JP4935582B2 - Waste disposal method - Google Patents

Waste disposal method Download PDF

Info

Publication number
JP4935582B2
JP4935582B2 JP2007219552A JP2007219552A JP4935582B2 JP 4935582 B2 JP4935582 B2 JP 4935582B2 JP 2007219552 A JP2007219552 A JP 2007219552A JP 2007219552 A JP2007219552 A JP 2007219552A JP 4935582 B2 JP4935582 B2 JP 4935582B2
Authority
JP
Japan
Prior art keywords
charging
solid waste
waste
amount
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007219552A
Other languages
Japanese (ja)
Other versions
JP2009052800A (en
Inventor
武 内山
益人 清水
史洋 三好
純夫 山田
剛 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2007219552A priority Critical patent/JP4935582B2/en
Publication of JP2009052800A publication Critical patent/JP2009052800A/en
Application granted granted Critical
Publication of JP4935582B2 publication Critical patent/JP4935582B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Incineration Of Waste (AREA)

Description

本発明は、固体廃棄物を燃焼、ガス化又はガス化改質処理する固体廃棄物の処理方法に関する。   The present invention relates to a solid waste processing method for burning, gasifying, or gasifying and reforming solid waste.

現在、廃棄物処理場の不足などが顕在化しており、産業廃棄物あるいは一般廃棄物の多くは、発生したままの姿で、あるいは何らかの事前処理の上、焼却処分され減溶化された後に埋立てなどの最終処分が行われる場合が多い。上記した焼却処分の方法としては様々な方法が挙げられるが、近年、焼却場における発生ガス中のダイオキシンなど有害物質の管理が問題となっており、高温酸化雰囲気で有害物質を分解することが可能な処理方法が求められてきている。   Currently, there is a shortage of waste disposal sites, and much of industrial waste or general waste is landfilled as it is or after being incinerated and reduced in some form of pretreatment. In many cases, final disposal is performed. There are various methods for the above incineration disposal, but in recent years, management of harmful substances such as dioxin in the gas generated in incineration has become a problem, and it is possible to decompose harmful substances in a high-temperature oxidizing atmosphere. There is a need for a new processing method.

このような高温処理が可能な廃棄物処理方法としては例えば特許文献1、特許文献2及び特許文献3に開示された廃棄物処理プロセスが挙げられる。
これらは、廃棄物を圧縮成形後、加熱し、生成した圧縮成形物を溶融、ガス化して燃料ガスを得る廃棄物処理プロセスである。このプロセスでは、先ず、廃棄物投入口から圧縮装置内に所定量供給した廃棄物をバッチ的に圧縮装置によって圧縮して緊密な圧縮成形物とする。次に、この圧縮成形物を外部から加熱された細長いトンネル式の加熱炉(以下トンネル式加熱炉と記す)内へ押し込む。この動作を繰り返すことによって、圧縮成形物がトンネル式加熱炉の装入口から排出口へ順次移動していく。こうして圧縮成形物がトンネル式加熱炉を移動する間に水分は蒸発し、表面は炭化される。
Examples of the waste treatment method capable of such high temperature treatment include waste treatment processes disclosed in Patent Literature 1, Patent Literature 2, and Patent Literature 3.
These are waste treatment processes in which waste is compression-molded and then heated, and the produced compression-molded product is melted and gasified to obtain fuel gas. In this process, first, the waste supplied in a predetermined amount from the waste inlet into the compression device is batch-compressed by the compression device to form a close compression molded product. Next, the compression molded product is pushed into an elongated tunnel type heating furnace (hereinafter referred to as a tunnel type heating furnace) heated from the outside. By repeating this operation, the compression molded product sequentially moves from the charging inlet of the tunnel heating furnace to the outlet. In this way, the moisture evaporates and the surface is carbonized while the compression molded product moves through the tunnel furnace.

トンネル式加熱炉で表面を炭化された圧縮成形物は、高温反応炉装入口から高温反応炉内に装入される。高温反応炉下部には酸素含有ガス供給配管が設置されており、高温反応炉内に酸素含有ガスを供給することにより、圧縮成形物中の可燃分は酸素含有ガスにより燃焼、熱分解してガス化される。ガス改質炉が高温反応炉上部に設けられている場合には、ガス化したガスは高温反応炉上部に直結されたガス改質炉に供給され、不燃分は高温反応炉下部で溶融し、溶融金属および溶融スラグで構成される溶融物となって高温反応炉下部の溶融物排出口から回収される。   The compression-molded product whose surface is carbonized in the tunnel-type heating furnace is charged into the high-temperature reactor from the high-temperature reactor inlet. An oxygen-containing gas supply pipe is installed at the lower part of the high-temperature reactor. By supplying the oxygen-containing gas into the high-temperature reactor, the combustible component in the compression molded product is burned and pyrolyzed by the oxygen-containing gas. It becomes. When the gas reforming furnace is provided at the upper part of the high temperature reactor, the gasified gas is supplied to the gas reforming furnace directly connected to the upper part of the high temperature reactor, and the incombustible material is melted at the lower part of the high temperature reactor. It becomes a melt composed of molten metal and molten slag and is recovered from the melt outlet at the bottom of the high temperature reactor.

ガス改質炉下部には酸素含有ガス供給配管が設置されており、ガス改質炉内に酸素含有ガスを供給することにより、高温反応炉から供給された熱分解ガスの一部を燃焼させ、ガス温度を1000℃以上に維持する。ガス改質炉から排出されるガスは、冷却、除塵、脱硫、除湿等のガス精製工程を経て、一酸化炭素と水素を含む燃料用ガスとして回収できる。   An oxygen-containing gas supply pipe is installed at the lower part of the gas reforming furnace, and by supplying an oxygen-containing gas into the gas reforming furnace, a part of the pyrolysis gas supplied from the high-temperature reactor is burned, The gas temperature is maintained at 1000 ° C. or higher. The gas discharged from the gas reforming furnace can be recovered as a fuel gas containing carbon monoxide and hydrogen through gas purification steps such as cooling, dedusting, desulfurization, and dehumidification.

前記した廃棄物処理設備の場合、高温反応炉下部に酸素含有ガスを一定量で供給していても、廃棄物組成の変動、あるいは供給した酸素含有ガスと圧縮成形物の接触状況等によりガス改質炉へ供給される熱分解ガス量、組成が大きく変動する。例えば、高温反応炉に供給した酸素量に対して熱分解ガスの発生量が少ない場合には、ガス改質炉で一定量の酸素含有ガスを供給していると、熱分解ガスに対する酸素量が過剰となるため、ガス中の可燃性ガス濃度が低下し、ガス中に酸素が残存する懸念がある。ガス改質炉から排出されるガスはガス精製の工程で冷却されるため、上記のようにガス中に酸素が残存していると冷却後のガスに酸素が混合して爆発の危険性がある。   In the case of the waste treatment facility described above, even if a constant amount of oxygen-containing gas is supplied to the lower part of the high-temperature reactor, the gas reforming may occur due to changes in the waste composition or the contact status between the supplied oxygen-containing gas and the compression molded product. The amount and composition of pyrolysis gas supplied to the quality furnace varies greatly. For example, when the amount of pyrolysis gas generated is small relative to the amount of oxygen supplied to the high-temperature reactor, if a certain amount of oxygen-containing gas is supplied in the gas reforming furnace, the amount of oxygen relative to the pyrolysis gas is Since it becomes excess, there exists a possibility that the combustible gas concentration in gas may fall and oxygen may remain in gas. Since the gas discharged from the gas reforming furnace is cooled in the gas purification process, if oxygen remains in the gas as described above, there is a risk of explosion due to oxygen mixing with the cooled gas. .

この危険性を回避するために実設備では、精製ガス中の可燃性ガス濃度を常に監視し、可燃性ガス濃度が閾値以下になると高温反応炉下部に供給する酸素含有ガス量を低減させるという安全対策が採られている。しかし、高温反応炉下部に供給させる酸素含有ガス量を低減させると廃棄物処理量の低下に繋がってしまう。
これを回避するためには精製ガス中の可燃性ガス濃度が閾値以下になったら、ガス改質炉に供給している酸素含有ガス量を低減させ、精製ガス中の可燃性ガス濃度の低下を防ぐことが考えられる。
In order to avoid this danger, the actual equipment always monitors the combustible gas concentration in the refined gas, and reduces the amount of oxygen-containing gas supplied to the lower part of the high-temperature reactor when the combustible gas concentration falls below the threshold. Measures are taken. However, reducing the amount of oxygen-containing gas supplied to the lower part of the high-temperature reactor leads to a reduction in the amount of waste processing.
In order to avoid this, when the combustible gas concentration in the refined gas falls below the threshold value, the amount of the oxygen-containing gas supplied to the gas reforming furnace is reduced to reduce the combustible gas concentration in the refined gas. It is possible to prevent.

特許文献4には、廃棄物のガス化溶融炉出側の改質ガス中の可燃性ガスであるHガス濃度を測定してガスカロリーを推定し、推定カロリーが一定値以上になるようにLNGなどの補助燃料を前記溶融炉内に投入する方法が記載されている。しかしながら、Hガス濃度の測定には分析計までのガスサンプリング時間と分析計自身の応答時間が必要で時間遅れが生じるが、実設備での可燃性ガス濃度の変化は非常に短い時間間隔で起こっており、Hガス濃度の測定にかかる時間よりもはるかに短いため、Hガス濃度を指標にガス改質炉へ供給する酸素含有ガス量を変更させる制御は実用的には問題がある。またHガス濃度は可燃性ガスを構成する一成分であるので、可燃性ガス全体のガス酸化度を表している指標とは言い難く、指標としてはガス全体ではなく部分的な指標であると言える。 In Patent Document 4, the gas calorie is estimated by measuring the concentration of H 2 gas, which is a combustible gas in the reformed gas on the gasification melting furnace exit side of the waste, so that the estimated calorie becomes a certain value or more. A method is described in which auxiliary fuel such as LNG is introduced into the melting furnace. However, the measurement of H 2 gas concentration requires a gas sampling time until the analyzer and the response time of the analyzer itself, resulting in a time delay. However, the change in the combustible gas concentration in the actual facility is very short. and going much shorter than the time required for the measurement of H 2 gas concentration, control for changing the oxygen-containing gas quantity supplied to the H 2 gas concentration to the gas reformer to index in practice there is a problem . In addition, since the H 2 gas concentration is one component constituting the combustible gas, it is difficult to say that the index represents the degree of gas oxidation of the entire combustible gas, and the index is not a whole gas but a partial index. I can say that.

上記の通り、従来は精製ガス中の可燃性ガス濃度低下により高温反応炉下部に供給する酸素含有ガス量を低減させる処置をとっており、廃棄物処理量の低下を避けることができなかった。
また、上記の処理設備においては、高温反応炉内に装入した廃棄物等の装入物の堆積レベル(ストックレベル)を制御する必要があるため、堆積レベルの検知手段を設けて、最大高さを制限する装入制御を行なっているが、廃棄物の性状は比較的短時間のうちに変化することがあり、従来の最大高さを制限するという装入制御方法では安定した操業ができなかった。
As described above, conventionally, measures have been taken to reduce the amount of oxygen-containing gas supplied to the lower part of the high-temperature reactor due to a decrease in the combustible gas concentration in the refined gas, and it has been impossible to avoid a reduction in the waste treatment amount.
Further, in the above processing equipment, it is necessary to control the accumulation level (stock level) of the charged material such as the waste charged in the high temperature reactor. However, the waste properties may change within a relatively short period of time, and the conventional charge control method that limits the maximum height enables stable operation. There wasn't.

特開平6−26626号公報JP-A-6-26626 特開平6−79252号公報JP-A-6-79252 特開平7−323270号公報JP-A-7-323270 特開2003−268387号公報JP 2003-268387 A

本発明は、固体廃棄物が回分式に装入される固体廃棄物処理設備において、安定な装入・操業を達成することが可能な固体廃棄物処理設備の装入制御方法を提供することを目的とする。   The present invention provides a solid waste treatment facility charging control method capable of achieving stable charging and operation in a solid waste treatment facility in which solid waste is charged batchwise. Objective.

本発明者等は、回分装入される1回分の固体廃棄物量と該処理設備に供給される酸素含有ガス量から1回装入分の理論処理時間をあらかじめ計算し、回分装入後に、該1回装入分の理論処理時間で定められる装入停止時間の間は次の回分装入を行わないようにすることにより前記課題が解決できることを見出して本発明を完成した。
すなわち、本発明は以下に記載する通りの固体廃棄物処理設備の装入制御方法である。
The inventors calculated in advance the theoretical treatment time for one charge from the amount of solid waste for one charge and the oxygen-containing gas supplied to the treatment facility, and after the batch charge, The present invention has been completed by finding that the above-mentioned problem can be solved by not performing the next batch charging during the charging stop time determined by the theoretical processing time for one charging.
That is, the present invention is a charging control method for a solid waste treatment facility as described below.

(1)固体廃棄物を回分式に装入する装入装置とストックラインレベルセンサーとを具え、該レベルセンサーでレベルを感知しなくなった時に該回分装入を行ない、レベルを感知した時に該回分装入を停止する、固体廃棄物を酸素含有ガスを用いて燃焼、ガス化又はガス化改質処理する固体廃棄物処理設備における装入制御方法において、予め、回分装入された固体廃棄物量及び該処理設備に供給された酸素含有ガス量から単位固体廃棄物量を処理するのに必要な酸素含有ガス量を求めておき、これに基づいて、回分装入された1回装入分の理論処理時間を計算して、この理論処理時間を装入停止時間とし、回分装入後、該装入停止時間の間は次の回分装入を行わないことを特徴とする固体廃棄物処理設備の装入制御方法。
(2)前記装入停止時間が前記1回の装入分の理論処理時間の80%〜99%であることを特徴とする上記(1)記載の固体廃棄物処理設備の装入制御方法。
(3)前記固体廃棄物の装入が、前記固体廃棄物を圧縮シリンダーで圧縮するプレス工程と、得られた圧縮成形物を加熱する脱ガス工程と、加熱された圧縮成形物を回分式に装入する装入工程とを行う装入装置によって行われることを特徴とする上記(1)、(2)記載の固体廃棄物処理設備の装入制御方法。
(4)駆動圧力を一定とした圧縮シリンダーを用い、前記回分装入される1回分の固体廃棄物量を、前記圧縮シリンダーの位置情報から求めた圧縮成型物長と該シリンダー断面積から求めた圧縮成型物体積に前記固体廃棄物の平均密度を乗じた値とすることを特徴とする上記(3)記載の固体廃棄物処理設備の装入制御方法。
(1) A charging device for charging solid waste in a batch manner and a stock line level sensor are provided. When the level sensor no longer senses the level, the batch charging is performed, and when the level is sensed, the batch is charged. In a charging control method in a solid waste processing facility for stopping charging, burning, gasifying or gasifying and reforming solid waste using an oxygen-containing gas, the amount of solid waste charged batchwise and The amount of oxygen-containing gas required to treat the unit solid waste amount from the amount of oxygen-containing gas supplied to the treatment facility is obtained, and based on this, the theoretical treatment of the one-time charge charged in a batch is performed. The theoretical processing time is calculated as the charging stop time, and after the batch charging, the next batch charging is not performed during the charging stop time. Input control method.
(2) The charging control method for a solid waste processing facility according to (1), wherein the charging stop time is 80% to 99% of the theoretical processing time for the one charging.
(3) The charging of the solid waste is performed by pressing the solid waste with a compression cylinder, the degassing step of heating the obtained compression molded product, and the heated compression molded product in a batch type. The charging control method for a solid waste treatment facility according to the above (1) and (2), wherein the charging is performed by a charging device that performs a charging step of charging.
(4) Using a compression cylinder with a constant driving pressure, the amount of solid waste to be charged in one batch is determined from the compression molding length obtained from the position information of the compression cylinder and the compression obtained from the cylinder cross-sectional area. The solid waste treatment facility charging control method according to (3) above, wherein the molded product volume is multiplied by the average density of the solid waste.

本発明の方法によれば、経済的な方法で、回分式で装入される1回分の廃棄物量の変動に起因する操業の変動を防止することができる。   According to the method of the present invention, it is possible to prevent fluctuations in operation caused by fluctuations in the amount of waste for one batch charged in an economical manner.

本発明の装入制御方法は、固体廃棄物を酸素含有ガスによって燃焼処理、ガス化処理又はガス化改質処理する固体廃棄物処理設備であって、固体廃棄物を回分式に装入する装入装置とストックラインレベルセンサーとを具え、該レベルセンサーでレベルを感知しなくなった時に該回分装入を行ない、レベルを感知した時に該回分装入を停止するようにした固体廃棄物処理設備に適用できる。
以下では、本発明をガス化改質炉を備えた廃棄物処理設備において適用する場合について説明するが、本発明は、一般の焼却炉、ガス化溶融炉にも適用することができる。
The charging control method of the present invention is a solid waste treatment facility for burning, gasifying or gasifying and reforming solid waste with an oxygen-containing gas, and is a device for charging solid waste batchwise. A solid waste treatment facility comprising an input device and a stock line level sensor, wherein the batch charging is performed when the level sensor detects no level, and the batch charging is stopped when the level is detected. Applicable.
Below, although the case where this invention is applied in the waste treatment facility provided with the gasification reforming furnace is demonstrated, this invention is applicable also to a general incinerator and a gasification melting furnace.

図1は従来の廃棄物処理設備を側面図によって示す。図1において、1は廃棄物を回分的(:バッチ的)に加圧、圧縮する圧縮機、2は圧縮用シリンダー、3は圧縮支持盤、4は圧縮された廃棄物(以下圧縮成型物とも記す)を乾燥、熱分解、炭化するためのトンネル式加熱炉(:横型トンネル式加熱炉)、4aは圧縮成型物の乾燥領域、4bは圧縮成型物の熱分解領域、4cは圧縮成型物の炭化領域、4はトンネル式加熱炉4の入口、5は高温反応炉、10a、10iは圧縮成型物、11i、11は炭化した圧縮成型物(以下炭化生成物とも記す)、12は炭化生成物と燃焼残渣の混合物、13は酸素含有ガスの吹き込み口、15は溶融物、15Hは溶融物排出口、20は廃棄物投入口、21は廃棄物投入口の蓋、40はトンネル式加熱炉4で得られた炭化生成物の高温反応炉5内への押出し口(:高温反応炉5内への炭化生成物の装入口)、50は高温反応炉5の排ガス出口、50aは高温反応炉5のガス排出口、fは圧縮成型物10a、10iの移動方向、fは炭化生成物11、11の移動方向、fはトンネル式加熱炉4内で生成した熱分解ガスの流れ方向、fは高温反応炉5内への酸素含有ガスの吹き込み方向、fは圧縮用シリンダー2の移動方向、fは圧縮支持盤3の移動方向、fは廃棄物投入口20の蓋21の回転方向、Lは炭化生成物の高温反応炉5内への押出し口40の下端の高さ、Lは高温反応炉5のガス排出口50aの高さを示す。 FIG. 1 is a side view of a conventional waste treatment facility. In FIG. 1, 1 is a compressor that pressurizes and compresses waste batchwise (2), 2 is a compression cylinder, 3 is a compression support board, 4 is compressed waste (hereinafter referred to as a compression molded product). 4) is a drying area of the compression molded product, 4b is a thermal decomposition area of the compression molded product, and 4c is a compression molded product. carbonized region, 4 E is the entrance of a tunnel type heating furnace 4, the high-temperature reaction furnace 5, 10a, 10i compression molded product, 11 i, 11 n are compression molded product was carbonized (hereinafter referred to as carbide product), 12 Mixture of carbonized product and combustion residue, 13 is an oxygen-containing gas inlet, 15 is a melt, 15H is a melt outlet, 20 is a waste inlet, 21 is a waste inlet lid, and 40 is a tunnel type The carbonized product obtained in the heating furnace 4 into the high temperature reactor 5 Extrusion port (: spout carbide products into the high temperature reaction furnace 5), 50 exhaust gas outlet of the high temperature reaction furnace 5, 50a is a gas outlet of the high temperature reaction furnace 5, f 1 is the compression-molded product 10a, 10i of The moving direction, f 2 is the moving direction of the carbonized products 11 i and 11 n , f 3 is the flow direction of the pyrolysis gas generated in the tunnel heating furnace 4, and f 4 is the oxygen-containing gas into the high-temperature reactor 5. , F 6 is the moving direction of the compression cylinder 2, f 7 is the moving direction of the compression support board 3, f 8 is the rotating direction of the lid 21 of the waste charging port 20, and L L is the high temperature reaction of the carbonized product. The height of the lower end of the extrusion port 40 into the furnace 5, L H indicates the height of the gas discharge port 50 a of the high temperature reactor 5.

図1に示す廃棄物処理設備においては、先ず、回分的に廃棄物投入口20から供給した廃棄物を、圧縮機1を用いて圧縮して緊密な圧縮成型物10aとする。次に、この圧縮成型物10aを、外部から加熱された細長いトンネル式加熱炉(:横型トンネル式加熱炉)4内へ押し込む。この際、廃棄物中に含まれていた水分は、上記した圧縮工程で絞り出され、廃棄物と共にトンネル式加熱炉4内に押し込まれる。
圧縮成型物10aの断面形状は、トンネル式加熱炉4の入口4の内壁断面と同形、同一寸法であり、圧縮成型物10aを押し込むと圧縮成型物10aはトンネル式加熱炉4の内壁と接触状態を保ったまま押し込まれる。圧縮成型物10iは、順次新しい圧縮成型物が押し込まれる毎に、トンネル式加熱炉4内を滑りながら移動する。
In the waste treatment facility shown in FIG. 1, first, waste supplied batchwise from the waste inlet 20 is compressed using the compressor 1 to form a tight compression molded product 10a. Next, the compression molded product 10a is pushed into an elongated tunnel heating furnace (: horizontal tunnel heating furnace) 4 heated from the outside. At this time, the moisture contained in the waste is squeezed out in the compression step described above and pushed into the tunnel heating furnace 4 together with the waste.
Cross-sectional shape of the compression molded product 10a has an inner wall section having the same shape of the inlet 4 E of the tunnel type heating furnace 4, the same size, the compression molded product 10a pushes the compression molded product 10a is in contact with the inner wall of the tunnel type heating furnace 4 It is pushed in while maintaining the state. The compression molding 10i moves while sliding in the tunnel heating furnace 4 each time a new compression molding is sequentially pushed.

トンネル式加熱炉4は前記したように外部から加熱されており、内部は600℃程度まで昇温され、圧縮成型物10iの移動、昇温過程において、圧縮成型物10iは乾燥、熱分解、炭化する。炭化生成物11nおよび熱分解により発生したガス成分は、1000℃以上に維持された高温反応炉5内へ装入および吹き込まれる。
その後、鉱物分、金属分を含む炭化生成物中の可燃分は、酸素含有ガスによって燃焼してガス化する。この場合、酸素含有ガス中の酸素量を調整することで、発生するガスは一酸化炭素と水素を含む燃料用ガスとして回収できる。また、燃焼によってガス化しない残渣部分は、高温反応炉5内で溶融し、溶融物15となって高温反応炉5下部の溶融物排出口15Hから回収される。
The tunnel-type heating furnace 4 is heated from the outside as described above, and the inside is heated to about 600 ° C., and the compression-molded product 10 i is dried, pyrolyzed, carbonized in the process of moving and raising the temperature of the compression-molded product 10 i. To do. The carbonized product 11n and gas components generated by thermal decomposition are charged and blown into the high temperature reactor 5 maintained at 1000 ° C. or higher.
Thereafter, the combustible component in the carbonized product including the mineral component and the metal component is combusted and gasified by the oxygen-containing gas. In this case, by adjusting the amount of oxygen in the oxygen-containing gas, the generated gas can be recovered as a fuel gas containing carbon monoxide and hydrogen. In addition, the residue portion that is not gasified by combustion is melted in the high temperature reactor 5 to become a melt 15 and is recovered from the melt outlet 15H at the bottom of the high temperature reactor 5.

高温反応炉5内に装入した廃棄物等の装入物の堆積レベル(ストックレベル)を検知するために堆積レベルの検知手段を設ける。この種のレベル検知手段としては接触式のものと非接触式のものとがあるが、接触式のものは炉内の高温雰囲気による堆積レベル検知端の熱衝撃及び熱損傷、また炉内雰囲気の外部漏洩の防止等の観点からして好適ではない。   In order to detect the accumulation level (stock level) of the charged material such as the waste charged in the high temperature reactor 5, a deposition level detecting means is provided. There are two types of level detection means of this type, contact type and non-contact type, but the contact type has a thermal shock and thermal damage at the deposition level detection end due to the high temperature atmosphere in the furnace, and the furnace atmosphere. It is not suitable from the viewpoint of preventing external leakage.

非接触式による前記検知方式としては、具体的には、音波によるもの、光によるもの、放射線(γ線等)によるものおよび電(磁)波によるものの4種類があるが、高温反応炉上部に直結するガス改質炉の温度が1000℃以上の高温であり、また、熱分解ガスにダスト、すすなどが多く含まれていることから、高炉などで用いられるサウンジング装置は高温のため設置が不可能であり、超音波レベル計はガス中のダスト、すす等により正確な測定が困難である。
そこで、本発明ではγ線または超音波式の透過型のセンサーを廃棄物装入面の上端に設置して最大高さを検知することが好ましい。
There are four types of detection methods based on non-contact methods, specifically, those using sound waves, those using light, those using radiation (gamma rays, etc.), and those using electric (magnetic) waves. The temperature of the directly connected gas reforming furnace is 1000 ° C or higher, and the pyrolysis gas contains a lot of dust and soot. The ultrasonic level meter is difficult to measure accurately due to dust, soot, etc. in the gas.
Therefore, in the present invention, it is preferable to detect the maximum height by installing a γ-ray or ultrasonic transmission type sensor at the upper end of the waste charging surface.

ところで、従来行われていた最大高さを制限する装入制御では、高温反応炉下部におけるある一定の酸素含有ガス供給量に対して、やや大きめの廃棄物装入速度で廃棄物を装入し、廃棄物高さがレベル計を設置した高さに達した場合に、装入をしばらく停止し、レベルの低下を待ってレベルセンサーでレベルを感知しなくなった時に回分装入を行ない、次いでレベルを感知した時に回分装入を停止するという方法で行われている。この場合の廃棄物の装入速度は、1回当たりの廃棄物装入量と時間当たりの装入回数で決まる。廃棄物ホッパーから圧縮装置内へ供給される廃棄物の量は、圧縮装置の大きさや廃棄物の性状によって決まり、操業者が正確に制御するのは困難であるため、廃棄物の装入速度は時間当たりの装入回数を調節することによって調節している。   By the way, in the conventional charging control that limits the maximum height, waste is charged at a slightly higher waste charging speed than a certain amount of oxygen-containing gas supply in the lower part of the high-temperature reactor. When the waste height reaches the level at which the level meter is installed, the charging is stopped for a while, the level sensor waits for the level to drop, and when the level sensor no longer senses the level, the charging is performed in batches, and then the level This is done by stopping batch loading when it is detected. The waste charging speed in this case is determined by the amount of waste charged per time and the number of times of charging per time. The amount of waste fed from the waste hopper into the compactor depends on the size of the compactor and the nature of the waste and is difficult for the operator to control accurately, so It is adjusted by adjusting the number of charges per hour.

しかしながら、廃棄物の性状は比較的短時間のうちに変化することがあり、1回当たりの廃棄物装入量は短い周期で変動し、時には毎回大きく異なることもある。
また、廃棄物の堆積層の下部に酸素含有ガスを吹込み燃焼およびガス化をさせると、酸素含有ガス吹込みノズルの前の部分の廃棄物が燃焼およびガス化し、ノズル前に空洞ができる。通常はこの空洞に直上に堆積している廃棄物が降下してきて、順次燃焼およびガス化が進行するが、時折あるいは頻繁にノズル前の空洞の直上の廃棄物がブリッジを形成し、廃棄物が降下しないことがある。同時に酸素含有ガスはブリッジを形成している廃棄物を燃焼させることなく、吹き抜け、廃棄物の堆積層上部へぬけて行く。このような状態では酸素含有ガス供給部に廃棄物がないため、廃棄物の燃焼およびガス化が起こらず、あるいはその量が減少し、廃棄物からの生成ガス量が減少する。このような現象があるときに、廃棄物のレベルを検知して、次の廃棄物装入を行うシステムでは、廃棄物の装入は行われず、ますます、廃棄物からの生成ガス量が低下する。
However, the properties of the waste may change in a relatively short time, and the amount of waste charged per time fluctuates in a short cycle and sometimes varies greatly every time.
Further, when the oxygen-containing gas is blown and burned and gasified at the lower part of the waste accumulation layer, the waste in front of the oxygen-containing gas blowing nozzle is burned and gasified, and a cavity is formed in front of the nozzle. Normally, the waste deposited directly above this cavity descends and combustion and gasification proceed in sequence, but occasionally or frequently the waste just above the cavity in front of the nozzle forms a bridge, and the waste is May not descend. At the same time, the oxygen-containing gas blows through the waste forming the bridge without burning it, and passes through the upper part of the waste deposition layer. In such a state, since there is no waste in the oxygen-containing gas supply unit, the combustion and gasification of the waste does not occur, or the amount thereof is reduced, and the amount of generated gas from the waste is reduced. When there is such a phenomenon, the system that detects the level of waste and performs the next waste charging does not charge the waste, and the amount of gas generated from the waste is increasingly reduced. To do.

一方、このようなブリッジも少しずつ反応し、あるとき突然ブリッジが崩れ、急激にレベルが低下することがある。このときは酸素含有ガス供給部に急激に可燃物が供給されることとなり、ガス発生量は急増する。同時にレベルが急激に低下したことを検知して、次の回分装入が行われ、ガス発生量の急増を助長することになる。酸素含有ガス吹込み部の空洞が大きい場合には、1回の装入ではレベルが回復せず、複数回間隔をあけずに装入されることがある。
このように、ノズル前に空間が出来、酸素含有ガスが吹きぬけた場合のガス発生量の低下とその後の連続的な廃棄物の装入により、ガス発生量が大幅に変動することになる。
On the other hand, such a bridge also reacts little by little, and sometimes the bridge suddenly collapses, and the level may suddenly drop. At this time, the combustible material is suddenly supplied to the oxygen-containing gas supply unit, and the amount of gas generation increases rapidly. At the same time, it is detected that the level has fallen sharply, and the next batch charging is performed, which promotes a rapid increase in the amount of gas generated. When the oxygen-containing gas blowing part has a large cavity, the level does not recover after one charge, and the gas may be charged without a plurality of intervals.
In this way, a space is created in front of the nozzle, and the amount of gas generated varies greatly due to a decrease in the amount of gas generated when the oxygen-containing gas blows off and subsequent continuous charging of waste.

このような状況下で前記の最大高さを制限する装入制御を行なうと、一定の酸素含有ガスに対して、廃棄物の供給速度が大きく変動することとなり、熱分解ガス発生量、組成および温度などの変動を大きくする要因となる。
また、レベルを感知しなくなった時に回分装入してもレベルの測定点において回分装入した廃棄物が検知されなければ(例えば回分装入した廃棄物が周辺に転がって堆積するような場合)レベル計は感知せず、その間、数回の回分装入を行なってしまうことがたびたびある。
更に、装入物の荷下がりも廃棄物の場合は不順であるため、装入は数回連続、長時間停止などのかなり不順な装入挙動を示すことがたびたびある。
このようなことが起これば、ガス化改質処理の場合は、発生するガス量が大きく変動してガスの安定的な供給ができない。また、焼却炉が単なるガス化処理炉であっても、装入不順は操業の安定性維持の観点から大きな問題である。
When charging control is performed to limit the maximum height under such circumstances, the supply rate of waste greatly fluctuates with respect to a certain oxygen-containing gas. It becomes a factor to increase fluctuations such as temperature.
Also, even if batch loading is performed when the level is no longer sensed, if the batched waste is not detected at the level measurement point (for example, if the batch loaded waste rolls around and accumulates) The level meter is not perceived, and during that time, it is often the case that several batch loadings are performed.
Furthermore, since the unloading of the charged material is also irregular in the case of waste, the charging often shows quite irregular charging behavior such as several consecutive times and a long-time stoppage.
If such a thing occurs, in the case of gasification reforming treatment, the amount of gas generated will fluctuate greatly and stable supply of gas will not be possible. Even if the incinerator is a simple gasification furnace, unsatisfactory charging is a serious problem from the viewpoint of maintaining operational stability.

そこで、本発明においては上記の事態を回避するために、回分装入される1回分の固体廃棄物量と該処理設備に供給される酸素含有ガス量から1回装入分の理論処理時間をあらかじめ計算し、該回分装入を該1回装入分の理論処理時間で定められる装入停止時間の間は次の回分装入をしないようにした。
前記の装入停止時間を設定するためには、あらかじめ、過去の操業結果より単位固体廃棄物量を処理するのに必要な酸素含有量を求めておく。これは、ある期間の固体廃棄物の処理量(t)で同一期間の酸素含有ガス量を除することにより求めることができる。これを酸素含有ガス原単位S(Nm/t−固体廃棄物)とする。
そうすると、回分装入される一回分の固体廃棄物量をM(t)とし、このときの酸素含有ガスの供給量をF(Nm/s)とすると、1回分の理論処理時間T(s)は次式(1)で表すことができる。
T(s)=S×M/F ・・・・・(1)
Therefore, in the present invention, in order to avoid the above situation, the theoretical treatment time for one charge is determined in advance from the amount of solid waste for one charge and the amount of oxygen-containing gas supplied to the treatment facility. The batch charge was calculated so that the next batch charge was not performed during the charging stop time determined by the theoretical processing time for the first charge.
In order to set the charging stop time, the oxygen content necessary for processing the unit solid waste amount is determined in advance from the past operation results. This can be determined by dividing the amount of oxygen-containing gas in the same period by the amount of solid waste treated in a certain period (t). This is designated as oxygen-containing gas intensity S (Nm 3 / t-solid waste).
Then, if the amount of solid waste for one batch is M (t), and the supply amount of the oxygen-containing gas at this time is F (Nm 3 / s), one theoretical processing time T (s) Can be represented by the following formula (1).
T (s) = S × M / F (1)

そして、本発明においては、上記の理論処理時間T(s)を装入停止時間とし、この時間の間は固体廃棄物を装入しないようにする。
このようにすることにより、前記ガス発生量の急増時に連続して廃棄物が供給されることがないため、ガス発生量の変動を大幅に減少させることが出来る。
In the present invention, the above theoretical processing time T (s) is set as the charging stop time, and the solid waste is not charged during this time.
By doing in this way, since waste is not continuously supplied at the time of the rapid increase of the gas generation amount, the fluctuation of the gas generation amount can be greatly reduced.

また、この装入停止時間は前記1回の装入分の理論処理時間の80%〜99%とすることが好ましい。
80%以下であるとレベルの上昇速度が速く、高い頻度でレベルセンサー位置に廃棄物を検知した状態となり、1回に装入される廃棄物に対応した理論処理時間ごとの均一な廃棄物供給とならない。一方99%以上では、廃棄物の質が変動した場合、特に、過去の操業で求めた単位廃棄物量を処理するのに必要な酸素量が、そのときの廃棄物の単位量を処理するのに必要な酸素量よりも大きい場合は、廃棄物の炉内の滞留量が減少し、ガス発生量が低下してしまうことが多くなる。
The charging stop time is preferably 80% to 99% of the theoretical processing time for the one charging.
If the level is 80% or less, the level rises quickly, and waste is detected at the level sensor position frequently, and uniform waste supply for each theoretical treatment time corresponding to the waste that is charged at one time. Not. On the other hand, at 99% or more, when the quality of the waste changes, the amount of oxygen necessary for processing the unit waste amount obtained in the past operation is particularly suitable for processing the unit amount of waste at that time. When the amount of oxygen is larger than the required amount of oxygen, the amount of waste retained in the furnace decreases, and the amount of gas generated often decreases.

固体廃棄物の装入は、固体廃棄物を圧縮シリンダーで圧縮するプレス工程と、得られた圧縮成形物を加熱する脱ガス工程と、加熱された圧縮成形物を回分式に装入する装入工程とからなる装入装置によって行われることが好ましい。
プレス工程で廃棄物が圧縮されていると炉内へ装入した後の廃棄物の飛散が少ないという効果がある他、圧縮成形物によって装入路が塞がれているため炉内圧が高くても可燃性の高温ガスが外部へ漏れないという効果がある。
また、圧縮時のプレス機のストロークは1回分のごみの量によって変化するため、通常プレス機の駆動圧力を一定とし、同じ圧力で廃棄物を圧縮するのが好ましい。
The solid waste is charged by pressing the solid waste with a compression cylinder, degassing the heated compression molding, and charging the heated compression molding batchwise. It is preferable to be carried out by a charging device comprising the steps.
If the waste is compressed in the pressing process, it has the effect of less scattering of the waste after being charged into the furnace, and the pressure inside the furnace is high because the charging path is blocked by the compression molding. There is an effect that flammable high temperature gas does not leak to the outside.
In addition, since the stroke of the press machine during compression varies depending on the amount of dust for one time, it is preferable to compress the waste at the same pressure while keeping the driving pressure of the press machine constant.

上記式(1)における回分装入される1回分の固体廃棄物量は、前記一定駆動圧力の圧縮シリンダーの位置情報から求めた圧縮成型物長と該シリンダー断面積から求めた圧縮成型物体積に前記固体廃棄物の平均密度を乗じた値とすることができる。
上記のようにすれば、圧縮シリンダーの位置情報は簡便に求めることができるので、回分装入量を直接測定する場合に比べて設備を簡略化することができる。
また、廃棄物の供給量を直接測定する場合には、廃棄物ピットから廃棄物ホッパーに投入する際に、クレーンに設置された廃棄物重量測定装置によって測定するが、大規模な測定装置が必要となるため経済的な理由から現実的ではない。
The amount of solid waste for one batch in the above formula (1) is calculated based on the compression molding length obtained from the position information of the compression cylinder at the constant driving pressure and the compression molding volume obtained from the cylinder cross-sectional area. It can be a value multiplied by the average density of solid waste.
If it does as mentioned above, since the positional information on a compression cylinder can be calculated | required easily, an installation can be simplified compared with the case where a batch charging amount is measured directly.
In addition, when directly measuring the amount of waste supplied, it is measured with a waste weight measuring device installed in the crane when it is put into the waste hopper from the waste pit, but a large-scale measuring device is required. Therefore, it is not realistic for economic reasons.

シリンダー部に供給した廃棄物量及びごみ質の変化により圧縮率が変化するので、圧縮シリンダーの位置情報から求めた圧縮成型物長も変化する。また、固体廃棄物の平均密度は、ある期間の、クレーン等に設置されている計量器によって計測した廃棄物の供給量を、同一期間の圧縮物体積の合計で除することにより求めることができる。
図1の装置では炉の横方向から固体廃棄物を装入しているが、固体廃棄物の装入は炉の上部方向から装入することもできる。
Since the compression rate changes depending on the amount of waste supplied to the cylinder part and the change in the waste quality, the compression molding length obtained from the position information of the compression cylinder also changes. In addition, the average density of solid waste can be obtained by dividing the amount of waste measured by a measuring instrument installed in a crane or the like for a certain period by the total volume of compressed material for the same period. .
In the apparatus of FIG. 1, solid waste is charged from the side of the furnace, but the solid waste can be charged from the top of the furnace.

本発明の実施例について以下説明する。
使用した装置は図1に示した、固体廃棄物を酸素含有ガスによって燃焼処理、ガス化処理又はガス化改質処理する固体廃棄物処理設備であって、固体廃棄物を回分式に装入する装入装置とストックラインレベルセンサーとを具え、該レベルセンサーでレベルを感知しなくなった時に該回分装入を行ない、レベルを感知した時に該回分装入を停止するようにした固体廃棄物処理設備である。
図2に本発明を用いない従来の方法で操業を行った比較例の操業パターンを、図3に本発明を用いて操業を実施した実施例の操業パターンを示す。図には廃棄物の装入タイミング、レベルセンサーの信号によるごみの感知または非感知の別および高温反応炉からの排出ガス量の相対値を示した。また図3の実施例においては、固体廃棄物はプレス工程および脱ガス工程を経て炉内へ装入し、駆動圧力を一定とした圧縮シリンダーを用い、前記圧縮シリンダーの位置情報から求めた圧縮成型物長と該シリンダー断面積から求めた圧縮成型物体積に前記固体廃棄物の平均密度を乗じた値を、回分装入される1回分の固体廃棄物量とした。さらに、1回分の理論処理時間の90%を装入停止時間とした。
図2の比較例と対比すると、図3の実施例では廃棄物の装入タイミングがより均等となり、高温反応炉からの排出ガスの変動幅も小さくなり、廃棄物を効率良く、安定的に処理することが可能となった。
Examples of the present invention will be described below.
The apparatus used is a solid waste treatment facility shown in FIG. 1 for burning, gasifying or reforming solid waste with an oxygen-containing gas, and charging the solid waste batchwise. A solid waste treatment facility comprising a charging device and a stock line level sensor, wherein the batch charging is performed when the level sensor detects no level, and the batch charging is stopped when the level is detected It is.
FIG. 2 shows an operation pattern of a comparative example in which operation is performed by a conventional method not using the present invention, and FIG. 3 shows an operation pattern of an embodiment in which operation is performed using the present invention. The figure shows the charging timing of waste, whether the level sensor signal sensed or not sensed the waste, and the relative value of the amount of exhaust gas from the high temperature reactor. Further, in the embodiment of FIG. 3, the solid waste is charged into the furnace through a pressing process and a degassing process, and a compression cylinder with a constant driving pressure is used, and compression molding is obtained from position information of the compression cylinder. A value obtained by multiplying the volume of the compression molded product obtained from the length of the product and the cross-sectional area of the cylinder by the average density of the solid waste was defined as the amount of solid waste charged in one batch. Furthermore, 90% of the theoretical processing time for one batch was defined as the charging stop time.
Compared with the comparative example of FIG. 2, in the embodiment of FIG. 3, the charging timing of the waste is more uniform, the fluctuation range of the exhaust gas from the high temperature reactor is also reduced, and the waste is efficiently and stably treated. It became possible to do.

本発明の方法によれば、廃棄物を効率良く、安定的に処理することが可能であるので、都市ごみ等の処理方法として好適である。   According to the method of the present invention, it is possible to treat waste efficiently and stably, which is suitable as a method for treating municipal waste.

本発明の方法が適用される廃棄物処理設備の一例を示す図である。It is a figure which shows an example of the waste treatment facility with which the method of this invention is applied. 比較例における操業パターンを示す図である。It is a figure which shows the operation pattern in a comparative example. 実施例における操業パターンを示す図である。It is a figure which shows the operation pattern in an Example.

符号の説明Explanation of symbols

1 廃棄物の圧縮機
2 圧縮用シリンダー
3 圧縮支持盤
4 トンネル式加熱炉(:横型トンネル式加熱炉)
4a 圧縮成型物の乾燥領域
4b 圧縮成型物の熱分解領域
4c 圧縮成型物の炭化領域
トンネル式加熱炉の入口
4L トンネル式加熱炉の床部
4U トンネル式加熱炉の天井部
5 高温反応炉
6 ガス改質炉
7 高温反応炉下部
10a 、10i 圧縮成型物
11、11炭化した圧縮成型物(:炭化生成物)
12 炭化生成物と燃焼残渣の混合物
13 酸素含有ガスの吹き込み口
14 酸素含有ガスと可燃性ガスとの混合ガスの吹き込み口
15 溶融物
15H 溶融物排出口
20 廃棄物投入口
21 廃棄物投入口の蓋
40 高温反応器内への炭化生成物の装入口
50 高温反応器の排ガス出口
50a 高温反応器のガス排出口
60 排出ガス
圧縮成型物の移動方向
炭化生成物の移動方向
トンネル式加熱炉内で生成した熱分解ガスの流れ方向
高温反応器内への酸素含有ガスの吹き込み方向
高温反応器内への酸素含有ガスと可燃性ガスとの混合ガスの吹き込み方向
圧縮用シリンダーの移動方向
圧縮支持盤の移動方向
廃棄物投入口の蓋の回転方向
炭化生成物の高温反応器内への押出し口の下端の高さ
1 Waste compressor 2 Compression cylinder 3 Compression support 4 Tunnel heating furnace (: Horizontal tunnel heating furnace)
4a Drying area 4b of compression molding Pyrolysis area 4c of compression molding 4C Carbonization area 4 of compression molding E inlet 4L of tunnel heating furnace 4U floor of tunnel heating furnace 5U ceiling of tunnel heating furnace 5 High temperature reactor 6 Gas reforming furnace 7 Lower temperature reactor 10a, 10i Compression molded product 11 i , 11 n Carbonized compression molded product (: Carbonized product)
12 Carbonized product and combustion residue mixture 13 Oxygen-containing gas inlet 14 Oxygen-containing gas and flammable gas inlet 15 Melt 15H Melt outlet 20 Waste inlet 21 Waste inlet 21 Lid 40 Charging product inlet 50 into the high-temperature reactor Exhaust gas outlet 50a of the high-temperature reactor Gas outlet port of the high-temperature reactor 60 Exhaust gas f 1 Direction of movement of the compression molding f 2 Direction of movement of the carbonized product f 3 Flow direction of pyrolysis gas generated in the tunnel-type heating furnace f 4 Direction of blowing oxygen-containing gas into the high-temperature reactor f 5 Direction of blowing mixed gas of oxygen-containing gas and combustible gas into the high-temperature reactor f 6 Moving direction of the compression cylinder f 7 Moving direction of the compression support plate f 8 Rotating direction of the lid of the waste charging port L L Height of the lower end of the extrusion port into the high temperature reactor of the carbonized product

Claims (4)

固体廃棄物を回分式に装入する装入装置とストックラインレベルセンサーとを具え、該レベルセンサーでレベルを感知しなくなった時に該回分装入を行ない、レベルを感知した時に該回分装入を停止する、固体廃棄物を酸素含有ガスを用いて燃焼、ガス化又はガス化改質処理する固体廃棄物処理設備における装入制御方法において、予め、回分装入された固体廃棄物量及び該処理設備に供給された酸素含有ガス量から単位固体廃棄物量を処理するのに必要な酸素含有ガス量を求めておき、これに基づいて、回分装入された1回装入分の理論処理時間を計算して、この理論処理時間を装入停止時間とし、回分装入後、該装入停止時間の間は次の回分装入を行わないことを特徴とする固体廃棄物処理設備の装入制御方法。   It is equipped with a charging device for batch loading solid waste and a stock line level sensor. When the level sensor no longer senses the level, the batch charging is performed. When the level is sensed, the batch charging is performed. In a charging control method in a solid waste treatment facility for stopping, burning, gasifying or gasifying and reforming solid waste using an oxygen-containing gas, the amount of solid waste charged batchwise and the treatment facility The amount of oxygen-containing gas required to process the unit solid waste amount is calculated from the amount of oxygen-containing gas supplied to the tank, and the theoretical processing time for one charge is calculated based on this amount. The charging control method for a solid waste treatment facility, wherein the theoretical processing time is set as a charging stop time, and after the batch charging, the next batch charging is not performed during the charging stop time. . 前記装入停止時間が前記1回の装入分の理論処理時間の80%〜99%であることを特徴とする請求項1記載の固体廃棄物処理設備の装入制御方法。   The charging control method for a solid waste treatment facility according to claim 1, wherein the charging stop time is 80% to 99% of the theoretical processing time for the one charging. 前記固体廃棄物の装入が、前記固体廃棄物を圧縮シリンダーで圧縮するプレス工程と、得られた圧縮成形物を加熱する脱ガス工程と、加熱された圧縮成形物を回分式に装入する装入工程とを行う装入装置によって行われることを特徴とする請求項1又は2記載の固体廃棄物処理設備の装入制御方法。   The charging of the solid waste includes a pressing step of compressing the solid waste with a compression cylinder, a degassing step of heating the obtained compression molded product, and a batch of charging the heated compression molded product. The charging control method for a solid waste treatment facility according to claim 1, wherein the charging control is performed by a charging device that performs the charging process. 駆動圧力を一定とした圧縮シリンダーを用い、前記回分装入される1回分の固体廃棄物量を、前記圧縮シリンダーの位置情報から求めた圧縮成型物長と該シリンダー断面積から求めた圧縮成型物体積に前記固体廃棄物の平均密度を乗じた値とすることを特徴とする請求項3記載の固体廃棄物処理設備の装入制御方法。   Using a compression cylinder with a constant driving pressure, the amount of solid waste to be charged in one batch is calculated from the compression molding length obtained from the position information of the compression cylinder and the compression molding volume obtained from the cylinder cross-sectional area. The charging control method for a solid waste treatment facility according to claim 3, wherein the value is obtained by multiplying the average density of the solid waste by an average density of the solid waste.
JP2007219552A 2007-08-27 2007-08-27 Waste disposal method Active JP4935582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007219552A JP4935582B2 (en) 2007-08-27 2007-08-27 Waste disposal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007219552A JP4935582B2 (en) 2007-08-27 2007-08-27 Waste disposal method

Publications (2)

Publication Number Publication Date
JP2009052800A JP2009052800A (en) 2009-03-12
JP4935582B2 true JP4935582B2 (en) 2012-05-23

Family

ID=40504035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007219552A Active JP4935582B2 (en) 2007-08-27 2007-08-27 Waste disposal method

Country Status (1)

Country Link
JP (1) JP4935582B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5859339B2 (en) * 2011-08-15 2016-02-10 三菱重工業株式会社 Char recovery device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01263409A (en) * 1988-04-12 1989-10-19 Satoru Yoshinaka Garbage gasification and combustion device and method for gasificating and burning garbage with this device
CA2036581C (en) * 1990-02-23 1998-09-22 Gunter H. Kiss Method of transporting, intermediate storage and energetic and material utilization of waste goods of all kinds and device for implementing said method
DE4130416C1 (en) * 1991-09-10 1992-12-10 Thermoselect Ag, Vaduz, Li
EP0564964B1 (en) * 1992-04-06 1996-12-04 Thermoselect Aktiengesellschaft Process for the destruction of toxicants produced during the elimination of organic waste
JPH07122428B2 (en) * 1993-05-27 1995-12-25 大平洋機工株式会社 Reciprocating positive displacement pump pressure detection method
JP3541254B2 (en) * 1994-04-28 2004-07-07 大平洋機工株式会社 Method and apparatus for cutting and discharging transported matter such as sludge
JPH1161139A (en) * 1997-08-19 1999-03-05 Nisshin Kogyo Kk Waste treatment system
JPH11337037A (en) * 1998-05-29 1999-12-10 Kawasaki Steel Corp Waste treatment method
JP3982291B2 (en) * 2002-03-18 2007-09-26 Jfeエンジニアリング株式会社 Waste treatment method and apparatus
EP1865256A4 (en) * 2005-04-01 2007-12-26 Jfe Eng Corp Method and apparatus for supplying waste to gasification melting furnace

Also Published As

Publication number Publication date
JP2009052800A (en) 2009-03-12

Similar Documents

Publication Publication Date Title
JPWO2006114818A1 (en) Method and apparatus for supplying waste to gasification melting furnace
JP3558039B2 (en) Gasification and melting furnace for waste and gasification and melting method
JP2008537702A (en) Method and apparatus utilizing a molten metal bath
EP2746368A1 (en) Method and apparatus for feeding municipal solid waste to a plasma gasifier reactor
US20150376001A1 (en) Method for thermal decomposition by pyrolysis in a moving bed reacter
JP4935582B2 (en) Waste disposal method
JP4411608B2 (en) High efficiency power generation method and apparatus using gasification melting furnace
JP3309657B2 (en) Waste gasification and melting furnace
CN101095014A (en) Method and apparatus for supplying waste to gasification melting furnace
JP2017180922A (en) Waste tire gasification melting device and waste tire gasification melting method
KR100856653B1 (en) Method for supplying waste to gasification melting furnace
JP4941671B2 (en) Waste disposal method
JP2016138218A (en) Formed coal and production method thereof, and method of use of formed coal
JP4942980B2 (en) Method and apparatus for detecting the degree of progress of thermal decomposition of waste, and method and apparatus for thermal decomposition of waste
JP2005003359A (en) Waste processing method and facility
CN101248312A (en) Process and apparatus using a molten metal bath
JP3339419B2 (en) Gasification and melting furnace for waste and gasification and melting method
JP5348516B2 (en) Reforming control method for gasification reforming equipment
KR100862158B1 (en) Apparatus ang method for controlling temperature to protect gas explosion of furnace top
JP6018860B2 (en) Waste gasification melting furnace startup method
WO2022168557A1 (en) Detection method and detection device for liquid level height of liquid, detection method and detection device for liquid level height of molten material, and operation method for vertical furnace
JP4851895B2 (en) Shredder dust melting method
JP6869115B2 (en) How to make briquette for waste melting furnace and how to use briquette
JP2004028997A (en) Method for detecting charge level in high-temperature reactor of gasifying/melting equipment
JP2003130321A (en) Method for operating waste gasifying melting furnace and waste gasifying melting furnace

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090519

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4935582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350