210766B2 (en) Sn-based low melting point brazing material
JPH02151378A (en) Alloy foil for liquid phase diffusion joining which can be joined in oxidation atmosphere
JPS59141395A (en) Brazing filler material
WO2023281862A1 (en) Composite material
JP3710698B2 (en) Ni-Ti-Zr Ni-based amorphous alloy
JPH01138087A (en) Brazing filler metal for joining ceramics
JP3932362B2 (en) Β-type titanium alloy for living body
JPS6261398B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120410

R150 Certificate of patent or registration of utility model

Ref document number: 4974834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees