JP4966028B2 - Vacuum deposition equipment - Google Patents

Vacuum deposition equipment Download PDF

Info

Publication number
JP4966028B2
JP4966028B2 JP2007006241A JP2007006241A JP4966028B2 JP 4966028 B2 JP4966028 B2 JP 4966028B2 JP 2007006241 A JP2007006241 A JP 2007006241A JP 2007006241 A JP2007006241 A JP 2007006241A JP 4966028 B2 JP4966028 B2 JP 4966028B2
Authority
JP
Japan
Prior art keywords
vapor deposition
opening
vaporized
evaporation source
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007006241A
Other languages
Japanese (ja)
Other versions
JP2008169456A (en
Inventor
泰輔 西森
隆雄 宮井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007006241A priority Critical patent/JP4966028B2/en
Publication of JP2008169456A publication Critical patent/JP2008169456A/en
Application granted granted Critical
Publication of JP4966028B2 publication Critical patent/JP4966028B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Description

本発明は、真空雰囲気中で蒸発源を気化させると共に気化物質を被蒸着体に蒸着させるようにした真空蒸着装置に関するものである。   The present invention relates to a vacuum deposition apparatus in which an evaporation source is vaporized in a vacuum atmosphere and a vaporized substance is deposited on a deposition target.

真空蒸着装置は、真空チャンバー内に蒸発源と被蒸着体とを配置し、真空チャンバー内を減圧した状態で、蒸発源を加熱して、蒸発源を溶融させて蒸発させるか、もしくは蒸発源を昇華させるかして、気化させ、この気化させた物質を被蒸着体の表面に堆積させて蒸着するようにしたものである。そして加熱されて蒸発源から発生する気化物質は蒸発源から法線方向に直進的に放出されるが、放出空間は真空に保たれているため気化物質は直進し、蒸発源と対向して配置される被蒸着体の表面に付着して蒸着されるものである。   A vacuum deposition apparatus arranges an evaporation source and a deposition target in a vacuum chamber and heats the evaporation source in a state where the inside of the vacuum chamber is depressurized to melt and evaporate the evaporation source. The vaporized material is sublimated or vaporized, and the vaporized material is deposited on the surface of the vapor deposition target for vapor deposition. The vaporized material generated from the evaporation source when heated is discharged straight from the evaporation source in the normal direction, but the vaporization material goes straight because the discharge space is kept in a vacuum, and is placed facing the evaporation source. It adheres and deposits on the surface of the to-be-deposited body.

しかしこのように気化物質は蒸発源から法線方向に直進的に放出されるので、被蒸着体へ向かって進行しない気化物質が多く、このように被蒸着体へ向かって進行しない気化物質は被蒸着体の表面に付着しないものであり、蒸発源の歩留まりが低くなると共に被蒸着体の表面への蒸着速度が遅くなる等の問題があった。   However, since the vaporized material is released straightly from the evaporation source in the normal direction, there are many vaporized materials that do not travel toward the deposition target, and the vaporized material that does not travel toward the deposition target as described above. There is a problem that it does not adhere to the surface of the vapor deposition body, and the yield of the evaporation source is lowered and the vapor deposition rate on the surface of the vapor deposition body is slow.

そこで、真空チャンバー内に配置した蒸発源と被蒸着体が対向する空間を筒状体で囲むと共に筒状体を蒸発源の物質が気化される温度で加熱し、蒸発源から気化した物質を筒状体内を通して被蒸着体の表面に蒸着させるようにした真空蒸着装置が提案されている(例えば特許文献1等参照)。   Therefore, a space in which the evaporation source disposed in the vacuum chamber and the deposition target face are surrounded by a cylindrical body, and the cylindrical body is heated at a temperature at which the substance of the evaporation source is vaporized. There has been proposed a vacuum vapor deposition apparatus in which vapor deposition is performed on the surface of an object to be vapor-deposited through a body (see, for example, Patent Document 1).

また、被蒸着体に共蒸着をする場合、複数の蒸発源を用い、各蒸発源から気化した物質を被蒸着体に到達させて、複数の気化物質が混在した状態で被蒸着体に付着させるようにしている(例えば特許文献2等参照)。   In addition, when co-evaporation is performed on an object to be vapor-deposited, a plurality of evaporation sources are used, substances evaporated from each evaporation source reach the object to be vapor-deposited, and a plurality of vaporized substances are mixed and adhered to the object to be vapor-deposited. (See, for example, Patent Document 2).

図5はその一例を示すものであり、真空チャンバー1内に上面が開口する筒状体4が配設してあり、筒状体4にはヒーター20が巻いてあって筒状体4を加熱できるようにしてある。この筒状体4の底部に複数の蒸発源2が配置してあり、発熱体21で加熱して蒸発源2を気化させることができるようにしてある。被蒸着体3は筒状体4の上端の開口の上方に配置してある。22は真空チャンバー1内を排気して真空雰囲気にする真空ポンプ、23はシャッターである。   FIG. 5 shows an example of this, and a cylindrical body 4 having an open top surface is disposed in the vacuum chamber 1, and a heater 20 is wound around the cylindrical body 4 to heat the cylindrical body 4. I can do it. A plurality of evaporation sources 2 are arranged at the bottom of the cylindrical body 4, and the evaporation sources 2 can be vaporized by heating with a heating element 21. The deposition target 3 is disposed above the opening at the upper end of the cylindrical body 4. Reference numeral 22 denotes a vacuum pump that evacuates the vacuum chamber 1 to create a vacuum atmosphere, and reference numeral 23 denotes a shutter.

このものにあって、真空チャンバー1内を真空にすると共に蒸発源2を発熱体21で加熱して気化させると、各蒸発源2から気化した物質が筒状体4内を飛翔して通過し、筒状体4の上端の開口を通って被蒸着体3の表面に付着し、各蒸発源2の気化物質を混合した状態で被蒸着体3に堆積させて共蒸着を行なうことができるものである。そしてこのものでは、各蒸発源2と被蒸着体3が対向する空間が筒状体4で囲まれているので、蒸発源2から発生する気化物質を筒状体4内に囲った状態で、この気化物質を筒状体4の内面で反射させながら被蒸着体3の方向へ進ませることができ、蒸発源2から発生する気化物質の多くを被蒸着体3の表面に到達させることができるものであり、被蒸着体3に付着せずに逃げる量を少なくして歩留まり高く蒸着を行なうことができるものである。また筒状体4はヒーター20で加熱されており、気化物質が筒状体4の内面に付着しても再加熱されて再気化し、この再気化した物質は被蒸着体3に到達して蒸着層を形成するものであり、筒状体4に気化物質が堆積して歩留まりを低下させるようなことはないものである。   In this case, when the inside of the vacuum chamber 1 is evacuated and the evaporation source 2 is heated by the heating element 21 and vaporized, the substance evaporated from each evaporation source 2 flies through the cylindrical body 4 and passes through. Attached to the surface of the deposition target 3 through the opening at the upper end of the cylindrical body 4 and can be co-deposited by being deposited on the deposition target 3 in a state where the vaporized substances of the respective evaporation sources 2 are mixed. It is. And in this thing, since the space which each evaporation source 2 and the to-be-deposited body 3 opposes is surrounded by the cylindrical body 4, in the state which surrounded the vaporization substance generated from the evaporation source 2 in the cylindrical body 4, While this vaporized material is reflected by the inner surface of the cylindrical body 4, it can be advanced toward the vapor deposition target 3, and most of the vaporized material generated from the evaporation source 2 can reach the surface of the vapor deposition target 3. Therefore, it is possible to perform deposition with a high yield by reducing the amount of escape without adhering to the deposition target 3. Further, the cylindrical body 4 is heated by the heater 20, and even if the vaporized substance adheres to the inner surface of the cylindrical body 4, it is reheated and revaporized, and the revaporized substance reaches the deposition target 3. A vapor deposition layer is formed, and a vaporized substance is not deposited on the cylindrical body 4 so that the yield is not lowered.

また、複数の蒸発源2を用いて共蒸着する際の濃度比率を制御するために、蒸発源2から気化した物質を蒸着させてその蒸着厚みを計測する蒸着厚み計測手段24が筒状体4に設けてある。そして複数の蒸発源2のうち、一方の蒸発源2を加熱して気化物質を発生させ、この気化物質が蒸着厚み計測手段24に付着する時間当たりの膜厚を測定することによって蒸着速度を計測し、次にこの一方の蒸発源2の加熱温度を維持したまま他方の蒸発源2を加熱して気化物質を発生させ、この気化物質が蒸着厚み計測手段24に付着する時間当たりの膜厚を測定することによって蒸着速度を計測し、各蒸発源2の発熱体21の温度を制御することによって、各蒸発源2からの気化物質の蒸着速度を制御し、共蒸着の濃度比率を制御するようにしてある。
特開2002−080961号公報 特開2004−059982号公報
Further, in order to control the concentration ratio when co-evaporating using a plurality of evaporation sources 2, a vapor deposition thickness measuring means 24 for vaporizing a substance evaporated from the evaporation source 2 and measuring the evaporation thickness is provided in the cylindrical body 4. Is provided. Then, one of the plurality of evaporation sources 2 is heated to generate a vaporized substance, and the vapor deposition rate is measured by measuring the film thickness per time that the vaporized substance adheres to the vapor deposition thickness measuring means 24. Next, while the heating temperature of the one evaporation source 2 is maintained, the other evaporation source 2 is heated to generate a vaporized substance, and the film thickness per time when this vaporized substance adheres to the vapor deposition thickness measuring means 24 is set. By measuring the vapor deposition rate, and controlling the temperature of the heating element 21 of each evaporation source 2, the vapor deposition rate of the vaporized material from each evaporation source 2 is controlled, and the concentration ratio of co-deposition is controlled. It is.
JP 2002-080961 A JP 2004-059982 A

しかし上記のものでは、複数の蒸発源2から気化した物質が蒸着厚み計測手段24に付着するため、個々の蒸発源2から気化した物質の蒸着厚みをそれぞれ個別に計測することはできない。従って、個々の蒸発源2から気化した物質のそれぞれの蒸着速度を正確に検出することは困難であり、共蒸着の濃度比率を正確に制御することが難しいという問題があった。   However, in the above, since the vaporized substances from the plurality of evaporation sources 2 adhere to the vapor deposition thickness measuring means 24, the vapor deposition thicknesses of the substances vaporized from the individual evaporation sources 2 cannot be individually measured. Therefore, it is difficult to accurately detect the vapor deposition rates of the substances vaporized from the individual evaporation sources 2, and there is a problem that it is difficult to accurately control the concentration ratio of co-deposition.

本発明は上記の点に鑑みてなされたものであり、複数の蒸発源から気化した物質の個々の蒸着速度を正確に計測することができ、共蒸着の濃度比率を正確に制御することができる真空蒸着装置を提供することを目的とするものである。   The present invention has been made in view of the above points, and can accurately measure individual deposition rates of substances vaporized from a plurality of evaporation sources, and can accurately control the concentration ratio of co-deposition. It aims at providing a vacuum evaporation system.

本発明の請求項1に係る真空蒸着装置は、真空チャンバー1内に複数の蒸発源2と被蒸着体3とを配置すると共にこれらの蒸発源2と被蒸着体3の間の空間を蒸発源2の物質が気化される温度で加熱された筒状体4で囲み、蒸発源2から気化した物質9を筒状体4内を通して被蒸着体3の表面に到達させて蒸着させるようにした真空蒸着装置において、各蒸発源2を個別に筒状体4内と接続する接続筒部12と、蒸発源2と筒状体4との間の位置において各接続筒部12の内周に設けられ、接続筒部12の内径を狭める絞り部13と、蒸発源2と絞り部13の間において各接続筒部12に設けられ、蒸発源2から気化した物質9が通過する接続筒部12の内周の開口度を調整可能な開閉手段6と、絞り部13と開閉手段6の間において各接続筒部12に設けられ、蒸発源2から気化した物質9を蒸着させてその蒸着厚みを計測する個別蒸着厚み計測手段7と、各個別蒸着厚み計測手段7で計測される蒸着厚みに応じて、各接続筒部12の開閉手段6の開口度を調整する開閉制御手段8とを備えて成ることを特徴とするものである。   In the vacuum vapor deposition apparatus according to claim 1 of the present invention, a plurality of evaporation sources 2 and vapor deposition bodies 3 are arranged in a vacuum chamber 1 and a space between these vaporization sources 2 and vapor deposition bodies 3 is disposed in the vaporization source. A vacuum surrounded by a cylindrical body 4 heated at a temperature at which the two substances are vaporized, and vaporized from the evaporation source 2 through the cylindrical body 4 so as to reach the surface of the deposition target 3 and to be deposited. In the vapor deposition apparatus, a connection cylinder portion 12 for individually connecting each evaporation source 2 to the inside of the cylindrical body 4 and a position between the evaporation source 2 and the cylinder body 4 are provided on the inner periphery of each connection cylinder portion 12. The inside of the connection cylinder part 12 which is provided in each connection cylinder part 12 between the narrowing part 13 which narrows the internal diameter of the connection cylinder part 12, and the evaporation source 2 and the expansion part 13, and the substance 9 vaporized from the evaporation source 2 passes. Opening / closing means 6 capable of adjusting the opening degree of the circumference, and each connection between the throttle 13 and the opening / closing means 6 In accordance with the vapor deposition thickness measured by the individual vapor deposition thickness measuring means 7 and the individual vapor deposition thickness measuring means 7 that is provided in the unit 12 and vaporizes the substance 9 vaporized from the evaporation source 2 and measures the vapor deposition thickness. An opening / closing control means 8 for adjusting the opening degree of the opening / closing means 6 of the connecting cylinder portion 12 is provided.

この発明によれば、各接続筒部12に設けた個別蒸着厚み計測手段7で蒸着厚みを計測することによって、各蒸発源2から気化した物質9が開閉手段6の開口を通過して、接続筒部12から筒状体4を通って被蒸着体3へと移動する量を個別に検出することができ、個々の各蒸発源2からの気化物質9が被蒸着体3に蒸着される量を個別に正確に検知することができるものであり、各個別蒸着厚み計測手段7で計測された蒸着厚みに応じて各接続筒部12の開口の開口度を制御することによって、各蒸発源2から気化した物質9が被蒸着体3に蒸着される量を個別に正確に制御することができ、共蒸着の濃度比率を正確に制御することができるものである。また各接続筒部12に絞り部13を設けることによって、他の蒸発源2から気化した物質9が接続筒部12内に侵入することを絞り部13で抑制して、この侵入した気化物質9が個別蒸着厚み計測手段7に付着することを防ぐことができ、個別蒸着厚み計測手段7による蒸着速度の計測を正確に行なうことができるものである。   According to this invention, the vapor deposition thickness is measured by the individual vapor deposition thickness measuring means 7 provided in each connection cylinder portion 12, whereby the substance 9 vaporized from each evaporation source 2 passes through the opening of the opening / closing means 6 and is connected. The amount of movement from the cylindrical portion 12 through the cylindrical body 4 to the deposition target 3 can be individually detected, and the amount by which the vaporized substances 9 from the respective evaporation sources 2 are deposited on the deposition target 3 Can be accurately detected individually, and each evaporation source 2 is controlled by controlling the degree of opening of each connection tube portion 12 according to the vapor deposition thickness measured by each individual vapor deposition thickness measuring means 7. Thus, the amount of the vaporized substance 9 deposited on the deposition target 3 can be controlled accurately and individually, and the concentration ratio of co-deposition can be controlled accurately. Further, by providing the constriction 13 in each connection cylinder 12, the constriction 13 suppresses the substance 9 vaporized from the other evaporation source 2 from entering the connection cylinder 12, and this invading vaporized substance 9. Can be prevented from adhering to the individual vapor deposition thickness measuring means 7, and the vapor deposition rate can be accurately measured by the individual vapor deposition thickness measuring means 7.

また請求項2の発明は、請求項1において、複数の各蒸発源2から気化した物質9を共蒸着させてその蒸着厚みを計測する共蒸着厚み計測手段14と、共蒸着厚み計測手段14で計測される蒸着厚みに応じて、各接続筒部12の開閉手段6の開口度を調整する開閉制御手段15とを備えて成ることを特徴とするものである。   Further, the invention of claim 2 is the co-deposition thickness measuring means 14 for co-depositing the substance 9 vaporized from each of the plurality of evaporation sources 2 and measuring the deposition thickness, and the co-deposition thickness measuring means 14 according to claim 1. An opening / closing control means 15 for adjusting the opening degree of the opening / closing means 6 of each connecting cylinder portion 12 according to the measured deposition thickness is provided.

この発明によれば、共蒸着厚み計測手段14で蒸着膜厚を計測することによって、各蒸発源2から気化した物質9が被蒸着体3に共蒸着する蒸着速度を検知することができ、共蒸着厚み計測手段14で計測された蒸着厚みに応じて開閉手段6の開口度を制御することによって、共蒸着の濃度比率を維持しながら、被蒸着体3への蒸着速度を制御することができるものである。   According to the present invention, by measuring the vapor deposition film thickness by the co-deposition thickness measuring means 14, it is possible to detect the vapor deposition rate at which the substance 9 vaporized from each evaporation source 2 co-deposits on the deposition target 3. By controlling the opening degree of the opening / closing means 6 according to the vapor deposition thickness measured by the vapor deposition thickness measuring means 14, it is possible to control the vapor deposition rate on the deposition target 3 while maintaining the concentration ratio of co-deposition. Is.

本発明によれば、各接続筒部12に設けた個別蒸着厚み計測手段7で蒸着厚みを計測することによって、各蒸発源2から気化した物質9が開閉手段6の開口を通過して、接続筒部12から筒状体4を通って被蒸着体3へと移動する量を個別に検出することができ、個々の各蒸発源2からの気化物質9が被蒸着体3に蒸着される量を個別に正確に検知することができるものであり、各個別蒸着厚み計測手段7で計測された蒸着厚みに応じて各接続筒部12の開口の開口度を制御することによって、各蒸発源2から気化した物質9が被蒸着体3に蒸着される量を個別に正確に制御することができ、共蒸着の濃度比率を正確に制御することができるものである。また他の蒸発源2から気化した物質9が接続筒部12内に侵入することを絞り部13で抑制して、この侵入した気化物質9が個別蒸着厚み計測手段7に付着することを防ぐことができ、個別蒸着厚み計測手段7による蒸着速度の計測を正確に行なうことができるものである。   According to the present invention, the vapor deposition thickness is measured by the individual vapor deposition thickness measuring means 7 provided in each connection cylinder portion 12, whereby the substance 9 vaporized from each evaporation source 2 passes through the opening of the opening / closing means 6 and is connected. The amount of movement from the cylindrical portion 12 through the cylindrical body 4 to the deposition target 3 can be individually detected, and the amount by which the vaporized substances 9 from the respective evaporation sources 2 are deposited on the deposition target 3 Can be accurately detected individually, and each evaporation source 2 is controlled by controlling the degree of opening of each connection tube portion 12 according to the vapor deposition thickness measured by each individual vapor deposition thickness measuring means 7. Thus, the amount of the vaporized substance 9 deposited on the deposition target 3 can be controlled accurately and individually, and the concentration ratio of co-deposition can be controlled accurately. Further, the restricting portion 13 prevents the substance 9 vaporized from the other evaporation source 2 from entering the connecting cylinder portion 12, and prevents the invading vaporized substance 9 from adhering to the individual vapor deposition thickness measuring means 7. The vapor deposition rate can be accurately measured by the individual vapor deposition thickness measuring means 7.

以下、本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

図1は本発明の実施の形態の一例を示すものであり、真空チャンバー1は真空ポンプ22で排気することによって真空状態に減圧することができるようにしてある。この真空チャンバー1内には筒状体4が配設してある。筒状体4は上面が開口する有底の筒状に形成されるものであり、上面の開口部は多数の貫通孔28を設けた分散板29で塞ぐようにしてある。蒸着を行なう基板などの被蒸着体3は、筒状体4の上端の開口に対向させて、筒状体4の上方に配置されるものである。筒状体4の外周にはシーズヒーターなどのヒーター20が巻き付けてあり、ヒーター20に接続した電源26から給電してヒーター20を発熱させることによって、筒状体4を加熱することができるようにしてある。   FIG. 1 shows an example of an embodiment of the present invention. The vacuum chamber 1 can be decompressed to a vacuum state by evacuating with a vacuum pump 22. A cylindrical body 4 is disposed in the vacuum chamber 1. The cylindrical body 4 is formed in a bottomed cylindrical shape whose upper surface is open, and the opening on the upper surface is closed with a dispersion plate 29 provided with a large number of through holes 28. The deposition target 3 such as a substrate on which vapor deposition is performed is disposed above the cylindrical body 4 so as to face the opening at the upper end of the cylindrical body 4. A heater 20 such as a sheathed heater is wound around the outer periphery of the cylindrical body 4. The cylindrical body 4 can be heated by supplying power from a power source 26 connected to the heater 20 to generate heat. It is.

筒状体4の底面には複数の接続筒部12が接続してある。接続筒部12は上端の開口が筒状体4内に連通する筒状に形成されるものであり、共蒸着する蒸発源2の個数に応じた本数で設けられるものである。各接続筒部12の下端部内には坩堝などの加熱容器31が配設してあり、加熱容器31に共蒸着する個別の蒸発源2をセットするようにしてある。この蒸発源2としては任意の材料を用いることができるが、例えば有機エレクトロルミネッセンス材料などの有機材料を用いることができる。加熱容器31には発熱体21が付設してあり、発熱体21に接続した電源32から給電して発熱体21を発熱させることによって、加熱容器31内の蒸発源2を加熱することができるようにしてある。また各接続筒部12の外周にはシーズヒーターなどで形成される発熱体10aと、冷媒が通される冷却管などで形成される冷却体10bとが設けてある。発熱体10aは電源などで形成される発熱源34を制御することによって、発熱温度を調整することができ、冷却体10bは冷媒冷却・送り出し装置などで形成される冷却源35を制御することによって、冷却温度を調整することができるものであり、加熱温度と冷却温度の制御で、接続筒部12の温度調整を個別に行なうことができるようにしてある。   A plurality of connecting cylinder portions 12 are connected to the bottom surface of the cylindrical body 4. The connecting cylinder portion 12 is formed in a cylindrical shape whose upper end opening communicates with the cylindrical body 4, and is provided in a number corresponding to the number of evaporation sources 2 to be co-evaporated. A heating container 31 such as a crucible is disposed in the lower end portion of each connecting cylinder part 12, and an individual evaporation source 2 for co-evaporation is set in the heating container 31. Although any material can be used as the evaporation source 2, for example, an organic material such as an organic electroluminescence material can be used. A heating element 21 is attached to the heating container 31, and the evaporation source 2 in the heating container 31 can be heated by supplying power from a power supply 32 connected to the heating element 21 to generate heat. It is. Further, a heating element 10a formed by a sheathed heater and a cooling body 10b formed by a cooling pipe through which a refrigerant is passed are provided on the outer periphery of each connecting cylinder portion 12. The heating element 10a can adjust the heat generation temperature by controlling a heating source 34 formed by a power source or the like, and the cooling body 10b can be controlled by controlling a cooling source 35 formed by a refrigerant cooling / feeding device or the like. The cooling temperature can be adjusted, and the temperature of the connecting tube portion 12 can be individually adjusted by controlling the heating temperature and the cooling temperature.

各接続筒部12の筒状体4に連通する上端部には、接続筒部12の内径を狭めるように内方へ屈曲して絞り部13が形成してある。また各接続筒部12には蒸発源2と絞り部13の間の位置において開閉手段6が設けてある。この開閉手段6は電動バルブや電動シャッターなどで形成されるものであり、開口度を調整することができるようにしてある。各接続筒部12の開閉手段6はCPUやメモリー等を備えて形成される開閉制御手段8に電気的に接続してあり、開閉制御手段8から出力される制御信号によってこれらの開閉手段6の開口度が個々に制御されるようになっている。   A throttle portion 13 is formed at the upper end portion of each connection cylinder portion 12 communicating with the tubular body 4 by bending inward so as to narrow the inner diameter of the connection cylinder portion 12. Each connecting cylinder portion 12 is provided with an opening / closing means 6 at a position between the evaporation source 2 and the throttle portion 13. The opening / closing means 6 is formed by an electric valve, an electric shutter or the like so that the opening degree can be adjusted. The opening / closing means 6 of each connection cylinder portion 12 is electrically connected to an opening / closing control means 8 formed with a CPU, a memory, and the like. The degree of opening is controlled individually.

また各接続筒部12の開閉手段8と絞り部13の間に側面開口部38が形成してあり、この側面開口部38に面して個別蒸着厚み計測手段7が設けてある。個別蒸着厚み計測手段7としては特に限定されるものではないが、水晶振動子膜厚計など、表面に蒸着して付着される膜厚を自動計測することができる膜厚計を用いることができる。各接続筒部12の個別蒸着厚み計測手段7は開閉制御手段8に個別に電気的に接続してあり、個別蒸着厚み計測手段7で測定された蒸着膜厚のデータが開閉制御手段8に入力されるようにしてある。そして開閉制御手段8に入力されるこの蒸着膜厚のデータに基づいて、開閉手段6の開口度が制御されるようになっている。   Further, a side opening 38 is formed between the opening / closing means 8 and the throttle part 13 of each connecting cylinder portion 12, and the individual vapor deposition thickness measuring means 7 is provided facing the side opening 38. Although it does not specifically limit as the individual vapor deposition thickness measurement means 7, The film thickness meter which can measure automatically the film thickness vapor-deposited on the surface, such as a crystal oscillator thickness meter, can be used. . The individual vapor deposition thickness measuring means 7 of each connecting cylinder 12 is electrically connected to the open / close control means 8 individually, and the vapor deposition film thickness data measured by the individual vapor deposition thickness measuring means 7 is input to the open / close control means 8. It is supposed to be. The opening degree of the opening / closing means 6 is controlled based on the deposition film thickness data input to the opening / closing control means 8.

上記のように形成される真空蒸着装置で蒸着を行なうにあたっては、まず、各接続筒部12の加熱容器31にそれぞれ蒸発源2を充填してセットすると共に、被蒸着体3を筒状体4の上端の開口に対向させて水平にセットする。次に、真空ポンプ22を作動させて真空チャンバー1内を真空状態に減圧し、各接続筒部12の発熱体21を発熱させて各蒸発源2を加熱する。さらにヒーター20によって筒状体4を加熱する。筒状体4の加熱温度は、蒸発源2から気化した物質が筒状体4に付着しても再度蒸発等して気化し、且つ分解されない温度に設定されるものである。   In performing vapor deposition with the vacuum vapor deposition apparatus formed as described above, first, the heating container 31 of each connection cylinder portion 12 is filled with the evaporation source 2 and set, and the deposition target 3 is the cylindrical body 4. Set it horizontally against the top opening. Next, the vacuum pump 22 is operated to depressurize the inside of the vacuum chamber 1 to a vacuum state, and the heating elements 21 of the connection cylinder portions 12 are caused to generate heat to heat the evaporation sources 2. Further, the cylindrical body 4 is heated by the heater 20. The heating temperature of the cylindrical body 4 is set to a temperature at which a substance evaporated from the evaporation source 2 evaporates and vaporizes again even if it adheres to the cylindrical body 4 and is not decomposed.

そして上記のように真空チャンバー1内を減圧して各蒸発源2を加熱すると、各蒸発源2は溶融・蒸発、あるいは昇華して気化し、各蒸発源2から発生するこの気化物質9は接続筒部12の開閉手段6の開口及び絞り部13を通過して筒状体4内に導入され、筒状体4内を直進する。各蒸発源2と被蒸着体3の間の気化物質9が進む空間は筒状体4で囲まれており、気化物質9は筒状体4内に閉じ込められた状態にあるので、図1に示すように気化物質9は筒状体4の内面で反射して上端の開口へ向けて進む。このとき、筒状体4の上端の開口は多数の貫通孔28を設けた分散板29で塞がれているので、筒状体4内の気化物質9は分散板29の貫通孔28を通過した後に、筒状体4の上端の開口から出て被蒸着体3の表面に到達し、被蒸着体3の表面に気化物質9を堆積させて蒸着させることができるものである。このように気化物質9は分散板29の複数箇所の貫通孔28を通過して被蒸着体3へと進むので、均一な分布で被蒸着体3に気化物質9を到達させることができ、均一な膜厚で被蒸着体3に蒸着を行なうことができるものである。   When the inside of the vacuum chamber 1 is depressurized and each evaporation source 2 is heated as described above, each evaporation source 2 is vaporized by melting, evaporation, or sublimation, and this vaporized substance 9 generated from each evaporation source 2 is connected. It passes through the opening of the opening / closing means 6 of the cylindrical portion 12 and the throttle portion 13 and is introduced into the cylindrical body 4 and travels straight through the cylindrical body 4. The space in which the vaporized substance 9 travels between each evaporation source 2 and the deposition target body 3 is surrounded by the cylindrical body 4, and the vaporized substance 9 is confined in the cylindrical body 4. As shown, the vaporized substance 9 is reflected by the inner surface of the cylindrical body 4 and proceeds toward the opening at the upper end. At this time, since the opening at the upper end of the cylindrical body 4 is closed by the dispersion plate 29 provided with a large number of through holes 28, the vaporized substance 9 in the cylindrical body 4 passes through the through holes 28 of the dispersion plate 29. After that, it comes out of the opening at the upper end of the cylindrical body 4 and reaches the surface of the deposition target 3, and the vaporized substance 9 can be deposited on the surface of the deposition target 3 for vapor deposition. Thus, since the vaporized substance 9 passes through the plurality of through holes 28 of the dispersion plate 29 and proceeds to the vapor deposition target 3, the vaporized substance 9 can reach the vapor deposition target 3 with a uniform distribution. It can vapor-deposit on the to-be-deposited body 3 with a sufficient film thickness.

また、上記のように各蒸発源2から気化した物質9は筒状体4内で規制されており、気化物質9が四方八方へ飛散することを防ぐことができるものであり、蒸発源2から発生する気化物質9の多くを被蒸着体3の表面に到達させて付着させることができるものである。従って蒸発源2から発生する気化物質9の多くが被蒸着体3の表面に付着して成膜に寄与することになって無効材料が少なくなり、蒸発源2の材料利用効率が高くなって歩留まりの高い蒸着が可能になると共に、被蒸着体3の表面の成膜速度を速くすることができるものである。また、筒状体4は加熱されていてホットウォールになっているために、気化物質9が筒状体4の表面に付着しても、付着物は筒状体4で再加熱されて気化し、このように再気化した気化物質9は上記と同様にして被蒸着体3の表面に蒸着されるものである。筒状体4の内周に接して取り付けられた分散板29も筒状体4からの伝熱や輻射熱で加熱されており、蒸発源2から気化した物質9が分散板29に付着しても再度蒸発等して気化して、被蒸着体3の表面に蒸着される。従って筒状体4や分散板29に気化物質9が堆積して蒸着に使用されなくなることを防ぐことができ、蒸着の歩留まりが低下するようなことはないものである。   Further, the substances 9 vaporized from the respective evaporation sources 2 as described above are regulated in the cylindrical body 4 and can prevent the vaporized substances 9 from being scattered in all directions. Most of the generated vaporized substance 9 can reach the surface of the deposition target 3 and be attached thereto. Accordingly, most of the vaporized substance 9 generated from the evaporation source 2 adheres to the surface of the vapor deposition target 3 and contributes to film formation, thereby reducing the ineffective materials, increasing the material utilization efficiency of the evaporation source 2 and increasing the yield. Can be deposited at a high rate, and the film forming speed on the surface of the deposition target 3 can be increased. Further, since the cylindrical body 4 is heated and forms a hot wall, even if the vaporized substance 9 adheres to the surface of the cylindrical body 4, the deposit is reheated by the cylindrical body 4 and vaporizes. The vaporized substance 9 re-vaporized in this manner is deposited on the surface of the deposition target 3 in the same manner as described above. The dispersion plate 29 attached in contact with the inner periphery of the tubular body 4 is also heated by heat transfer or radiant heat from the tubular body 4, and even if the substance 9 vaporized from the evaporation source 2 adheres to the dispersion plate 29. It vaporizes again by evaporation or the like, and is deposited on the surface of the deposition object 3. Accordingly, it is possible to prevent the vaporized substance 9 from being deposited on the cylindrical body 4 or the dispersion plate 29 and not being used for vapor deposition, and the yield of vapor deposition is not reduced.

ここで、各接続筒部12において、蒸発源2から発生した気化物質9が開閉手段6の開口を通過すると、その一部が側面開口部38から個別蒸着厚み計測手段7に到達して堆積し、個別蒸着厚み計測手段7に蒸着される。蒸発源2から発生した気化物質9は真空空間に放出されるため、平均自由行程は数十mにも及ぶものであり、個別蒸着厚み計測手段7に到達して蒸着される速度と、被蒸着体3に到達して蒸着される速度は相関をもっている。従って、個別蒸着厚み計測手段7で蒸着膜厚を測定することによって、個別蒸着厚み計測手段7で計測された蒸発源2の気化物質9が被蒸着体3に蒸着される膜厚を検知することができ、また個別蒸着厚み計測手段7で単位時間当たりの蒸着膜厚、すなわち蒸着速度を計測することによって、個別蒸着厚み計測手段7で計測された蒸発源2の気化物質9が被蒸着体3に蒸着する蒸着速度を検知することができるものである。そして個別蒸着厚み計測手段7は蒸発源2毎に個別に気化物質9の蒸着速度を計測することができるものであり、他の蒸発源2からの気化物質9の影響を受けることなく、個々の蒸発源2からの気化物質9の蒸着速度を正確に計測することができるものである。   Here, when the vaporized substance 9 generated from the evaporation source 2 passes through the opening of the opening / closing means 6 in each connecting cylinder part 12, a part thereof reaches the individual vapor deposition thickness measuring means 7 from the side opening 38 and accumulates. The vapor deposition is performed on the individual vapor deposition thickness measuring means 7. Since the vaporized substance 9 generated from the evaporation source 2 is released into the vacuum space, the mean free path is as long as several tens of meters. The speed of reaching the body 3 and being deposited is correlated. Therefore, by measuring the vapor deposition film thickness by the individual vapor deposition thickness measuring means 7, the film thickness at which the vaporized substance 9 of the evaporation source 2 measured by the individual vapor deposition thickness measuring means 7 is vapor deposited on the vapor deposition body 3 is detected. Further, by measuring the vapor deposition film thickness per unit time, that is, the vapor deposition rate by the individual vapor deposition thickness measuring means 7, the vaporized substance 9 of the evaporation source 2 measured by the individual vapor deposition thickness measuring means 7 is deposited. It is possible to detect the deposition rate of vapor deposition. The individual vapor deposition thickness measuring means 7 can individually measure the vapor deposition rate of the vaporized substance 9 for each evaporation source 2, and is not affected by the vaporized substance 9 from the other evaporation sources 2. The vapor deposition rate of the vaporized substance 9 from the evaporation source 2 can be accurately measured.

このとき、各接続筒部12には内径を小さく絞った絞り部13が設けてあるので、接続筒部12から筒状体4に出た気化物質9が他の接続筒部12内に侵入し難くなっている。このため、各接続筒部12の個別蒸着厚み計測手段7には、その接続筒部12の蒸発源2から発生して開閉手段6の開口を通過した気化物質9のみが付着するものであり、各蒸発源2から気化した物質9の蒸着速度をより正確に計測することができるものである。   At this time, each connecting tube portion 12 is provided with a narrowed portion 13 having a small inner diameter, so that the vaporized substance 9 that has come out of the connecting tube portion 12 into the tubular body 4 enters the other connecting tube portion 12. It has become difficult. For this reason, only the vaporized substance 9 generated from the evaporation source 2 of the connection cylinder part 12 and passing through the opening of the opening / closing means 6 adheres to the individual vapor deposition thickness measurement means 7 of each connection cylinder part 12. The deposition rate of the substance 9 vaporized from each evaporation source 2 can be measured more accurately.

上記のように、各接続筒部12において個別蒸着厚み計測手段7で個別に蒸着速度を計測することによって、各接続筒部12の蒸発源2から発生した気化物質9が被蒸着体3に蒸着される蒸着速度を個別に検知することができるものであり、各接続筒部12の個別蒸着厚み計測手段7で個別に計測された蒸着速度の比が、被蒸着体3に共蒸着される濃度比率となる。   As described above, the vaporization substance 9 generated from the evaporation source 2 of each connection cylinder portion 12 is vapor-deposited on the deposition target 3 by individually measuring the vapor deposition rate by the individual vapor deposition thickness measuring means 7 in each connection cylinder portion 12. The vapor deposition rate can be detected individually, and the ratio of the vapor deposition rates individually measured by the individual vapor deposition thickness measuring means 7 of each connecting tube portion 12 is the concentration at which the vapor deposition target 3 is co-deposited. It becomes a ratio.

一方、蒸発源2から気化した物質9は、開閉手段6の開口を通過した後に筒状体4内を通って被蒸着体3へと移動し、被蒸着体3に蒸着される。そしてこの開閉手段6の開口度を調整することによって、開閉手段6を通過して移動する気化物質9の量を調整することができる。すなわち、気化物質9は気体であるために、開閉手段6の開口度を小さくすると、開閉手段6を通過して移動する気化物質9の量が減り、逆に開閉手段6の開口度を大きくすると、開閉手段6を通過して移動する気化物質9の量が多くなる。   On the other hand, the substance 9 evaporated from the evaporation source 2 passes through the opening of the opening / closing means 6, moves through the cylindrical body 4 to the deposition target 3, and is deposited on the deposition target 3. By adjusting the opening degree of the opening / closing means 6, the amount of the vaporized substance 9 that moves through the opening / closing means 6 can be adjusted. That is, since the vaporized substance 9 is a gas, if the opening degree of the opening / closing means 6 is reduced, the amount of the vaporized substance 9 moving through the opening / closing means 6 is reduced, and conversely, if the opening degree of the opening / closing means 6 is increased. The amount of the vaporized substance 9 that moves through the opening / closing means 6 increases.

そこで、各接続筒部12において個別蒸着厚み計測手段7で個別に計測された蒸着速度のデータがそれぞれ開閉制御手段8に入力されると、開閉制御手段8のCPUで各蒸着速度の比が演算され、この演算結果に基づいて、各接続筒部12の開閉手段6の開口度を調整するように開閉制御手段8で制御がなされる。すなわち、各接続筒部12の開閉手段6の開口度を調整することによって、各接続筒部12の個別蒸着厚み計測手段7で個別に計測される蒸着速度の比を調整することができるものであり、この蒸着速度の比が被蒸着体3に共蒸着する濃度比率の目標値となるように、各接続筒部12の開閉手段6の開口度の比率を開閉制御手段8で制御するものである。そして上記のように個別蒸着厚み計測手段7は個々の蒸発源2からの気化物質9の蒸着速度を正確に計測することができるので、各接続筒部12の個別蒸着厚み計測手段7で個別に計測される蒸着速度に基づいて、各接続筒部12の開閉手段6の開口度を調整する制御を行なうことによって、共蒸着の濃度比率を正確に制御することができるものである。   Therefore, when the vapor deposition rate data individually measured by the individual vapor deposition thickness measuring unit 7 in each connecting cylinder portion 12 is input to the open / close control unit 8, the CPU of the open / close control unit 8 calculates the ratio of the respective vapor deposition rates. Then, based on the calculation result, the opening / closing control means 8 controls the opening degree of the opening / closing means 6 of each connecting cylinder portion 12. That is, by adjusting the opening degree of the opening / closing means 6 of each connection cylinder part 12, the ratio of the vapor deposition rates individually measured by the individual vapor deposition thickness measurement means 7 of each connection cylinder part 12 can be adjusted. Yes, the opening / closing control means 8 controls the ratio of the opening degree of the opening / closing means 6 of each connecting cylinder portion 12 so that the ratio of the vapor deposition rate becomes the target value of the concentration ratio to be co-deposited on the deposition object 3. is there. As described above, the individual vapor deposition thickness measuring means 7 can accurately measure the vapor deposition rate of the vaporized substances 9 from the individual evaporation sources 2, so that the individual vapor deposition thickness measuring means 7 of each connecting cylinder portion 12 individually. Based on the measured deposition rate, the concentration ratio of co-deposition can be accurately controlled by controlling the opening degree of the opening / closing means 6 of each connecting tube portion 12.

図2は本発明の実施の形態の他の一例を示すものであり、被蒸着体3の近傍に共蒸着厚み計測手段14が設けてある。共蒸着厚み計測手段14は気化物質9が通過する絞り部13と被蒸着体3の間に配置されていればよいが、被蒸着体3への蒸着膜厚をより正確に測定するためには、被蒸着体3の近傍に配置するのが好ましい。この共蒸着厚み計測手段14としては上記の個別蒸着厚み計測手段と同様に水晶振動子膜厚計などを用いることができる。この蒸着厚み計測手段14はCPUやメモリー等を備えて形成される開閉制御手段15に電気的に接続してあり、共蒸着厚み計測手段14で測定された蒸着膜厚のデータが開閉制御手段15に入力されるようにしてある。そして開閉制御手段15に入力されるこの蒸着膜厚のデータに基づいて、各接続筒部12に設けた上記の開閉手段6の開口度が制御されるようになっている。図2の実施の形態では、この開閉制御手段15は上記の開閉制御手段8で兼用されるようにしてある。その他の構成は図1のものと同じである。   FIG. 2 shows another example of the embodiment of the present invention, and a co-evaporation thickness measuring means 14 is provided in the vicinity of the deposition target 3. The co-evaporation thickness measuring means 14 may be disposed between the narrowed portion 13 through which the vaporized substance 9 passes and the deposition target 3, but in order to more accurately measure the deposition thickness on the deposition target 3. It is preferable to arrange in the vicinity of the deposition target 3. As the co-evaporation thickness measuring means 14, a quartz oscillator film thickness meter or the like can be used as in the case of the individual vapor deposition thickness measuring means. The vapor deposition thickness measuring means 14 is electrically connected to an open / close control means 15 formed with a CPU, a memory, etc., and the vapor deposition film thickness data measured by the co-evaporation thickness measuring means 14 is the open / close control means 15. To be input. Based on the vapor deposition film thickness data input to the opening / closing control means 15, the opening degree of the opening / closing means 6 provided in each connection cylinder portion 12 is controlled. In the embodiment shown in FIG. 2, the opening / closing control means 15 is also used as the opening / closing control means 8. Other configurations are the same as those in FIG.

このものにあって、上記のように蒸着を行なう際に、各蒸発源2から発生した気化物質9が被蒸着体3の表面に到達して共蒸着されると同時に、共蒸着厚み計測手段14にも到達して共蒸着され、各蒸発源2の気化物質9が被蒸着体3に蒸着される膜厚と相関をもった膜厚で共蒸着厚み計測手段14に蒸着が行なわれる。従って、共蒸着厚み計測手段14で蒸着膜厚を測定することによって、被蒸着体3に共蒸着された膜厚を検知することができ、また共蒸着厚み計測手段14で単位時間当たりの蒸着膜厚、すなわち共蒸着の蒸着速度を測定することによって、被蒸着体3への共蒸着の蒸着速度を検知することができるものである。   In this case, when vapor deposition is performed as described above, the vaporized substance 9 generated from each evaporation source 2 reaches the surface of the vapor deposition target 3 and is co-deposited, and at the same time, the co-deposition thickness measuring means 14. The vapor deposition material 9 is vapor-deposited on the co-evaporation thickness measuring means 14 with a film thickness having a correlation with the film thickness on which the vaporized substance 9 of each evaporation source 2 is vapor-deposited on the deposition target 3. Therefore, the film thickness co-deposited on the deposition target 3 can be detected by measuring the vapor deposition film thickness by the co-evaporation thickness measuring means 14, and the vapor deposition film per unit time can be detected by the co-evaporation thickness measuring means 14. By measuring the thickness, that is, the vapor deposition rate of co-evaporation, the vapor deposition rate of co-evaporation on the deposition target 3 can be detected.

従って、共蒸着厚み計測手段14で蒸着厚み及び蒸着速度を測定し、この測定データに基づいて、開閉制御手段15で各接続筒部12の開閉手段6の開口度を制御することによって、開閉手段6を通過して被蒸着体3へと移動する気化物質9の量を制御することができ、被蒸着体3への蒸着厚み及び蒸着速度を制御することができるものである。このとき、各接続筒部12の開閉手段6の開口度の比率は、上記のように共蒸着の濃度比率の目標値となるように開閉制御手段8で制御されているので、この開口度の比率を保持した状態で、各接続筒部12の開閉手段6の開口度を制御するものである。   Accordingly, the vapor deposition thickness and vapor deposition rate are measured by the co-vapor deposition thickness measuring means 14, and the opening / closing means is controlled by controlling the opening degree of the opening / closing means 6 of each connection cylinder portion 12 by the opening / closing control means 15 based on the measurement data. It is possible to control the amount of the vaporized substance 9 that passes through 6 and moves to the deposition target 3, and the deposition thickness and deposition rate on the deposition target 3 can be controlled. At this time, since the ratio of the opening degree of the opening / closing means 6 of each connecting cylinder portion 12 is controlled by the opening / closing control means 8 so as to become the target value of the concentration ratio of co-evaporation as described above, The opening degree of the opening / closing means 6 of each connection cylinder part 12 is controlled with the ratio maintained.

この蒸着厚み及び蒸着速度の制御を具体的に説明する。まず、真空チャンバー1内の真空度、ヒーター20による筒状体4の加熱温度、発熱体21による各蒸発源2の加熱温度を、実際に蒸着を行なう際の条件と同じに設定し、開閉手段6によって調整される開口度と、共蒸着厚み計測手段14で計測される蒸着速度との相関データを求める予備試験を行なう。また蒸発源2の物質量が気化により減少するのに従って気化量は減少するので、共蒸着厚み計測手段14で計測される蒸着速度の時間変化に合わせて、相関データを補正する。このようにして得られた開閉手段6の開口度と蒸着速度との相関データは、開閉制御手段15のメモリーに保存される。   The control of the deposition thickness and the deposition rate will be specifically described. First, the degree of vacuum in the vacuum chamber 1, the heating temperature of the cylindrical body 4 by the heater 20, and the heating temperature of each evaporation source 2 by the heating element 21 are set to the same conditions as in actual vapor deposition, and the opening / closing means The preliminary test which calculates | requires the correlation data of the opening degree adjusted by 6 and the vapor deposition rate measured by the co-deposition thickness measurement means 14 is performed. Further, since the amount of vaporization decreases as the amount of substance in the evaporation source 2 decreases due to vaporization, the correlation data is corrected in accordance with the time change of the deposition rate measured by the co-evaporation thickness measuring means 14. The correlation data between the opening degree of the opening / closing means 6 and the deposition rate obtained in this way is stored in the memory of the opening / closing control means 15.

そして被蒸着体3に実際に共蒸着を行なう際には、被蒸着体3への蒸着速度の目標値に対応する開口度となるように開閉制御手段15で各接続筒部12の開閉手段6を制御し、共蒸着を行なうものである。またこのように共蒸着を行なう途中で、共蒸着厚み計測手段14で計測される共蒸着の蒸着速度が目標値よりも大きくなると、開閉制御手段15で各接続筒部12の開閉手段6を制御して開口度を小さくし、また共蒸着厚み計測手段15で計測される共蒸着の蒸着速度が目標値よりも小さくなると、開閉制御手段15で各接続筒部12の開閉手段6を制御して開口度を大きくし、このように各接続筒部12の開閉手段6の開口度をフィードバック制御して、目標値の共蒸着速度が維持されるようにするものである。   When actually performing co-deposition on the deposition target 3, the opening / closing control means 15 opens and closes the opening / closing means 6 of each connection cylinder portion 12 so that the opening degree corresponds to the target value of the deposition rate on the deposition target 3. Is controlled to perform co-evaporation. Further, during the co-deposition, when the deposition rate of co-deposition measured by the co-evaporation thickness measuring unit 14 becomes larger than the target value, the opening / closing control unit 15 controls the opening / closing unit 6 of each connecting cylinder portion 12. When the opening degree is reduced and the vapor deposition rate of the co-deposition measured by the co-evaporation thickness measuring means 15 becomes smaller than the target value, the opening / closing control means 15 controls the opening / closing means 6 of each connecting cylinder portion 12. The opening degree is increased, and the opening degree of the opening / closing means 6 of each connection cylinder portion 12 is feedback-controlled in this way, so that the co-deposition rate of the target value is maintained.

上記の実施の形態では、各接続筒部12に設けた絞り部13は、接続筒部12の内径を狭めるように内方へ屈曲して形成するようにしているが、図3に示すように接続筒部12の内径より小さい内径の管13aとして絞り部13を形成するようにしてもよい。ここで、蒸発源2の物質は、発熱体21からの伝導熱と接続筒部12からの輻射熱により加熱され、真空チャンバー1内の真空度を上げることで気化するものであり、気化分子は圧力の低い雰囲気では分子流としてふるまう。そして分子流の流量=コンダクタンス×圧力であり、コンダクタンスは穴の場合は断面積に比例し、管の場合は管の内径半径の3乗に比例し且つ長さに反比例する。従って、絞り部13を図3のように長い管13aとして形成することによって、コンダクタンスを小さくすることができ、分子流の流量を小さくすることができるものであり、筒状体4内の気化物質9が絞り部13(管13a)を通過して接続筒部12内に侵入することをより確実に防いで、個別蒸着厚み計測手段7による蒸発源2からの気化物質9の蒸着速度をより正確に計測することができるものである。尚、管13aの内周に気化物質が付着しても、接続筒部12からの伝熱で加熱され、再蒸発するものであり、蒸着の歩留まりが低下するようなことはないものである。このように、絞り部13が、蒸着源2の物質が気化される温度に加熱されて設けられ、かつ、蒸着源2から気化した物質9に対するコンダクタンスが接続筒部12より小さな管13aとして形成すると、蒸着源2から気化した物質9の歩留まりを低下させることなく、共蒸着の濃度比率を正確に制御することができるものである。   In the above embodiment, the narrowed portion 13 provided in each connecting tube portion 12 is formed to be bent inward so as to narrow the inner diameter of the connecting tube portion 12, but as shown in FIG. The throttle portion 13 may be formed as a tube 13a having an inner diameter smaller than the inner diameter of the connecting cylinder portion 12. Here, the substance of the evaporation source 2 is heated by conduction heat from the heating element 21 and radiant heat from the connection cylinder portion 12 and is vaporized by increasing the degree of vacuum in the vacuum chamber 1. It behaves as a molecular flow in a low atmosphere. The flow rate of the molecular flow = conductance × pressure. The conductance is proportional to the cross-sectional area in the case of a hole, and is proportional to the cube of the inner radius of the tube and inversely proportional to the length. Therefore, by forming the throttle portion 13 as a long tube 13a as shown in FIG. 3, the conductance can be reduced and the flow rate of the molecular flow can be reduced, and the vaporized substance in the cylindrical body 4 can be reduced. 9 is more reliably prevented from passing through the throttle portion 13 (tube 13a) and entering the connecting cylinder portion 12, and the vapor deposition rate of the vaporized substance 9 from the evaporation source 2 by the individual vapor deposition thickness measuring means 7 is more accurate. Can be measured. Even if a vaporized substance adheres to the inner periphery of the tube 13a, it is heated by heat transfer from the connecting cylinder portion 12 and re-evaporates, and the yield of vapor deposition does not decrease. As described above, when the narrowed portion 13 is heated to a temperature at which the material of the vapor deposition source 2 is vaporized, and the conductance for the material 9 vaporized from the vapor deposition source 2 is formed as a tube 13a smaller than that of the connecting cylinder portion 12. The concentration ratio of co-deposition can be accurately controlled without reducing the yield of the substance 9 vaporized from the deposition source 2.

このように絞り部13を管13aで形成するにあたって、個別蒸着厚み計測手段7による気化物質9の蒸着速度の計測精度を上げるには、管13aのコンダクタンスを、管13aより蒸発源2側の接続筒部12のコンダクタンスの1/300以下に設定するのが好ましい。   In order to increase the measurement accuracy of the vapor deposition rate of the vaporized substance 9 by the individual vapor deposition thickness measuring means 7 when forming the throttle portion 13 with the tube 13a in this way, the conductance of the tube 13a is connected to the evaporation source 2 side from the tube 13a. It is preferable to set it to 1/300 or less of the conductance of the cylindrical portion 12.

また、複数の蒸発源2からの気化物質9を被蒸着体3にほぼ同レートで共蒸着する場合は、各接続筒部12に設ける管13aのコンダクタンスは同程度に設定し、異なる蒸着レートで共蒸着する場合は、各接続筒部12に設ける管13aのコンダクタンスを蒸着レートに適合したものに設定するのが好ましい。   Further, when vaporized substances 9 from a plurality of evaporation sources 2 are co-deposited on the deposition target 3 at substantially the same rate, the conductances of the tubes 13a provided in each connection cylinder portion 12 are set to be the same and at different deposition rates. In the case of co-evaporation, it is preferable to set the conductance of the pipe 13a provided in each connection cylinder portion 12 to be suitable for the deposition rate.

特にドープ蒸着の場合、ホスト材料に対してドーパント材料の濃度は数パーセント程度であるため、ドーパント材料の蒸発源2を設けた接続筒部12の管13aのコンダクタンスを、ホスト材料の蒸発源2を設けた接続筒部12の管13aのコンダクタンスの1/500以下に小さくすることによって、蒸着レートが大きく異なるドープ蒸着に容易に対応することができるものである。この場合、図4に示すように、ホスト材料の蒸発源2を設けた接続筒部12の管13aの内径よりも、ドーパント材料の蒸発源2を設けた接続筒部12の管13aの内径を小さくし、ホスト材料の蒸発源2を設けた接続筒部12の管13aの長さよりも、ドーパント材料の蒸発源2を設けた接続筒部12の管13aを長く形成することによって、ドーパント材料の蒸発源2を設けた接続筒部12の管13aのコンダクタンスを、ホスト材料の蒸発源2を設けた接続筒部12の管13aのコンダクタンスよりも小さくすることができるものである。またこのようにドーパント材料の蒸発源2を設けた接続筒部12の管13aのコンダクタンスを小さくすることによって、筒状体4内の気化物質9がこのドーパント材料の蒸発源2を設けた接続筒部12内に侵入することを一層確実に防ぐことができ、ドープ濃度の低いドーパント材料の蒸着速度を個別蒸着厚み計測手段7でより正確に計測することができるものである。   In particular, in the case of doping vapor deposition, since the concentration of the dopant material is about several percent with respect to the host material, the conductance of the tube 13a of the connecting tube portion 12 provided with the evaporation source 2 of the dopant material is set to the evaporation source 2 of the host material. By reducing it to 1/500 or less of the conductance of the tube 13a of the connecting cylinder 12 provided, it is possible to easily cope with dope vapor deposition with greatly different vapor deposition rates. In this case, as shown in FIG. 4, the inner diameter of the tube 13a of the connecting cylinder portion 12 provided with the dopant material evaporation source 2 is set to be larger than the inner diameter of the tube 13a of the connecting cylinder portion 12 provided with the host material evaporation source 2. By forming the tube 13a of the connecting tube portion 12 provided with the evaporation source 2 of the dopant material longer than the length of the tube 13a of the connecting tube portion 12 provided with the evaporation source 2 of the host material, the dopant material The conductance of the pipe 13a of the connecting cylinder part 12 provided with the evaporation source 2 can be made smaller than the conductance of the pipe 13a of the connecting cylinder part 12 provided with the evaporation source 2 of the host material. In addition, by reducing the conductance of the tube 13a of the connection cylinder portion 12 provided with the dopant material evaporation source 2 in this way, the vaporizing substance 9 in the cylindrical body 4 is connected to the dopant material evaporation source 2 provided. Intrusion into the portion 12 can be prevented more reliably, and the vapor deposition rate of the dopant material having a low dope concentration can be measured more accurately by the individual vapor deposition thickness measuring means 7.

本発明の実施の形態の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of embodiment of this invention. 本発明の実施の形態の他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of embodiment of this invention. 本発明の実施の形態の他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of embodiment of this invention. 本発明の実施の形態の他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of embodiment of this invention. 従来例の概略断面図である。It is a schematic sectional drawing of a prior art example.

符号の説明Explanation of symbols

1 真空チャンバー
2 蒸発源
3 被蒸着体
4 筒状体
6 開閉手段
7 個別蒸着厚み計測手段
8 開閉制御手段
9 気化物質
12 接続筒部
13 絞り部
14 共蒸着厚み計測手段
15 開閉制御手段
DESCRIPTION OF SYMBOLS 1 Vacuum chamber 2 Evaporation source 3 To-be-deposited body 4 Cylindrical body 6 Opening / closing means 7 Individual vapor deposition thickness measurement means 8 Opening / closing control means 9 Vaporized substance 12 Connection cylinder part 13 Restriction part 14 Co-deposition thickness measurement means 15 Opening / closing control means

Claims (2)

真空チャンバー内に複数の蒸発源と被蒸着体とを配置すると共にこれらの蒸発源と被蒸着体の間の空間を蒸発源の物質が気化される温度で加熱された筒状体で囲み、蒸発源から気化した物質を筒状体内を通して被蒸着体の表面に到達させて蒸着させるようにした真空蒸着装置において、各蒸発源を個別に筒状体内と接続する接続筒部と、蒸発源と筒状体との間の位置において各接続筒部の内周に設けられ、接続筒部の内径を狭める絞り部と、蒸発源と絞り部の間において各接続筒部に設けられ、蒸発源から気化した物質が通過する接続筒部の内周の開口度を調整可能な開閉手段と、絞り部と開閉手段の間において各接続筒部に設けられ、蒸発源から気化した物質を蒸着させてその蒸着厚みを計測する個別蒸着厚み計測手段と、各個別蒸着厚み計測手段で計測される蒸着厚みに応じて、各接続筒部の開閉手段の開口度を調整する開閉制御手段とを備えて成ることを特徴とする真空蒸着装置。   A plurality of evaporation sources and vapor deposition bodies are arranged in a vacuum chamber, and a space between these evaporation sources and vapor deposition bodies is surrounded by a cylindrical body heated at a temperature at which the evaporation source material is vaporized, and vaporized. In a vacuum vapor deposition apparatus in which a substance vaporized from a source reaches a surface of an object to be deposited through a cylindrical body and is vapor-deposited, a connection cylinder part for individually connecting each evaporation source to the cylindrical body, an evaporation source and a cylinder Provided at the inner circumference of each connecting cylinder part at a position between the cylindrical body and the throttle part for narrowing the inner diameter of the connecting cylinder part, and provided at each connecting cylinder part between the evaporation source and the throttle part. Opening and closing means that can adjust the opening degree of the inner periphery of the connecting cylinder part through which the material passes, and provided in each connecting cylinder part between the throttle part and the opening and closing means, vaporize the material vaporized from the evaporation source, the evaporation Individual deposition thickness measuring means for measuring thickness and each individual deposition thickness Depending on the deposition thickness measured by the measuring means, a vacuum vapor deposition apparatus characterized in that it comprises an opening and closing control means for adjusting the degree of opening of the closing means of the connection tube portion. 複数の各蒸発源から気化した物質を共蒸着させてその蒸着厚みを計測する共蒸着厚み計測手段と、共蒸着厚み計測手段で計測される蒸着厚みに応じて、各接続筒部の開閉手段の開口度を調整する開閉制御手段とを備えて成ることを特徴とする請求項1に記載の真空蒸着装置。   Co-deposition thickness measuring means for co-depositing vaporized substances from each of the plurality of evaporation sources and measuring the deposition thickness, and opening / closing means for each connection tube portion according to the deposition thickness measured by the co-deposition thickness measurement means The vacuum deposition apparatus according to claim 1, further comprising an opening / closing control means for adjusting an opening degree.
JP2007006241A 2007-01-15 2007-01-15 Vacuum deposition equipment Expired - Fee Related JP4966028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007006241A JP4966028B2 (en) 2007-01-15 2007-01-15 Vacuum deposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007006241A JP4966028B2 (en) 2007-01-15 2007-01-15 Vacuum deposition equipment

Publications (2)

Publication Number Publication Date
JP2008169456A JP2008169456A (en) 2008-07-24
JP4966028B2 true JP4966028B2 (en) 2012-07-04

Family

ID=39697829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007006241A Expired - Fee Related JP4966028B2 (en) 2007-01-15 2007-01-15 Vacuum deposition equipment

Country Status (1)

Country Link
JP (1) JP4966028B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5127372B2 (en) * 2007-09-03 2013-01-23 キヤノン株式会社 Vapor deposition equipment
CN102301032A (en) * 2008-12-18 2011-12-28 维易科精密仪器国际贸易(上海)有限公司 Vacuum Deposition Sources Having Heated Effusion Orifices
WO2010110871A2 (en) 2009-03-25 2010-09-30 Veeco Instruments Inc. Deposition of high vapor pressure materials
KR101084234B1 (en) 2009-11-30 2011-11-16 삼성모바일디스플레이주식회사 Deposition source, Deposition apparatus using the same and method for forming thin film
TW201243083A (en) * 2011-03-16 2012-11-01 Panasonic Corp Vacuum evaporator
CN103649364A (en) * 2011-07-07 2014-03-19 松下电器产业株式会社 Vacuum deposition device
CN104136653A (en) * 2012-03-07 2014-11-05 松下电器产业株式会社 Vapor deposition device
JP2013209702A (en) * 2012-03-30 2013-10-10 Nitto Denko Corp Apparatus and method for vapor deposition
JP2013211137A (en) * 2012-03-30 2013-10-10 Samsung Display Co Ltd Vacuum evaporation method and apparatus of the same
JP6117509B2 (en) * 2012-10-17 2017-04-19 株式会社アルバック Vapor deposition equipment
JP6464448B2 (en) * 2014-08-29 2019-02-06 パナソニックIpマネジメント株式会社 Vapor deposition apparatus and vapor deposition method
US10760155B2 (en) * 2015-09-24 2020-09-01 Sharp Kabushiki Kaisha Vapor deposition source and vapor deposition device for producing vapor deposition film with high material usage efficiency

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6431967A (en) * 1987-07-27 1989-02-02 Tokio Nakada Manufacture of thin film
JP3742567B2 (en) * 2000-06-22 2006-02-08 松下電工株式会社 Vacuum deposition apparatus and vacuum deposition method
JP3369154B2 (en) * 2000-09-01 2003-01-20 科学技術振興事業団 Manufacturing method of organic co-deposited film
JP3541294B2 (en) * 2000-09-01 2004-07-07 独立行政法人 科学技術振興機構 Method and apparatus for producing organic electroluminescence thin film
JP2003306763A (en) * 2002-04-19 2003-10-31 Toyota Motor Corp Method and system for vacuum deposition
JP4139158B2 (en) * 2002-07-26 2008-08-27 松下電工株式会社 Vacuum deposition method
JP4041005B2 (en) * 2003-04-02 2008-01-30 長州産業株式会社 Molecular beam source for thin film deposition and thin film deposition method using the same
JP4435523B2 (en) * 2003-09-10 2010-03-17 トッキ株式会社 Deposition method
JP4462989B2 (en) * 2004-04-14 2010-05-12 日立造船株式会社 Vapor deposition equipment

Also Published As

Publication number Publication date
JP2008169456A (en) 2008-07-24

Similar Documents

Publication Publication Date Title
JP4966028B2 (en) Vacuum deposition equipment
TWI467040B (en) Evaporator for organic materials
JP5551336B2 (en) Controllable supply of organic materials in the manufacture of OLEDs
JP5705734B2 (en) Vaporizer for organic materials
US10267768B2 (en) Device and method for determining the concentration of a vapor by means of an oscillating body sensor
JP2007500794A (en) Thin film evaporation evaporator
JP6222929B2 (en) Vacuum deposition equipment
JP5013591B2 (en) Vacuum deposition equipment
JP2011162846A (en) Vacuum evaporation source
JP2007224393A (en) Vapor deposition source cell, thin film deposition method, aperture diaphragm member, and vapor deposition source heater
US8012537B2 (en) Controlling the vaporization of organic material
EP2278044B1 (en) Controlling the application of vaporized organic material
US20100034970A1 (en) Apparatus and method for chemical vapor deposition
JP5180469B2 (en) Vacuum deposition equipment
JP2004059982A (en) Vacuum vapor deposition method
JP4830847B2 (en) Vacuum deposition equipment
JP5044223B2 (en) Vacuum deposition equipment
KR101258252B1 (en) Apparatus for depositing chemical layers
JP2018526615A (en) Diffusion barrier for oscillating quartz, measurement assembly for measuring deposition rate and method thereof
JP2017025355A (en) Vapor deposition apparatus, and vapor deposition method
KR20120048671A (en) Evaporator, arrangement of evaporators, and coating system
KR20200054778A (en) Linear evaporation source for measuring deposition thickness and deposition apparatus having the same
KR101016042B1 (en) Canister
KR100549090B1 (en) Evaporator for organic vapor deposition apparatus
KR20090083250A (en) Apparatus for supplying source gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090825

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110302

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees