JP4929305B2 - Electromagnetic induction heating device - Google Patents

Electromagnetic induction heating device Download PDF

Info

Publication number
JP4929305B2
JP4929305B2 JP2009062221A JP2009062221A JP4929305B2 JP 4929305 B2 JP4929305 B2 JP 4929305B2 JP 2009062221 A JP2009062221 A JP 2009062221A JP 2009062221 A JP2009062221 A JP 2009062221A JP 4929305 B2 JP4929305 B2 JP 4929305B2
Authority
JP
Japan
Prior art keywords
resonance
circuit
induction heating
electromagnetic induction
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009062221A
Other languages
Japanese (ja)
Other versions
JP2010218782A (en
Inventor
純平 宇留野
浩幸 庄司
雅之 磯貝
敏一 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2009062221A priority Critical patent/JP4929305B2/en
Priority to CN 201010113132 priority patent/CN101841945B/en
Publication of JP2010218782A publication Critical patent/JP2010218782A/en
Application granted granted Critical
Publication of JP4929305B2 publication Critical patent/JP4929305B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Induction Heating Cooking Devices (AREA)

Description

本発明は、複数の加熱部を有する電磁誘導加熱装置に関するものである。   The present invention relates to an electromagnetic induction heating apparatus having a plurality of heating units.

近年、火を使わずに鍋などの被加熱物を加熱するインバータ方式の電磁誘導加熱装置が広く用いられるようになってきている。電磁誘導加熱装置は、加熱コイルに高周波電流を流し、コイルに近接して配置された鉄やステンレスなどの材質で作られた被加熱物に渦電流を発生させ、被加熱物自体の電気抵抗により発熱させる。被加熱物の温度制御が可能で安全性が高いことから、新しい熱源として認知されている。   In recent years, an inverter type electromagnetic induction heating apparatus that heats an object to be heated such as a pot without using a fire has been widely used. The electromagnetic induction heating device applies a high-frequency current to the heating coil, generates an eddy current in a heated object made of a material such as iron or stainless steel, which is disposed in the vicinity of the coil, and the electric resistance of the heated object itself. Causes fever. It is recognized as a new heat source because it can control the temperature of the object to be heated and is highly safe.

従来、システムキッチンなどに組み込まれる電気調理器には、シーズヒータやプレートヒータ,ハロゲンヒータなどの抵抗体を熱源としたものが使われていたが、近年では、一部を誘導加熱調理器に置き換えたもの、あるいは2口以上を誘導加熱調理器にしたものに代わりつつある。電磁誘導加熱装置の入力電力を変化させ被加熱物の温度制御を行う方法としては、インバータの駆動周波数を変化させる方法が一般的である。しかし、加熱コイルを複数個備えてそれぞれ別々の被加熱物を加熱する場合、インバータ間の差分周波数に起因して被加熱物から干渉音が発生するという問題がある。   Conventionally, electric cookers built into system kitchens and the like have used resistors such as sheathed heaters, plate heaters, and halogen heaters as heat sources, but in recent years some of them have been replaced with induction heating cookers. It is being replaced by one that has been used as an induction heating cooker. As a method of controlling the temperature of the object to be heated by changing the input power of the electromagnetic induction heating device, a method of changing the drive frequency of the inverter is common. However, when a plurality of heating coils are provided to heat different objects to be heated, there is a problem that interference sound is generated from the objects to be heated due to the difference frequency between the inverters.

このような問題を解決する従来例として、特許文献1に開示されるような誘導加熱用インバータがある。このインバータは、一定の駆動周波数で共振コンデンサの一部をスイッチング素子でバイパスし、導通期間を変化させ入力電力を制御するものである。これにより、複数個のインバータを作動しても同一の駆動周波数で入力電力を変えることができるため、干渉音の発生を防ぐことができる。   As a conventional example for solving such a problem, there is an induction heating inverter as disclosed in Patent Document 1. In this inverter, a part of the resonant capacitor is bypassed by a switching element at a constant drive frequency, and the conduction period is changed to control the input power. As a result, even if a plurality of inverters are operated, the input power can be changed at the same drive frequency, so that the generation of interference sound can be prevented.

特開2002−8840号公報Japanese Patent Laid-Open No. 2002-8840

上述したように、特許文献1では、干渉音の発生を防ぐことができるが、大きな共振電流がバイパス用のスイッチング素子に流れるため発生する損失が大きくなる問題点がある。   As described above, in Patent Document 1, it is possible to prevent the generation of interference sound, but there is a problem that a large loss occurs due to a large resonance current flowing through the switching element for bypass.

本発明の課題は、複数のインバータを同時に駆動した場合の干渉音の発生を防止でき、バイパス用のスイッチング素子の損失発生を抑えた電磁誘導加熱装置を提供することである。   The subject of this invention is providing the electromagnetic induction heating apparatus which can prevent generation | occurrence | production of the interference sound at the time of driving a some inverter simultaneously, and suppressed the loss generation | occurrence | production of the switching element for bypass.

上述の課題は、直流電源と、該直流電源から供給される直流電圧を高周波の交流電圧に変換するインバータ回路と、制御回路とを有する電磁誘導加熱装置において、前記インバータ回路は、スイッチング回路と、共振回路と、共振点可変回路とを備え、前記スイッチング回路が、前記直流電源の両端子に接続する、上アームのパワー半導体スイッチング素子と下アームのパワー半導体スイッチング素子との直列接続により形成され、加熱コイルと第1の共振コンデンサと第2の共振コンデンサとを直列に接続して形成した前記共振回路は、一端が前記スイッチング回路の上アームと下アームとの接続点に接続され、他端が前記直流電源の何れか一方の端子に接続され、前記第2の共振コンデンサに並列接続される前記共振点可変回路は、第3の共振コンデンサと第1のスイッチング素子の直列接続と、前記第1のスイッチング素子に逆並列に接続した第1のダイオードにより形成され、前記制御回路によって、前記第1のスイッチング素子の導通期間を制御することで前記共振回路の共振周波数を可変とし、前記第2の共振コンデンサ容量が前記第1の共振コンデンサ容量以上であり、前記第3の共振コンデンサ容量が前記第2の共振コンデンサ容量以下である電磁誘導加熱装置によって解決される。 The above-described problem is an electromagnetic induction heating apparatus having a DC power source, an inverter circuit that converts a DC voltage supplied from the DC power source into a high-frequency AC voltage, and a control circuit, wherein the inverter circuit includes a switching circuit, A resonance circuit; and a resonance point variable circuit, wherein the switching circuit is formed by series connection of an upper arm power semiconductor switching element and a lower arm power semiconductor switching element connected to both terminals of the DC power supply, The resonance circuit formed by connecting a heating coil, a first resonance capacitor, and a second resonance capacitor in series has one end connected to a connection point between the upper arm and the lower arm of the switching circuit, and the other end The resonance point variable circuit connected to one of the terminals of the DC power source and connected in parallel to the second resonance capacitor includes a third A series connection of the resonant capacitor and the first switching element, is formed by a first diode connected in anti-parallel to said first switching element, by the control circuit, the conduction period of the first switching element By controlling the resonance frequency of the resonance circuit , the second resonance capacitor capacitance is greater than or equal to the first resonance capacitor capacitance, and the third resonance capacitor capacitance is less than or equal to the second resonance capacitor capacitance. This is solved by an electromagnetic induction heating device.

また、被加熱物を誘導加熱する電磁誘導加熱装置であって、正電極と負電極から直流電圧を供給する電源回路と、該電源回路の正電極と負電極の間に接続され、直流電圧を交流電圧に変換して出力するスイッチング回路と、該スイッチング回路の出力端子と前記電源回路の端子間に接続され、加熱コイルと第1の共振コンデンサと第2の共振コンデンサとの直列接続で構成された共振回路と、前記第2の共振コンデンサに並列に接続され、前記共振回路の共振点を可変する共振点可変回路と、を具備し、前記共振点可変回路は、第3の共振コンデンサとスイッチング素子の直列接続と、該スイッチング素子に逆並列に接続されたダイオードで構成され、前記第2の共振コンデンサの容量を前記第1の共振コンデンサの容量以上にし、前記第2の共振コンデンサの容量を前記第3の共振コンデンサの容量以上にする電磁誘導加熱装置によって解決される。 Also, an electromagnetic induction heating device for induction heating of an object to be heated, the power supply circuit supplying a DC voltage from the positive electrode and the negative electrode, connected between the positive electrode and the negative electrode of the power supply circuit, A switching circuit that converts to an alternating voltage and outputs it, and is connected between the output terminal of the switching circuit and the terminal of the power supply circuit, and includes a series connection of a heating coil, a first resonance capacitor, and a second resonance capacitor. And a resonance point variable circuit that is connected in parallel to the second resonance capacitor and varies a resonance point of the resonance circuit, the resonance point variable circuit switching with the third resonance capacitor A series connection of elements and a diode connected in anti-parallel to the switching element, the capacitance of the second resonance capacitor being greater than or equal to the capacitance of the first resonance capacitor, and the second Is solved the capacitance of the resonance capacitor by the electromagnetic induction heating device for more than the capacity of said third resonant capacitor.

本発明によれば、共振コンデンサに共振点可変回路を備え、共振周波数を可変することにより、共振回路の負荷特性を誘導性に維持することができ、Duty制御によって入力電力を制御でき、スイッチング素子の損失発生を抑えることができる。複数のインバータを同時に駆動した場合においても、全てのインバータの駆動周波数を同一にすることができるため、干渉音が発生しない電磁誘導加熱装置を提供することができる。   According to the present invention, the resonance capacitor is provided with the resonance point variable circuit, and the resonance frequency is varied, whereby the load characteristic of the resonance circuit can be maintained inductive, the input power can be controlled by the duty control, and the switching element Generation of loss can be suppressed. Even when a plurality of inverters are driven at the same time, the drive frequencies of all the inverters can be made the same, so that it is possible to provide an electromagnetic induction heating device that does not generate interference noise.

実施例1の電磁誘導加熱装置のブロック図である。It is a block diagram of the electromagnetic induction heating apparatus of Example 1. 実施例1の電磁誘導加熱装置の回路の変形例である。5 is a modification of the circuit of the electromagnetic induction heating device according to the first embodiment. 実施例1の電磁誘導加熱装置の回路の変形例である。5 is a modification of the circuit of the electromagnetic induction heating device according to the first embodiment. 実施例1の電磁誘導加熱装置の回路の変形例である。5 is a modification of the circuit of the electromagnetic induction heating device according to the first embodiment. 実施例2の電磁誘導加熱装置の回路構成図である。It is a circuit block diagram of the electromagnetic induction heating apparatus of Example 2. 実施例2の動作説明図である。FIG. 6 is an operation explanatory diagram of Embodiment 2. 実施例2の制御方法の説明図である。It is explanatory drawing of the control method of Example 2. FIG. 実施例2の制御方法の説明図である。It is explanatory drawing of the control method of Example 2. FIG. 実施例2の制御方法の説明図である。It is explanatory drawing of the control method of Example 2. FIG. 実施例3の電磁誘導加熱装置の回路構成図である。It is a circuit block diagram of the electromagnetic induction heating apparatus of Example 3. 実施例4の電磁誘導加熱装置の回路構成図である。It is a circuit block diagram of the electromagnetic induction heating apparatus of Example 4. 実施例5の電磁誘導加熱装置の回路の一部である。7 is a part of the circuit of the electromagnetic induction heating device of Example 5. 実施例6の電磁誘導加熱装置の回路の一部である。6 is a part of a circuit of an electromagnetic induction heating device of Example 6. 各被加熱物の抵抗値と鉄に対するインダクタンス比率を示す図である。It is a figure which shows the resistance value of each to-be-heated object, and the inductance ratio with respect to iron. 実施例2の動作説明図の変形例である。It is a modification of operation | movement explanatory drawing of Example 2. FIG.

以下、図面を用いながら本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

実施例1の電磁誘導加熱装置は、直流電圧を高周波の交流電圧に変換するインバータ回路を有し、該インバータ回路はスイッチング回路と共振回路を含み、共振回路は加熱コイルと該加熱コイルに直列接続される2つの共振コンデンサを含み、前記直流電源の両端子(p/o)のいずれか一方とスイッチング回路の出力端子(t)との間に前記共振回路を接続し、前記共振コンデンサの一方に並列に接続される共振点可変回路を有するものである。以下では、実施例1の電磁誘導加熱装置を図を用いて詳細に説明する。   The electromagnetic induction heating apparatus according to the first embodiment includes an inverter circuit that converts a DC voltage into a high-frequency AC voltage. The inverter circuit includes a switching circuit and a resonance circuit. The resonance circuit is connected in series to the heating coil and the heating coil. The resonance circuit is connected between either one of both terminals (p / o) of the DC power supply and the output terminal (t) of the switching circuit, and one of the resonance capacitors It has a resonance point variable circuit connected in parallel. Below, the electromagnetic induction heating apparatus of Example 1 is demonstrated in detail using figures.

図1は実施例1の電磁誘導加熱装置のブロック図である。図1に示すように、本実施例の電磁誘導加熱装置は、第1のインバータ100,第2のインバータ200,第3のインバータ300を備えている。各インバータが被加熱物を加熱できるので、本実施例の電磁誘導加熱装置は複数の被加熱物を同時に加熱することができる。本実施例では各々のインバータの構成は同等であるので、第1のインバータ100を代表して説明する。   FIG. 1 is a block diagram of the electromagnetic induction heating apparatus according to the first embodiment. As shown in FIG. 1, the electromagnetic induction heating apparatus according to the present embodiment includes a first inverter 100, a second inverter 200, and a third inverter 300. Since each inverter can heat an object to be heated, the electromagnetic induction heating apparatus of this embodiment can simultaneously heat a plurality of objects to be heated. In this embodiment, since the configuration of each inverter is the same, the first inverter 100 will be described as a representative.

図1において、第1のインバータ100はスイッチング回路20,共振回路60,共振点可変回路30によって構成されている。スイッチング回路20は、電源回路10の正電極p点と負電極o点との間に接続されており、電源回路10から供給される直流電圧を高周波の交流電圧に変換して共振回路60に印加する。共振回路60は、直列接続された、加熱コイル5,共振コンデンサ6,7から構成され、加熱コイル5にはスイッチング回路20から高周波電力が供給される。共振点可変回路30は共振コンデンサ7に並列に接続されており、共振コンデンサ7に流れる電流をバイパスすることによって、共振回路60の共振点を制御する。   In FIG. 1, the first inverter 100 includes a switching circuit 20, a resonance circuit 60, and a resonance point variable circuit 30. The switching circuit 20 is connected between the positive electrode p point and the negative electrode o point of the power supply circuit 10, converts the DC voltage supplied from the power supply circuit 10 into a high-frequency AC voltage and applies it to the resonance circuit 60. To do. The resonance circuit 60 includes a heating coil 5 and resonance capacitors 6 and 7 connected in series, and high frequency power is supplied to the heating coil 5 from the switching circuit 20. The resonance point variable circuit 30 is connected in parallel to the resonance capacitor 7, and controls the resonance point of the resonance circuit 60 by bypassing the current flowing through the resonance capacitor 7.

スイッチング回路20はドライブ回路61によって駆動され、共振点可変回路30はドライブ回路62によって駆動される。ドライブ回路61,62は制御回路70によってコントロールされる。入力電力設定部75は、使用者が入力電力(火力)を設定するためのインターフェースであり、設定に応じて制御回路70に信号を送る。制御回路70は入力電力設定部75からの信号に応じてスイッチング回路20及び共振点可変回路30を制御する。   The switching circuit 20 is driven by a drive circuit 61, and the resonance point variable circuit 30 is driven by a drive circuit 62. The drive circuits 61 and 62 are controlled by the control circuit 70. The input power setting unit 75 is an interface for the user to set input power (thermal power), and sends a signal to the control circuit 70 according to the setting. The control circuit 70 controls the switching circuit 20 and the resonance point variable circuit 30 according to the signal from the input power setting unit 75.

一般に、共振型のインバータでは、スイッチング回路の駆動周波数fs>共振回路の共振周波数frに設定し、共振負荷の特性を誘導性にすることで、共振回路に流れる電流がスイッチング回路の出力電圧に対し遅れ位相になるように制御する。これにより、スイッチング回路での損失増加を抑制している。すなわち、図1では、共振回路60に流れる電流IL5が、スイッチング回路20と共振回路60の接続点である出力端子t点の電圧に対して遅れ位相になるように制御することでスイッチング回路20の損失を抑制することができる。   In general, in a resonance type inverter, the drive frequency fs of the switching circuit is set to be greater than the resonance frequency fr of the resonance circuit, and the characteristic of the resonance load is made inductive, so that the current flowing through the resonance circuit Control so that the phase is delayed. This suppresses an increase in loss in the switching circuit. That is, in FIG. 1, the current IL <b> 5 flowing through the resonance circuit 60 is controlled so as to be in a lagging phase with respect to the voltage at the output terminal t, which is a connection point between the switching circuit 20 and the resonance circuit 60. Loss can be suppressed.

しかしながら、駆動周波数fsを固定した状態で、スイッチング回路20の導通期間を変化させ電力制御を行うと、スイッチング回路20の導通期間に電流IL5の極性が反転し、電流IL5がスイッチング回路20の出力電圧より進み位相になる進相モードへ移行する場合もある。進相モードはスイッチング回路20の損失増加を招くので、共振型のインバータでは避けなければならないモードである。   However, when the power control is performed by changing the conduction period of the switching circuit 20 with the driving frequency fs fixed, the polarity of the current IL5 is reversed during the conduction period of the switching circuit 20, and the current IL5 becomes the output voltage of the switching circuit 20. In some cases, the phase shifts to a phase advance mode where the phase is more advanced. The phase advance mode causes an increase in loss of the switching circuit 20, and is a mode that should be avoided in a resonance type inverter.

本実施例では、被加熱物の材質や形状,厚み,大きさ、或いは、設定された入力電力(火力)の大きさに応じて共振点可変回路30の導通期間を変えて、共振回路60の共振点を制御し、共振回路60の負荷特性を誘導性に維持する。すなわち、常に、スイッチング回路20の駆動周波数fs>共振回路60の共振周波数frを満たすように、共振周波数frを制御することで、進相モードを回避し、スイッチング回路20の損失増加を回避できる。例えば、被加熱物が鉄などの磁性体において、大電力時には共振点可変回路30の導通を停止し加熱を行う。電力を制御する場合には、共振点可変回路30の導通期間を長くすることで、電力を低減する。図14に各被加熱物の抵抗値と鉄に対するインダクタンス比率を示す。非磁性ステンレスなどの非磁性体では、インダクタンス値が鉄に比べ、2/3程度に低下する。即ち共振点はインダクタンスの低下により共振点が高くなる。したがって、容量性(スイッチング回路の駆動周波数fs<共振回路の共振周波数fr)になってしまう。そこで、大電力時でも共振点可変回路30を導通状態にすることで、負荷特性を誘導性に維持する。電力を制御する場合には、鉄と同様に共振点可変回路の導通期間を長くすることで、電力が低減できる。   In the present embodiment, the conduction period of the resonance point variable circuit 30 is changed according to the material, shape, thickness, size of the object to be heated, or the magnitude of the set input power (thermal power), and the resonance circuit 60 The resonance point is controlled and the load characteristic of the resonance circuit 60 is maintained inductive. In other words, by controlling the resonance frequency fr so that the drive frequency fs of the switching circuit 20> the resonance frequency fr of the resonance circuit 60 is always satisfied, the phase advance mode can be avoided and an increase in loss of the switching circuit 20 can be avoided. For example, when the object to be heated is a magnetic material such as iron, when the power is high, conduction of the resonance point variable circuit 30 is stopped and heating is performed. When controlling the power, the power is reduced by lengthening the conduction period of the resonance point variable circuit 30. FIG. 14 shows the resistance value of each object to be heated and the inductance ratio to iron. In a non-magnetic material such as non-magnetic stainless steel, the inductance value is reduced to about 2/3 compared to iron. That is, the resonance point becomes higher due to a decrease in inductance. Therefore, it becomes capacitive (the driving frequency fs of the switching circuit <the resonance frequency fr of the resonance circuit). Therefore, the load characteristic is maintained inductive by making the resonance point variable circuit 30 conductive even at high power. When controlling the power, the power can be reduced by increasing the conduction period of the resonance point variable circuit as in the case of iron.

これにより、第1のインバータ100は駆動周波数fsを一定にしてスイッチング回路20の導通期間を変化させ、入力電力を制御してもスイッチング回路20の損失増加を回避可能となる。このように、共振点可変回路30は、一定の駆動周波数fsで動作を実現するための補助スイッチング回路としての役割を果たす。   As a result, the first inverter 100 can avoid the increase in loss of the switching circuit 20 even if the input power is controlled by changing the conduction period of the switching circuit 20 with the drive frequency fs kept constant. As described above, the resonance point variable circuit 30 serves as an auxiliary switching circuit for realizing an operation at a constant drive frequency fs.

次に、図2〜図4を用いて図1の実施例の変形例を説明する。図2〜図4の変形例でも、共振回路60や共振点可変回路30の構成,動作は図1で説明したものと同等であるので詳細な説明は省略する。前述したように、図1では、共振回路60のo点を電源回路10の負電極o点に接続するとともに、共振点可変回路30のo点を電源回路10の負電極o点に接続した。図2に示すように、共振回路60のo点を電源回路10の負電極o点に接続するとともに、共振点可変回路30のo点を電源回路10の正電極p点に接続しても同様の効果を得ることができる。また、図3に示すように、共振回路60及び共振点可変回路30のo点を電源回路10の正電極p点に接続しても同様の効果を得ることができる。また、図4に示すように、共振回路60のo点を電源回路10の正電極p点に接続するとともに、共振点可変回路30のo点を電源回路10の負電極o点に接続しても同様の効果を得ることができる。   Next, a modification of the embodiment of FIG. 1 will be described with reference to FIGS. 2 to 4, the configurations and operations of the resonance circuit 60 and the resonance point variable circuit 30 are the same as those described with reference to FIG. As described above, in FIG. 1, the point o of the resonance circuit 60 is connected to the negative electrode o point of the power supply circuit 10, and the point o of the resonance point variable circuit 30 is connected to the negative electrode o point of the power supply circuit 10. As shown in FIG. 2, the point o of the resonance circuit 60 is connected to the negative electrode o point of the power supply circuit 10, and the point o of the resonance point variable circuit 30 is connected to the positive electrode p point of the power supply circuit 10. The effect of can be obtained. As shown in FIG. 3, the same effect can be obtained by connecting the point o of the resonance circuit 60 and the resonance point variable circuit 30 to the positive electrode p point of the power supply circuit 10. Further, as shown in FIG. 4, the point o of the resonance circuit 60 is connected to the positive electrode p point of the power supply circuit 10, and the point o of the resonance point variable circuit 30 is connected to the negative electrode o point of the power supply circuit 10. The same effect can be obtained.

なお、共振コンデンサ6の容量を共振コンデンサ7の容量より小さくすることで、共振コンデンサ7に発生する共振電圧を低減させ、共振点可変回路にかかる電圧を小さくすることができる。すなわち、共振点可変回路30における損失発生を低減させ、耐電圧性能を高めることができる。   Note that by making the capacitance of the resonance capacitor 6 smaller than the capacitance of the resonance capacitor 7, the resonance voltage generated in the resonance capacitor 7 can be reduced and the voltage applied to the resonance point variable circuit can be reduced. That is, loss generation in the resonance point variable circuit 30 can be reduced and the withstand voltage performance can be improved.

図5を用い、実施例1の電磁誘導加熱装置の構成と動作をより具体的にした実施例2を説明する。なお、実施例1で説明した構成は同一の符号を付して説明を省略する。   Example 2 which made the structure and operation | movement of the electromagnetic induction heating apparatus of Example 1 more concrete using FIG. 5 is demonstrated. In addition, the structure demonstrated in Example 1 attaches | subjects the same code | symbol, and abbreviate | omits description.

図5において、電源回路10は、商用電源1からの交流電圧を整流する整流回路2とインダクタ3及びコンデンサ4で構成された平滑回路からなり、交流電圧を直流電圧に変換して第1のインバータ100に電力を供給する。   In FIG. 5, a power supply circuit 10 is composed of a rectifier circuit 2 for rectifying an AC voltage from a commercial power supply 1, a smoothing circuit composed of an inductor 3 and a capacitor 4, and converts the AC voltage into a DC voltage to convert it to a first inverter. 100 is powered.

電源回路10内のコンデンサ4の正電極p点と負電極o点との間にはスイッチング回路20が接続されている。スイッチング回路20は、パワー半導体スイッチング素子であるIGBT11とIGBT12が直列に接続されて構成される。IGBT11,12にはそれぞれダイオード21,22が逆方向に並列接続されている。以下では、IGBT11とダイオード21で構成される回路を上アームと称し、IGBT12とダイオード22で構成される回路を下アームと称することとする。また、IGBT11,12にはそれぞれ並列にスナバコンデンサ31,32が接続されている。スナバコンデンサ31,32は、IGBT11またはIGBT12のターンオフ時の遮断電流によって充電あるいは放電される。スナバコンデンサ31,32の容量は、IGBT11,12のコレクタとエミッタ間の出力容量より十分に大きいため、ターンオフ時に両IGBTに印加される電圧の変化は低減され、ターンオフ損失は抑制される。   A switching circuit 20 is connected between the positive electrode p point and the negative electrode o point of the capacitor 4 in the power supply circuit 10. The switching circuit 20 is configured by connecting IGBT11 and IGBT12 which are power semiconductor switching elements in series. Diodes 21 and 22 are connected in parallel to the IGBTs 11 and 12 in opposite directions, respectively. Hereinafter, a circuit composed of the IGBT 11 and the diode 21 is referred to as an upper arm, and a circuit composed of the IGBT 12 and the diode 22 is referred to as a lower arm. Further, snubber capacitors 31 and 32 are connected in parallel to the IGBTs 11 and 12, respectively. The snubber capacitors 31 and 32 are charged or discharged by a cutoff current when the IGBT 11 or the IGBT 12 is turned off. Since the capacitances of the snubber capacitors 31 and 32 are sufficiently larger than the output capacitance between the collectors and emitters of the IGBTs 11 and 12, changes in the voltage applied to both IGBTs at the time of turn-off are reduced, and turn-off loss is suppressed.

IGBT11,12の接続点である出力端子t点と電源回路10の負電極o点間には共振回路60が接続されている。共振回路60は直列に接続された加熱コイル5と共振コンデンサ6,7で構成される。   A resonance circuit 60 is connected between the output terminal t point, which is a connection point between the IGBTs 11 and 12, and the negative electrode o point of the power supply circuit 10. The resonance circuit 60 includes a heating coil 5 and resonance capacitors 6 and 7 connected in series.

共振回路60内の共振コンデンサ7に並列に接続された共振点可変回路30は、共振コンデンサ8とIGBT13の直列接続と、IGBT13に逆並列接続されたダイオード23によって構成されている。ここで、出力端子t点から加熱コイル5に向かって流れる方向を共振電流IL5の正方向とする。   The resonance point variable circuit 30 connected in parallel to the resonance capacitor 7 in the resonance circuit 60 is configured by a series connection of the resonance capacitor 8 and the IGBT 13 and a diode 23 connected in reverse parallel to the IGBT 13. Here, the direction flowing from the output terminal t toward the heating coil 5 is the positive direction of the resonance current IL5.

電流検出素子71は、共振回路60に流れる電流を検出する。共振電流検出回路72は、電流検出素子71の出力信号レベルを制御回路70の入力レベルに適した信号に変換する。電流検出素子73は、商用電源1から入力する電流を検出する。入力電流検出回路74は電流検出素子73の出力信号レベルを制御回路70の入力レベルに適した信号に変換する。制御回路70は入力電流検出回路74で検出した入力電流と共振電流検出回路72で検出した共振電流の関係から被加熱物の材質や状態を判断し、加熱動作の開始又は停止を行う。被加熱物の判別は、磁性体と非磁性体とに区別する。区別する方法としては、加熱前に低電力(300W程度)で通電を行う。そのときの共振電流IL5またはIGBT11,12の電流値を検出し、その電流値により、被加熱物の材質を判別する。電流値が小さい場合には鉄などの磁性体,電流値が大きい場合は、非磁性ステンレスやアルミニウム,銅といった非磁性体の被加熱物と判別する。図14に周波数20kHzにおける各被加熱物の抵抗値を示す。図14のように、非磁性ステンレスでは鉄の1/3、アルミニウム1/20、銅では約1/25の抵抗値となる。   The current detection element 71 detects a current flowing through the resonance circuit 60. The resonance current detection circuit 72 converts the output signal level of the current detection element 71 into a signal suitable for the input level of the control circuit 70. The current detection element 73 detects a current input from the commercial power source 1. The input current detection circuit 74 converts the output signal level of the current detection element 73 into a signal suitable for the input level of the control circuit 70. The control circuit 70 determines the material and state of the object to be heated from the relationship between the input current detected by the input current detection circuit 74 and the resonance current detected by the resonance current detection circuit 72, and starts or stops the heating operation. The object to be heated is distinguished from a magnetic material and a non-magnetic material. As a method of distinguishing, energization is performed with low power (about 300 W) before heating. The current value of the resonance current IL5 or IGBT 11, 12 at that time is detected, and the material of the object to be heated is determined based on the current value. When the current value is small, the magnetic material such as iron is discriminated, and when the current value is large, it is discriminated as a non-magnetic material to be heated such as nonmagnetic stainless steel, aluminum or copper. FIG. 14 shows the resistance value of each object to be heated at a frequency of 20 kHz. As shown in FIG. 14, the nonmagnetic stainless steel has a resistance value of 1/3 of iron, 1/20 of aluminum, and about 1/25 of copper.

また、制御回路70は、入力電力設定部75からの信号に応じてスイッチング回路20のIGBT11,12及びIGBT13の導通期間を、ドライブ回路61,62を介して設定し入力電力を制御する。材質の検知は、過電流や過電圧の発生を防ぐために低電力かつ短時間で実施する必要がある。本実施例において材質検知の初期段階では、共振点可変回路30を導通状態にすることにより、共振回路のインピーダンスを大きくすることができ、過電流や過電圧の発生及び入力電力の急増を防ぐことができる。   In addition, the control circuit 70 sets the conduction periods of the IGBTs 11 and 12 and the IGBT 13 of the switching circuit 20 via the drive circuits 61 and 62 in accordance with a signal from the input power setting unit 75 and controls the input power. The material detection needs to be performed in a short time with low power to prevent the occurrence of overcurrent and overvoltage. In the present embodiment, at the initial stage of material detection, the resonance point variable circuit 30 is turned on to increase the impedance of the resonance circuit, thereby preventing the occurrence of overcurrent and overvoltage and the rapid increase of input power. it can.

また、図5に示すように、スイッチング回路20の上アームに流れる電流をIc1、下アームに流れる電流をIc2、共振点可変回路30に流れる電流をIc3、共振電流をIL5とする。上アームのIGBT11のコレクタ,エミッタ間の電圧をVc1、下アームのIGBT12のコレクタ,エミッタ間の電圧をVc2、共振点可変回路30のIGBT13のコレクタ,エミッタ間の電圧をVc3、共振コンデンサ7の共振電圧をVc4、共振コンデンサ8の共振電圧をVc5、インバータの電源電圧をVpとする。   As shown in FIG. 5, the current flowing through the upper arm of the switching circuit 20 is Ic1, the current flowing through the lower arm is Ic2, the current flowing through the resonance point variable circuit 30 is Ic3, and the resonance current is IL5. The voltage between the collector and emitter of the IGBT 11 of the upper arm is Vc1, the voltage between the collector and emitter of the IGBT 12 of the lower arm is Vc2, the voltage between the collector and emitter of the IGBT 13 of the resonance point variable circuit 30 is Vc3, and the resonance of the resonance capacitor 7 The voltage is Vc4, the resonance voltage of the resonance capacitor 8 is Vc5, and the power supply voltage of the inverter is Vp.

以上の構成において、鉄などの磁性被加熱物の入力電力を下げる場合や、アルミ鍋などの非磁性被加熱物の加熱,入力電力を下げる場合の動作を説明する。まず、共振点可変回路30に電流を流すと、共振コンデンサ7に共振コンデンサ8が並列接続になるため、共振回路60のインピーダンスが増加するとともに共振周波数frが低くなり、入力電力を下げることができる。以下に共振周波数の計算式(式1)を示す。(式1)に示すように、Cの大きさが大きくなると共振周波数が小さくなることが分かる。   In the above configuration, the operation when the input power of a magnetic object to be heated such as iron is lowered, or when the nonmagnetic object to be heated such as an aluminum pan is heated and the input power is reduced will be described. First, when a current is passed through the resonance point variable circuit 30, the resonance capacitor 8 is connected in parallel to the resonance capacitor 7, so that the impedance of the resonance circuit 60 is increased and the resonance frequency fr is lowered to reduce the input power. . The calculation formula (Formula 1) of the resonance frequency is shown below. As shown in (Expression 1), it can be seen that the resonance frequency decreases as the size of C increases.

Figure 0004929305
fr:共振周波数、L:被加熱物を搭載した時の加熱コイルのインダクタンス、
C:共振コンデンサ6,7と共振点可変回路30の合成容量
Figure 0004929305
fr: resonance frequency, L: inductance of the heating coil when an object to be heated is mounted,
C: Combined capacity of the resonance capacitors 6 and 7 and the resonance point variable circuit 30

入力電力を更に低下するにはアームの導通期間を短くするとともに、下アームの導通期間を長くする。このとき、下アームの導通期間に共振電流IL5の流れる方向が負から正に反転し易くなるが、上述したように、共振周波数frが低くなるため、スイッチング回路の駆動周波数と共振周波数frの差が大きくなる。このため共振電流IL5の極性が負から反転することを防止することができる。   In order to further reduce the input power, the arm conduction period is shortened and the lower arm conduction period is lengthened. At this time, the direction in which the resonance current IL5 flows is easily reversed from negative to positive during the conduction period of the lower arm. However, as described above, the resonance frequency fr decreases, and thus the difference between the drive frequency of the switching circuit and the resonance frequency fr. Becomes larger. For this reason, it is possible to prevent the polarity of the resonance current IL5 from being reversed from negative.

次に、共振点可変回路30の導通期間制御による入力電力を下げるときの動作について図6を用いてより詳細に説明する。なお、図6に示すように、IGBT11〜13の制御の一周期(駆動周期)をtsで表し、IGBT11,12,13の導通期間をそれぞれt1,t2,t3で表す。また、共振電流IL5の一周期をモード1〜5に分けて表す。   Next, the operation when the input power is lowered by the conduction period control of the resonance point variable circuit 30 will be described in more detail with reference to FIG. As shown in FIG. 6, one cycle (drive cycle) of the control of the IGBTs 11 to 13 is represented by ts, and the conduction periods of the IGBTs 11, 12, and 13 are represented by t1, t2, and t3, respectively. Further, one period of the resonance current IL5 is divided into modes 1 to 5.

(モード1)
図6に示すように、モード1では、IGBT11,12,13の駆動信号がそれぞれオン,オフ,オンとなっており、IGBT11,13が導通している。加熱コイル5の蓄積エネルギーがゼロになると共振電流IL5の極性が負から正に変わり、共振電流IL5が、IGBT11,加熱コイル5,共振コンデンサ6,7の経路と、IGBT11,加熱コイル5,共振コンデンサ6,8,IGBT13の経路に流れる。すなわち、モード1の共振特性は、IGBT11,加熱コイル5,共振コンデンサ6,7,8によって決定される。なお、モード1では、共振コンデンサ6,7,8は共振電流IL5によって放電される。
(Mode 1)
As shown in FIG. 6, in mode 1, the drive signals of the IGBTs 11, 12, and 13 are on, off, and on, respectively, and the IGBTs 11 and 13 are conducting. When the stored energy of the heating coil 5 becomes zero, the polarity of the resonance current IL5 changes from negative to positive, and the resonance current IL5 changes the path of the IGBT 11, the heating coil 5, the resonance capacitors 6 and 7, the IGBT 11, the heating coil 5, and the resonance capacitor. 6, 8, flows in the path of the IGBT 13. That is, the resonance characteristics of mode 1 are determined by the IGBT 11, the heating coil 5, and the resonance capacitors 6, 7, and 8. In mode 1, resonance capacitors 6, 7, and 8 are discharged by resonance current IL5.

(モード2)
次に、モード1に続くモード2を説明する。モード2では、IGBT11,12,13の駆動信号をそれぞれオン,オフ,オフとし、IGBT11のみを導通させる。すなわち、モード2では、IGBT13を導通させないので、Ic3が遮断される。図6に示すように、モード2では共振電流IL5は正の極性を有しており、この電流はIGBT11,加熱コイル5,共振コンデンサ6,7の経路に流れる。すなわち、モード2の共振特性は、IGBT11,加熱コイル5,共振コンデンサ6,7によって決定される。
(Mode 2)
Next, mode 2 following mode 1 will be described. In mode 2, the drive signals of the IGBTs 11, 12, and 13 are turned on, off, and off, respectively, so that only the IGBT 11 is conducted. That is, in mode 2, since the IGBT 13 is not conducted, Ic3 is blocked. As shown in FIG. 6, in mode 2, the resonance current IL5 has a positive polarity, and this current flows through the path of the IGBT 11, the heating coil 5, and the resonance capacitors 6 and 7. That is, the resonance characteristics of mode 2 are determined by the IGBT 11, the heating coil 5, and the resonance capacitors 6 and 7.

(モード3)
次に、モード2に続くモード3を説明する。モード3では、まず、IGBT11,12,13の駆動信号を全てオフとし、全てのIGBTを導通させない。図6に示すように、モード3では共振電流IL5は正の極性を有しており、共振電流IL5は、スナバコンデンサ31,加熱コイル5,共振コンデンサ6,7の経路と、スナバコンデンサ32,加熱コイル5,共振コンデンサ6,7の経路で流れ続け、上アームのスナバコンデンサ31は充電、下アームのスナバコンデンサ32は放電される。従って、IGBT11のコレクタ,エミッタ間の電圧Vc1は徐々に増加し、IGBT12のコレクタ,エミッタ間の電圧Vc2、すなわち出力電圧は徐々に減少する。このときの共振特性は、スナバコンデンサ31,32,加熱コイル5,共振コンデンサ6,7によって決定される。
(Mode 3)
Next, mode 3 following mode 2 will be described. In mode 3, first, all drive signals of the IGBTs 11, 12, and 13 are turned off, and all the IGBTs are not conducted. As shown in FIG. 6, in mode 3, the resonance current IL5 has a positive polarity, and the resonance current IL5 includes the path of the snubber capacitor 31, the heating coil 5, the resonance capacitors 6 and 7, the snubber capacitor 32, and the heating. The flow continues through the coil 5 and the resonant capacitors 6 and 7, and the upper arm snubber capacitor 31 is charged and the lower arm snubber capacitor 32 is discharged. Accordingly, the voltage Vc1 between the collector and emitter of the IGBT 11 gradually increases, and the voltage Vc2 between the collector and emitter of the IGBT 12, that is, the output voltage gradually decreases. The resonance characteristics at this time are determined by the snubber capacitors 31 and 32, the heating coil 5, and the resonance capacitors 6 and 7.

その後、Vc1の電圧がインバータの電源電圧Vpに達し、下アームのダイオード22に順方向の電圧が印加されると、共振電流IL5は環流電流として加熱コイル5,共振コンデンサ6,7,ダイオード22の経路で流れる。このとき、IGBT11,12,13の駆動信号をそれぞれオフ,オン,オフとし、IGBT12のみを導通させると、共振電流IL5の極性が変わらない限り、共振電流IL5がダイオード22を流れ続ける。   After that, when the voltage of Vc1 reaches the power supply voltage Vp of the inverter and a forward voltage is applied to the diode 22 of the lower arm, the resonance current IL5 becomes a recirculation current as the heating coil 5, the resonance capacitors 6, 7, and the diode 22 It flows along the route. At this time, when the drive signals of the IGBTs 11, 12, and 13 are turned off, on, and off, respectively, and only the IGBT 12 is turned on, the resonance current IL5 continues to flow through the diode 22 as long as the polarity of the resonance current IL5 does not change.

(モード4)
次に、モード3に続くモード4を説明する。モード4では、IGBT11,12,13の駆動信号がそれぞれオフ,オン,オフとなっており、IGBT12のみが導通している。加熱コイル5の蓄積エネルギーがゼロになり共振電流IL5の極性が正から負に変わると、共振電流IL5は共振コンデンサ7,6,加熱コイル5,IGBT12の経路に流れる。すなわち、モード4の共振特性は、IGBT12,加熱コイル5,共振コンデンサ6,7によって決定される。図6に示すように、Vc5には負の電圧が印加されているため、共振点可変回路30には負方向の電流は流れない。なお、モード4では、共振コンデンサ6,7はIL5によって放電される。
(Mode 4)
Next, mode 4 following mode 3 will be described. In mode 4, the drive signals of the IGBTs 11, 12, and 13 are off, on, and off, respectively, and only the IGBT 12 is conducting. When the stored energy of the heating coil 5 becomes zero and the polarity of the resonance current IL5 changes from positive to negative, the resonance current IL5 flows through the path of the resonance capacitors 7, 6, the heating coil 5, and the IGBT 12. That is, the resonance characteristics of mode 4 are determined by the IGBT 12, the heating coil 5, and the resonance capacitors 6 and 7. As shown in FIG. 6, since a negative voltage is applied to Vc5, no current in the negative direction flows through the resonance point variable circuit 30. In mode 4, resonant capacitors 6 and 7 are discharged by IL5.

(モード5)
次に、モード4に続くモード5を説明する。モード5では、まず、IGBT11,12,13の駆動信号を全てオフとし、全てのIGBTを導通させない。図6に示すように、モード5では共振電流IL5は負の極性を有しており、共振電流IL5は、加熱コイル5,スナバコンデンサ32,共振コンデンサ7,6の経路と、加熱コイル5,スナバコンデンサ31,コンデンサ4,共振コンデンサ7,6の経路で流れ続け、上アームのスナバコンデンサ31は放電、下アームのスナバコンデンサ32は充電される。従って、IGBT11のコレクタ,エミッタ間の電圧Vc1は徐々に減少し、IGBT12のコレクタ,エミッタ間の電圧Vc2、すなわち出力電圧は徐々に増加する。このときの共振特性は、スナバコンデンサ31,32,加熱コイル5,共振コンデンサ6,7によって決定される。
(Mode 5)
Next, mode 5 following mode 4 will be described. In mode 5, first, the drive signals of the IGBTs 11, 12, and 13 are all turned off, and all the IGBTs are not conducted. As shown in FIG. 6, in mode 5, the resonance current IL5 has a negative polarity, and the resonance current IL5 includes the heating coil 5, the snubber capacitor 32, the path of the resonance capacitors 7, 6 and the heating coil 5, snubber. It continues to flow through the path of the capacitor 31, the capacitor 4, and the resonant capacitors 7 and 6, the upper arm snubber capacitor 31 is discharged, and the lower arm snubber capacitor 32 is charged. Therefore, the collector-emitter voltage Vc1 of the IGBT 11 gradually decreases, and the collector-emitter voltage Vc2 of the IGBT 12, that is, the output voltage gradually increases. The resonance characteristics at this time are determined by the snubber capacitors 31 and 32, the heating coil 5, and the resonance capacitors 6 and 7.

その後、Vc2の電圧がインバータの電源電圧Vpに達し、上アームのダイオード21に順方向の電圧が印加されると、共振電流IL5は環流電流として加熱コイル5,ダイオード21,コンデンサ4,共振コンデンサ7,6の経路で流れる。このとき共振コンデンサ8には負の電圧が充電されており、共振コンデンサ7の負の充電電圧が、共振コンデンサ8の充電電圧を超えると、ダイオード23に順方向電圧が印加され、共振電流IL5は分流し、ダイオード23,共振コンデンサ8,6,加熱コイル5,ダイオード21,コンデンサ4の経路と共振コンデンサ7,6,加熱コイル5,ダイオード21,コンデンサ4の経路に流れる。   Thereafter, when the voltage of Vc2 reaches the power supply voltage Vp of the inverter and a forward voltage is applied to the diode 21 of the upper arm, the resonance current IL5 is converted into a recirculation current by the heating coil 5, diode 21, capacitor 4, resonance capacitor 7 , 6 flows. At this time, the resonance capacitor 8 is charged with a negative voltage. When the negative charge voltage of the resonance capacitor 7 exceeds the charge voltage of the resonance capacitor 8, a forward voltage is applied to the diode 23, and the resonance current IL5 is The current is shunted and flows to the path of the diode 23, the resonance capacitor 8, 6, the heating coil 5, the diode 21, the capacitor 4 and the path of the resonance capacitor 7, 6, the heating coil 5, the diode 21, and the capacitor 4.

このとき、IGBT11,12,13の駆動信号をそれぞれオン,オフ,オンとし、IGBT11と13をともに導通させると、共振電流IL5の極性が変わらない限り、共振電流IL5がダイオード21を流れ続ける。   At this time, when the drive signals of the IGBTs 11, 12, and 13 are turned on, off, and on, respectively, and the IGBTs 11 and 13 are both conducted, the resonance current IL5 continues to flow through the diode 21 as long as the polarity of the resonance current IL5 does not change.

以上のように、共振電流IL5の一周期の間にモード1〜5の動作が行われ、以後、この動作を繰り返す。モード2およびモード4の説明から明らかのように、IGBT11及び12に電流Ic1及びIc2が通電している状態でIGBT11,12が遮断される。これによりVc2の電圧の0Vと共振電流IL5の0Aの位相差が常に電流遅れ位相で動作する。このように本実施例は共振コンデンサ7に並列に共振点可変回路30を設け、負荷の共振特性を変化させることによって、常に電流遅れ位相で動作でき、進相モードを回避することができる。   As described above, the operations of modes 1 to 5 are performed during one period of the resonance current IL5, and thereafter this operation is repeated. As is clear from the description of the mode 2 and the mode 4, the IGBTs 11 and 12 are cut off while the currents Ic1 and Ic2 are supplied to the IGBTs 11 and 12. As a result, the phase difference between 0 V of the voltage Vc2 and 0 A of the resonance current IL5 always operates in a current delay phase. Thus, in this embodiment, the resonance point variable circuit 30 is provided in parallel with the resonance capacitor 7 and the resonance characteristic of the load is changed, so that the operation can always be performed in the current delay phase, and the phase advance mode can be avoided.

次に、入力電力を更に低減する方法としてIGBT11の導通期間を短くし、IGBT12の導通期間を長くする。このときのインバータ動作について図15を使い詳細に説明する。なお、図15に示すように、IGBT11〜13の制御の一周期(駆動周期)をtsで表し、IGBT11,12の導通期間をそれぞれt1,t2と表す。IGBT13は常時オン状態である。また、共振電流IL5の一周期をモード1〜4に分けて表す。   Next, as a method for further reducing the input power, the conduction period of the IGBT 11 is shortened and the conduction period of the IGBT 12 is lengthened. The inverter operation at this time will be described in detail with reference to FIG. As shown in FIG. 15, one cycle (drive cycle) of the control of the IGBTs 11 to 13 is represented by ts, and the conduction periods of the IGBTs 11 and 12 are represented by t1 and t2, respectively. The IGBT 13 is always on. Further, one period of the resonance current IL5 is divided into modes 1 to 4.

(モード1)
図15に示すように、モード1では、IGBT11,12,13の駆動信号がそれぞれオン,オフ,オンとなっており、IGBT11,13が導通している。加熱コイル5の蓄積エネルギーがゼロになると共振電流IL5の極性が負から正に変わり、共振電流IL5が、IGBT11,加熱コイル5,共振コンデンサ6,7の経路と、IGBT11,加熱コイル5,共振コンデンサ6,8,IGBT13の経路に流れる。すなわち、モード1の共振特性は、IGBT11,加熱コイル5,共振コンデンサ6,7,8によって決定される。なお、モード1では、共振コンデンサ6,7,8は共振電流IL5によって放電される。
(Mode 1)
As shown in FIG. 15, in mode 1, the drive signals of the IGBTs 11, 12, and 13 are on, off, and on, respectively, and the IGBTs 11 and 13 are conducting. When the stored energy of the heating coil 5 becomes zero, the polarity of the resonance current IL5 changes from negative to positive, and the resonance current IL5 changes the path of the IGBT 11, the heating coil 5, the resonance capacitors 6 and 7, the IGBT 11, the heating coil 5, and the resonance capacitor. 6, 8, flows in the path of the IGBT 13. That is, the resonance characteristics of mode 1 are determined by the IGBT 11, the heating coil 5, and the resonance capacitors 6, 7, and 8. In mode 1, resonance capacitors 6, 7, and 8 are discharged by resonance current IL5.

(モード2)
次に、モード1に続くモード2を説明する。モード2では、まず、IGBT11,12,13の駆動信号がそれぞれオフ,オフ,オンとし、IGBT13のみ導通させる。図15に示すように、モード2では共振電流IL5は正の極性を有しており、共振電流IL5は、スナバコンデンサ31,加熱コイル5,共振コンデンサ6,7の経路と、スナバコンデンサ31,加熱コイル5,共振コンデンサ8,IGBT13の経路と、スナバコンデンサ32,加熱コイル5,共振コンデンサ6,7の経路と、スナバコンデンサ32,加熱コイル5,共振コンデンサ8,IGBT13の経路で流れ続け、上アームのスナバコンデンサ31は充電、下アームのスナバコンデンサ32は放電される。従って、IGBT11のコレクタ,エミッタ間の電圧Vc1は徐々に増加し、IGBT12のコレクタ,エミッタ間の電圧Vc2、すなわち出力電圧は徐々に減少する。このときの共振特性は、スナバコンデンサ31,32,加熱コイル5,共振コンデンサ6,7,8によって決定される。
(Mode 2)
Next, mode 2 following mode 1 will be described. In mode 2, first, the drive signals of the IGBTs 11, 12, and 13 are turned off, off, and on, respectively, and only the IGBT 13 is conducted. As shown in FIG. 15, in mode 2, the resonance current IL5 has a positive polarity, and the resonance current IL5 includes the path of the snubber capacitor 31, the heating coil 5, the resonance capacitors 6 and 7, the snubber capacitor 31, and the heating. The coil 5, the resonance capacitor 8, and the IGBT 13 path, the snubber capacitor 32, the heating coil 5, the resonance capacitors 6 and 7, and the snubber capacitor 32, the heating coil 5, the resonance capacitor 8, and the IGBT 13 continue to flow, The snubber capacitor 31 is charged, and the lower arm snubber capacitor 32 is discharged. Accordingly, the voltage Vc1 between the collector and emitter of the IGBT 11 gradually increases, and the voltage Vc2 between the collector and emitter of the IGBT 12, that is, the output voltage gradually decreases. The resonance characteristics at this time are determined by the snubber capacitors 31 and 32, the heating coil 5, and the resonance capacitors 6, 7, and 8.

その後、Vc1の電圧がインバータの電源電圧Vpに達し、下アームのダイオード22に順方向の電圧が印加されると、共振電流IL5は環流電流として加熱コイル5,共振コンデンサ6,7,ダイオード22の経路と、加熱コイル5,共振コンデンサ8,ダイオード22の経路で流れる。このとき、IGBT11,12,13の駆動信号をそれぞれオフ,オン,オンとし、IGBT12を導通させても、共振電流IL5の極性が変わらない限り、共振電流IL5がダイオード22を流れ続ける。   After that, when the voltage of Vc1 reaches the power supply voltage Vp of the inverter and a forward voltage is applied to the diode 22 of the lower arm, the resonance current IL5 becomes a recirculation current as the heating coil 5, the resonance capacitors 6, 7, and the diode 22 It flows through the path and the path of the heating coil 5, the resonant capacitor 8, and the diode 22. At this time, even if the drive signals of the IGBTs 11, 12, and 13 are turned off, on, and on, respectively, and the IGBT 12 is turned on, the resonance current IL5 continues to flow through the diode 22 as long as the polarity of the resonance current IL5 does not change.

(モード3)
次に、モード2に続くモード3を説明する。モード3では、IGBT11,12,13の駆動信号がそれぞれオフ,オン,オンとなっており、IGBT12,13が導通している。加熱コイル5の蓄積エネルギーがゼロになり共振電流IL5の極性が正から負に変わると、共振電流IL5は共振コンデンサ7,6,加熱コイル5,IGBT12の経路と、共振コンデンサ8,6,加熱コイル5,IGBT12,ダイオード23の経路に流れる。すなわち、モード4の共振特性は、IGBT12,加熱コイル5,共振コンデンサ6,7,8によって決定される。なお、モード4では、共振コンデンサ6,7,8はIL5によって放電される。
(Mode 3)
Next, mode 3 following mode 2 will be described. In mode 3, the drive signals of the IGBTs 11, 12, and 13 are off, on, and on, respectively, and the IGBTs 12 and 13 are conducting. When the stored energy of the heating coil 5 becomes zero and the polarity of the resonance current IL5 changes from positive to negative, the resonance current IL5 is supplied to the paths of the resonance capacitors 7, 6, heating coil 5, IGBT 12, and the resonance capacitors 8, 6, heating coil. 5, flows in the path of the IGBT 12 and the diode 23. That is, the resonance characteristics of mode 4 are determined by the IGBT 12, the heating coil 5, and the resonance capacitors 6, 7, and 8. In mode 4, resonant capacitors 6, 7, and 8 are discharged by IL5.

(モード4)
次に、モード3に続くモード4を説明する。モード5では、まず、IGBT11,12,13の駆動信号をオフ,オフ,オンとし、IGBT13のみ導通している。図15に示すように、モード4では共振電流IL5は負の極性を有しており、共振電流IL5は、加熱コイル5,スナバコンデンサ32,共振コンデンサ7,6の経路と、加熱コイル5,スナバコンデンサ32,ダイオード23,共振コンデンサ8,6の経路と、加熱コイル5,スナバコンデンサ31,コンデンサ4,共振コンデンサ7,6の経路と、加熱コイル5,スナバコンデンサ31,コンデンサ4,ダイオード23,共振コンデンサ8,6の経路で流れ続け、上アームのスナバコンデンサ31は放電、下アームのスナバコンデンサ32は充電される。従って、IGBT11のコレクタ,エミッタ間の電圧Vc1は徐々に減少し、IGBT12のコレクタ,エミッタ間の電圧Vc2、すなわち出力電圧は徐々に増加する。このときの共振特性は、スナバコンデンサ31,32,加熱コイル5,共振コンデンサ6,7,8によって決定される。
(Mode 4)
Next, mode 4 following mode 3 will be described. In mode 5, first, the drive signals of the IGBTs 11, 12, and 13 are turned off, off, and on, and only the IGBT 13 is conducting. As shown in FIG. 15, in mode 4, the resonance current IL5 has a negative polarity, and the resonance current IL5 includes the path of the heating coil 5, the snubber capacitor 32, the resonance capacitors 7 and 6, the heating coil 5, the snubber. The path of the capacitor 32, the diode 23, the resonant capacitors 8 and 6, the heating coil 5, the snubber capacitor 31, the path of the capacitor 4, the resonant capacitors 7 and 6, the heating coil 5, the snubber capacitor 31, the capacitor 4, the diode 23, and the resonance The upper arm snubber capacitor 31 is discharged and the lower arm snubber capacitor 32 is charged. Therefore, the collector-emitter voltage Vc1 of the IGBT 11 gradually decreases, and the collector-emitter voltage Vc2 of the IGBT 12, that is, the output voltage gradually increases. The resonance characteristics at this time are determined by the snubber capacitors 31 and 32, the heating coil 5, and the resonance capacitors 6, 7, and 8.

その後、Vc2の電圧がインバータの電源電圧Vpに達し、上アームのダイオード21に順方向の電圧が印加されると、共振電流IL5は環流電流として加熱コイル5,ダイオード21,コンデンサ4,共振コンデンサ7,6の経路で流れる。このとき共振コンデンサ8には負の電圧が充電されており、共振コンデンサ7の負の充電電圧が、共振コンデンサ8の充電電圧を超えると、ダイオード23に順方向電圧が印加され、共振電流IL5は分流し、ダイオード23,共振コンデンサ8,6,加熱コイル5,ダイオード21,コンデンサ4の経路と共振コンデンサ7,6,加熱コイル5,ダイオード21,コンデンサ4の経路に流れる。   Thereafter, when the voltage of Vc2 reaches the power supply voltage Vp of the inverter and a forward voltage is applied to the diode 21 of the upper arm, the resonance current IL5 is converted into a recirculation current by the heating coil 5, diode 21, capacitor 4, resonance capacitor 7 , 6 flows. At this time, the resonance capacitor 8 is charged with a negative voltage. When the negative charge voltage of the resonance capacitor 7 exceeds the charge voltage of the resonance capacitor 8, a forward voltage is applied to the diode 23, and the resonance current IL5 is The current is shunted and flows to the path of the diode 23, the resonance capacitor 8, 6, the heating coil 5, the diode 21, the capacitor 4 and the path of the resonance capacitor 7, 6, the heating coil 5, the diode 21, and the capacitor 4.

このとき、IGBT11,12,13の駆動信号をそれぞれオン,オフ,オンとし、IGBT11と13をともに導通させると、共振電流IL5の極性が変わらない限り、共振電流IL5がダイオード21を流れ続ける。   At this time, when the drive signals of the IGBTs 11, 12, and 13 are turned on, off, and on, respectively, and the IGBTs 11 and 13 are both conducted, the resonance current IL5 continues to flow through the diode 21 as long as the polarity of the resonance current IL5 does not change.

以上のように、共振電流IL5の一周期の間にモード1〜4の動作が行われ、以後、この動作を繰り返す。共振点可変回路30が常時オン状態おいては、モード1,4の説明から明らかなように、IGBT12の導通期間t2が長くなっても、ダイオード21または22が導通している期間に共振電流IL5が負から正に変化している。このため共振電流IL5が負から正に極性が反転することがなく、負荷特性が誘導性を保ち、進相モードを回避することができる。   As described above, the operations of modes 1 to 4 are performed during one period of the resonance current IL5, and thereafter this operation is repeated. When the resonance point variable circuit 30 is always turned on, as is apparent from the description of the modes 1 and 4, even if the conduction period t2 of the IGBT 12 becomes long, the resonance current IL5 remains in the period in which the diode 21 or 22 is conducting. Changes from negative to positive. For this reason, the polarity of the resonance current IL5 does not reverse from negative to positive, the load characteristics can be kept inductive, and the phase advance mode can be avoided.

これにより、スイッチング回路20の導通期間を変化させることにより入力電力を制御することが可能となる。   As a result, the input power can be controlled by changing the conduction period of the switching circuit 20.

また、共振コンデンサ8に流れる電流は共振コンデンサ7と共振コンデンサ8のコンデンサ容量比で決まる。本実施例では共振コンデンサ7容量≧共振コンデンサ8容量としたので、共振コンデンサ8に流れる電流は共振コンデンサ7以下になる。これにより、IGBT13での損失発生を低減させ、IGBT13の耐電流性能を高めることができる。   Further, the current flowing through the resonance capacitor 8 is determined by the capacitance ratio of the resonance capacitor 7 and the resonance capacitor 8. In this embodiment, since the resonance capacitor 7 capacity ≧ resonance capacitor 8 capacity, the current flowing through the resonance capacitor 8 is less than or equal to the resonance capacitor 7. Thereby, loss generation | occurrence | production in IGBT13 can be reduced and the electric current resistance performance of IGBT13 can be improved.

また、共振コンデンサ7に発生する電圧(Vc4)は共振コンデンサ6の容量と共振コンデンサ7の容量により決まる。したがって、共振コンデンサ7に発生する電圧を低減するためには共振コンデンサ7容量≧共振コンデンサ6容量とすることで共振コンデンサ7の発生電圧を1/2以下になる。これにより、IGBT13での損失発生を低減させ、IGBT13の耐電圧性能を高めることができると共に、共振点可変範囲を広く設定することが可能になる。   Further, the voltage (Vc4) generated in the resonance capacitor 7 is determined by the capacitance of the resonance capacitor 6 and the capacitance of the resonance capacitor 7. Therefore, in order to reduce the voltage generated in the resonance capacitor 7, the voltage generated in the resonance capacitor 7 is reduced to ½ or less by setting the resonance capacitor 7 capacity ≧ the resonance capacitor 6 capacity. As a result, loss generation in the IGBT 13 can be reduced, the withstand voltage performance of the IGBT 13 can be increased, and a wide resonance point variable range can be set.

次に共振コンデンサ8の充電電圧について説明する。共振コンデンサ8(Vc5)の電圧の関係式(式2)を示す。   Next, the charging voltage of the resonant capacitor 8 will be described. The relational expression (Formula 2) of the voltage of the resonant capacitor 8 (Vc5) is shown.

Figure 0004929305
C7:共振コンデンサ7の容量、C8:共振コンデンサ8の容量
Figure 0004929305
C7: Resonance capacitor 7 capacitance, C8: Resonance capacitor 8 capacitance

本実施例では、C8<C7のため、Vc5の電圧はC7より低い電圧が充電されることとなる。IGBT13にはVc4とVc5の合計電圧が印加されるが、Vc5に充電される電圧が低いため、IGBT13の素子耐圧の増大には影響ない。   In this embodiment, since C8 <C7, the voltage of Vc5 is charged lower than C7. The total voltage of Vc4 and Vc5 is applied to the IGBT 13, but since the voltage charged to Vc5 is low, it does not affect the increase in the element breakdown voltage of the IGBT 13.

次に、図7を用いて入力電力の制御方法を説明する。図6でも説明したように、IGBT11,12,13の導通期間をt1,t2,t3で表し、駆動周期をtsで表す。図7は、鉄製の被加熱物と非磁性ステンレスをインバータ駆動周波数21kHzで高出力加熱する場合の制御条件の一例を示しており、横軸はIGBT13の導通期間IGBT13のDuty(t3/ts)、縦軸は入力電力Pinを表している。ここでは、t1,t2は変えず、t3を変化させ入力電力Pinを制御する場合について説明する。   Next, a method for controlling the input power will be described with reference to FIG. As described with reference to FIG. 6, the conduction periods of the IGBTs 11, 12, and 13 are represented by t1, t2, and t3, and the drive cycle is represented by ts. FIG. 7 shows an example of the control conditions in the case of heating an iron object to be heated and nonmagnetic stainless steel at a high output power with an inverter drive frequency of 21 kHz, and the horizontal axis represents the duty period of the IGBT 13 and the duty (t3 / ts) of the IGBT 13, The vertical axis represents the input power Pin. Here, a description will be given of a case where the input power Pin is controlled by changing t3 without changing t1 and t2.

図7に示すように、鉄製の被加熱物の場合、IGBT13のDuty=0(IGBT13が常時オフ状態)のときに最大の入力電力となる。Dutyを増大していくと入力電力Pinが減少し、Duty=約0.5以上で入力電力Pinがほぼ一定になる。一方、非磁性ステンレスでは、IGBT13のDuty=0.45で最大電力の3kWになり、Dutyを更に増やすことで入力電力が減少し、Duty=0.7以上でほぼ一定になる。これから明らかなように、IGBT13のDutyを大きくすることにより入力電力Pinを減少させることができる。   As shown in FIG. 7, in the case of an iron object to be heated, the maximum input power is obtained when the duty of the IGBT 13 is 0 (the IGBT 13 is always in an off state). As the duty increases, the input power Pin decreases, and the input power Pin becomes substantially constant when the duty is about 0.5 or more. On the other hand, in the case of nonmagnetic stainless steel, the maximum power becomes 3 kW when the duty of the IGBT 13 is 0.45, the input power decreases by further increasing the duty, and becomes almost constant when the duty is 0.7 or more. As is clear from this, the input power Pin can be reduced by increasing the duty of the IGBT 13.

IGBT13のDutyを制御することで入力電力を制御できる理由を説明する。IGBT13を導通すると、共振コンデンサ7と共振コンデンサ8が並列接続となるため、共振コンデンサ6,7,8の合成共振コンデンサ容量が大きくなり、加熱コイル5と合成共振コンデンサで決まる共振周波数が低下する。図8に鉄製の被加熱物を加熱するときにIGBT13のDutyを変化させた場合の共振特性グラフを示す。図8に示すように、t3を長くしてIGBT13のDutyを大きくすると、共振周波数が低下する。このため、例えば、インバータ駆動周波数を21kHzに固定した場合、Duty=0のときには入力電力は約3kW、Duty=0.35のときには入力電力は約1.5kW、Duty=0.5のときには入力電力は約0.5kWとなる。このようにt3のオン時間(IGBT13のDuty)を制御することで入力電力を制御することが可能になる。   The reason why the input power can be controlled by controlling the duty of the IGBT 13 will be described. When the IGBT 13 is turned on, the resonance capacitor 7 and the resonance capacitor 8 are connected in parallel, so that the combined resonance capacitor capacity of the resonance capacitors 6, 7, and 8 increases, and the resonance frequency determined by the heating coil 5 and the combined resonance capacitor decreases. FIG. 8 shows a resonance characteristic graph in the case where the duty of the IGBT 13 is changed when an iron object to be heated is heated. As shown in FIG. 8, when t3 is lengthened and the duty of the IGBT 13 is increased, the resonance frequency is lowered. For this reason, for example, when the inverter drive frequency is fixed at 21 kHz, the input power is about 3 kW when Duty = 0, the input power is about 1.5 kW when Duty = 0.35, and the input power when Duty = 0.5. Is about 0.5 kW. In this way, the input power can be controlled by controlling the on-time of t3 (duty of IGBT 13).

上述したように、IGBT13のDutyが約0.5以上になると入力電力Pinは約0.5kWで一定になる。これは、IGBT13のオンしているt3の期間に、共振電流IL5が正から負に変わり、ダイオード23に電流が流れ、IGBT13のDutyでの共振点可変回路30の可変範囲を超えるためである。実際に共振電流IL5が共振点可変回路30によって制御できる期間は、共振電流IL5が正の期間である。したがって、共振電流IL5が負の期間でIGBT13のDutyを制御しても共振点を制御することはできなくなる。従って、図7においてt1,t2を変えずにt3のみで調整できる入力電力Pinの下限値は約0.5kWとなり、この値以下に設定する場合は、t1,t2を変化させる必要がある。   As described above, when the duty of the IGBT 13 becomes about 0.5 or more, the input power Pin becomes constant at about 0.5 kW. This is because the resonance current IL5 changes from positive to negative during the period t3 when the IGBT 13 is on, and the current flows through the diode 23, exceeding the variable range of the resonance point variable circuit 30 at the duty of the IGBT 13. The period during which the resonance current IL5 can actually be controlled by the resonance point variable circuit 30 is a period during which the resonance current IL5 is positive. Therefore, the resonance point cannot be controlled even if the duty of the IGBT 13 is controlled while the resonance current IL5 is negative. Accordingly, the lower limit value of the input power Pin that can be adjusted only by t3 without changing t1 and t2 in FIG. 7 is about 0.5 kW, and when it is set below this value, it is necessary to change t1 and t2.

次に、IGBT13のDutyを約0.5以上とするとともに、t1,t2を変化させ入力電力Pinを制御する場合について説明する。図9は、被加熱物を低出力で加熱する場合の制御条件を示しており、横軸は駆動周期tsに対する上アームIGBT11の導通期間t1の導通比を示すDuty(=t1/ts)、このとき、IGBT12の導通比は1−Dutyとなる。縦軸は入力電力Pinを表している。図9に示すように、共振点可変回路30内のIGBT13のDutyを約0.5以上とするとともに、IGBT11のDutyを小さくすることにより、入力電力Pinをさらに小さくすることができる。   Next, a case where the duty of the IGBT 13 is set to about 0.5 or more and t1 and t2 are changed to control the input power Pin will be described. FIG. 9 shows the control conditions when the object to be heated is heated at a low output, and the horizontal axis is Duty (= t1 / ts) indicating the conduction ratio of the conduction period t1 of the upper arm IGBT 11 with respect to the driving cycle ts. At this time, the conduction ratio of the IGBT 12 is 1-Duty. The vertical axis represents the input power Pin. As shown in FIG. 9, the input power Pin can be further reduced by setting the duty of the IGBT 13 in the resonance point variable circuit 30 to about 0.5 or more and reducing the duty of the IGBT 11.

一方、非磁性ステンレスでは、図14に示すように、鉄に比べインダクタンス値が2/3となるため、共振コンデンサ6,7の直列回路との共振周波数が高くなり、スイッチング回路20の駆動周波数より高くなり、負荷特性が容量性となり、進相モードとなってしまう。そこで、共振点可変回路30の導通期間を増大させ、共振点を低くし、負荷特性を誘導性にする必要がある。入力電力の制御方法については、鉄製の被加熱物と同様に、IGBT13のDutyとIGBT1のDutyにより制御することができる。   On the other hand, as shown in FIG. 14, the nonmagnetic stainless steel has an inductance value 2/3 that of iron, and therefore, the resonance frequency with the series circuit of the resonance capacitors 6 and 7 is higher than the driving frequency of the switching circuit 20. As a result, the load characteristic becomes capacitive and the phase advance mode is set. Therefore, it is necessary to increase the conduction period of the resonance point variable circuit 30, lower the resonance point, and make the load characteristic inductive. About the control method of input electric power, it can control by the duty of IGBT13 and the duty of IGBT1 similarly to the to-be-heated object made from iron.

図10は実施例3の電磁誘導加熱装置の回路構成図である。実施例3の構成のうち先の実施例で説明した構成と同等のものについては説明を省略する。   FIG. 10 is a circuit configuration diagram of the electromagnetic induction heating device according to the third embodiment. Description of the configuration of the third embodiment that is the same as the configuration described in the previous embodiment is omitted.

図10において、加熱コイル5と共振コンデンサ6,7で構成された共振回路60は第1のインバータ100の出力端子t点とo点との間に接続されている。共振コンデンサ7には並列に共振点可変回路30が接続されており、共振点可変回路30は直列接続された共振コンデンサ8と逆電流を阻止するダイオード25とIGBT13、及びIGBT13に逆方向に並列接続されたダイオード23によって構成されている。ここで、出力端子t点から共振コンデンサ6に向かって流れる共振電流IL5を正とすると、共振点可変回路30に流れる電流Ic3は正の一方向である。本実施例では、共振コンデンサ8に負の電圧が充電されることを防止できるため、IGBT13に印加される電圧は共振コンデンサ7の充電電圧となる。従って、共振コンデンサ8に負の電圧が充電されることなく、素子耐圧を低減することができる。一般的にIGBTは耐圧が低くなると導通損失が低減できる。これにより、素子損失の低減が可能となる。   In FIG. 10, the resonance circuit 60 constituted by the heating coil 5 and the resonance capacitors 6 and 7 is connected between the output terminal t point and the o point of the first inverter 100. A resonance point variable circuit 30 is connected in parallel to the resonance capacitor 7. The resonance point variable circuit 30 is connected in parallel in the reverse direction to the resonance capacitor 8 connected in series, the diode 25 blocking the reverse current, the IGBT 13, and the IGBT 13. It is comprised by the diode 23 made. Here, if the resonance current IL5 flowing from the output terminal t point toward the resonance capacitor 6 is positive, the current Ic3 flowing through the resonance point variable circuit 30 is in one positive direction. In this embodiment, it is possible to prevent the resonance capacitor 8 from being charged with a negative voltage, so that the voltage applied to the IGBT 13 becomes the charging voltage of the resonance capacitor 7. Therefore, the element withstand voltage can be reduced without charging the resonant capacitor 8 with a negative voltage. In general, when the breakdown voltage of the IGBT is lowered, the conduction loss can be reduced. Thereby, the element loss can be reduced.

図11は実施例4の電磁誘導加熱装置の回路の一部である。実施例4の構成のうち先の実施例で説明した構成と同等のものについては説明を省略する。   FIG. 11 shows a part of the circuit of the electromagnetic induction heating apparatus according to the fourth embodiment. Description of the configuration of the fourth embodiment that is the same as the configuration described in the previous embodiment is omitted.

図11において、共振点可変回路30のスイッチング素子は逆方向の耐圧を有する逆電流阻止形のIGBT14(逆耐圧機能付きIGBT)であり、前記図10のIGBT13と逆電流阻止用のダイオード25が1個のIGBT14に置き換えられた構成となる。前記図10の共振点可変回路30では、IGBT13とダイオード25でそれぞれ損失が発生するが、本実施例ではIGBT14の損失分となるため、第1のインバータ100における回路損失は低減し変換効率は向上する。本実施例の動作について、前記実施例3と同様であり、説明は省略する。   In FIG. 11, the switching element of the resonance point variable circuit 30 is a reverse current blocking IGBT 14 having a reverse breakdown voltage (an IGBT with a reverse breakdown function), and the IGBT 13 of FIG. The configuration is replaced with one IGBT 14. In the resonance point variable circuit 30 of FIG. 10, a loss is generated in each of the IGBT 13 and the diode 25. However, in this embodiment, the loss is in the IGBT 14, so the circuit loss in the first inverter 100 is reduced and the conversion efficiency is improved. To do. The operation of this embodiment is the same as that of the third embodiment, and a description thereof will be omitted.

図12は実施例5の電磁誘導加熱装置の回路の一部である。実施例5の構成のうち先の実施例で説明した構成と同等のものについては説明を省略する。   FIG. 12 shows a part of the circuit of the electromagnetic induction heating device of Example 5. Description of the configuration of the fifth embodiment that is the same as the configuration described in the previous embodiment is omitted.

図12において、実施例3と異なる点は、共振点可変回路30のダイオード25に並列にIGBT15が接続されているため、共振点可変回路30に正負の電流を制御することができる点である。本実施例ではIGBT13,15を駆動することにより正負の共振点可変回路30に流れる電流を制御することが可能であり、共振回路60の負荷特性を誘導性に維持しながら共振周波数を共振電流IL5の正負においてをIGBT13または15を制御し入力電力を変える。制御方法については、IGBT13は前記実施例2と同様にオンタイミングをIGBT11と同期し、IGBT13のDuty制御で行い、IGBT15はオンタイミングをIGBT12と同期し、IGBT15のDuty制御行う。共振電流IL5が正電流の場合はIGBT13を制御し、共振電流IL5が負電流の場合はIGBT15を制御する。これにより、共振電流IL5の正負期間で共振点を可変できるため電力制御範囲が拡大できる。   In FIG. 12, the difference from the third embodiment is that the IGBT 15 is connected in parallel to the diode 25 of the resonance point variable circuit 30, so that positive and negative currents can be controlled in the resonance point variable circuit 30. In this embodiment, it is possible to control the current flowing through the positive and negative resonance point variable circuit 30 by driving the IGBTs 13 and 15, and the resonance frequency is set to the resonance current IL5 while maintaining the load characteristic of the resonance circuit 60 inductive. The input power is changed by controlling the IGBT 13 or 15 in the positive and negative directions. As for the control method, the IGBT 13 synchronizes the on-timing with the IGBT 11 and performs duty control of the IGBT 13 as in the second embodiment, and the IGBT 15 synchronizes the on-timing with the IGBT 12 and performs duty control of the IGBT 15. When the resonance current IL5 is a positive current, the IGBT 13 is controlled, and when the resonance current IL5 is a negative current, the IGBT 15 is controlled. Thereby, since the resonance point can be varied in the positive / negative period of the resonance current IL5, the power control range can be expanded.

図13は実施例6の電磁誘導加熱装置の回路の一部である。実施例6の構成のうち先の実施例で説明した構成と同等のものについては説明を省略する。   FIG. 13 shows a part of the circuit of the electromagnetic induction heating apparatus of Example 6. The description of the configuration of the sixth embodiment that is the same as the configuration described in the previous embodiment is omitted.

図13において、共振点可変回路30は逆方向の耐圧を有する逆電流阻止形のIGBT14とIGBT16を逆方向に並列接続した構成となる。前記図12の共振点可変回路30では、正方向の電流がダイオード25とIGBT13に流れ、負方向の電流がダイオード23とIGBT15に流れるため、ダイオード及びIGBTの各々で損失が発生する。本実施例ではIGBT14とIGBT16の損失となるため、第1のインバータ100における回路損失は低減し変換効率は向上する。本実施例の動作について、前記実施例5と同様であり、説明は省略する。   In FIG. 13, the resonance point variable circuit 30 has a configuration in which reverse current blocking IGBTs 14 and IGBTs 16 having a reverse breakdown voltage are connected in parallel in the reverse direction. In the resonance point variable circuit 30 of FIG. 12, since a positive current flows through the diode 25 and the IGBT 13 and a negative current flows through the diode 23 and the IGBT 15, a loss occurs in each of the diode and the IGBT. In this embodiment, the loss of the IGBT 14 and the IGBT 16 is lost, so that the circuit loss in the first inverter 100 is reduced and the conversion efficiency is improved. The operation of this embodiment is the same as that of the fifth embodiment, and a description thereof will be omitted.

1 商用電源
2 整流回路
3 インダクタ
4 コンデンサ
5 加熱コイル
6,7,8 共振コンデンサ
10 電源回路
11,12,13,14,15,16 IGBT
20 スイッチング回路
21,22,23,25 ダイオード
30 共振点可変回路
31,32 スナバコンデンサ
60 共振回路
61,62,63 ドライブ回路
70 制御回路
71,73 電流検出素子
72 共振電流検出回路
74 入力電流検出回路
75 入力電力設定部
100 第1のインバータ
200 第2のインバータ
300 第3のインバータ
DESCRIPTION OF SYMBOLS 1 Commercial power supply 2 Rectifier circuit 3 Inductor 4 Capacitor 5 Heating coil 6, 7, 8 Resonance capacitor 10 Power supply circuit 11, 12, 13, 14, 15, 16 IGBT
20 switching circuit 21, 22, 23, 25 diode 30 resonance point variable circuit 31, 32 snubber capacitor 60 resonance circuit 61, 62, 63 drive circuit 70 control circuit 71, 73 current detection element 72 resonance current detection circuit 74 input current detection circuit 75 Input power setting unit 100 First inverter 200 Second inverter 300 Third inverter

Claims (9)

直流電源と、該直流電源から供給される直流電圧を高周波の交流電圧に変換するインバータ回路と、制御回路とを有する電磁誘導加熱装置において、
前記インバータ回路は、スイッチング回路と、共振回路と、共振点可変回路とを備え、
前記スイッチング回路が、前記直流電源の両端子に接続する、上アームのパワー半導体スイッチング素子と下アームのパワー半導体スイッチング素子との直列接続により形成され、
加熱コイルと第1の共振コンデンサと第2の共振コンデンサとを直列に接続して形成した前記共振回路は、一端が前記スイッチング回路の上アームと下アームとの接続点に接続され、他端が前記直流電源の何れか一方の端子に接続され、
前記第2の共振コンデンサに並列接続される前記共振点可変回路は、第3の共振コンデンサと第1のスイッチング素子の直列接続と、前記第1のスイッチング素子に逆並列に接続した第1のダイオードにより形成され、
前記制御回路によって、前記第1のスイッチング素子の導通期間を制御することで前記共振回路の共振周波数を可変とし、
前記第2の共振コンデンサ容量が前記第1の共振コンデンサ容量以上であり、前記第3の共振コンデンサ容量が前記第2の共振コンデンサ容量以下であることを特徴とする電磁誘導加熱装置。
In an electromagnetic induction heating apparatus having a DC power supply, an inverter circuit that converts a DC voltage supplied from the DC power supply into a high-frequency AC voltage, and a control circuit,
The inverter circuit includes a switching circuit, a resonance circuit, and a resonance point variable circuit,
The switching circuit is formed by a series connection of an upper arm power semiconductor switching element and a lower arm power semiconductor switching element connected to both terminals of the DC power supply,
The resonance circuit formed by connecting a heating coil, a first resonance capacitor, and a second resonance capacitor in series has one end connected to a connection point between the upper arm and the lower arm of the switching circuit, and the other end Connected to one of the terminals of the DC power supply,
The resonance point variable circuit connected in parallel with said second resonant capacitor, a first connected in series connection of the third resonant capacitor and the first switching element, in anti-parallel to said first switching element Formed by a diode
By the control circuit, and the resonant frequency of the resonant circuit is variable by controlling the conduction period of the first switching element,
The electromagnetic induction heating device, wherein the second resonance capacitor capacitance is equal to or greater than the first resonance capacitor capacitance, and the third resonance capacitor capacitance is equal to or less than the second resonance capacitor capacitance .
請求項1記載の電磁誘導加熱装置において、
前記共振点可変回路は、第1のスイッチング素子と直列に接続される第2のダイオードを備え、前記第1のスイッチング素子は逆並列に接続される第1のダイオードを備えることを特徴とする電磁誘導加熱装置。
In the electromagnetic induction heating device according to claim 1,
The resonance point variable circuit includes a second diode connected in series with a first switching element, and the first switching element includes a first diode connected in antiparallel. Induction heating device.
請求項1記載の電磁誘導加熱装置において、
前記共振点可変回路を形成する第1のスイッチング素子は、第1の逆耐圧機能付きスイッチング素子であることを特徴とする電磁誘導加熱装置。
In the electromagnetic induction heating device according to claim 1,
It said first switching element to form a resonance point variable circuit, an electromagnetic induction heating apparatus which is a first reverse blocking function switching element.
請求項2記載の電磁誘導加熱装置において、
前記第2のダイオードに逆並列に第2のスイッチング素子を備えることを特徴とする電磁誘導加熱装置。
The electromagnetic induction heating device according to claim 2,
An electromagnetic induction heating apparatus comprising a second switching element in antiparallel with the second diode.
請求項1記載の電磁誘導加熱装置において、
前記共振点可変回路を形成する第1のスイッチング素子は、逆並列に接続される第1,第2の逆耐圧機能付きスイッチング素子であることを特徴とする電磁誘導加熱装置。
In the electromagnetic induction heating device according to claim 1,
It said first switching element to form a resonance point variable circuit includes a first electromagnetic induction heating apparatus which is a second reverse blocking function switching device connected in anti-parallel.
請求項1記載の電磁誘導加熱装置において、
前記スイッチング回路は、前記上アームのパワー半導体スイッチング素子と、前記下アームのパワー半導体スイッチング素子の少なくとも一方と並列に第1のスナバコンデンサを備えることを特徴とする電磁誘導加熱装置。
In the electromagnetic induction heating device according to claim 1,
The electromagnetic induction heating device, wherein the switching circuit includes a first snubber capacitor in parallel with at least one of the power semiconductor switching element of the upper arm and the power semiconductor switching element of the lower arm.
被加熱物を誘導加熱する電磁誘導加熱装置であって、
正電極と負電極から直流電圧を供給する電源回路と、
該電源回路の正電極と負電極の間に接続され、直流電圧を交流電圧に変換して出力するスイッチング回路と、
該スイッチング回路の出力端子と前記電源回路の端子間に接続され、加熱コイルと第1の共振コンデンサと第2の共振コンデンサとの直列接続で構成された共振回路と、
前記第2の共振コンデンサに並列に接続され、前記共振回路の共振点を可変する共振点可変回路と、
を具備し、
前記共振点可変回路は、第3の共振コンデンサとスイッチング素子の直列接続と、該スイッチング素子に逆並列に接続されたダイオードで構成され、
前記第2の共振コンデンサの容量を前記第1の共振コンデンサの容量以上にし、前記第2の共振コンデンサの容量を前記第3の共振コンデンサの容量以上にすることを特徴とする電磁誘導加熱装置。
An electromagnetic induction heating apparatus for induction heating an object to be heated,
A power supply circuit for supplying a DC voltage from the positive electrode and the negative electrode;
A switching circuit that is connected between the positive electrode and the negative electrode of the power supply circuit, converts a DC voltage into an AC voltage, and outputs the AC voltage;
A resonance circuit connected between an output terminal of the switching circuit and a terminal of the power supply circuit, and configured by a series connection of a heating coil, a first resonance capacitor, and a second resonance capacitor;
A resonance point variable circuit that is connected in parallel to the second resonance capacitor and varies a resonance point of the resonance circuit;
Equipped with,
The resonance point variable circuit includes a series connection of a third resonance capacitor and a switching element, and a diode connected in antiparallel to the switching element.
An electromagnetic induction heating apparatus characterized in that a capacity of the second resonance capacitor is set to be equal to or greater than that of the first resonance capacitor, and a capacity of the second resonance capacitor is set to be equal to or greater than a capacity of the third resonance capacitor .
請求項7に記載の電磁誘導加熱装置において、
前記スイッチング回路から前記加熱コイルに向かって流れる共振電流の極性が、前記共振点可変回路内のスイッチング素子が導通している期間に、負から正に変わることを特徴とする電磁誘導加熱調理器。
The electromagnetic induction heating device according to claim 7 ,
The electromagnetic induction heating cooker characterized in that the polarity of a resonance current flowing from the switching circuit toward the heating coil changes from negative to positive during a period in which the switching element in the resonance point variable circuit is conductive.
請求項7に記載の電磁誘導加熱調理器において、
前記共振点可変回路内のスイッチング素子のDutyを制御することで、前記共振回路から被加熱物に供給する入力電力を制御することを特徴とする電磁誘導加熱調理器。
The electromagnetic induction heating cooker according to claim 7 ,
An electromagnetic induction heating cooker that controls input power supplied from the resonance circuit to an object to be heated by controlling a duty of a switching element in the resonance point variable circuit.
JP2009062221A 2009-03-16 2009-03-16 Electromagnetic induction heating device Expired - Fee Related JP4929305B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009062221A JP4929305B2 (en) 2009-03-16 2009-03-16 Electromagnetic induction heating device
CN 201010113132 CN101841945B (en) 2009-03-16 2010-02-08 Electromagnetic induction heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009062221A JP4929305B2 (en) 2009-03-16 2009-03-16 Electromagnetic induction heating device

Publications (2)

Publication Number Publication Date
JP2010218782A JP2010218782A (en) 2010-09-30
JP4929305B2 true JP4929305B2 (en) 2012-05-09

Family

ID=42744951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009062221A Expired - Fee Related JP4929305B2 (en) 2009-03-16 2009-03-16 Electromagnetic induction heating device

Country Status (2)

Country Link
JP (1) JP4929305B2 (en)
CN (1) CN101841945B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136577A1 (en) * 2012-03-14 2013-09-19 三菱電機株式会社 Induction heat cooker
ITUA20162518A1 (en) * 2016-04-12 2017-10-12 Redox S R L Instant heating device for solids, liquids, gases and vapors
CN112888100B (en) * 2019-11-29 2023-05-02 浙江绍兴苏泊尔生活电器有限公司 Electromagnetic heating control method of half-bridge electromagnetic appliance and half-bridge electromagnetic appliance
CN111059684A (en) * 2019-12-05 2020-04-24 珠海格力电器股份有限公司 Method for preventing power semiconductor switch from being in unsaturated conduction, computer readable storage medium and air conditioner
JP7403354B2 (en) * 2020-03-11 2023-12-22 三菱電機株式会社 induction heating cooker
CN113784470B (en) * 2021-08-31 2023-07-25 河北工业大学 LLC-based induction heating system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008840A (en) * 2000-06-19 2002-01-11 Fuji Electric Co Ltd Induction heating inverter
JP3831298B2 (en) * 2002-06-05 2006-10-11 株式会社日立製作所 Electromagnetic induction heating device
JP4167926B2 (en) * 2003-04-17 2008-10-22 日立アプライアンス株式会社 Electromagnetic induction heating device
JP4444076B2 (en) * 2004-11-15 2010-03-31 株式会社東芝 Induction heating cooker
JP4310293B2 (en) * 2005-05-30 2009-08-05 日立アプライアンス株式会社 Induction heating device
JP4521338B2 (en) * 2005-09-16 2010-08-11 日立アプライアンス株式会社 Induction heating cooker

Also Published As

Publication number Publication date
CN101841945A (en) 2010-09-22
JP2010218782A (en) 2010-09-30
CN101841945B (en) 2013-02-06

Similar Documents

Publication Publication Date Title
JP4909662B2 (en) Electromagnetic induction heating device
JP4652983B2 (en) Induction heating device
JP5909402B2 (en) Power conversion device and induction heating device using the same
KR101308411B1 (en) High speed resonance tracking method for induction heating system and induction heating system using high speed resonance tracking method
CN101715256A (en) Electromagnetic induction heating device
JP2011193705A (en) Gate drive circuit of voltage drive type semiconductor element and power converter
JP4929305B2 (en) Electromagnetic induction heating device
JP4910004B2 (en) Electromagnetic induction heating device
JP4167926B2 (en) Electromagnetic induction heating device
CN100536630C (en) Induction heating device
CN103079299A (en) Electromagnetic induction heating device
JP3831298B2 (en) Electromagnetic induction heating device
JP2018032619A (en) Induction heating device
JP5358387B2 (en) Power supply
JP4366413B2 (en) Electromagnetic induction heating device
JP3730594B2 (en) Electromagnetic induction heating device
JP2020053137A (en) Electromagnetic induction heating device
JP2020064719A (en) Electromagnetic induction heating device
JP7344740B2 (en) electromagnetic induction heating device
JP4284372B2 (en) Electromagnetic induction heating device
JP7107746B2 (en) electromagnetic induction cooker
JP7215962B2 (en) Electromagnetic induction heating device
JP3932976B2 (en) Induction heating apparatus, induction heating cooker and rice cooker using the same
Yachiangkam et al. Resonant inverter with a variable-frequency asymmetrical voltage-cancellation control for low q-factor loads in induction cooking
JP4163662B2 (en) Electromagnetic induction heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees