JP4932263B2 - Multilayer secondary battery and manufacturing method thereof - Google Patents

Multilayer secondary battery and manufacturing method thereof Download PDF

Info

Publication number
JP4932263B2
JP4932263B2 JP2006018746A JP2006018746A JP4932263B2 JP 4932263 B2 JP4932263 B2 JP 4932263B2 JP 2006018746 A JP2006018746 A JP 2006018746A JP 2006018746 A JP2006018746 A JP 2006018746A JP 4932263 B2 JP4932263 B2 JP 4932263B2
Authority
JP
Japan
Prior art keywords
material layer
active material
positive electrode
current collector
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006018746A
Other languages
Japanese (ja)
Other versions
JP2006236994A (en
Inventor
和矢 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Envision AESC Energy Devices Ltd
Original Assignee
NEC Energy Devices Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Energy Devices Ltd filed Critical NEC Energy Devices Ltd
Priority to JP2006018746A priority Critical patent/JP4932263B2/en
Publication of JP2006236994A publication Critical patent/JP2006236994A/en
Application granted granted Critical
Publication of JP4932263B2 publication Critical patent/JP4932263B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、複数枚の平板状の電極をセパレータを介して積層した積層型二次電池に関するものであり、電極面積が異なる正極電極と負極電極とをセパレータを介して積層した積層型二次電池およびその製造方法に関するものである。
また、正極電極の大きさが負極電極の大きさよりも小さなリチウムイオン二次電池およびその製造方法に関するものである。
The present invention relates to a laminated secondary battery in which a plurality of flat electrodes are laminated via a separator, and a laminated secondary battery in which a positive electrode and a negative electrode having different electrode areas are laminated via a separator. And a manufacturing method thereof.
The present invention also relates to a lithium ion secondary battery in which the size of the positive electrode is smaller than the size of the negative electrode and a method for manufacturing the same.

リチウムイオン電池には、帯状の正極電極と負極電極とをセパレータを介して積層した後に巻回して作製した電池要素を外装容器に収納した巻回型の電池と、平板状の正極電極と負極電極とをセパレータを介して積層した積層体からなる電池要素を外装容器収納した積層型二次電池が知られている。   Lithium ion batteries include a roll-type battery in which a battery element formed by laminating a strip-like positive electrode and a negative electrode via a separator and then winding the battery element in an outer container, and a flat positive electrode and a negative electrode There is known a laminated secondary battery in which a battery element made of a laminated body laminated with a separator is housed.

図6は、従来の積層型二次電池の電池要素を電極面に垂直方向で切断した断面図である。
積層型二次電池を構成する電池要素5の積層体は、セパレータ4を介して、平板状の正極電極2及び平板状の負極電極3を積層したものから構成されている。平板状の正極電極2は、正極集電体2A上に正極活物質層2Bが形成されており、正極集電体2Aの一部は、正極引出端子7として対極に対向する部分から外側へと延びている。同様に、負極電極3は負極集電体3A上に負極活物質層3Bが形成されており、負極集電体3Aの一部は、負極引出端子8として、対極に対向する部分から外側へと延びている。
FIG. 6 is a cross-sectional view of a battery element of a conventional stacked secondary battery cut in a direction perpendicular to the electrode surface.
A laminated body of battery elements 5 constituting a laminated secondary battery is constituted by laminating a flat positive electrode 2 and a flat negative electrode 3 with a separator 4 interposed therebetween. The flat positive electrode 2 has a positive electrode active material layer 2B formed on a positive electrode current collector 2A, and a part of the positive electrode current collector 2A is formed as a positive electrode lead-out terminal 7 from a portion facing the counter electrode to the outside. It extends. Similarly, in the negative electrode 3, the negative electrode active material layer 3B is formed on the negative electrode current collector 3A, and a part of the negative electrode current collector 3A serves as the negative electrode lead terminal 8 from the portion facing the counter electrode to the outside. It extends.

セパレータを介して正極電極と負極電極とを積層して電池要素を製造する際、積層した電池要素を金属缶のような外装容器に収納したり、あるいは可撓性の外装部材によって封口する際には、平板状の正極電極2と平板状の負極電極3およびセパレータ4が、それぞれ独立した構造のためにずれが生じることがあった。その結果、正極電極2と負極電極3の一部が直接接触して、内部ショートが発生したり、正極電極2と負極電極3がずれて、電池の充放電容量等の面で所期の特性が得られないという問題が生じた。   When a battery element is manufactured by laminating a positive electrode and a negative electrode via a separator, the laminated battery element is stored in an outer container such as a metal can, or sealed with a flexible outer member. In some cases, the flat positive electrode 2, the flat negative electrode 3, and the separator 4 may be displaced due to their independent structures. As a result, a part of the positive electrode 2 and the negative electrode 3 are in direct contact with each other, an internal short circuit occurs, or the positive electrode 2 and the negative electrode 3 are displaced, and the desired characteristics in terms of battery charge / discharge capacity and the like. The problem that was not obtained.

また、ある程度の電極ずれが生じても内部ショートが発生しないように、セパレータの寸法を大きくすると、それに伴い外装容器も大きくなるために、電池の製品形状が大きくなり、電池の容積容量密度が低下するという問題があった。   In addition, if the size of the separator is increased so that an internal short circuit does not occur even if a certain amount of electrode displacement occurs, the outer container becomes larger accordingly, so the product shape of the battery increases and the volume capacity density of the battery decreases. There was a problem to do.

また、二次電池においては、正極電極と負極電極には、電極面のいずれの部分にも均一な充放電電流が通電されるように配置することが必要である。特に電極の端部の角部は、電流が集中しやすいので、電極の端部における電流の集中を避けることが求められている。
なかでもリチウムイオン電池においては、過充電時等において負極の端部の角部に電流が集中するとデンドライトが形成されて、セパレータを突き破って正極との間で内部短絡を生じる等の問題がある。
Further, in the secondary battery, it is necessary to arrange the positive electrode and the negative electrode so that a uniform charge / discharge current is applied to any part of the electrode surface. In particular, since current tends to concentrate at the corners of the end of the electrode, it is required to avoid current concentration at the end of the electrode.
In particular, in a lithium ion battery, there is a problem that dendrites are formed when current concentrates at the corners of the end of the negative electrode during overcharging, and an internal short circuit occurs between the positive electrode and the separator.

そこで、リチウムイオン電池においては、負極電極の端部に充電時に電流が集中しないようにするために、負極電極の面積を対向する正極電極の面積よりも大きくすることが行われている。   Therefore, in the lithium ion battery, in order to prevent current from being concentrated at the end of the negative electrode during charging, the area of the negative electrode is made larger than the area of the opposing positive electrode.

図7は、正極電極、負極電極、およびセパレータの大きさを説明する図である。
図7(A)に示す正極電極52の電極長さ81、正極電極幅82は、図7(B)に示す負極電極の電極長さ83、電極幅84、図7(C)に示すセパレータ長さ85、セパレータ幅86の間には、
正極電極の長さ81<負極電極の長さ83≦セパレータ長さ85
正極電極の幅82<負極電極の幅84≦セパレータ幅86
の関係を有している。
このため、いずれかの部材を基準にして積層しようとしても、構成部材の横ずれが生じないように積層することは困難であった。
FIG. 7 is a diagram illustrating the sizes of the positive electrode, the negative electrode, and the separator.
The electrode length 81 and the positive electrode width 82 of the positive electrode 52 shown in FIG. 7A are the electrode length 83 and the electrode width 84 of the negative electrode shown in FIG. 7B, and the separator length shown in FIG. Between 85 and separator width 86,
Positive electrode length 81 <negative electrode length 83 ≦ separator length 85
Positive electrode width 82 <Negative electrode width 84 ≦ Separator width 86
Have the relationship.
For this reason, even if it tried to laminate | stack on the basis of any member, it was difficult to laminate | stack so that a horizontal shift of a structural member might not arise.

そこで、積層時の電極のずれを防止するために、電極の面積が小さな電極の両面をセパレータで被覆し、セパレータの外周部の大きさを面積が大きな電極と同じ大きさとして積層した積層型二次電池が提案されている(例えば、特許文献1)。
しかしながら、面積の小さな電極の両面をセパレータで被覆してセパレータの周囲を熱融着する場合には、正極電極が内部で動かないようにするとともに、セパレータ内部には無駄な空間が生じないようにセパレータの周囲を熱融着することは容易なことではなく、また融着部の幅を充分に小さくして電池性能に影響を与えないようにすることにも困難があった。
特開2002−252023号公報
Therefore, in order to prevent displacement of the electrodes during stacking, the two layers of the electrode having a small electrode area are covered with a separator, and the size of the outer periphery of the separator is the same as that of the electrode having a large area. A secondary battery has been proposed (for example, Patent Document 1).
However, when both sides of an electrode with a small area are covered with a separator and the periphery of the separator is heat-sealed, the positive electrode is prevented from moving inside, and no unnecessary space is generated inside the separator. It is not easy to heat-seal around the separator, and it has been difficult to sufficiently reduce the width of the fused part so as not to affect the battery performance.
JP 2002-252023 A

本発明は、金属箔などからなる集電体上に活物質層を形成した平板状の正極電極と平板状の負極電極とをセパレータを介して積層した積層体を外装部材で封口したリチウムイオン二次電池のように電極面積が異なる正極電極と負極電極とを積層した場合にも、各構成部材の横ずれ等が生じることがなく、製造時の歩留まりが高く、また信頼性が高いリチウムイオン二次電池およびその製造方法を提供することを課題とするものである。   The present invention relates to a lithium ion battery in which a laminated body in which a plate-like positive electrode having an active material layer formed on a current collector made of metal foil or the like and a plate-like negative electrode are laminated via a separator is sealed with an exterior member. Even when a positive electrode and a negative electrode with different electrode areas are laminated, such as a secondary battery, there is no lateral displacement of each component, and the yield during manufacturing is high and the lithium ion secondary is highly reliable. It is an object of the present invention to provide a battery and a method for manufacturing the battery.

本発明の課題は、平板状の集電体上に正極活物質層を形成した正極電極と平板状の集電体上に負極活物質層を形成した負極電極とをセパレータを介して対向させて積層した積層型二次電池において、正極活物質層負極活物質層の面積が異なり、活物質層の面積が小さな小面積電極の集電体の外周部の隣接する少なくとも二辺に活物質層が塗布されていない活物質非塗布部が形成されており、活物質非塗布部の集電体面は絶縁性物質層で被覆され、該絶縁性物質層の活物質層に面する側とは反対側の端面、活物質層の面積が大きな大面積電極の端面を、電極面と垂直に交わる同一平面上に配置し、該絶縁性物質層の活物質層に面する側とは反対側の端面、活物質層の面積が大きな大面積電極の端面は、絶縁性物質層によって接着固定されたセパレータの端面と同一平面上に配置された積層型二次電池によって解決することができる。 An object of the present invention is to make a positive electrode having a positive electrode active material layer formed on a flat plate current collector and a negative electrode having a negative electrode active material layer formed on a flat plate current collector facing each other via a separator. In the laminated type secondary battery, the active material layer is formed on at least two sides adjacent to the outer periphery of the current collector of the small area electrode in which the areas of the positive electrode active material layer and the negative electrode active material layer are different and the area of the active material layer is small. An active material non-applied part to which no active material is applied is formed, and the current collector surface of the active material non-applied part is covered with an insulating material layer, and is opposite to the side of the insulating material layer facing the active material layer The end surface of the large-area electrode having a large area of the active material layer is disposed on the same plane perpendicular to the electrode surface, and the end surface of the insulating material layer opposite to the side facing the active material layer The end surface of a large-area electrode with a large active material layer area is bonded to and fixed by an insulating material layer. It can be resolved by the end face and the laminate type secondary battery which is arranged on the same plane of the regulator.

また、平板状の集電体上に正極活物質層を形成した正極電極と平板状の集電体上に負極活物質層を形成した負極電極とをセパレータを介して対向させて積層した積層型二次電池において、正極活物質層と負極活物質層の面積が異なり、活物質層の面積が小さな小面積電極の集電体の外周部の隣接する少なくとも二辺に活物質層が塗布されていない活物質非塗布部が形成されており、活物質非塗布部の集電体面は絶縁性物質層で被覆され、該絶縁性物質層の活物質層に面する側とは反対側の端面、活物質層の面積が大きな大面積電極の端面を、電極面と垂直に交わる同一平面上に配置し、前記活物質非塗布部が形成された辺が電極引出端子が形成された辺と対向する辺であって、前記絶縁性物質層によってセパレータが接着固定された積層型二次電池である。
絶縁性物質層が、接着剤もしくは両面接着テープのいずれかである前記の積層型二次電池である。
正極活物質非塗布部は、正極集電体の外周部から、2mmから5mmの幅で形成した前記の積層型二次電池である。
小面積電極が正極電極であり、大面積電極が負極電極であるリチウムイオン電池である前記の積層型二次電池である。
Also, a stacked type in which a positive electrode having a positive electrode active material layer formed on a flat plate current collector and a negative electrode having a negative electrode active material layer formed on a flat plate current collector are opposed to each other with a separator interposed therebetween. In the secondary battery, the active material layer is applied to at least two sides adjacent to the outer periphery of the current collector of the small area electrode where the areas of the positive electrode active material layer and the negative electrode active material layer are different and the area of the active material layer is small. An active material non-applied part is formed, the current collector surface of the active material non-applied part is coated with an insulating material layer, and the end surface of the insulating material layer opposite to the side facing the active material layer, The end surface of the large-area electrode having a large active material layer area is disposed on the same plane perpendicular to the electrode surface, and the side where the active material non-coated portion is formed faces the side where the electrode lead-out terminal is formed. a side, stack-type secondary separator with the insulating material layer is bonded It is a battery.
In the laminated secondary battery, the insulating material layer is either an adhesive or a double-sided adhesive tape.
The positive electrode active material non-applied portion is the above-described laminated secondary battery formed with a width of 2 mm to 5 mm from the outer peripheral portion of the positive electrode current collector.
The laminated secondary battery is a lithium ion battery in which the small area electrode is a positive electrode and the large area electrode is a negative electrode.

平板状の集電体上に正極活物質層を形成した正極電極と平板状の集電体上に負極活物質層を形成した負極電極とをセパレータを介して対向させて積層した電池要素を含む積層型二次電池の製造方法において、正極活物質層と負極活物質層の面積が異なり、活物質層の面積が小さな小面積電極の集電体の外周部の少なくとも隣接する二辺には、活物質層が塗布されていない活物質非塗布部を形成し、活物質非塗布部の集電体面を絶縁性物質層で被覆し、該絶縁性物質層の活物質層に面する側とは反対側の端面、活物質層の面積が大きな大面積電極の端面を、電極面と垂直に交わる同一平面上に配置し、該絶縁性物質層の活物質層に面する側とは反対側の端面、活物質層の面積が大きな大面積電極の端面は、絶縁性物質層によって接着固定されたセパレータの端面を同一平面上に配置して積層し、電池外装体で被覆もしくは電池外装容器内に収納して封口する積層型二次電池の製造方法である。
平板状の集電体上に正極活物質層を形成した正極電極と平板状の集電体上に負極活物質層を形成した負極電極とをセパレータを介して対向させて積層した電池要素を含む積層型二次電池の製造方法において、正極活物質層と負極活物質層の面積が異なり、活物質層の面積が小さな小面積電極の集電体の外周部の少なくとも隣接する二辺には、活物質層が塗布されていない活物質非塗布部を形成し、前記活物質非塗布部の集電体面を絶縁性物質で被覆した後、セパレータを配置して絶縁性物質層によってセパレータを接着固定し、積層する積層型二次電池の製造方法である。
平板状の集電体上に正極活物質層を形成した正極電極と平板状の集電体上に負極活物質層を形成した負極電極とをセパレータを介して対向させて積層した電池要素を含む積層型二次電池の製造方法において、正極活物質層と負極活物質層の面積が異なり、活物質層の面積が小さな小面積電極の集電体の外周部の少なくとも隣接する二辺には、活物質層が塗布されていない活物質非塗布部を形成し、前記活物質非塗布部の集電体面を絶縁性物質層で被覆した後、セパレータを配置して絶縁性物質層によってセパレータを接着固定し、積層する積層型二次電池の製造方法である。
絶縁性物質層が、接着剤もしくは両面接着テープのいずれかである前記の積層型二次電池の製造方法である。
A battery element in which a positive electrode having a positive electrode active material layer formed on a flat plate current collector and a negative electrode having a negative electrode active material layer formed on a flat plate current collector are opposed to each other with a separator interposed therebetween is included. In the method for manufacturing a stacked secondary battery, the areas of the positive electrode active material layer and the negative electrode active material layer are different, and at least two adjacent sides of the outer periphery of the current collector of the small area electrode where the area of the active material layer is small, An active material non-coated portion not coated with an active material layer is formed, a current collector surface of the non-active material coated portion is covered with an insulating material layer, and the side of the insulating material layer facing the active material layer is The end face on the opposite side and the end face of the large-area electrode with a large active material layer area are arranged on the same plane perpendicular to the electrode face, and the side of the insulating material layer opposite to the side facing the active material layer The end face and the end face of the large area electrode with a large area of the active material layer were bonded and fixed by the insulating material layer. The end surface of the separator are stacked and arranged on the same plane, a method for producing a laminated type secondary battery to seal the mouth by coating or housed in the battery outer container with cell outer package.
A battery element in which a positive electrode having a positive electrode active material layer formed on a flat plate current collector and a negative electrode having a negative electrode active material layer formed on a flat plate current collector are opposed to each other with a separator interposed therebetween is included. In the method for manufacturing a stacked secondary battery, the areas of the positive electrode active material layer and the negative electrode active material layer are different, and at least two adjacent sides of the outer periphery of the current collector of the small area electrode where the area of the active material layer is small, After forming the active material non-applied part where the active material layer is not applied, and covering the current collector surface of the active material non-applied part with an insulating material, the separator is arranged and the separator is adhered and fixed by the insulating material layer And a method for producing a laminated secondary battery to be laminated.
A battery element in which a positive electrode having a positive electrode active material layer formed on a flat plate current collector and a negative electrode having a negative electrode active material layer formed on a flat plate current collector are opposed to each other with a separator interposed therebetween is included. In the method for manufacturing a stacked secondary battery, the areas of the positive electrode active material layer and the negative electrode active material layer are different, and at least two adjacent sides of the outer periphery of the current collector of the small area electrode where the area of the active material layer is small, After forming the active material non-applied portion where the active material layer is not applied, and covering the current collector surface of the active material non-applied portion with the insulating material layer, the separator is disposed and the separator is adhered by the insulating material layer This is a method for manufacturing a laminated secondary battery that is fixed and laminated.
In the method for manufacturing a laminated secondary battery, the insulating material layer is either an adhesive or a double-sided adhesive tape.

本発明に係る積層型二次電池によれば、リチウムイオン電池のように、正極活物質層と負極活物質層の面積が異なる正極電極と負極電極とを積層した場合にも電極相互のずれが生じず、また正極電極と負極電極との間で内部短絡が生じることがない信頼性が高い積層型二次電池を得ることが可能である。   According to the laminated secondary battery according to the present invention, even when a positive electrode and a negative electrode having different areas of the positive electrode active material layer and the negative electrode active material layer are laminated, such as a lithium ion battery, there is no deviation between the electrodes. It is possible to obtain a highly reliable stacked secondary battery that does not occur and does not cause an internal short circuit between the positive electrode and the negative electrode.

次に、本発明の積層型二次電池を図面を参照して説明する。
図1は、本発明の積層型二次電池を説明する図であり、図1(A)は、本発明の積層型二次電池の断面を説明する図である。また、図1(B)は、本発明の積層型二次電池の一部の電極を積層した電池要素を説明する斜視図である。
積層型二次電池1は、複数個の平板状の正極電極2と複数個の平板状の負極電極3をセパレータ4を介して積層した電池要素5を外装部材6によって封口したものであり、正極引出端子7および負極引出端子8が封口部9から外部へ取り出されている。
平板状の正極電極2は、平板状の正極集電体2Aの表面に正極活物質層2Bが形成されており、平板状の負極電極3は、平板状の負極集電体3Aの表面に負極活物質層3Bが形成されている。
Next, the laminated secondary battery of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram for explaining a multilayer secondary battery of the present invention, and FIG. 1 (A) is a diagram for explaining a cross section of the multilayer secondary battery of the present invention. FIG. 1B is a perspective view illustrating a battery element in which some electrodes of the stacked secondary battery of the present invention are stacked.
The laminated secondary battery 1 is formed by sealing a battery element 5 in which a plurality of flat positive electrodes 2 and a plurality of flat negative electrodes 3 are stacked via a separator 4 with an exterior member 6. The lead terminal 7 and the negative lead terminal 8 are taken out from the sealing part 9 to the outside.
The flat positive electrode 2 has a positive electrode active material layer 2B formed on the surface of a flat positive electrode current collector 2A, and the flat negative electrode 3 has a negative electrode on the surface of the flat negative electrode current collector 3A. An active material layer 3B is formed.

平板状の正極電極2の面積は平板状の負極電極3の面積より小さく、平板状の正極電極の集電体2Aの隣接する二辺の外周部には活物質層が形成されていない活物質非塗布部2C、2Dが形成されており、活物質非塗布部2C、2Dは絶縁性物質層10A、10Bによって被覆されている。
そして、電池要素5は、隣接する二辺に設けた活物質非塗布部の絶縁性物質層10A、10Bのそれぞれの活物質層に面する側とは反対側の端面と、セパレータ4、負極電極3の端面を同一平面上に配置して積層した後に、外装部材6によって封口されている。
The area of the plate-like positive electrode 2 is smaller than the area of the plate-like negative electrode 3, and the active material in which the active material layer is not formed on the adjacent two sides of the current collector 2A of the plate-like positive electrode Non-application parts 2C and 2D are formed, and the active material non-application parts 2C and 2D are covered with insulating material layers 10A and 10B.
The battery element 5 includes an active material non-applied portion provided on two adjacent sides, an insulating material layer 10A, 10B, an end surface opposite to the side facing the active material layer, a separator 4, a negative electrode After the three end faces are arranged on the same plane and stacked, they are sealed by the exterior member 6.

本発明の正極電極の面積は、正極集電体上に形成した正極電極層の板状の正極集電体に平行な面の面積を意味し、負極電極の面積は、負極集電体上に形成した負極電極層の板状の集電体に平行な面の面積を意味する。   The area of the positive electrode of the present invention means the area of a plane parallel to the plate-like positive electrode current collector of the positive electrode layer formed on the positive electrode current collector, and the area of the negative electrode is on the negative electrode current collector It means the area of a plane parallel to the plate-like current collector of the formed negative electrode layer.

図2は、本発明の正極電極を説明する断面図である。図2(A)、(B)、(C)はそれぞれ異なる実施例を説明する図である。
図2(A)の正極電極2は、正極集電体2Aの外周部に電極活物質層が形成されていない活物質非塗布部2Cが形成されており、活物質非塗布部2Cに接着剤11によって絶縁性物質層10Aが形成されている。
また、接着剤11はセパレータ4を接着して固定しており、正極電極2の集電体の外周部の活物質非塗布部に塗布した接着剤からなる絶縁性物質層10Aの端面、正極集電体2Aの端面およびセパレータの端面は、正極集電体の表面に垂直な同一平面上に位置している。
FIG. 2 is a cross-sectional view illustrating the positive electrode of the present invention. 2A, 2B, and 2C are diagrams for explaining different embodiments.
In the positive electrode 2 of FIG. 2A, an active material non-applied portion 2C in which no electrode active material layer is formed is formed on the outer periphery of the positive electrode current collector 2A, and an adhesive is applied to the active material non-applied portion 2C. 11, an insulating material layer 10 </ b> A is formed.
Further, the adhesive 11 adheres and fixes the separator 4, the end face of the insulating material layer 10 A made of an adhesive applied to the active material non-applied portion of the outer peripheral portion of the current collector of the positive electrode 2, the positive electrode collector. The end face of the electric body 2A and the end face of the separator are located on the same plane perpendicular to the surface of the positive electrode current collector.

図2(A)で示した正極電極2は、セパレータ4が接着剤からなる絶縁性物質層によって正極集電体と接着されて固定されているので、正極電極を負極電極と積層して電池要素を組み立てる際には、正極電極に塗布した絶縁性物質層の端面を負極電極の端面とを同一面上に位置決めして積層することによって位置ずれすることなく積層型二次電池を組み立てることができる。   In the positive electrode 2 shown in FIG. 2A, since the separator 4 is bonded and fixed to the positive electrode current collector by an insulating material layer made of an adhesive, the positive electrode is laminated with the negative electrode to form a battery element. When assembling the battery, the end surface of the insulating material layer applied to the positive electrode can be assembled by positioning the end surface of the negative electrode on the same surface and stacking them without shifting the position. .

図2(B)の正極電極は、活物質非塗布部2Cには、絶縁性物質層10Aとして両面接着テープ12が接合されており、両面接着テープ12の一面は活物質非塗布部に接合し、他面はセパレータ4と接合してセパレータを固定している。
そして、集電体の外周部の活物質非塗布部に接合した両面テープ12の端面、正極集電体の端面およびセパレータの端面は、正極集電体の表面に垂直な同一平面上に位置している。
In the positive electrode of FIG. 2B, the double-sided adhesive tape 12 is bonded to the active material non-applied portion 2C as the insulating material layer 10A, and one surface of the double-sided adhesive tape 12 is bonded to the active material non-coated portion. The other surface is joined to the separator 4 to fix the separator.
And the end surface of the double-sided tape 12 joined to the active material non-application part of the outer periphery of the current collector, the end surface of the positive electrode current collector, and the end surface of the separator are located on the same plane perpendicular to the surface of the positive electrode current collector. ing.

以上の図2(A)、図2(B)ではいずれもセパレータが活物質非塗布部に形成した絶縁性物質層の端面まで延びている例について説明したが、図2(C)に示すように、セパレータが絶縁性物質層の端面まで延びていないものであっても良い。また、絶縁性物質層面にはセパレータと別体の部材が配置されても良い。   In each of FIGS. 2A and 2B, the example in which the separator extends to the end surface of the insulating material layer formed in the active material non-applied portion has been described. However, as shown in FIG. In addition, the separator may not extend to the end surface of the insulating material layer. A member separate from the separator may be disposed on the surface of the insulating material layer.

図3は、本発明の一実施例の正極電極、負極電極及びセパレータを説明する平面図である。図3(A)は正極電極を説明する平面図であり、図3(B)は負極電極を説明する図であり、図3(C)は、セパレータを説明する図である。   FIG. 3 is a plan view illustrating a positive electrode, a negative electrode, and a separator according to an embodiment of the present invention. FIG. 3A is a plan view illustrating the positive electrode, FIG. 3B is a diagram illustrating the negative electrode, and FIG. 3C is a diagram illustrating the separator.

図3(A)に示すように、平板状の正極電極2は、正極引出端子7を有し、平板状の正極集電体2Aの表面に正極活物質層2Bが形成されており、周辺部には正極活物質層を形成していない正極活物質非塗布部2C、2D、2E、2Fが形成されている。
また、図3(B)に示すように平板状の負極電極3は、負極引出端子8を有し、負極活物質層3Bが形成されている。
As shown in FIG. 3A, the flat positive electrode 2 has a positive lead terminal 7, and a positive electrode active material layer 2B is formed on the surface of the flat positive electrode current collector 2A. The positive electrode active material non-applied portions 2C, 2D, 2E, and 2F in which the positive electrode active material layer is not formed are formed.
Further, as shown in FIG. 3B, the flat plate-like negative electrode 3 has a negative electrode lead terminal 8, and a negative electrode active material layer 3B is formed.

図3(A)および図3(B)において、正極電極の正極引出端子部を除く正極集電体の高さLh1、正極集電体の幅Lw1、正極電極の活物質層の幅Lc、正極電極の活物質層の高さLp、正極活物質非塗布部2C、2Eの幅をそれぞれL1、L2、正極活物質非塗布部の幅2Dの幅をL3、正極集電体の上部の電極引出端子部を除く正極活物質非塗布部2Fの幅L4、負極電極の高さLh2、負極電極の幅Lw2とする。
これらの間には、
正極電極の正極引出端子部を除く正極集電体の高さLh1=負極電極の高さLh2
正極集電体の幅Lw1=負極電極の幅Lw2
正極集電体の幅Lw1=正極電極の活物質層の幅Lc+正極集電体の幅方向の正極活物質非塗布部の幅L1+正極集電体の幅方向の正極活物質非塗布部のL2
正極電極の正極引出端子部を除く正極集電体の高さLh1=正極電極の活物質層の高さLp+正極集電体の底部の正極活物質非塗布部の幅L3+正極集電体の上部の電極引出端子部を除く正極活物質非塗布部の幅L4=負極電極の高さLh2
の関係が存在している。
3A and 3B, the positive electrode current collector height Lh1 excluding the positive electrode lead terminal portion of the positive electrode, the positive electrode current collector width Lw1, the positive electrode active material layer width Lc, and the positive electrode The height Lp of the active material layer of the electrode, the widths of the positive electrode active material non-coated portions 2C and 2E are L1 and L2, the width of the width 2D of the positive electrode active material non-coated portion is L3, and the upper electrode lead of the positive electrode current collector The width L4 of the positive electrode active material non-applied portion 2F excluding the terminal portion, the height Lh2 of the negative electrode, and the width Lw2 of the negative electrode are set.
Between these,
The height Lh1 of the positive electrode current collector excluding the positive electrode lead terminal portion of the positive electrode = the height Lh2 of the negative electrode
Width Lw1 of positive electrode current collector = Width Lw2 of negative electrode
Positive electrode current collector width Lw1 = positive electrode active material layer width Lc + positive electrode current collector width direction positive electrode active material non-applied portion width L1 + positive electrode current collector width direction positive electrode active material non-applied portion L2
The height Lh1 of the positive electrode current collector excluding the positive electrode lead terminal portion of the positive electrode = the height Lp of the active material layer of the positive electrode + the width L3 of the positive electrode active material non-coated portion at the bottom of the positive electrode current + the upper portion of the positive electrode current collector The width L4 of the positive electrode active material non-applied portion excluding the electrode lead-out terminal portion = the height Lh2 of the negative electrode
A relationship exists.

また、セパレータの幅Sw、セパレータの高さShとすれば、
セパレータの幅Sw=正極集電体の幅Lw1=負極電極の幅Lw2
セパレータの高さSh=正極電極の正極引出端子部を除く正極集電体の高さLh1==負極電極の高さLh2
である。
Also, if the width Sw of the separator and the height Sh of the separator are
Separator width Sw = positive electrode current collector width Lw1 = negative electrode electrode width Lw2
Height of separator Sh = Height of positive electrode current collector excluding positive electrode lead terminal portion of positive electrode Lh1 == Height of negative electrode Lh2
It is.

図4は、本発明の一実施例の正極電極を説明する平面図であり、図4(A)、図4(B)は、それぞれ本発明の他の実施例の正極電極を説明する図である。
図4(A)に示すように、正極電極2の隣接する二辺の集電体上に、活物質非塗布部2C、2Dが形成されており、それぞれの活物質非塗布部2C、2Dには、絶縁性物質層10A、10Bが形成されている。
FIG. 4 is a plan view for explaining a positive electrode of one embodiment of the present invention, and FIGS. 4A and 4B are diagrams for explaining a positive electrode of another embodiment of the present invention. is there.
As shown in FIG. 4A, active material non-applied portions 2C and 2D are formed on the current collectors on two adjacent sides of the positive electrode 2, and the active material non-applied portions 2C and 2D are formed on the respective active material non-applied portions 2C and 2D. Insulating material layers 10A and 10B are formed.

図4(A)に示す正極電極の場合には、絶縁性物質層10A、10Bを形成した隣接する二辺を基準辺として積層することによって正確な位置決めが可能となるので、位置決めに使用しない活物質非塗布部2E、2Fは、積層時の位置決め、あるいは電池性能には影響を及ぼさないので、集電体の活物質非塗布部2E、2Fを切除することもできる。   In the case of the positive electrode shown in FIG. 4A, accurate positioning is possible by stacking two adjacent sides on which the insulating material layers 10A and 10B are formed as reference sides. Since the substance non-applied portions 2E and 2F do not affect the positioning at the time of stacking or the battery performance, the active material non-applied portions 2E and 2F of the current collector can also be cut off.

図4(B)は、隣接する二辺として、共通の辺とその両側の辺に、絶縁性物質層10A、10B、10Cを形成した例を示すものである。
この実施例では、三辺を基準辺として位置決めして積層することができる。例えば、電池の外装体として可撓性の部材を使用する場合には、あらかじめエンボス加工によって正極集電体の幅に合致した収納部を形成し、収納部に負極電極とセパレータを接着した正極電極を交互に積層することによって、収納部の壁面によって位置決めされるので電池要素の固定等を行わなくても位置ずれがない積層型二次電池を製造することができる。
また、図4(A)、図4(B)のいずれの場合にも、セパレータの幅は負極電極の幅とし、高さは、負極電極の電極引出端子を除く部分の高さよりも大きくすることができる。このようにすることによって、容積容量密度が大きな積層型二次電池を作製することが可能となる。
FIG. 4B shows an example in which insulating material layers 10A, 10B, and 10C are formed on a common side and sides on both sides as two adjacent sides.
In this embodiment, the three sides can be positioned and stacked as a reference side. For example, when a flexible member is used as the battery outer package, a storage portion that matches the width of the positive electrode current collector is formed in advance by embossing, and the negative electrode and separator are bonded to the storage portion. By alternately laminating the layers, the secondary battery is positioned by the wall surface of the storage portion, so that it is possible to manufacture a stacked type secondary battery that does not have a positional shift without fixing the battery elements.
4A and 4B, the width of the separator is the width of the negative electrode, and the height is larger than the height of the portion of the negative electrode excluding the electrode lead-out terminal. Can do. By doing so, it becomes possible to manufacture a stacked secondary battery having a large volumetric capacity density.

図5は、本発明の積層型二次電池の製造工程の一例を説明する図である。
電池組立治具20の基準面21Aおよび21Bを基準面とし、両基準面に負極電極3の端面が接するように負極電極3を載置する。次いで、正極電極2の正極活物質非塗布部に塗布した絶縁性物質層10A、10Bにセパレータ4を接着して固定した後に、絶縁性物質層10A、10Bの端面を、それぞれ基準面21A、21Bに接するように載置する。
以上のように、セパレータ4を接着した正極電極2と負極電極の所定の個数を積層した後に、固定テープ穴22A、22Bに装着した固定テープでずれが生じないように固定する。
次いで、正極引出端子7および負極引出端子8をそれぞれ接合の後に、外装容器に収納して電解液を注入した後に封口することによって積層型二次電池を製造することができる。
FIG. 5 is a diagram for explaining an example of the manufacturing process of the multilayer secondary battery of the present invention.
The reference surfaces 21A and 21B of the battery assembly jig 20 are used as reference surfaces, and the negative electrode 3 is placed so that the end surfaces of the negative electrode 3 are in contact with both reference surfaces. Next, after the separator 4 is bonded and fixed to the insulating material layers 10A and 10B applied to the positive electrode active material non-applied portion of the positive electrode 2, the end surfaces of the insulating material layers 10A and 10B are set to the reference surfaces 21A and 21B, respectively. Place so that it touches.
As described above, after a predetermined number of the positive electrode 2 and the negative electrode to which the separator 4 is bonded are laminated, the fixing tape attached to the fixing tape holes 22A and 22B is fixed so as not to be displaced.
Next, after the positive electrode lead terminal 7 and the negative electrode lead terminal 8 are joined, the laminated secondary battery can be manufactured by sealing in the outer container after injecting the electrolytic solution.

本発明の積層型二次電池が、リチウムイオン電池の場合について説明する。
正極電極としては、集電体として厚さが20μm程度のアルミニウム箔を使用し、リチウムコバルト複合酸化物、リチウムマンガン複合酸化物、リチウムマンガンコバルト複合酸化物、リチウムマンガンニッケル複合酸化物等のリチウム遷移金属複合酸化物の粉末と、ポリフッ化ビリニデン等の結着剤、アセチレンブラック等の導電性物質等から調製したスラリーを集電体のアルミニウム箔上に塗布、乾燥し、圧延することで正極活物質層を形成することによって製造することができる。
The case where the laminated secondary battery of the present invention is a lithium ion battery will be described.
As the positive electrode, an aluminum foil having a thickness of about 20 μm is used as a current collector, and lithium transition such as lithium cobalt composite oxide, lithium manganese composite oxide, lithium manganese cobalt composite oxide, lithium manganese nickel composite oxide, etc. A positive electrode active material obtained by applying a slurry prepared from a metal composite oxide powder, a binder such as polyvinylidene fluoride, a conductive material such as acetylene black, and the like onto a current collector aluminum foil, drying and rolling. It can be manufactured by forming a layer.

正極電極としては、積層して電池要素を作製した際に、セパレータを挟んで負極電極層が存在する場合には、集電体の両面に正極活物質層が形成されたものを作製することが必要であるが、セパレータを挟んで負極電極層が存在しない場合には、片面のみに電極活物質層が形成された正極電極を製造することができる。   As a positive electrode, when a battery element is produced by laminating, if a negative electrode layer is present with a separator in between, a positive electrode active material layer formed on both sides of a current collector can be produced. Although necessary, when a negative electrode layer does not exist with a separator in between, a positive electrode in which an electrode active material layer is formed only on one side can be manufactured.

また、負極電極としては、集電体として厚さ10μm程度の銅箔を使用し、グラファイト、不定形炭素などのリチウムを電気化学的にドープ、脱ドープすることが可能な物質の粉末と、ポリフッ化ビリニデン等の結着剤等から調製したスラリーを集電体の銅箔上に塗布、乾燥し、圧延することで負極活物質層を形成することによって製造することができる。   In addition, as a negative electrode, a copper foil having a thickness of about 10 μm is used as a current collector, and a powder of a substance capable of electrochemically doping and undoping lithium such as graphite and amorphous carbon, and a polyfluoride. It can be manufactured by forming a negative electrode active material layer by applying a slurry prepared from a binder such as bilinidene chloride on a copper foil of a current collector, drying and rolling.

また、セパレータとしては、ポリエチレン、ポリプロピレン等のポリオレフィンの多孔性フィルム、不織布等を使用することができる。
電解液としては、非水溶媒にリチウム塩を溶解した非水電解液を用いることができる。
具体的には、エチレンカ−ボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、1,2−ジメトキシエタン、メチルプロピレンカーボネート、ビニレンカーボネート、r−ブチロラクトン、プロピオン酸メチル、プロピオン酸エチルに、リチウム塩として、LiPF6 、LiBF4 等を混合したものを用いることができる。
As the separator, a porous film of polyolefin such as polyethylene or polypropylene, a nonwoven fabric, or the like can be used.
As the electrolytic solution, a nonaqueous electrolytic solution in which a lithium salt is dissolved in a nonaqueous solvent can be used.
Specifically, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, 1,2-dimethoxyethane, methyl propylene carbonate, vinylene carbonate, r-butyrolactone, methyl propionate, ethyl propionate, lithium As the salt, a mixture of LiPF 6 , LiBF 4 or the like can be used.

本発明の正極電極の正極集電体に形成する正極活物質非塗布部は、正極集電体の外周部から、2mmから5mmの幅で形成することが好ましい。2mmより小さい場合は、正極集電体面に塗布する絶縁性物質あるいは集電体面に接着する両面テープと正極集電体との接合、あるいは接着を安定して行うことが困難である。また、正極活物質層の表面にまで絶縁性物質、あるいは両面テープが接着する等の問題が生じるという問題点があり、正極活物質層が有効に作用しない部分が生じて電池の充放電容量に悪影響を及ぼすという問題がある。
一方、正極活物質非塗布部の幅が5mmよりも大きくなると、実質的に正極活物質層の面積、すなわち正極電極の面積が小さくなり、電池の充放電容量が小さくなるという問題がある。
The positive electrode active material non-applied portion formed on the positive electrode current collector of the positive electrode of the present invention is preferably formed with a width of 2 mm to 5 mm from the outer peripheral portion of the positive electrode current collector. When it is smaller than 2 mm, it is difficult to stably bond or bond the insulating material applied to the positive electrode current collector surface or the double-sided tape adhered to the current collector surface and the positive electrode current collector. In addition, there is a problem that an insulating material or a double-sided tape adheres to the surface of the positive electrode active material layer, and there is a portion where the positive electrode active material layer does not work effectively, thereby increasing the charge / discharge capacity of the battery. There is a problem of adverse effects.
On the other hand, when the width of the positive electrode active material non-applied portion is larger than 5 mm, there is a problem that the area of the positive electrode active material layer, that is, the area of the positive electrode is substantially reduced and the charge / discharge capacity of the battery is reduced.

また、正極電極の集電体面上の正極活物質非塗布部に塗布する絶縁性物質としては、電池の非水電解質に対して耐性を有するものであれば、アクリル系接着剤、ポリエステル系接着剤を使用することができる。
また、熱硬化性樹脂を用いて硬化させて接合しても良い。熱硬化性樹脂を用いる場合には、熱硬化性樹脂を正極集電体の正極活物質非塗布部の接着面に塗布し、乾燥を行った後に、セパレータを所定の位置に装着して熱融着を行うことができる。
熱硬化性樹脂を使用する場合には、硬化温度がセパレータの熱軟化点以下の温度のものを用いることが好ましい。
Moreover, as an insulating substance applied to the positive electrode active material non-applied portion on the current collector surface of the positive electrode, an acrylic adhesive or a polyester adhesive may be used as long as it has resistance to the non-aqueous electrolyte of the battery. Can be used.
Moreover, you may make it harden | cure and join using a thermosetting resin. When a thermosetting resin is used, the thermosetting resin is applied to the adhesive surface of the positive electrode active material non-applied portion of the positive electrode current collector, dried, and then attached to the separator at a predetermined position for heat fusion. Wearing can be done.
When using a thermosetting resin, it is preferable to use a resin having a curing temperature equal to or lower than the thermal softening point of the separator.

絶縁性物質層として接着剤、あるいは熱硬化性樹脂を用いてセパレータを接合する際には、正極電極の集電体の電極活物質非塗布部に塗布した後に、セパレータを所定の位置に載置してセパレータと接合することが好ましい。
また、絶縁性物質を電極活物質非塗布部に塗布する場合には、絶縁性物質を塗布した部分が電極活物質よりも高さが高くなると電極間の間隔が大きくなるので、絶縁性物質を塗布した部分の厚さは電極活物質の厚さを超えないようにすることが好ましい。
When joining the separator using an adhesive or thermosetting resin as the insulating material layer, after applying the separator to the electrode active material non-applied portion of the current collector of the positive electrode, place the separator in a predetermined position. It is preferable to join the separator.
In addition, when an insulating material is applied to an electrode active material non-applied portion, the interval between the electrodes increases when the portion where the insulating material is applied is higher than the electrode active material. It is preferable that the thickness of the applied portion does not exceed the thickness of the electrode active material.

また、絶縁性物質として絶縁性両面テープを用いる場合には、両面テープは、正極電極の集電体の電極活物質非塗布部に接合した後にセパレータを載置して両者を接合しても、あるいはセパレータの所定の個所に絶縁性両面テープを接合した後に、絶縁性両面テープを正極電極の電極活物質非塗布部に接合して両者を固定しても良い。
また、絶縁性両面テープの厚さは、電極活物質の高さが高くならないようにすることが好ましい。
Moreover, when using an insulating double-sided tape as the insulating material, the double-sided tape is bonded to the electrode active material non-applied part of the current collector of the positive electrode, Alternatively, after the insulating double-sided tape is bonded to a predetermined portion of the separator, the insulating double-sided tape may be bonded to the electrode active material non-applied portion of the positive electrode to fix them.
Moreover, it is preferable that the thickness of the insulating double-sided tape is such that the height of the electrode active material does not increase.

正極電極と負極電極とを、正極電極に設けた基準点を設けた治具を利用して所定の個数を積層した後に、位置ずれ等が生じないように固定した後に、電池外装容器に収納することによって位置ずれがない積層型二次電池を得ることができる。
また、可撓性外装体にエンボス加工によって形成した収納部の大きさを、正極電極の集電体の横幅、負極電極の横幅、セパレータの横幅とを一致させたものとした場合には、単に収納部にセパレータを装着した正極電極と負極電極の所定の個数を積層して封口することによって電極の位置ずれがない、信頼性の大きな積層型二次電池を提供することができる。
After a predetermined number of positive electrodes and negative electrodes are stacked using a jig provided with a reference point provided on the positive electrode, the positive electrode and the negative electrode are fixed so as not to be misaligned, and then stored in the battery outer container. As a result, it is possible to obtain a stacked secondary battery that is not misaligned.
In addition, when the size of the storage portion formed by embossing on the flexible exterior body is the same as the width of the current collector of the positive electrode, the width of the negative electrode, and the width of the separator, By stacking and sealing a predetermined number of positive electrodes and negative electrodes each having a separator in the housing portion, it is possible to provide a highly reliable stacked secondary battery in which the electrodes are not displaced.

図1は、本発明の積層型二次電池を説明する図である。FIG. 1 is a diagram illustrating a stacked secondary battery of the present invention. 図2は、本発明の正極電極を説明する断面図である。FIG. 2 is a cross-sectional view illustrating the positive electrode of the present invention. 図3は、本発明の一実施例の正極電極、負極電極及びセパレータを説明する平面図である。FIG. 3 is a plan view illustrating a positive electrode, a negative electrode, and a separator according to an embodiment of the present invention. 図4は、本発明の一実施例の正極電極を説明する平面図である。FIG. 4 is a plan view for explaining the positive electrode of one embodiment of the present invention. 図5は、本発明の積層型二次電池の製造工程の一例を説明する図である。FIG. 5 is a diagram for explaining an example of the manufacturing process of the multilayer secondary battery of the present invention. 図6は、従来の積層型二次電池の電池要素を電極面に垂直方向で切断した断面図である。FIG. 6 is a cross-sectional view of a battery element of a conventional stacked secondary battery cut in a direction perpendicular to the electrode surface. 図7は、正極電極、負極電極、およびセパレータの大きさを説明する図である。FIG. 7 is a diagram illustrating the sizes of the positive electrode, the negative electrode, and the separator.

符号の説明Explanation of symbols

1…積層型二次電池、2…正極電極、2A…正極集電体、2B…正極活物質層、2C、2D,2E,2F…活物質非塗布部、3…負極電極、4…セパレータ、5…電池要素、6…外装部材、7…正極引出端子、3A…負極集電体、3B…負極活物質層、8…負極引出端子、9…封口部、10A,10B,10C…絶縁性物質層、11…接着剤、12…両面接着テープ、20…電池組立治具、21A,21B…基準面、22A,22B…固定テープ穴   DESCRIPTION OF SYMBOLS 1 ... Stack type secondary battery, 2 ... Positive electrode, 2A ... Positive electrode collector, 2B ... Positive electrode active material layer, 2C, 2D, 2E, 2F ... Active material non-application part, 3 ... Negative electrode, 4 ... Separator, DESCRIPTION OF SYMBOLS 5 ... Battery element, 6 ... Exterior member, 7 ... Positive electrode extraction terminal, 3A ... Negative electrode collector, 3B ... Negative electrode active material layer, 8 ... Negative electrode extraction terminal, 9 ... Sealing part, 10A, 10B, 10C ... Insulating material Layer, 11 ... adhesive, 12 ... double-sided adhesive tape, 20 ... battery assembly jig, 21A, 21B ... reference surface, 22A, 22B ... fixing tape hole

Claims (9)

平板状の集電体上に正極活物質層を形成した正極電極と平板状の集電体上に負極活物質層を形成した負極電極とをセパレータを介して対向させて積層した積層型二次電池において、正極活物質層負極活物質層の面積が異なり、活物質層の面積が小さな小面積電極の集電体の外周部の隣接する少なくとも二辺に活物質層が塗布されていない活物質非塗布部が形成されており、活物質非塗布部の集電体面は絶縁性物質層で被覆され、該絶縁性物質層の活物質層に面する側とは反対側の端面、活物質層の面積が大きな大面積電極の端面を、電極面と垂直に交わる同一平面上に配置し、該絶縁性物質層の活物質層に面する側とは反対側の端面、活物質層の面積が大きな大面積電極の端面は、絶縁性物質層によって接着固定されたセパレータの端面と同一平面上に配置されたことを特徴とする積層型二次電池。 A laminated secondary in which a positive electrode in which a positive electrode active material layer is formed on a flat plate current collector and a negative electrode in which a negative electrode active material layer is formed on a flat plate current collector face each other with a separator interposed therebetween In the battery, the active material layer is not coated on at least two sides adjacent to the outer periphery of the current collector of the small area electrode in which the positive electrode active material layer and the negative electrode active material layer have different areas and the active material layer area is small. A material non-applied part is formed, and the current collector surface of the active material non-applied part is coated with an insulating material layer, and the end surface of the insulating material layer opposite to the side facing the active material layer, the active material The end surface of the large area electrode having a large layer area is arranged on the same plane perpendicular to the electrode surface, and the end surface of the insulating material layer opposite to the side facing the active material layer, the area of the active material layer The end face of a large area electrode with a large gap is the end face of the separator bonded and fixed by an insulating material layer. Laminate type secondary battery, characterized in that arranged on one plane. 平板状の集電体上に正極活物質層を形成した正極電極と平板状の集電体上に負極活物質層を形成した負極電極とをセパレータを介して対向させて積層した積層型二次電池において、正極活物質層と負極活物質層の面積が異なり、活物質層の面積が小さな小面積電極の集電体の外周部の隣接する少なくとも二辺に活物質層が塗布されていない活物質非塗布部が形成されており、活物質非塗布部の集電体面は絶縁性物質層で被覆され、該絶縁性物質層の活物質層に面する側とは反対側の端面、活物質層の面積が大きな大面積電極の端面を、電極面と垂直に交わる同一平面上に配置し、前記活物質非塗布部が形成された辺が電極引出端子が形成された辺と対向する辺であって、前記絶縁性物質層によってセパレータが接着固定されたことを特徴とする積層型二次電池。 A laminated secondary in which a positive electrode in which a positive electrode active material layer is formed on a flat plate current collector and a negative electrode in which a negative electrode active material layer is formed on a flat plate current collector face each other with a separator interposed therebetween In the battery, the active material layer is not coated on at least two sides adjacent to the outer periphery of the current collector of the small area electrode in which the positive electrode active material layer and the negative electrode active material layer have different areas and the active material layer area is small. A material non-applied part is formed, and the current collector surface of the active material non-applied part is coated with an insulating material layer, and the end surface of the insulating material layer opposite to the side facing the active material layer, the active material The end face of the large area electrode having a large layer area is arranged on the same plane perpendicular to the electrode surface, and the side where the active material non-coated portion is formed is the side facing the side where the electrode lead-out terminal is formed there, it is characterized in that the separator with the insulating material layer is bonded Laminate type secondary battery. 絶縁性物質層が、接着剤もしくは両面接着テープのいずれかであることを特徴とする請求項1または2のいずれか1項記載の積層型二次電池。 Insulating material layer, according to claim 1 or a laminate type secondary battery according to any one of 2, characterized in that either the adhesive or double-sided adhesive tape. 正極活物質非塗布部は、正極集電体の外周部から、2mmから5mmの幅で形成したことを特徴とする請求項1から3のいずれか1項記載の積層型二次電池。 The multilayer secondary battery according to any one of claims 1 to 3 , wherein the positive electrode active material non-coated portion is formed with a width of 2 mm to 5 mm from an outer peripheral portion of the positive electrode current collector. 小面積電極が正極電極であり、大面積電極が負極電極であるリチウムイオン電池であることを特徴とする請求項1から4のいずれか1項記載の積層型二次電池。 Small area electrode is a positive electrode, a stacked secondary battery according to any one of claims 1 4, characterized in that a lithium ion battery is a large-area electrode is a negative electrode. 平板状の集電体上に正極活物質層を形成した正極電極と平板状の集電体上に負極活物質層を形成した負極電極とをセパレータを介して対向させて積層した電池要素を含む積層型二次電池の製造方法において、正極活物質層と負極活物質層の面積が異なり、活物質層の面積が小さな小面積電極の集電体の外周部の少なくとも隣接する二辺には、活物質層が塗布されていない活物質非塗布部を形成し、活物質非塗布部の集電体面を絶縁性物質層で被覆し、該絶縁性物質層の活物質層に面する側とは反対側の端面、活物質層の面積が大きな大面積電極の端面を、電極面と垂直に交わる同一平面上に配置し、該絶縁性物質層の活物質層に面する側とは反対側の端面、活物質層の面積が大きな大面積電極の端面は、絶縁性物質層によって接着固定されたセパレータの端面を同一平面上に配置して積層し、電池外装体で被覆もしくは電池外装容器内に収納して封口することを特徴とする積層型二次電池の製造方法。 A battery element in which a positive electrode having a positive electrode active material layer formed on a flat plate current collector and a negative electrode having a negative electrode active material layer formed on a flat plate current collector are opposed to each other with a separator interposed therebetween is included. In the method for manufacturing a stacked secondary battery, the areas of the positive electrode active material layer and the negative electrode active material layer are different, and at least two adjacent sides of the outer periphery of the current collector of the small area electrode where the area of the active material layer is small, An active material non-coated portion not coated with an active material layer is formed, a current collector surface of the non-active material coated portion is covered with an insulating material layer, and the side of the insulating material layer facing the active material layer is The end face on the opposite side and the end face of the large-area electrode with a large active material layer area are arranged on the same plane perpendicular to the electrode face, and the side of the insulating material layer opposite to the side facing the active material layer The end face and the end face of the large area electrode with a large area of the active material layer were bonded and fixed by the insulating material layer. The end surface of the separator are stacked and arranged on the same plane, the method of fabricating the multilayer secondary battery, characterized in that to seal the mouth and placed in the coating or battery outer container with cell outer package. 平板状の集電体上に正極活物質層を形成した正極電極と平板状の集電体上に負極活物質層を形成した負極電極とをセパレータを介して対向させて積層した電池要素を含む積層型二次電池の製造方法において、正極活物質層と負極活物質層の面積が異なり、活物質層の面積が小さな小面積電極の集電体の外周部の少なくとも隣接する二辺には、活物質層が塗布されていない活物質非塗布部を形成し、前記活物質非塗布部の集電体面を絶縁性物質で被覆した後、セパレータを配置して絶縁性物質層によってセパレータを接着固定し、積層することを特徴とする積層型二次電池の製造方法。A battery element in which a positive electrode having a positive electrode active material layer formed on a flat plate current collector and a negative electrode having a negative electrode active material layer formed on a flat plate current collector are opposed to each other with a separator interposed therebetween is included. In the method for manufacturing a stacked secondary battery, the areas of the positive electrode active material layer and the negative electrode active material layer are different, and at least two adjacent sides of the outer periphery of the current collector of the small area electrode where the area of the active material layer is small, After forming the active material non-applied part where the active material layer is not applied, and covering the current collector surface of the active material non-applied part with an insulating material, the separator is arranged and the separator is adhered and fixed by the insulating material layer And a method for producing a laminated secondary battery, characterized by being laminated. 平板状の集電体上に正極活物質層を形成した正極電極と平板状の集電体上に負極活物質層を形成した負極電極とをセパレータを介して対向させて積層した電池要素を含む積層型二次電池の製造方法において、正極活物質層と負極活物質層の面積が異なり、活物質層の面積が小さな小面積電極の集電体の外周部の少なくとも隣接する二辺には、活物質層が塗布されていない活物質非塗布部を形成し、前記活物質非塗布部の集電体面を絶縁性物質層で被覆した後、セパレータを配置して絶縁性物質層によってセパレータを接着固定し、積層することを特徴とする積層型二次電池の製造方法。A battery element in which a positive electrode having a positive electrode active material layer formed on a flat plate current collector and a negative electrode having a negative electrode active material layer formed on a flat plate current collector are opposed to each other with a separator interposed therebetween is included. In the method for manufacturing a stacked secondary battery, the areas of the positive electrode active material layer and the negative electrode active material layer are different, and at least two adjacent sides of the outer periphery of the current collector of the small area electrode where the area of the active material layer is small, After forming the active material non-applied portion where the active material layer is not applied, and covering the current collector surface of the active material non-applied portion with the insulating material layer, the separator is disposed and the separator is adhered by the insulating material layer A method for producing a laminated secondary battery, comprising fixing and laminating. 絶縁性物質層が、接着剤もしくは両面接着テープのいずれかであることを特徴とする請求項6から8のいずれか1項記載の積層型二次電池の製造方法。 The method for manufacturing a stacked secondary battery according to any one of claims 6 to 8, wherein the insulating material layer is either an adhesive or a double-sided adhesive tape.
JP2006018746A 2005-01-28 2006-01-27 Multilayer secondary battery and manufacturing method thereof Expired - Fee Related JP4932263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006018746A JP4932263B2 (en) 2005-01-28 2006-01-27 Multilayer secondary battery and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005021458 2005-01-28
JP2005021458 2005-01-28
JP2006018746A JP4932263B2 (en) 2005-01-28 2006-01-27 Multilayer secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006236994A JP2006236994A (en) 2006-09-07
JP4932263B2 true JP4932263B2 (en) 2012-05-16

Family

ID=37044372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006018746A Expired - Fee Related JP4932263B2 (en) 2005-01-28 2006-01-27 Multilayer secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4932263B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11217859B2 (en) 2013-04-29 2022-01-04 Optodot Corporation Nanoporous composite separators with increased thermal conductivity

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4402134B2 (en) * 2007-05-30 2010-01-20 Necトーキン株式会社 Multilayer secondary battery and manufacturing method thereof
JP5125438B2 (en) * 2007-11-16 2013-01-23 Necエナジーデバイス株式会社 Lithium ion secondary battery and battery pack using the same
JP5515267B2 (en) * 2008-10-07 2014-06-11 日産自動車株式会社 Nonaqueous electrolyte secondary battery
DE102009013345A1 (en) * 2009-03-16 2010-09-23 Li-Tec Battery Gmbh Electrode stack for a galvanic cell
DE102009048237A1 (en) * 2009-10-05 2011-04-21 Li-Tec Battery Gmbh Electrochemical cell and method of making such a cell
KR101103499B1 (en) * 2009-10-07 2012-01-06 에스케이이노베이션 주식회사 Electrode assembly for battery and manufacturing thereof
US8557417B2 (en) 2009-12-07 2013-10-15 Samsung Sdi Co., Ltd. Secondary battery
US9461289B2 (en) * 2010-10-27 2016-10-04 Toray Advanced Film Co., Ltd. Secondary battery, method for manufacturing same, and heat-sealable insulating film for secondary battery
JP5701688B2 (en) 2011-01-31 2015-04-15 三洋電機株式会社 Multilayer battery and method for manufacturing the same
JP2013098142A (en) * 2011-11-07 2013-05-20 Sumitomo Electric Ind Ltd Molten salt battery
JP2013143336A (en) * 2012-01-12 2013-07-22 Nissan Motor Co Ltd Manufacturing method of packed electrode, packed electrode, secondary battery, and heat sealing device
JP5817570B2 (en) * 2012-02-06 2015-11-18 株式会社豊田自動織機 Power storage device, vehicle, and electrode body manufacturing method
US20130236768A1 (en) 2012-03-08 2013-09-12 Lg Chem, Ltd. Battery pack of stair-like structure
KR20130105271A (en) 2012-03-16 2013-09-25 주식회사 엘지화학 Battery cell of asymmetric structure and battery pack employed with the same
JP5724916B2 (en) * 2012-03-19 2015-05-27 株式会社豊田自動織機 Power storage device, vehicle, and electrode body manufacturing method
KR20130113301A (en) 2012-04-05 2013-10-15 주식회사 엘지화학 Battery cell of stair-like structure
KR20130133640A (en) 2012-05-29 2013-12-09 주식회사 엘지화학 A stepwise electrode assembly having corner of various shape and a battery cell, battery pack and device comprising the same
KR101926129B1 (en) * 2012-09-24 2018-12-07 에스케이이노베이션 주식회사 Electrode assembly for secondary battery
KR101483505B1 (en) 2012-11-13 2015-01-21 주식회사 엘지화학 Stepped Electrode Assembly
WO2014077469A1 (en) * 2012-11-13 2014-05-22 주식회사 엘지화학 Stepwise electrode assembly including one-sided anode
US9318733B2 (en) 2012-12-27 2016-04-19 Lg Chem, Ltd. Electrode assembly of stair-like structure
US9484560B2 (en) 2013-02-13 2016-11-01 Lg Chem, Ltd. Electric device having a round corner and including a secondary battery
KR101507013B1 (en) * 2013-03-08 2015-03-30 주식회사 엘지화학 Stepped Electrode Group Stack
US9786874B2 (en) 2013-03-08 2017-10-10 Lg Chem, Ltd. Electrode having round corner
US9954203B2 (en) 2013-03-08 2018-04-24 Lg Chem, Ltd. Stepped electrode group stack
KR101526457B1 (en) * 2013-03-08 2015-06-08 주식회사 엘지화학 Electrode Having Round Corner
JP5776722B2 (en) * 2013-04-24 2015-09-09 日産自動車株式会社 Nonaqueous electrolyte secondary battery
JP6428910B2 (en) * 2015-03-05 2018-11-28 株式会社村田製作所 Electric double layer capacitor
KR102266593B1 (en) * 2015-03-13 2021-06-17 삼성에스디아이 주식회사 Rechargeable battery
JP6665413B2 (en) * 2015-03-24 2020-03-13 株式会社豊田自動織機 Manufacturing method of electrode assembly
JP6627419B2 (en) * 2015-10-28 2020-01-08 株式会社豊田自動織機 Electrode lamination device
US10511063B2 (en) 2016-01-19 2019-12-17 Gs Yuasa International Ltd. Negative electrode plate, energy storage device, method for manufacturing negative electrode plate, and method for manufacturing energy storage device
US11128019B2 (en) 2016-11-04 2021-09-21 Gs Yuasa International Ltd. Energy storage device electrode, energy storage device, and method for manufacturing energy storage device electrode
WO2018180599A1 (en) * 2017-03-31 2018-10-04 株式会社村田製作所 Secondary battery
JP6813093B2 (en) * 2017-07-18 2021-01-13 株式会社村田製作所 Electrode body manufacturing equipment
WO2019021941A1 (en) 2017-07-25 2019-01-31 株式会社村田製作所 Lithium ion secondary battery
JP6927306B2 (en) 2017-07-25 2021-08-25 株式会社村田製作所 Lithium ion secondary battery
US12136704B2 (en) * 2018-05-30 2024-11-05 Robert Bosch Gmbh Battery including bipolar cells that have an edge insulating device
JP2020102418A (en) * 2018-12-25 2020-07-02 プライムアースEvエナジー株式会社 Manufacturing method of electrode plate group for secondary battery, electrode plate group for secondary battery, and secondary battery
JP7334427B2 (en) * 2019-03-05 2023-08-29 株式会社リコー LAMINATED BATTERY, METHOD FOR MANUFACTURING LAMINATED BATTERY
WO2021070294A1 (en) * 2019-10-09 2021-04-15 昭和電工マテリアルズ株式会社 Battery member manufacturing method, battery member, and secondary battery
CN111490298A (en) * 2020-04-23 2020-08-04 宜春清陶能源科技有限公司 Laminated soft package battery
KR20220028450A (en) * 2020-08-28 2022-03-08 삼성에스디아이 주식회사 All Solid secondary battery
WO2023245350A1 (en) * 2022-06-20 2023-12-28 宁德新能源科技有限公司 Electrochemical device and electric device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03108278A (en) * 1989-09-21 1991-05-08 Yuasa Battery Co Ltd Thin type battery
JP2004349156A (en) * 2003-05-23 2004-12-09 Toyota Motor Corp Secondary battery and stacked secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11217859B2 (en) 2013-04-29 2022-01-04 Optodot Corporation Nanoporous composite separators with increased thermal conductivity
US11387521B2 (en) 2013-04-29 2022-07-12 Optodot Corporation Nanoporous composite separators with increased thermal conductivity

Also Published As

Publication number Publication date
JP2006236994A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
JP4932263B2 (en) Multilayer secondary battery and manufacturing method thereof
US7981548B2 (en) Multilayer secondary battery and method of making same
JP4124972B2 (en) Stacked lithium-ion battery
JP5197103B2 (en) Multilayer battery, multilayer electrode assembly manufacturing jig, and multilayer battery manufacturing method using the jig
JP5252937B2 (en) Stacked battery and method for manufacturing the same
TWI459613B (en) Laminated secondary battery
JP6250921B2 (en) battery
US20090197160A1 (en) Stack type battery
CN107851768B (en) Method for manufacturing electrochemical device
JP2011210524A (en) Stack type battery
US20110076544A1 (en) Stack type battery
WO2018079817A1 (en) Electrode for electrochemical device, electrochemical device, and method for producing same
KR20120012400A (en) Square secondary battery
WO2017033514A1 (en) Electrochemical device
JP2019061925A (en) Secondary battery
JP4670275B2 (en) Bipolar battery and battery pack
US20120321930A1 (en) Electrode assembly and secondary battery using the same
WO2014141640A1 (en) Laminate exterior cell
EP2429012A1 (en) Secondary battery
JP2017050243A (en) Flat-type battery
WO2017098995A1 (en) Electrochemical device and method for manufacturing same
JP2015053224A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP7109233B2 (en) Electrochemical device manufacturing method
JP3608047B2 (en) Bipolar type secondary battery manufacturing method and bipolar type secondary battery
JP5717193B2 (en) battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080703

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080703

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120215

R150 Certificate of patent or registration of utility model

Ref document number: 4932263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees