JP4951750B2 - Dissolving agent for poorly soluble polysaccharide and composition comprising said dissolving agent and polysaccharide - Google Patents

Dissolving agent for poorly soluble polysaccharide and composition comprising said dissolving agent and polysaccharide Download PDF

Info

Publication number
JP4951750B2
JP4951750B2 JP2004326165A JP2004326165A JP4951750B2 JP 4951750 B2 JP4951750 B2 JP 4951750B2 JP 2004326165 A JP2004326165 A JP 2004326165A JP 2004326165 A JP2004326165 A JP 2004326165A JP 4951750 B2 JP4951750 B2 JP 4951750B2
Authority
JP
Japan
Prior art keywords
ionic liquid
cellulose
polysaccharide
composition
methyl imidazolium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004326165A
Other languages
Japanese (ja)
Other versions
JP2006137677A (en
Inventor
弘幸 大野
幸信 深谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Agriculture and Technology NUC
Original Assignee
Tokyo University of Agriculture and Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Agriculture and Technology NUC filed Critical Tokyo University of Agriculture and Technology NUC
Priority to JP2004326165A priority Critical patent/JP4951750B2/en
Publication of JP2006137677A publication Critical patent/JP2006137677A/en
Application granted granted Critical
Publication of JP4951750B2 publication Critical patent/JP4951750B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)

Description

本発明は、難溶性多糖類の溶解剤および該溶解剤と多糖類を含有してなる組成物に関する。より詳細には、イオン液体の極性がKamlet−Taftβ値で1.02から1. 08である非ハロゲン系イオン液体からなるセルロース、キチン等の難溶性多糖類の溶解剤および当該溶解剤とセルロース、キチン等の難溶 性多糖類とを含有してなる組成物に関する。
The present invention relates to a solubilizing agent for a hardly soluble polysaccharide and a composition comprising the solubilizing agent and a polysaccharide. More specifically, the polarity of the ionic liquid is from 1.02 to 1. Kamlet-Taftβ value. The present invention relates to a solubilizer of a hardly soluble polysaccharide such as cellulose and chitin comprising a non-halogen ionic liquid which is 08 and a composition comprising the solubilizer and a hardly soluble polysaccharide such as cellulose and chitin.

天然界で合成される多糖類(天然多糖類)は、再生型の天然高分子資源として、古くから様々な利用が検討されてきた。天然多糖類には、アルギン酸ナトリウム、アラビアゴム等の水可溶性の多糖類もあるが、キチン・キトサンや綿花などの主成分であるセルロース等の難溶性多糖類は、その分子内・分子間に存在する強固な水素結合により、熱可塑性を示さず,水や一般的な有機溶剤にも不溶である。 Polysaccharides synthesized in nature (natural polysaccharides) have been studied for a long time as regenerated natural polymer resources. Natural polysaccharides include water-soluble polysaccharides such as sodium alginate and gum arabic, but poorly soluble polysaccharides such as cellulose, which is the main component of chitin, chitosan, and cotton, exist within and between molecules. Due to the strong hydrogen bond, it does not show thermoplasticity and is insoluble in water and common organic solvents.

難溶性多糖類の例としてセルロースを挙げ、その溶媒についてまとめると、1857年にセルロースを溶解する銅アンモニウム溶液が発見されて以来、現在までに100以上のセルロース溶解溶媒が報告されている。それらの溶媒はほとんどが単一成分の溶媒でなく、特定の比率で混合された多成分系溶媒であり、例えば、DMSO/二酸化硫黄/アミン(特許文献1)、DMSO/パラホルムアミド(特許文献2)、DMF/四酸化二窒素(非特許文献1)、DMF/塩化ニトロシル(非特許文献2)、DMF/クロラール/ピリジン(非特許文献3)等が知られている。 Taking cellulose as an example of a poorly soluble polysaccharide, and summing up the solvent, since the discovery of a copper ammonium solution that dissolves cellulose in 1857, over 100 cellulose-dissolving solvents have been reported to date. Most of these solvents are not single-component solvents but multi-component solvents mixed at a specific ratio, such as DMSO / sulfur dioxide / amine (Patent Document 1), DMSO / paraformamide (Patent Document 2). ), DMF / dinitrogen tetroxide (non-patent document 1), DMF / nitrosyl chloride (non-patent document 2), DMF / chloral / pyridine (non-patent document 3), and the like are known.

現在のところ、これらの多成分系溶媒を用いて工業的にセルロースの応用がなされている。また、単一成分で使用できる溶媒として、N−メチルモルホリン−N−オキシド(特許文献3及び4)や、ヒドラジン(非特許文献4)等も知られている。しかしながら、これらの公知の溶媒は、毒性の高いものや、爆発性に富むものが多く、その取り扱いには注意が必要である。また、セルロースを誘導体化して溶解させる方法も知られているが、天然状態での溶解ではないので、その利用は限定される。 At present, cellulose is industrially applied using these multi-component solvents. Further, as a solvent that can be used as a single component, N-methylmorpholine-N-oxide (Patent Documents 3 and 4), hydrazine (Non-Patent Document 4), and the like are also known. However, many of these known solvents are highly toxic or explosive, and care must be taken when handling them. In addition, a method of derivatizing and dissolving cellulose is also known, but its use is limited because it is not dissolved in a natural state.

近年、工業化には至っていないものの、学術レベルにおいて、1−ブチル−3−メチルイミダゾリウムクロライド等のハロゲン系オニウム塩がセルロースを溶解すること、セルロースの誘導体化を起こさずに天然状態で溶解が可能となることから、溶解後にセルロースの化学修飾をこのイオン液体中で行うことができることが報告されている(非特許文献5)。しかしながら、これらのイオン液体は、環境に好ましくないハロゲンを含み、且つ、セルロースを溶解させるには、100℃以上の高温加熱とマイクロウェーブ等の物理的処理を必要とする。また、これらセルロースを溶解するイオン液体であっても、セルロースよりも難溶なキチンを溶解するには至っていない。 Although it has not been industrialized in recent years, at the academic level, halogen-based onium salts such as 1-butyl-3-methylimidazolium chloride can dissolve cellulose and can be dissolved in the natural state without causing derivatization of cellulose. Therefore, it has been reported that chemical modification of cellulose can be performed in this ionic liquid after dissolution (Non-Patent Document 5). However, these ionic liquids contain halogens that are unfavorable to the environment, and require high-temperature heating at 100 ° C. or higher and physical treatment such as microwaves to dissolve cellulose. Further, even these ionic liquids that dissolve cellulose have not yet dissolved chitin that is less soluble than cellulose.

特公昭44−2592号公報Japanese Examined Patent Publication No. 44-2592 英国特許第1309234号明細書British Patent No. 1309234 W. F. Folwer ; J. Am. Chem. Soc., 69, 1639 (1947)W. F. Folwer; J. Am. Chem. Soc., 69, 1639 (1947) 中尾、山崎;19回高分子討論会予稿集、1143(1970)Nakao, Yamazaki; Proceedings of the 19th Polymer Symposium, 1143 (1970) K. H. Meyer ; Monatsch., 81, 151 (1950)K. H. Meyer; Monatsch., 81, 151 (1950) 特公昭46−1854号公報Japanese Patent Publication No.46-1854 特公昭47−13529号公報Japanese Patent Publication No.47-13529 M. Litt ; Cellu. Div. Preprints. Mtg. NY (1976)M. Litt; Cellu. Div. Preprints. Mtg. NY (1976) R. P. Swatloski et.al., J. Am. Chem. Soc., 124, 4974 (2002)R. P. Swatloski et.al., J. Am. Chem. Soc., 124, 4974 (2002)

本発明は、上記実情に鑑みなされたものであり、その目的は、セルロース、キチン等の難溶性多糖類の溶解性に優れ、且つ、環境に対して低負荷であり、取り扱いの際に危険性を伴わない難溶性多糖類の溶媒および該溶媒と多糖類とを含有する組成物を提供することにある。 The present invention has been made in view of the above circumstances, and its purpose is excellent in solubility of poorly soluble polysaccharides such as cellulose and chitin, and has a low load on the environment, and is dangerous in handling. It is an object of the present invention to provide a solvent for a hardly soluble polysaccharide without accompanying water and a composition containing the solvent and the polysaccharide.

本発明者等は、上記課題に鑑み、現在セルロースを溶解すると報告されているイオン液体より優れたイオン液体を得るため鋭意研究を続けてきた結果、極性が高く、粘性が比較的低いイオン液体が、上記の課題を解決することを見出し、本発明に至った。即ち、本発明の要旨は、イオン液体の極性がKamlet−Taftβ値で1.02から1.08で ある非ハロゲン系イオン液体からなる 難溶解性多糖類の溶解剤および当該溶解剤と多糖類とを含有してなる組成物に存する。
In view of the above problems, the present inventors have conducted intensive research to obtain an ionic liquid superior to the ionic liquid currently reported to dissolve cellulose. As a result, an ionic liquid having a high polarity and a relatively low viscosity is obtained. The present inventors have found that the above problems can be solved, and have reached the present invention. That is, the gist of the present invention is to provide a solubilizer for a hardly soluble polysaccharide comprising a non-halogen ionic liquid in which the polarity of the ionic liquid is 1.02 to 1.08 in terms of Kamlet-Taft β value, and the solubilizer It exists in the composition formed by containing.

本発明により、セルロース、キチン等の難溶性多糖類の溶解性に優れ、且つ、環境に対して低負荷であり、安全性の高い難溶性多糖類の溶解剤および該溶解剤と多糖類とを含有する組成物が提供される。本発明の組成物は、均一状態でのセルロース、キチン等の難溶性多糖類の化学修飾や機能化に供することができる。また、セルロースやキチン等を誘導体化することなく溶存させることが出来るため、これら難溶性多糖類の膜や繊維等の加工に用いることが可能である。 According to the present invention, a poorly soluble polysaccharide dissolving agent that is excellent in solubility of poorly soluble polysaccharides such as cellulose and chitin and that has a low load on the environment and high safety, and the dissolving agent and polysaccharide Compositions containing are provided. The composition of the present invention can be used for chemical modification and functionalization of poorly soluble polysaccharides such as cellulose and chitin in a uniform state. In addition, since cellulose, chitin and the like can be dissolved without derivatization, they can be used for processing of films and fibers of these hardly soluble polysaccharides.

以下、本発明についての詳細に説明する。本発明に係るイオン液体は、その極性がKa mlet−Taftβ値で1.02から1.08であり、且つハロゲンを含まない。この場合のイオン液体の極性は、水素結合受容性で定義できる。正電荷を帯びたカチオンと負電荷を帯びたアニオンから構成されるイオン液体の場合、アニオンは強く水素結合供与性物質との間に相互作用する。この相互作用はイオン液体を構成するアニオン種によって異なるため、水素結合受容性が高いアニオン種を有するイオン液体を高極性イオン液体と定義する。
Hereinafter, the present invention will be described in detail. The ionic liquid according to the present invention has a Ka mlet-Taft β value of 1.02 to 1.08 and does not contain halogen. In this case, the polarity of the ionic liquid can be defined by hydrogen bond acceptability. In the case of an ionic liquid composed of a positively charged cation and a negatively charged anion, the anion interacts strongly with the hydrogen bond donating substance. Since this interaction differs depending on the anion species constituting the ionic liquid, an ionic liquid having an anionic species with high hydrogen bond acceptability is defined as a highly polar ionic liquid.

イオン液体の極性(水素結合受容性)は、下式に示す4−ニトロアニリンとN,N−ジエチル−4−ニトロアニリンのソルバトクロミズムを比較し、その差から定義できる(非特許文献6参照)。これら2種類の色素はそれぞれ水素結合受容性溶媒中では水素結合供与性基質となり、水素結合供与性溶媒中では4−ニトロアニリンのみが水素結合受容性基質になる。このソルバトクロミズムの差(δΔν)を水素結合の尺度とみなし、受容能の大きい溶媒であるヘキサメチルリン酸トリアミドのδΔν=2800cm−1を標準値に選んで水素結合受容能(β=1.00)とする。
L. Crowhurst et. Al., Phys. Chem. Chem. Phys.,5,2790 (2003)
The polarity (hydrogen bond acceptability) of an ionic liquid can be defined by comparing the solvatochromism of 4-nitroaniline and N, N-diethyl-4-nitroaniline shown in the following formula (see Non-Patent Document 6). ). Each of these two types of dyes becomes a hydrogen bond donating substrate in the hydrogen bond accepting solvent, and only 4-nitroaniline becomes a hydrogen bond accepting substrate in the hydrogen bond accepting solvent. The difference in solvatochromism (δΔν) is regarded as a measure of hydrogen bonding, and δΔν = 2800 cm −1 of a hexamethylphosphoric triamide, which is a solvent having a high accepting ability, is selected as a standard value, and the hydrogen bonding capacity (β = 1. 00).
L. Crowhurst et. Al., Phys. Chem. Chem. Phys., 5, 2790 (2003)

報告されている通常のイオン液体の水素結合受容性を示すKamlet−Taftβ値は構成するアニオンの種類によって異なり、約0.15から0.9程度の範囲に存在する(表1参照)。難溶性多糖類であるセルロースを溶解したと報告されているブチルメチルイミダゾリウムクロライド(CMI−Cl)の極性(水素結合受容性)が0.87であり、他のイオン液体がセルロースを溶解しないことから、難溶解性多糖類の溶解に適した極性の範囲は0.9以上であり、通常0.9〜1.3、好ましくは1.0〜1.2の範囲である。 The reported Kamlet-Taft β value, which indicates the hydrogen bond acceptability of a normal ionic liquid, varies depending on the type of anion to be formed, and is in the range of about 0.15 to 0.9 (see Table 1). Polar poorly soluble polysaccharide in which a reported butylmethylimidazolium chloride and by dissolving cellulose (C 4 MI-Cl) (hydrogen bond accepting property) of 0.87, dissolved cellulose other ionic liquids Therefore, the polarity range suitable for dissolving the hardly soluble polysaccharide is 0.9 or more, and is usually 0.9 to 1.3, preferably 1.0 to 1.2.

本発明に係る極性がKamlet−Taftβ値で1.02から1.08である非ハロゲン系イオン液体を構成するカチオンとしては、特に限定されないが、アンモニウムカチオン及びヘテロ環オニウムカチオンが好ましい。アンモニウムカチオンとしては、例えば、トリメチルプロピルアンモニウムイオン、トリメチルヘキシリルアンモニウムイオン、テトラペンチルアンモニウ ムイオン、ジエチルトリメチル(2−メトキシエチル)アンモニウムイオン等の脂肪族4級アンモニウムイオン、N−ブチル−N−メチルピロリジニウムイオン 等の脂環式4級アンモニウムイオン等が挙げられる
The cation constituting the non-halogen ionic liquid having a Kamlet-Taft β value of 1.02 to 1.08 according to the present invention is not particularly limited, but an ammonium cation and a heterocyclic onium cation are preferable. Examples of the ammonium cation include aliphatic quaternary ammonium ions such as trimethylpropylammonium ion, trimethylhexylammonium ion, tetrapentylammonium ion, diethyltrimethyl (2-methoxyethyl) ammonium ion, N-butyl-N-methylpyrrole, and the like. Examples include alicyclic quaternary ammonium ions such as dinium ions.

ヘテロ環オニウムカチオンとしては、例えば、イミダゾリウムカチオン、ピリジニウムカチオン等が挙げられる。イミダゾリウムカチオンの具体例としては、1−エチル−3−メチルイミダゾリウムイオン、1−ブチル−3−メチルイミダゾリウムイオン、1−プロピル−3−メチルイミダゾリウムイオン等のジアルキルイミダゾリウムカチオン、1−(1,2または3−ヒドロキシプロピル)−3−メチルイミダゾリウムイオン、1,2,3−トリメチルイミダゾリウムイオン、1,2−ジメチル−3−プロピルイミダゾリウムイオン、1−ブチル−2.3−ジメチルイミダゾリウムイオン等のトリアルキルイミダゾリウムカチオンが挙げられる。 Examples of the heterocyclic onium cation include an imidazolium cation and a pyridinium cation. Specific examples of the imidazolium cation include 1-ethyl-3-methylimidazolium ion, 1-butyl-3-methylimidazolium ion, dialkylimidazolium cation such as 1-propyl-3-methylimidazolium ion, 1- (1,2 or 3-hydroxypropyl) -3-methylimidazolium ion, 1,2,3-trimethylimidazolium ion, 1,2-dimethyl-3-propylimidazolium ion, 1-butyl-2.3- And trialkylimidazolium cations such as dimethylimidazolium ion.

ピリジニウムカチオンとしては、N−プロピルピリジニウムイオン、N−ブチルピリジニウムイオン、1−ブチル−4−メチルピリジニウムイオン、1−ブチル−2,4−ジメチルピリジニウムイオン等が挙げられる。 Examples of the pyridinium cation include N-propylpyridinium ion, N-butylpyridinium ion, 1-butyl-4-methylpyridinium ion, 1-butyl-2,4-dimethylpyridinium ion and the like.

本発明に係るイオン液体を構成するアニオンとしては、ハロゲンを含まないものであれば特に限定されないが、例えば、HSO 、CHSO 等の無機アニオンを用いることも出来るが、多糖類の溶解性を高めるという点から、カルボン酸系アニオンが好ましく、中でも、ギ酸アニオン、酢酸アニオン、プロピオン酸アニオン等の炭素数1〜4のカルボン酸系アニオンが特に好ましい。
The anion constituting the ionic liquid according to the present invention is not particularly limited as long as it does not contain a halogen. For example, inorganic anions such as HSO 4 and CH 3 SO 3 can be used. Carboxylic acid type anions are preferable from the viewpoint of improving the solubility of carboxylic acid, and among these, C1-C4 carboxylic acid type anions such as formic acid anion, acetic acid anion and propionic acid anion are particularly preferable.

本発明に係る極性がKamlet−Taftβ値で1.02から1.08である非ハロゲン系イオン液体の一般的な合成方法としては、例えば、ジアルキルイミダゾリウム塩を例にとって述べると、アルキルイミダゾール とハロゲン化アルキルを反応させてジアルキルイミダゾリウムハライドを作成する。生成したジアルキルイミダゾリウムハライドを、これに対する溶解度が低い 有機溶媒に滴下して、沈殿させることで精製を行う。次いで得られたハロゲン化物を目的とするイオン液体のアニオンを含む金属塩やアンモニウム塩と反応させ るか、陰イオン交換樹脂を用いてハロゲン化物を水酸化物に変換した後に目的のアニオンを含む酸で中和することによって目的のイオン液体を得る。
As a general synthesis method of a non-halogen ionic liquid having a Kamlet-Taftβ value of 1.02 to 1.08 according to the present invention, for example, a dialkylimidazolium salt is described as an example. A dialkyl imidazolium halide is produced by reacting an alkyl halide. The resulting dialkylimidazolium halide is purified by dropping it into an organic solvent having low solubility in this and precipitating it. Next, the obtained halide is reacted with a metal salt or ammonium salt containing an anion of the target ionic liquid, or the halide is converted into a hydroxide using an anion exchange resin, and then the acid containing the target anion is used. To obtain the desired ionic liquid.

上記の様にして得られるイオン液体の極性がKamlet−Taftβ値で1.02か ら1.08である非ハロゲン系イオン液体は、高イオン密度であり、広い温度域で液状を示す物質である。融点は、通常100℃未満、好ましくは 80℃以下であり、室温で液状のものが、難溶解性多糖類の溶解に好適に使用出来る。また、蒸気圧が極めて低いか、まったく無いため、高温・減圧下でも蒸発しない。
Halogen-ionic liquid polar ionic liquid obtained in the above manner is 1.02 or et 1.08 in Kamlet-Taftβ value is high ion density, is a substance showing a liquid in a wide temperature range . The melting point is usually less than 100 ° C., preferably 80 ° C. or less, and those which are liquid at room temperature can be suitably used for dissolving hardly soluble polysaccharides. In addition, the vapor pressure is extremely low or not at all, so it does not evaporate even at high temperature and reduced pressure.

本発明に係る難溶解性多糖類としては、例えば、セルロース、キチンやキトサンが挙げられる。特に、セルロースやキチンが好適である。セルロースの基本構造はD−グルコースがβ−1,4−結合した多糖類であり、構成単位である無水グルコース基あたり3つのアルコール性の水酸基を持っている。一方でキチンはN−アセチル−D−グルコサミンがβ−1,4−結合で直鎖状に連なったβ−1,4−ポリ−N−アセチル−D−グルコサミンである。セルロースとキチンの一般的な構造を下式に示す。これらセルロース及びキチンの分子量に関しては特に限定はないが、数十万から数百万程度のものである。 Examples of the hardly soluble polysaccharide according to the present invention include cellulose, chitin and chitosan. In particular, cellulose and chitin are suitable. The basic structure of cellulose is a polysaccharide in which D-glucose is β-1,4-linked, and has three alcoholic hydroxyl groups per anhydroglucose group as a structural unit. On the other hand, chitin is β-1,4-poly-N-acetyl-D-glucosamine in which N-acetyl-D-glucosamine is linked in a straight chain with β-1,4-linkages. The general structure of cellulose and chitin is shown in the following formula. There are no particular limitations on the molecular weight of these cellulose and chitin, but they are of the order of hundreds of thousands to millions.

次に、本発明の組成物、すなわち、上記のイオン液体の極性がKamlet−Taft β値で1.02から1.08である非ハロゲン系イオン液体と難溶性多糖類とを含有する組成物について説明する。難溶性多糖類としては、セル ロース、キチンやキトサン等が好適に用いられる。イオン液体は、溶解性の点から、加熱真空脱水して含水量0.1質量%以下としたものを使用するのが好まし い。この場合、加熱温度、減圧度などは、イオン液体の種類に応じて適宜選定すればよい。また、含水量は、カーフィッシャー水分計により、簡易に測定することが出来る。多糖類の形状は、溶解促進の点から、細片としたものが好ましい。
Next, the composition of the present invention, that is, a composition containing a non-halogen ionic liquid in which the polarity of the ionic liquid is 1.02 to 1.08 in terms of Kamlet-Taft β value and a poorly soluble polysaccharide. explain. Cellulose, chitin, chitosan and the like are preferably used as the hardly soluble polysaccharide. From the viewpoint of solubility, it is preferable to use an ionic liquid having a water content of 0.1% by mass or less by heat vacuum dehydration. In this case, the heating temperature, the degree of reduced pressure, etc. may be appropriately selected according to the type of ionic liquid. The water content can be easily measured with a car fischer moisture meter. The shape of the polysaccharide is preferably a fine piece from the viewpoint of promoting dissolution.

イオン液体中に多糖類を含有させる方法としては、例えば、イオン液体中に所定量の多糖類を添加した後、加熱して溶解させる。加熱溶解時間は、通常10分間程度で、簡易な攪拌で十分である。溶解温度としては、セルロースの場合、通常40℃以上、好ましくは40〜80℃、特に好ましくは60〜75℃である。多糖類がイオン液体中に溶解したことの確認は、当初白濁状の液状組成物が、均一透明になることにより判断できる。加熱溶解により均一透明になった液状組成物は、その後、室温まで冷却しても、溶解した多糖類が析出して再び白濁を呈することはない。 As a method for incorporating a polysaccharide in the ionic liquid, for example, a predetermined amount of polysaccharide is added to the ionic liquid, and then dissolved by heating. The heating and dissolving time is usually about 10 minutes, and simple stirring is sufficient. In the case of cellulose, the dissolution temperature is usually 40 ° C. or higher, preferably 40 to 80 ° C., particularly preferably 60 to 75 ° C. Confirmation that the polysaccharide was dissolved in the ionic liquid can be determined by the fact that the initially cloudy liquid composition becomes uniformly transparent. Even if the liquid composition that has become uniform and transparent by heating and dissolving is then cooled to room temperature, the dissolved polysaccharide does not precipitate and does not become cloudy again.

イオン液体中に於ける多糖類の含有量は、使用するイオン液体の種類と多糖類の種類によって溶解度が異なるため、一概には決められないが、組成物中の難溶性多糖類の含有量として、通常1.0〜5質量%程度である。イオン液体に難溶性多糖類を溶解した組成物の性状は、含有する多糖類の種類と量により異なるが、一般に、室温・低濃度ではやや粘稠な液状であり、温度を高めることにより粘度は低下する。従って、適宜加熱することにより、多糖類の化学修飾や機能化などに供する。また、高濃度ではゲル状を示すのでソフトマテリアルとして、種々の応用が可能である。 The content of the polysaccharide in the ionic liquid varies depending on the type of ionic liquid used and the type of polysaccharide, so it cannot be determined unconditionally, but the content of the poorly soluble polysaccharide in the composition Usually, it is about 1.0-5 mass%. The properties of a composition in which a poorly soluble polysaccharide is dissolved in an ionic liquid vary depending on the type and amount of polysaccharide contained, but in general, it is a slightly viscous liquid at room temperature and low concentration. descend. Therefore, it is used for chemical modification and functionalization of polysaccharides by appropriately heating. Moreover, since it shows a gel form at a high concentration, various applications are possible as a soft material.

以下、実施例および比較例を挙げて本発明を詳細に説明するが、本発明はこれらの実施例によって何ら制限を受けるものではない。尚、以下の実施例におけるイオン液体の構造確認は、1H−NMR(日本電子(株)社製 Alpha−500)を用いて行った。また、イオン液体に添加したセルロース(ろ紙)が溶解したことは、目視により、セルロース(ろ紙)が分散混合した状態から均一透明な溶液になることで判断した。イオン液体の極性値はKamlet−Taftパラメーター測定により行った。 EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in detail, this invention is not restrict | limited at all by these Examples. In addition, the structure confirmation of the ionic liquid in the following examples was performed using 1H-NMR (JEOL Co., Ltd. Alpha-500). The dissolution of the cellulose (filter paper) added to the ionic liquid was judged by visual observation from the state in which the cellulose (filter paper) was dispersed and mixed into a uniform transparent solution. The polarity value of the ionic liquid was determined by measuring the Kamlet-Taft parameter.

実施例1
N−メチルイミダゾール(和光純薬工業(株)社製)と小過剰モル量の1−ブロモブタン(東京化成工業(株)社製)を窒素雰囲気下、0℃で混合し、3日間氷浴中で攪拌した。反応後に減圧下で未反応の1−ブロモブタンを留去し、得られた溶液をジエチルエーテル(関東化学(株)社製)300mlに滴下し、1時間激しく攪拌した。攪拌後に1時間静置し、上澄みのジエチルエーテル層を除去した。沈殿物にさらにジエチルエーテル300mlを添加して1時間激しく攪拌した。攪拌後に1時間静置し、ジエチルエーテル層を除去した。沈殿物にさらにジエチルエーテル300mlを添加して1時間激しく攪拌した。攪拌後に1時間静置し、ジエチルエーテル層を除去し、白色固体を得た。得られた塩を50℃で24時間の加熱真空乾燥を行いブチルメチルイミダゾリウムブロマイド(C4MI−Br)を得た。
Example 1
N-methylimidazole (manufactured by Wako Pure Chemical Industries, Ltd.) and a small excess molar amount of 1-bromobutane (manufactured by Tokyo Chemical Industry Co., Ltd.) are mixed at 0 ° C. in a nitrogen atmosphere and kept in an ice bath for 3 days. And stirred. After the reaction, unreacted 1-bromobutane was distilled off under reduced pressure, and the resulting solution was added dropwise to 300 ml of diethyl ether (manufactured by Kanto Chemical Co., Inc.) and stirred vigorously for 1 hour. After stirring, the mixture was allowed to stand for 1 hour, and the supernatant diethyl ether layer was removed. 300 ml of diethyl ether was further added to the precipitate and stirred vigorously for 1 hour. After stirring, the mixture was allowed to stand for 1 hour, and the diethyl ether layer was removed. 300 ml of diethyl ether was further added to the precipitate and stirred vigorously for 1 hour. After stirring, the mixture was allowed to stand for 1 hour, and the diethyl ether layer was removed to obtain a white solid. The obtained salt was heated and vacuum dried at 50 ° C. for 24 hours to obtain butylmethylimidazolium bromide (C4MI-Br).

得られたC4MI−Br3.40gを100mlの脱イオン水に溶解し、2Mの水酸化ナトリウム(関東化学(株)社製)8リットルを72時間かけて通薬することで再生したアニオン交換樹脂(Amberlite IER−400 OH型 Supelco(株)社製)150mlを充填したカラムに72時間かけて通薬し、ブチルメチルイミダゾリウムハイドロキサイド(C4MIm−OH)を得た。 3. Anion exchange resin regenerated by dissolving 3.40 g of the resulting C4MI-Br in 100 ml of deionized water and passing 8 liters of 2M sodium hydroxide (manufactured by Kanto Chemical Co., Ltd.) over 72 hours ( Amberlite IER-400 OH type (manufactured by Superco) was passed through a column packed with 150 ml for 72 hours to obtain butylmethylimidazolium hydroxide (C4MIm-OH).

次いで、得られたC4MIm−OHに等モル量のギ酸(和光純薬工業(株)社製)を添加し、24時間氷浴中で攪拌した。溶媒を減圧下で留去したあと、反応生成物をジエチルエーテル300mlに滴下して、沈殿した液体を回収した。沈殿物をメタノール(和光純薬工業(株)社製)2mlに溶解させた溶液を、ジエチルエーテル300ml中に滴下し、沈殿した液体を回収した。得られた生成物を80℃において加熱真空乾燥することにより、イオン液体ブチルメチルイミダゾリウムホルメイト(C4MIm−HCOO)を得た。このC4MIm−HCOO 0.25gを80℃で24時間加熱真空乾燥し、窒素雰囲気下でセルロース(ろ紙)10mgと混合し、密閉した後、過熱しながらセルロースの溶解温度を記録した。その結果、セルロース10mgが完全に溶解する温度は65℃であった。このものの極性はβ=1.02であった。 Next, an equimolar amount of formic acid (manufactured by Wako Pure Chemical Industries, Ltd.) was added to the obtained C4MIm-OH and stirred in an ice bath for 24 hours. After the solvent was distilled off under reduced pressure, the reaction product was added dropwise to 300 ml of diethyl ether to recover the precipitated liquid. A solution in which the precipitate was dissolved in 2 ml of methanol (manufactured by Wako Pure Chemical Industries, Ltd.) was dropped into 300 ml of diethyl ether, and the precipitated liquid was recovered. The obtained product was heated and vacuum dried at 80 ° C. to obtain ionic liquid butylmethylimidazolium formate (C4MIm-HCOO). 0.25 g of this C4MIm-HCOO was heated and vacuum dried at 80 ° C. for 24 hours, mixed with 10 mg of cellulose (filter paper) under a nitrogen atmosphere, sealed, and then the cellulose dissolution temperature was recorded while heating. As a result, the temperature at which 10 mg of cellulose was completely dissolved was 65 ° C. The polarity of this was β = 1.02.

実施例2
実施例1において、C4MIm−OHに等モル量の酢酸(和光純薬工業(株)社製)を添加した以外は、実施例1と同様にして、イオン液体ブチルメチルイミダゾリウムアセテート(C4MIm−C1COO)を得た。このものの極性はβ=1.08であった。このC4MIm−C1COO 0.25gを80℃で24時間加熱真空乾燥し、実施例1と同様にして、セルロースの溶解温度を記録した結果、セルロース10mgが完全に溶解する温度は70℃であった。
Example 2
In Example 1, except that an equimolar amount of acetic acid (manufactured by Wako Pure Chemical Industries, Ltd.) was added to C4MIm-OH, ionic liquid butylmethylimidazolium acetate (C4MIm-C1COO) was obtained in the same manner as in Example 1. ) The polarity of this was β = 1.08. 0.25 g of this C4MIm-C1COO was heated and vacuum dried at 80 ° C. for 24 hours, and the dissolution temperature of cellulose was recorded in the same manner as in Example 1. As a result, the temperature at which 10 mg of cellulose was completely dissolved was 70 ° C.

実施例3
実施例1において、N−メチルイミダゾールと小過剰モル量の臭化アリル(和光純薬工業(株)社製)を用い、2日間氷浴中で攪拌した他は、実施例1と同様にして、粘性液体を得た。得られた塩を50℃で24時間の加熱真空乾燥を行いアリルメチルイミダゾリウムブロマイド(AllylMIm−Br)を得、このAllylMIm−Br 3.40gを、実施例1と同様に、アニオン交換樹脂を充填したカラムに通薬して、アリルメチルイミダゾリウムハイドロキサイド(AllylMIm−OH)を得た。
Example 3
In Example 1, N-methylimidazole and a small excess molar amount of allyl bromide (manufactured by Wako Pure Chemical Industries, Ltd.) were used, and the mixture was stirred in an ice bath for 2 days. A viscous liquid was obtained. The obtained salt was heated and vacuum dried at 50 ° C. for 24 hours to obtain allylmethylimidazolium bromide (AllylMIm-Br), and 3.40 g of this AllylMIm-Br was filled with an anion exchange resin in the same manner as in Example 1. Allylmethylimidazolium hydroxide (AllylMIm-OH) was obtained by passing through the column.

次いで、得られたAllylMIm−OHに等モル量のギ酸を添加し、実施例1と同様にして、イオン液体アリルメチルイミダゾリウムホルメイト(AllylMIm−HCOO)を得た。このAllylMIm−HCOO 0.25gを80℃で24時間加熱真空乾燥し、実施例1と同様にして、セルロースの溶解温度を記録した結果、セルロース10mgが完全に溶解する温度は58℃であった。このものの極性はβ=1.02であった。 Next, an equimolar amount of formic acid was added to the obtained AllylMIm-OH, and ionic liquid allylmethylimidazolium formate (AllylMIm-HCOO) was obtained in the same manner as in Example 1. 0.25 g of this AllylMIm-HCOO was heated and vacuum dried at 80 ° C. for 24 hours, and the dissolution temperature of cellulose was recorded in the same manner as in Example 1. As a result, the temperature at which 10 mg of cellulose was completely dissolved was 58 ° C. The polarity of this was β = 1.02.

実施例4
実施例1において、N−メチルイミダゾールと小過剰モル量のブロモプロパン(東京化成工業(株)社製)を用い、2日間氷浴中で攪拌した他は、実施例1と同様にして、プロピルメチルイミダゾリウムブロマイド(C3MIm−Br)を得た。このC3MIm−Br 3.40gを、実施例1と同様に、アニオン交換樹脂を充填したカラムに通薬して、プロピルメチルイミダゾリウムハイドロキサイド(C3MIm−OH)を得た。
Example 4
In Example 1, propylpropane was used in the same manner as in Example 1 except that N-methylimidazole and a small excess molar amount of bromopropane (manufactured by Tokyo Chemical Industry Co., Ltd.) were used and stirred in an ice bath for 2 days. Methyl imidazolium bromide (C3MIm-Br) was obtained. In the same manner as in Example 1, 3.40 g of C3MIm-Br was passed through a column filled with an anion exchange resin to obtain propylmethylimidazolium hydroxide (C3MIm-OH).

次いで、得られたC3MIm−OHに等モル量のギ酸を添加し、実施例1と同様にして、イオン液体プロピルメチルイミダゾリウムホルメイト(C3MIm−HCOO)を得た。このC3MIm−HCOO 0.25gを80℃で24時間加熱真空乾燥し、実施例1と同様にして、セルロースの溶解温度を記録した結果、セルロース10mgが完全に溶解する温度は60℃であった。このものの極性はβ=1.04であった。 Next, an equimolar amount of formic acid was added to the obtained C3MIm-OH, and ionic liquid propylmethylimidazolium formate (C3MIm-HCOO) was obtained in the same manner as in Example 1. 0.25 g of this C3MIm-HCOO was heated and vacuum dried at 80 ° C. for 24 hours, and the dissolution temperature of cellulose was recorded in the same manner as in Example 1. As a result, the temperature at which 10 mg of cellulose was completely dissolved was 60 ° C. The polarity of this was β = 1.04.

実施例5
実施例1において、N−メチルイミダゾールと小過剰モル量のブロモエタン(東京化成工業(株)社製)を用い、2日間氷浴中で攪拌した他は、実施例1と同様にして、エチルメチルイミダゾリウムブロマイド(C2MIm−Br)を得た。このC2MIm−Br 3.40gを、実施例1と同様に、アニオン交換樹脂を充填したカラムに通薬して、エチルメチルイミダゾリウムハイドロキサイド(C2MIm−OH)を得た。次いで、得られたC2MIm−OHに等モル量のギ酸を添加し、実施例1と同様にして、白色固体エチルメチルイミダゾリウムホルメイト(C2MIm−HCOO)を得た。このものの極性はβ=1.05であった。
Example 5
In Example 1, ethyl methyl was used in the same manner as in Example 1 except that N-methylimidazole and a small excess molar amount of bromoethane (manufactured by Tokyo Chemical Industry Co., Ltd.) were used and stirred in an ice bath for 2 days. Imidazolium bromide (C2MIm-Br) was obtained. In the same manner as in Example 1, 3.40 g of this C2MIm-Br was passed through a column packed with an anion exchange resin to obtain ethylmethylimidazolium hydroxide (C2MIm-OH). Next, an equimolar amount of formic acid was added to the obtained C2MIm-OH, and white solid ethylmethylimidazolium formate (C2MIm-HCOO) was obtained in the same manner as in Example 1. The polarity of this was β = 1.05.

上記により得られたC2MIm−HCOOと実施例4で得られたC3MIm−HCOO とを各0.125gずつ混合し24時間攪拌することで多成分系イオン液体[C3MIm,C2MIm]−2HCOOを得た。この多成分系イオン液体[C3MIm,C2MIm]−2HCOO 0.25gを80℃で24時間加熱真空乾燥し、実施例1と同様にして、セルロースの溶解温度を記録した結果、セルロース10mgが完全に溶解する温度は55℃であった。 C2MIm-HCOO obtained in the above and C3MIm-HCOO obtained in Example 4 were mixed in 0.125 g each and stirred for 24 hours to obtain a multicomponent ionic liquid [C3MIm, C2MIm] -2HCOO. 0.25 g of this multi-component ionic liquid [C3MIm, C2MIm] -2HCOO was heated and vacuum dried at 80 ° C. for 24 hours, and the dissolution temperature of cellulose was recorded in the same manner as in Example 1. As a result, 10 mg of cellulose was completely dissolved. The temperature to perform was 55 ° C.

実施例6
実施例1において、C4MIm−OHに等モル量の酢酸(和光純薬工業(株)社製)を添加した以外は、実施例1と同様にして、イオン液体ブチルメチルイミダゾリウムアセテート(C4MIm−C1COO)を得た。このC4MIm−C1COO 1.0gを80℃で24時間加熱真空乾燥し窒素雰囲気下でキチン(和光純薬工業(株)社製)5mgと混合し、密閉した後、過熱しながらキチンの溶解温度を記録した。その結果、キチン5mgが完全に溶解する温度は120℃であった。
Example 6
In Example 1, except that an equimolar amount of acetic acid (manufactured by Wako Pure Chemical Industries, Ltd.) was added to C4MIm-OH, ionic liquid butylmethylimidazolium acetate (C4MIm-C1COO) was obtained in the same manner as in Example 1. ) 1.0 g of this C4MIm-C1COO was heated and dried in a vacuum at 80 ° C. for 24 hours, mixed with 5 mg of chitin (manufactured by Wako Pure Chemical Industries, Ltd.) in a nitrogen atmosphere, sealed, Recorded. As a result, the temperature at which 5 mg of chitin was completely dissolved was 120 ° C.

本発明のイオン液体の極性がKamlet−Taftβ値で1.02から1.08であ 非ハロゲン系イオン液体からなる難溶性多糖類の溶解剤は、セルロース、キチン等の難溶性多糖類を溶存させる必要がある全ての用途に適用可能であり、均一状態での化学修飾や機能化に供することができる。例えば、本発明の溶解剤にセルロース等の難溶性多糖類を溶解した組成物を用いて、フィルムや繊維等の加工、他の物質との複合材料も可能であり、更には、多糖類を高濃度に溶解させたゲルとしてソフトマテリアルとしての応用も可能である。Halogen-consists ionic liquid hardly soluble polysaccharide solubilizers polar ionic liquid Ru 1.02 1.08 der in Kamlet-Taftβ value of the present invention, cellulose, insoluble polysaccharides chitin dissolved It can be applied to all uses that need to be performed, and can be used for chemical modification and functionalization in a uniform state. For example, by using a composition in which a poorly soluble polysaccharide such as cellulose is dissolved in the solubilizer of the present invention, it is possible to process films, fibers, etc., and composite materials with other substances. Application as a soft material is also possible as a gel dissolved in a concentration.

図1は実施例1において得られたブチルメチルイミダゾリウムホルメイトの1H−NMRチャート図である。FIG. 1 is a 1H-NMR chart of butylmethylimidazolium formate obtained in Example 1.

Claims (3)

ブチルメチルイミダゾリウムホルメイト、ブチルメチルイミダゾリウムアセテート、アリルメチルイミダゾリウムホルメイト、プロピルメチルイミダゾリウムホルメイトより選ばれるイオン液体又はプロピルメチルイミダゾリウムホルメイトとエチルメチルイミダゾリウムホルメイトよりなる多成分系イオン液体からなる、セルロース又はキチンの溶解剤。
An ionic liquid selected from butyl methyl imidazolium formate, butyl methyl imidazolium acetate, allyl methyl imidazolium formate, propyl methyl imidazolium formate, or a multicomponent system comprising propyl methyl imidazolium formate and ethyl methyl imidazolium formate Cellulose or chitin solubilizer comprising an ionic liquid .
ブチルメチルイミダゾリウムホルメイト、ブチルメチルイミダゾリウムアセテート、アリルメチルイミダゾリウムホルメイト、プロピルメチルイミダゾリウムホルメイトより選ばれるイオン液体又はプロピルメチルイミダゾリウムホルメイトとエチルメチルイミダゾリウムホルメイトよりなる多成分系イオン液体にセルロース又はキチンを溶解し含有してなることを特徴とする組成物。 An ionic liquid selected from butyl methyl imidazolium formate, butyl methyl imidazolium acetate, allyl methyl imidazolium formate, propyl methyl imidazolium formate, or a multicomponent system comprising propyl methyl imidazolium formate and ethyl methyl imidazolium formate A composition comprising cellulose or chitin dissolved in an ionic liquid . 前記組成物中のセルロース又はキチンの含有量が1乃至5質量%である請求項記載の組成物。 The composition according to claim 2, wherein the content of cellulose or chitin in the composition is 1 to 5% by mass.
JP2004326165A 2004-11-10 2004-11-10 Dissolving agent for poorly soluble polysaccharide and composition comprising said dissolving agent and polysaccharide Expired - Lifetime JP4951750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004326165A JP4951750B2 (en) 2004-11-10 2004-11-10 Dissolving agent for poorly soluble polysaccharide and composition comprising said dissolving agent and polysaccharide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004326165A JP4951750B2 (en) 2004-11-10 2004-11-10 Dissolving agent for poorly soluble polysaccharide and composition comprising said dissolving agent and polysaccharide

Publications (2)

Publication Number Publication Date
JP2006137677A JP2006137677A (en) 2006-06-01
JP4951750B2 true JP4951750B2 (en) 2012-06-13

Family

ID=36618725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004326165A Expired - Lifetime JP4951750B2 (en) 2004-11-10 2004-11-10 Dissolving agent for poorly soluble polysaccharide and composition comprising said dissolving agent and polysaccharide

Country Status (1)

Country Link
JP (1) JP4951750B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7763715B2 (en) * 2005-04-22 2010-07-27 The Procter & Gamble Company Extracting biopolymers from a biomass using ionic liquids
WO2007049485A1 (en) * 2005-10-25 2007-05-03 Nisshinbo Industries, Inc. Process for producing cellulose solution, cellulose solution, and process for producing regenerated cellulose
WO2008084705A1 (en) * 2007-01-09 2008-07-17 Kanazawa University Method for production of anhydro sugar in ionic liquid
US7919631B2 (en) * 2007-02-14 2011-04-05 Eastman Chemical Company Production of ionic liquids
US9834516B2 (en) 2007-02-14 2017-12-05 Eastman Chemical Company Regioselectively substituted cellulose esters produced in a carboxylated ionic liquid process and products produced therefrom
US10174129B2 (en) 2007-02-14 2019-01-08 Eastman Chemical Company Regioselectively substituted cellulose esters produced in a carboxylated ionic liquid process and products produced therefrom
JP2010111707A (en) * 2007-02-22 2010-05-20 Nisshinbo Holdings Inc Polymer treating agent and dope
JP2010132558A (en) * 2007-03-16 2010-06-17 Nisshinbo Holdings Inc Treating agent for polysaccharides
US8188267B2 (en) 2008-02-13 2012-05-29 Eastman Chemical Company Treatment of cellulose esters
US8354525B2 (en) 2008-02-13 2013-01-15 Eastman Chemical Company Regioselectively substituted cellulose esters produced in a halogenated ionic liquid process and products produced therefrom
US8158777B2 (en) 2008-02-13 2012-04-17 Eastman Chemical Company Cellulose esters and their production in halogenated ionic liquids
US9777074B2 (en) 2008-02-13 2017-10-03 Eastman Chemical Company Regioselectively substituted cellulose esters produced in a halogenated ionic liquid process and products produced therefrom
JP5219216B2 (en) * 2009-01-29 2013-06-26 国立大学法人 鹿児島大学 Method for producing xanthan gel and xanthan hydrogel
JP5544507B2 (en) * 2009-03-19 2014-07-09 株式会社豊田中央研究所 Method for producing degradation products from cellulose-containing materials
US8067488B2 (en) 2009-04-15 2011-11-29 Eastman Chemical Company Cellulose solutions comprising tetraalkylammonium alkylphosphate and products produced therefrom
JP5120965B2 (en) 2009-08-06 2013-01-16 株式会社豊田中央研究所 Method for producing useful substance from cellulose-containing material
JP5820688B2 (en) 2011-03-23 2015-11-24 株式会社Kri Solvent used for dissolving polysaccharide, molded product using the solvent, and method for producing polysaccharide derivative
US9796791B2 (en) 2011-04-13 2017-10-24 Eastman Chemical Company Cellulose ester optical films
JP6295495B2 (en) * 2013-07-17 2018-03-20 福井県 Method for synthesizing ammonium salt and composition containing polysaccharide in synthesized ammonium salt
WO2015111619A1 (en) * 2014-01-24 2015-07-30 日東紡績株式会社 Type i crystal-containing long regenerated cellulose fibers
JPWO2015186364A1 (en) * 2014-06-06 2017-04-20 株式会社ブリヂストン tire
JP7233669B2 (en) * 2017-05-22 2023-03-07 国立大学法人金沢大学 Poorly soluble substance solubilizer containing zwitterion
CN107759546A (en) * 2017-11-13 2018-03-06 天津工业大学 A kind of method that catalyzed conversion chitin and monomer N acetylglucosamine prepares the acetyl furan of 3 acetylamino 5
WO2024224842A1 (en) * 2023-04-26 2024-10-31 フタムラ化学株式会社 Cellulose molded body production method and cellulose molded body

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824599B2 (en) * 2001-10-03 2004-11-30 The University Of Alabama Dissolution and processing of cellulose using ionic liquids

Also Published As

Publication number Publication date
JP2006137677A (en) 2006-06-01

Similar Documents

Publication Publication Date Title
JP4951750B2 (en) Dissolving agent for poorly soluble polysaccharide and composition comprising said dissolving agent and polysaccharide
El Seoud et al. Applications of ionic liquids in carbohydrate chemistry: a window of opportunities
Sharma et al. Dissolution of α-chitin in deep eutectic solvents
Trivedi et al. Facile preparation of agarose–chitosan hybrid materials and nanocomposite ionogels using an ionic liquid via dissolution, regeneration and sol–gel transition
Collins et al. Investigation of the swelling behavior of crosslinked hyaluronic acid films and hydrogels produced using homogeneous reactions
Mikkola et al. Ultrasound enhancement of cellulose processing in ionic liquids: from dissolution towards functionalization
Furuike et al. Preparation of chitosan hydrogel and its solubility in organic acids
Guerry et al. Aniline-catalyzed reductive amination as a powerful method for the preparation of reducing end-“clickable” chitooligosaccharides
US20090149579A1 (en) Polyrotaxane-containing solution and use thereof
Depoorter et al. Fully biosourced materials from combination of choline chloride-based deep eutectic solvents and guar gum
Kostag et al. Acetone‐Based Cellulose Solvent
Kurita et al. N-Alkylations of chitosan promoted with sodium hydrogen carbonate under aqueous conditions
Wittmar et al. Factors affecting the nonsolvent-induced phase separation of cellulose from ionic liquid-based solutions
NO154308B (en) INCLUSION COMPLICATIONS OF CYCLODEXTRINES AND PHOSPHOROUS, SULFUR OR SALPETIC ACID, AND PROCEDURE FOR THE PREPARATION OF THESE.
JP2014532106A (en) Method for producing amine group-containing oligosaccharide
Rosca et al. Polyelectrolyte complexes of chitosan with dextran sulphate. synthesis and characterization
Lamarque et al. Thermodynamic aspects of the heterogeneous deacetylation of β-chitin: Reaction mechanisms
Araki Polyrotaxane derivatives. II. Preparation and characterization of ionic polyrotaxanes and ionic slide‐ring gels
Ma et al. Dissolution and functionalization of celluloses using 1, 2, 3-triazolium ionic liquid
Davydova et al. The conformation of chitosan molecules in aqueous solutions
Nakagawa et al. Synthesis and thermoreversible gelation of diblock methylcellulose analogues via Huisgen 1, 3-dipolar cycloaddition
Takada et al. Preparation of cellulosic soft and composite materials using ionic liquid media and ion gels
NO821071L (en) APPLICABLE COMPOSITION BASED ON A CELLULOSE EETER, PROCEDURE FOR THE PREPARATION OF A GEL, PROCEDURE FOR REVERSIBLE REMOVAL OF THE GEL AND ITS APPLICATION IN SECONDARY TRANSPORTATION OF OIL OIL
WO2013146745A1 (en) Method of producing gel containing ionic liquid
KR19990077979A (en) Method for preparation of amphoteric guar gum derivatives

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100915

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110817

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110805

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110817

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20111202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150