JP4909725B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP4909725B2
JP4909725B2 JP2006329522A JP2006329522A JP4909725B2 JP 4909725 B2 JP4909725 B2 JP 4909725B2 JP 2006329522 A JP2006329522 A JP 2006329522A JP 2006329522 A JP2006329522 A JP 2006329522A JP 4909725 B2 JP4909725 B2 JP 4909725B2
Authority
JP
Japan
Prior art keywords
fluid
spacer member
heat exchange
heat exchanger
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006329522A
Other languages
Japanese (ja)
Other versions
JP2008147240A (en
Inventor
徳介 早見
裕二 久里
尊彦 新藤
義康 伊藤
剛 長谷川
誠二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006329522A priority Critical patent/JP4909725B2/en
Publication of JP2008147240A publication Critical patent/JP2008147240A/en
Application granted granted Critical
Publication of JP4909725B2 publication Critical patent/JP4909725B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simplify the structure to reduce thickness, as well as to establish highly efficient thermal conductivity so as to improve heat exchanging performance. <P>SOLUTION: The heat exchanger is provided with a heat exchanging medium 10, wherein wall members 11 are respectively provided with one face parallel to the fluid flow-in direction of a fluid inflow channel 17 and the other face parallel to the fluid flow-out direction of a fluid flow-out channel 18, and are thermally connected with a heat source 19 provided with a plurality of via holes 111 penetrating both surfaces. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

この発明は、例えばIGBT、MPUを含む各種の電子部品等の発熱体の熱制御を行うのに用いられる熱交換器に関する。   The present invention relates to a heat exchanger used for heat control of heating elements such as various electronic components including IGBT and MPU, for example.

一般に、この種の熱交換器は、熱伝導性の良い金属材料で作成したヒートシンクを用いて行われている。このようなヒートシンクは、熱源と接続された面に多数の柱状突起(ピンフィン)を設けた形状や、複数の金属板(ストレートフィン)を設けたもの等各種形状のものがあり、その形状により、放熱面積の拡大および流体の攪拌を促進することで冷却の促進が図れている。   In general, this type of heat exchanger is performed using a heat sink made of a metal material having good thermal conductivity. Such heat sinks have various shapes such as a shape in which a large number of columnar protrusions (pin fins) are provided on the surface connected to the heat source and a plurality of metal plates (straight fins). Cooling can be promoted by enlarging the heat radiation area and promoting fluid agitation.

ところで、近年、IGBTやMPU等の電子部品においては、高出力化、性能向上に伴い、発熱量が急激に増加されている。そのため、冷却構造としては、自然空冷だったものを強制空冷、液冷へと変化されている。この冷却構造の変更に伴って、ヒートシンク形状としても、ピンフィンを細くし本数を増やしたものや、ストレートフィンの板厚を薄くし、間隔を狭めたものなどが開発され、すなわち面積を拡大させることで放熱性能を向上させるようにしたものも考えられている。   Incidentally, in recent years, in electronic parts such as IGBTs and MPUs, the amount of heat generation has been rapidly increased with the increase in output and performance. Therefore, the cooling structure has been changed from natural air cooling to forced air cooling and liquid cooling. Along with this change in cooling structure, heat sink shapes have also been developed, including pin fins that have been thinned to increase the number, and straight fins that have been made thinner and narrower in space, that is, to increase the area. It is also conceivable to improve the heat dissipation performance.

また、高度な冷却が必要な場合には、焼結金属や発泡金属などの多孔質金属材料やマイクロ加工による微細流路を用いた熱交換技術が開発されている(例えば特許文献1及び特許文献2参照。)。これらは、数十〜数百マイクロメートルの流路に冷却用の流体を通ずることで、温度境界層を薄くし、表面積を拡大することで、より効率的な熱交換を目指したものである。   In addition, when a high degree of cooling is required, a heat exchange technique using a porous metal material such as a sintered metal or a foam metal or a micro flow path by micro processing has been developed (for example, Patent Document 1 and Patent Document). 2). These aim at more efficient heat exchange by passing a cooling fluid through a flow path of several tens to several hundreds of micrometers, thereby thinning the temperature boundary layer and expanding the surface area.

ところが、上記微細流路を用いた熱交換技術では、各種の課題を有する。具体的には、微細流路や多孔質体に流体を通じる際、流路を細かくし、表面積を拡大すればするほど、圧力損失が大きくなることが挙げられる。このため、自然対流ではなく、ファンを用いた強制空冷や、ポンプなどの送液機構を用いた液冷においては、圧力損失の増加に伴い強力なファンや送液機構が必要となる。これは、熱交換システム全体のサイズ・重量の増加やコスト増を引き起こすという不都合を有する。   However, the heat exchange technology using the fine channel has various problems. Specifically, when a fluid is passed through a fine channel or a porous body, the pressure loss increases as the channel is made finer and the surface area is enlarged. For this reason, in forced air cooling using a fan instead of natural convection and liquid cooling using a liquid feeding mechanism such as a pump, a powerful fan and liquid feeding mechanism are required as pressure loss increases. This has the disadvantage of causing an increase in size / weight and cost of the entire heat exchange system.

また、このような熱交換技術には、孔径のばらつきによる流体の不均一な流れも課題となる。例えば公称孔径100ミクロンとされる発泡金属や金属焼結体などの多孔質体は、それほど孔径が揃っているわけではなく、50ミクロン以下程度から、150ミクロン程度までなどのある程度の範囲の孔径分布を持つ。このような場合、例えば50ミクロンの孔と150ミクロンの孔では、孔面積は9倍の差があり、当然流体は大面積の孔に優先的に流れてしまう。微細流路化による面積拡大の効果は、孔径の小さな流路に大きいものであるから、その孔径分布の広い不均一な孔径構造の多孔質体にあっては、大きなエネルギが必要となるという不都合を有する。   In addition, such a heat exchange technique also has a problem of non-uniform flow of fluid due to variations in hole diameter. For example, porous materials such as foamed metal and sintered metal having a nominal pore size of 100 microns do not have a uniform pore size, and a range of pore sizes ranging from about 50 microns or less to about 150 microns. have. In such a case, for example, there is a nine-fold difference in the hole area between a 50-micron hole and a 150-micron hole, and naturally the fluid flows preferentially through the large-area hole. Since the effect of expanding the area by making the micro-channel is large for a channel having a small pore size, a porous body having a non-uniform pore size structure with a wide pore size distribution requires a large amount of energy. Have

さらに、流体の管理の必要性が挙げられる。微細流路に通じる流体には、相応の管理が必要である。すなわち、流体に混入した粒子は、たちどころに流路を閉塞させてしまう。閉塞を防ぐためには、熱交換システム内にフィルタを設けるか、閉鎖系で流体を循環させるなどの工夫が必須となる。例えば、フィルタを設ける場合には、孔径が不均一なために、平均100ミクロンの孔径の多孔質体に対して、微細孔の孔径分布の下限に合わせた50
ミクロン以下の粒子を除去する能力を持った粒子除去フィルタが必要となり、高価となるという不都合を有する。
Furthermore, there is a need for fluid management. Appropriate management is required for the fluid that leads to the fine channel. In other words, the particles mixed in the fluid quickly block the flow path. In order to prevent blockage, a device such as providing a filter in the heat exchange system or circulating the fluid in a closed system is essential. For example, when a filter is provided, since the pore diameter is not uniform, a porous body having an average pore diameter of 100 microns is adjusted to the lower limit of the pore diameter distribution of fine pores.
A particle removal filter having the ability to remove particles below a micron is required, which is disadvantageous in that it is expensive.

このような熱交換技術を利用した熱交換器としては、多孔質体を流体が循環供給される容器の流体入口及び流体出口を分離するように配し、流体を容器内の多孔質体を通過させることで、熱交換を行うようにした容器構造のものが提案されている(例えば、特許文献1参照)。
特開2005−123496号公報
As a heat exchanger using such heat exchange technology, a porous body is arranged so as to separate a fluid inlet and a fluid outlet of a container to which fluid is circulated and supplied, and the fluid passes through the porous body in the container. Thus, a container structure that performs heat exchange has been proposed (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 2005-123496

しかしながら、上記特許文献1の熱交換器では、容器内に多孔質体を収容配置する構成上、発熱体からの熱伝達特性が劣り、熱交換特性が低下されるうえ、大形となるという問題を有する。   However, the heat exchanger disclosed in Patent Document 1 has a problem that the heat transfer characteristics from the heating element are inferior due to the configuration in which the porous body is accommodated in the container, the heat exchange characteristics are deteriorated, and the size is increased. Have

この発明は、上記事情に鑑みてなされたもので、構成簡易にして、高効率な熱伝導特性を実現し得、且つ、高効率な熱交換特性を実現し得るようにした熱交換器を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a heat exchanger that can realize a highly efficient heat conduction characteristic and a highly efficient heat exchange characteristic with a simple structure. The purpose is to do.

この発明は、2枚の挟装板の間にそれぞれ複数の貫通孔が形成された複数の壁部材がコ字状のスペーサ部材を介して面対向に配置して連設され、前記コ字状のスペーサ部材は1つ置きに第1のスペーサ部材と第2のスペーサ部材からなり、前記第1のスペーサ部材の開口面は複数の流体流入用開口として同一の向きをなすとともに前記第2のスペーサ部材の開口面は流体流出用開口として前記第1のスペーサ部材の開口面と異なる向きをなす熱交換器を構成した。 The present invention, a plurality of wall members, each plurality of through holes formed between the two KyoSoban is provided consecutively arranged on a surface facing via a U-shaped spacer member, said U-shaped the second spacer with the spacer member comprises a first spacer member and the second spacer member every one opening surface of the first spacer member forms a same direction as a plurality of fluid inlet opening The opening surface of the member constitutes a heat exchanger having a direction different from that of the opening surface of the first spacer member as a fluid outflow opening.

上記構成によれば、挟装板壁部材、第1及び第2のスペーサ部材は、熱源に対して直接的に熱結合され、しかも、複数の貫通孔の設けられる壁部材は、その面が流体流出用開口及び流体流出用開口と異なる向きに配置されている。従って、高効率な熱伝導特性が実現されて高効率な熱交換特性を実現したうえで、流体流入路及び流体流出路を含めた熱交換媒体を薄形に形成することが可能となる。 According to the above configuration, KyoSoban, wall member, the first and second spacer member, directly thermally coupled to a heat source, moreover, the wall member provided in a plurality of through holes, the wall surface Are arranged in a different direction from the fluid outflow opening and the fluid outflow opening. Accordingly, it is possible to form a heat exchange medium including a fluid inflow path and a fluid outflow path in a thin shape after realizing high efficiency heat conduction characteristics and high efficiency heat exchange characteristics.

以上述べたように、この発明によれば、構成簡易にして、薄形化の促進を図り得、且つ、高効率な熱伝導特性を実現して、熱交換特性の向上を図り得るようにした熱交換器を提供することができる。   As described above, according to the present invention, the configuration can be simplified, the thinning can be promoted, and the heat exchange characteristics can be improved by realizing the highly efficient heat conduction characteristics. A heat exchanger can be provided.

以下、この発明の実施の形態に係る熱交換について、図面を参照して詳細に説明する。
Hereinafter, the heat exchanger according to the embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1は、この発明の一実施の形態に係る熱交換器の外観構成を示すもので、熱交換媒体10は、例えば壁を形成する6枚の壁部材11が、後述するようにy軸方向に所定の間隔を有して面対向に連設されて配置されている。そして、この連設配置された6枚の壁部材11は、その両端が、例えば平板状の挟装板12,13により、後述するように挟装される。   FIG. 1 shows an external configuration of a heat exchanger according to an embodiment of the present invention. A heat exchange medium 10 includes, for example, six wall members 11 forming a wall in the y-axis direction as will be described later. Are arranged to face each other with a predetermined interval. The six wall members 11 arranged in a row are sandwiched at both ends by, for example, flat sandwiching plates 12 and 13 as will be described later.

壁部材11には、孔径を略均一に揃えた複数の微細な貫通孔111が、少なくとも一方向に揃えられて形成されている。壁部材11は、例えばy軸方向に平行に孔方向が形成され、ある範囲に孔径が制御された、多数の微細な貫通孔111を持つ異方性多孔質体を用いて構成される。   The wall member 11 is formed with a plurality of fine through-holes 111 whose hole diameters are substantially uniform and aligned in at least one direction. The wall member 11 is configured by using an anisotropic porous body having a large number of fine through holes 111 in which the hole direction is formed in parallel to the y-axis direction and the hole diameter is controlled within a certain range.

この6枚の壁部材11は、例えば図2及び図3に示すようにそのうち隣接する壁部材11との間にスペーサ部材14が介在されて、その一方の面と隣接する壁部材11の他方の面との間に、その面に対して略平行なx軸方向に開口を有した略コ字状の流体流入路17が形成される。そして、6枚の壁部材11の他方の面側には、隣接する壁部材11との間にスペーサ部材15が介在されて、その一方の面と隣接する壁部材11の他方の面との間に、面に対して略平行なx軸方向に開口を有した略コ字状の流体流出路18が形成される。ここで、この6枚の壁部材11のうち4枚は、その両面の流体流入路17及び流体流出路18がそれぞれ対向する壁部材11と共用される。   For example, as shown in FIGS. 2 and 3, the six wall members 11 have a spacer member 14 interposed between them and the other wall member 11 adjacent to the other wall member 11. A substantially U-shaped fluid inflow passage 17 having an opening in the x-axis direction substantially parallel to the surface is formed between the surface and the surface. Then, on the other surface side of the six wall members 11, a spacer member 15 is interposed between the adjacent wall members 11 and between the one surface and the other surface of the adjacent wall member 11. In addition, a substantially U-shaped fluid outflow passage 18 having an opening in the x-axis direction substantially parallel to the surface is formed. Here, four of the six wall members 11 are shared with the wall member 11 facing the fluid inflow passage 17 and the fluid outflow passage 18 on both surfaces thereof.

また、上記連設配置された6枚の壁部材11は、その両端に上記平板状の挟装板12,13が上記スペーサ部材16を介して所定の間隔を有して挟装配置され、その両端の壁部材11の各開放側にそれぞれ挟装板12,13及びスペーサ部材16により上述した開口を有した流体流出路18が形成される。   Further, the six wall members 11 arranged in a row are arranged so that the flat plate-like sandwiching plates 12 and 13 are sandwiched and arranged at both ends with the spacer member 16 between the both ends. A fluid outflow passage 18 having the above-described opening is formed by the sandwiching plates 12 and 13 and the spacer member 16 on each open side of the wall members 11 at both ends.

即ち、上記熱交換媒体10は、複数の貫通孔111の設けられた6枚の壁部材11の両面に対してスペーサ部材14,15を介して一辺が開口された略コ字状の流体流入路17及び流体流出路18が形成されている。これにより、連設された6枚の壁部材11は、その流体流入路17に流体が供給されると、その流体が壁部材11の貫通孔111を通過して流体流出路18から排出される。   In other words, the heat exchange medium 10 has a substantially U-shaped fluid inflow path in which one side is opened via the spacer members 14 and 15 on both surfaces of the six wall members 11 provided with the plurality of through holes 111. 17 and a fluid outflow passage 18 are formed. As a result, when the fluid is supplied to the fluid inflow path 17 of the six wall members 11 connected in series, the fluid passes through the through hole 111 of the wall member 11 and is discharged from the fluid outflow path 18. .

この結果、熱交換媒体10は、6枚の壁部材11の流体流入路17及び流体流出路18の流体流入方向及び流体流出方向が、その貫通孔111に対して略直交、即ち板面に対して略平行に配置されている。これにより、熱交換媒体10は、その壁部材11の連設方向(図中y軸方向)の厚さ寸法を最小限に設定することが可能となる。   As a result, in the heat exchange medium 10, the fluid inflow direction and the fluid outflow direction of the fluid inflow paths 17 and the fluid outflow paths 18 of the six wall members 11 are substantially orthogonal to the through holes 111, that is, with respect to the plate surface. Are arranged substantially in parallel. Thereby, the heat exchange medium 10 can set the thickness dimension of the wall member 11 in the connecting direction (the y-axis direction in the drawing) to the minimum.

ここで、上記壁部材11、挟装板12,13及びスペーサ部材14,15,16の材質は、銅やアルミなどの熱伝導のよい材料を用いることが好ましく、その貫通孔111の孔径や孔の長さ、板厚み、開孔率などのパラメータについて必要な値を満足し、結果として熱交換媒体10として必要な熱抵抗値を満足する設計にできるのであれば、加工の容易さや耐腐食性を考慮してステンレスやニッケルなどの他種の金属材料や合金を用いたり、貴金属類を用いて形成してもよい。また、材質としては、その他、シリコンなどの半導体を用いてもよく、シリコンを用いる場合には、エッチング処理により加工することが可能となる。   Here, the material of the wall member 11, the sandwiching plates 12, 13 and the spacer members 14, 15, 16 is preferably a material having good heat conductivity such as copper or aluminum. If it is possible to satisfy the necessary values for parameters such as length, plate thickness, and hole area ratio, and as a result, a heat resistance value required for the heat exchange medium 10 can be designed, the ease of processing and corrosion resistance In consideration of the above, other types of metal materials such as stainless steel and nickel, alloys may be used, or noble metals may be used. In addition, a semiconductor such as silicon may be used as the material, and when silicon is used, it can be processed by an etching process.

上記壁部材11の貫通孔111は、孔径を制御し、孔径分布を狭い範囲に抑えることにより、より均等的に流体を通じることができ、より効率的な熱交換効果を得ることができる。この壁部材11の貫通孔111は、本願出願人が平成18年4月26日に出願した特願2006-12730に記載された製法や、エッチングやエレクトロフォーミングなどの化学処理プロセスや、ドリルによる切削加工や、プレス加工、放電加工、レーザー加工などの機械加工プロセスを用いて形成される。   The through-holes 111 of the wall member 11 can pass the fluid more evenly by controlling the hole diameter and keeping the hole diameter distribution in a narrow range, and can obtain a more efficient heat exchange effect. The through hole 111 of the wall member 11 is formed by a manufacturing method described in Japanese Patent Application No. 2006-12730 filed on April 26, 2006 by the applicant of the present application, a chemical treatment process such as etching or electroforming, or cutting by a drill. It is formed using machining processes such as machining, press machining, electric discharge machining, and laser machining.

また、壁部材11は、その両面の表面積、及び複数の貫通孔111の内部の表面積の合計が、該貫通孔111を設けない場合の表面積よりも大きくなるように設定することにより、効果的な熱交換を行うことができる。   Moreover, the wall member 11 is effective by setting the surface area of both surfaces thereof and the total surface area of the plurality of through holes 111 to be larger than the surface area when the through holes 111 are not provided. Heat exchange can be performed.

例えば貫通孔111は、板厚寸法が100ミクロンの壁部材11に、孔径100ミクロンで、開孔率約30%で形成した場合、平板のままで用いるよりも、約30%表面積が拡大される。60ミクロン〜120ミクロンの貫通孔111を多数加工することは、機械加工により比較的容易に加工することが可能である。この範囲の孔径での設計とすることにより、孔長さ(深さ)寸法÷孔径の値(アスペクト比という)を大きく取った設計が容易となる。   For example, when the through-hole 111 is formed on the wall member 11 having a plate thickness of 100 microns with a hole diameter of 100 microns and an open area ratio of about 30%, the surface area is increased by about 30% compared to the case of using the flat plate as it is. . Processing a large number of through-holes 111 of 60 microns to 120 microns can be performed relatively easily by machining. By designing with a hole diameter in this range, it is easy to design with a large value of hole length (depth) dimension / hole diameter (referred to as aspect ratio).

なお、フォトエッチングにより形成した場合には、アスペクト比を大きく取ることは難しい(一般には1まで)が、比較的精度のよい孔を多数加工でき、量産しやすいという効果を有する。   When formed by photoetching, it is difficult to obtain a large aspect ratio (generally up to 1), but it has an effect that a large number of relatively accurate holes can be processed and mass production is easy.

また、上記貫通孔111は、板厚寸法が50ミクロンの壁部材11に、孔径50ミクロンの孔を開孔率約20%で加工した場合、孔のない板厚寸法が100ミクロンの平板に比べて、20%表面積が拡大するが、設置に要する占有体積が1/2となる。同じ占有体積では、壁部材11の枚数を2倍に増やすことができ、表面積が140%拡大される。この占有体積と表面積は、壁部材11の板厚寸法やフィン効率とも影響するが、必要な熱抵抗や熱交換効率に応じて設計を調整することが望ましい。   Further, the through-hole 111 has a plate thickness dimension of 50 microns, and when a hole with a hole diameter of 50 microns is machined at an aperture ratio of about 20%, the through-hole 111 is compared with a flat plate with a hole thickness of 100 microns. Thus, although the surface area is increased by 20%, the occupied volume required for installation becomes 1/2. With the same occupied volume, the number of wall members 11 can be doubled, and the surface area is increased by 140%. The occupied volume and the surface area affect the thickness of the wall member 11 and the fin efficiency, but it is desirable to adjust the design according to the required thermal resistance and heat exchange efficiency.

ここで、孔径20ミクロン〜60ミクロンの範囲の貫通孔111の加工は、フォトエッチングで加工可能な最小限界が、孔径50ミクロン前後であり、50〜60ミクロンの範囲であれば、フォトエッチングで加工可能である。50ミクロン以下では、機械加工により加工可能である。   Here, in the processing of the through hole 111 having a hole diameter of 20 to 60 microns, the minimum limit that can be processed by photoetching is around 50 microns, and if it is in the range of 50 to 60 microns, it is processed by photoetching. Is possible. Below 50 microns, it can be machined.

さらに、板厚寸法が100ミクロンの壁部材11に、孔径7ミクロンの貫通孔111を開孔率約30%で加工する場合には、平板よりも表面積が約750%拡大される。20ミクロン以下の貫通孔111は、例えば上述した本願出願人がすでに出願した特願2006-121730号に記載される溶湯鍛造法と炭素繊維を用いた方法で作成される。   Further, when the through-hole 111 having a hole diameter of 7 microns is processed on the wall member 11 having a plate thickness of 100 microns with an opening ratio of about 30%, the surface area is expanded by about 750% compared to the flat plate. The through-hole 111 of 20 microns or less is created by, for example, a molten forging method and a method using carbon fiber described in Japanese Patent Application No. 2006-121730 already filed by the applicant of the present invention.

上記構成において、熱交換媒体10は、熱交換対象である熱源19に熱的に結合されて配置され、該熱源19からの熱が壁部材11、挟装板12,13及びスペーサ部材14,15,16に熱移送される。同時に、熱交換媒体10には、その6枚の壁部材11及びスペーサ部材14,15で形成される流体流入路17に流体が供給される。すると、この流体は、壁部材11の貫通孔111を通り、流体流出路18に排出され、壁部材11及びスペーサ部材14,15から熱を奪い熱源19を冷却する。   In the above configuration, the heat exchange medium 10 is arranged to be thermally coupled to the heat source 19 that is a heat exchange target, and the heat from the heat source 19 is applied to the wall member 11, the sandwiching plates 12 and 13, and the spacer members 14 and 15. , 16 are heat transferred. At the same time, fluid is supplied to the heat exchange medium 10 through the fluid inflow passage 17 formed by the six wall members 11 and the spacer members 14 and 15. Then, the fluid passes through the through hole 111 of the wall member 11 and is discharged to the fluid outflow path 18, and heat is taken from the wall member 11 and the spacer members 14 and 15 to cool the heat source 19.

この際、流体は、熱交換媒体10に設けられた孔径を略均一に揃えられ、且つ、孔方向が少なくとも一方向に揃えられた壁部材11の複数の微細な貫通孔111を通過することにより、その圧力損失が低減される。この結果、熱交換に供するためのエネルギ消費の低減が図れて、効率的な熱交換を行うことが可能となり、流体を送るポンプや送風機等の強制供給手段の出力の低減が図れると共に、その熱抵抗の軽減が図れて、熱交換媒体10を小型化することが可能となる。   At this time, the fluid passes through the plurality of fine through holes 111 of the wall member 11 in which the hole diameters provided in the heat exchange medium 10 are substantially uniform and the hole direction is aligned in at least one direction. The pressure loss is reduced. As a result, energy consumption for heat exchange can be reduced, efficient heat exchange can be performed, and the output of forced supply means such as a pump for sending fluid and a blower can be reduced, and the heat can be reduced. Resistance can be reduced and the heat exchange medium 10 can be downsized.

このように、上記熱交換器は、流体流入路17の流体流入方向に平行な一方の面と、流体流出路18の流体流出方向に平行な他方の面とを有し、その両面を貫通する複数の貫通孔111が設けられた熱源19に熱的に結合される壁部材11が設けられた熱交換媒体10を備えて構成した。   Thus, the heat exchanger has one surface parallel to the fluid inflow direction of the fluid inflow passage 17 and the other surface parallel to the fluid outflow direction of the fluid outflow passage 18, and penetrates both surfaces thereof. The heat exchange medium 10 provided with the wall member 11 thermally coupled to the heat source 19 provided with the plurality of through holes 111 was provided.

これによれば、熱交換媒体10の壁部材11は、熱源19に対して直接的に熱結合され、しかも、その複数の貫通孔111の形成される両面が、流体流出方向及び流体排出方向に対して略平行に配置されている。この結果、高効率な熱伝導特性が実現されて高効率な熱交換特性を実現したうえで、流体流入路17及び流体流出路18を含めた熱交換媒体10を薄形に形成することが可能となる。   According to this, the wall member 11 of the heat exchange medium 10 is directly thermally coupled to the heat source 19, and both surfaces on which the plurality of through holes 111 are formed are in the fluid outflow direction and the fluid discharge direction. It is arrange | positioned substantially parallel with respect. As a result, it is possible to form the heat exchange medium 10 including the fluid inflow path 17 and the fluid outflow path 18 in a thin shape after realizing high efficiency heat conduction characteristics and high efficiency heat exchange characteristics. It becomes.

ここで、上記熱交換媒体10は、強制的に流体を供給する流体供給手段を備えて構成することにより、流体を効率よく、交換することが可能となり、さらに熱交換効率の向上を図ることが可能となる。例えば流体として気体を用いる場合には、図4に示すように構成される。   Here, the heat exchange medium 10 includes a fluid supply means for forcibly supplying a fluid, whereby the fluid can be efficiently exchanged, and the heat exchange efficiency can be further improved. It becomes possible. For example, when gas is used as the fluid, it is configured as shown in FIG.

即ち、上記熱交換媒体10には、その流体流入路17にエアフィルタ20が装着され、その流体流出路18に冷却ファン21が取付けられる。この冷却ファン21は、例えば熱交換時、駆動され、その駆動により、エアフィルタ20を通って空気を吸引して流体流入路17に強制的に供給する。この流体流入路17に供給された空気は、壁部材11の貫通孔111を通って流体流出路18から冷却ファン21により強制的に排出され、壁部材11に熱移送された熱との熱交換を、さらに効率よく実行することができる。ここで、エアフィルタ20は、壁部材11の貫通孔111への埃・ゴミの侵入を阻止して、その閉塞の防止を図る。   That is, an air filter 20 is attached to the fluid inflow path 17 of the heat exchange medium 10, and a cooling fan 21 is attached to the fluid outflow path 18. The cooling fan 21 is driven, for example, at the time of heat exchange. With the driving, the cooling fan 21 sucks air through the air filter 20 and forcibly supplies it to the fluid inflow path 17. The air supplied to the fluid inflow path 17 is forcibly discharged from the fluid outflow path 18 by the cooling fan 21 through the through hole 111 of the wall member 11, and exchanges heat with the heat transferred to the wall member 11. Can be executed more efficiently. Here, the air filter 20 prevents dust and dirt from entering the through hole 111 of the wall member 11 to prevent the blockage.

上記冷却ファン21は、空気の流出側に配することなく、空気の流入側に配置するようにしてもよい。この場合、エアフィルタ20は、熱交換媒体10に空気が流入する前に、該空気が通過するように配置される。   The cooling fan 21 may be disposed on the air inflow side without being disposed on the air outflow side. In this case, the air filter 20 is arranged so that the air passes before the air flows into the heat exchange medium 10.

また、この発明は、上記実施の形態に限ることなく、その他、例えば図5乃至図8に示すように熱交換媒体30を構成してもよく、同様に有効な効果が期待される。但し、この乃至図8においては、上記図1乃至図4と同一部分について同一符号を付して、その詳細な説明を省略する。   In addition, the present invention is not limited to the above-described embodiment, and the heat exchange medium 30 may be configured as shown in, for example, FIGS. However, in this thru | or FIG. 8, the same code | symbol is attached | subjected about the same part as the said FIG. 1 thru | or FIG. 4, and the detailed description is abbreviate | omitted.

即ち、この実施の形態による熱交換媒体30は、上記6枚の壁部材11のうち隣接する壁部材11との間にスペーサ部材31が介在されて、その一方の面と隣接する壁部材11の他方の面との間に、その面に対して略平行なx軸方向の両端側に開口を有した略コ字状の流体流入路32が形成される。そして、6枚の壁部材11の隣接する他方の面側には、隣接する壁部材11の一方の面との間にスペーサ部材33が介在されて、その一方の面と隣接する壁部材11の他方の面との間に、面に対して略平行なz軸方向に開口を有した流体流出路34が形成される。ここで、この6枚の壁部材11のうち4枚の隣接する壁部材11は、その両面の流体流入路32及び流体流出路34が、それぞれ対向する壁部材11と共用される。   That is, in the heat exchange medium 30 according to this embodiment, the spacer member 31 is interposed between the six wall members 11 and the adjacent wall member 11, and the wall member 11 adjacent to one surface of the spacer member 31 is interposed. A substantially U-shaped fluid inflow passage 32 having openings at both ends in the x-axis direction substantially parallel to the other surface is formed between the other surface. And the spacer member 33 is interposed between one surface of the adjacent wall member 11 on the other surface side adjacent to the six wall members 11, and the wall member 11 adjacent to the one surface A fluid outflow path 34 having an opening in the z-axis direction substantially parallel to the surface is formed between the other surface. Here, in the four adjacent wall members 11 among the six wall members 11, the fluid inflow passages 32 and the fluid outflow passages 34 on both surfaces thereof are shared with the opposing wall members 11.

また、上記連設配置された6枚の壁部材11は、上記2枚の挟装板12,13がスペーサ部材35を介して所定の間隔を有して挟装配置され、その両端の壁部材11の各開放側にそれぞれ上述した両端に開口を有した流体流出路34が形成される。   Further, the six wall members 11 arranged in a row are arranged such that the two sandwich plates 12 and 13 are sandwiched and disposed with a predetermined interval through a spacer member 35, and the wall members at both ends thereof. The fluid outflow passages 34 having openings at both ends described above are formed on the respective open sides of 11.

この熱交換媒体30は、その流体流出路34の基端側となる壁部材11、挟装板12,13及びスペーサ部材31,33,35の端部が上記熱源19に熱的に結合されて配置され、この熱源19からこれら壁部材11、挟装板12,13及びスペーサ部材31,33,35に直接的に熱移送されて熱交換が行われる。   In this heat exchange medium 30, the end of the wall member 11, the sandwiching plates 12, 13 and the spacer members 31, 33, 35 on the base end side of the fluid outflow path 34 is thermally coupled to the heat source 19. The heat source 19 directly transfers heat to the wall member 11, the sandwiching plates 12 and 13, and the spacer members 31, 33, and 35 for heat exchange.

同時に、熱交換媒体30には、その6枚の壁部材11及びスペーサ部材31,33,35で形成される流体流入路32に流体が供給される。この流体は、壁部材11の貫通孔111を通り、流体流出路34に排出され、壁部材11及びスペーサ部材31,33,35から熱を奪い熱源19を冷却する。   At the same time, the heat exchange medium 30 is supplied with fluid into the fluid inflow passage 32 formed by the six wall members 11 and the spacer members 31, 33, and 35. This fluid passes through the through-hole 111 of the wall member 11 and is discharged to the fluid outflow path 34, which takes heat from the wall member 11 and the spacer members 31, 33, and 35 and cools the heat source 19.

この実施の形態に係る熱交換媒体30においても、流体供給手段を配する場合には、例えば図8に示すように上記ファン21を流体流出路側に配して、その流体流入路32の開口側に例えば図示しないエアフィルタを配し、強制的に空気を供給するように構成される。これにより、同様に壁部材11、挟装板12,13及びスペーサ部材31,33,35に移送された熱との熱交換を、さらに効率よく実行することが可能となる。   Also in the heat exchange medium 30 according to this embodiment, when the fluid supply means is disposed, for example, as shown in FIG. 8, the fan 21 is disposed on the fluid outflow path side, and the opening side of the fluid inflow path 32 is provided. For example, an air filter (not shown) is arranged in the apparatus so that air is forcibly supplied. Thereby, similarly, it becomes possible to more efficiently execute heat exchange with the heat transferred to the wall member 11, the sandwiching plates 12, 13 and the spacer members 31, 33, 35.

この冷却ファン21及びエアフィルタ(図示せず)の配置位置としては、その他、冷却ファン21を熱交換媒体30の空気の流入側に配置するように構成しても良い。この場合、エアフィルタ(図示せず)は、熱交換媒体30に空気が流入する前に、通過するように配置される。   As an arrangement position of the cooling fan 21 and the air filter (not shown), the cooling fan 21 may be arranged on the air inflow side of the heat exchange medium 30. In this case, the air filter (not shown) is arranged to pass through before the air flows into the heat exchange medium 30.

上記構成によれば、熱交換媒体30が熱的に結合される熱源に対向して冷却ファン21を配することが可能となることにより、例えば電子機器に配するMPU等の電子部品の冷却構造に好適され、電子部品の高出力化に寄与することが可能となる。   According to the above configuration, the cooling fan 21 can be disposed to face the heat source to which the heat exchange medium 30 is thermally coupled, so that, for example, a cooling structure for an electronic component such as an MPU disposed in an electronic device. Therefore, it is possible to contribute to high output of electronic parts.

さらに、上記各実施の形態では、6枚の壁部材11を連設配置して熱交換媒体10,30を構成した場合について説明したが、この配置構成に限ることなく、その他、1枚以上の壁部材11を用いて構成することも可能で、同様の効果が期待される。   Furthermore, in each of the above-described embodiments, the case where the heat exchange media 10 and 30 are configured by arranging and arranging the six wall members 11 in a row has been described. It is also possible to configure using the wall member 11, and the same effect is expected.

そして、壁部材11の両面に設ける流体流入路17,32及び流体流出路18,34としては、上記各実施の形態で説明した開口位置に限ることなく、その他、壁部材11間に配置するスペーサ部材の形状及び組付け配置位置を可変設定することにより、その流体流入路及び流体流出路の開口位置を各種の向きに設定することが可能で、同様に有効な効果が期待される。   The fluid inflow passages 17 and 32 and the fluid outflow passages 18 and 34 provided on both surfaces of the wall member 11 are not limited to the opening positions described in the above embodiments, and other spacers disposed between the wall members 11. By variably setting the shape and assembly arrangement position of the member, it is possible to set the opening positions of the fluid inflow path and the fluid outflow path in various directions, and the same effective effect is expected.

また、上記各実施の形態では、流体供給手段として気体である空気を強制的に供給するように構成した場合で説明したが、これに限ることなく、その他、液体を供給するように構成することも可能である。   Further, in each of the above embodiments, the case where the fluid supply means is configured to forcibly supply gas air has been described. However, the present invention is not limited to this, and the liquid supply means may be configured to supply liquid. Is also possible.

よって、この発明は、上記実施の形態に限ることなく、その他、実施段階ではその要旨を逸脱しない範囲で種々の変形を実施し得ることが可能である。さらに、上記実施の形態には、種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組合せにより種々の発明が抽出され得る。   Therefore, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention at the stage of implementation. Further, the above embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements.

例えば実施の形態に示される全構成要件から幾つかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果で述べられている効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。   For example, even if some constituent requirements are deleted from all the constituent requirements shown in the embodiment, the problem described in the column of the problem to be solved by the invention can be solved, and the effect described in the effect of the invention can be obtained. In such a case, a configuration in which this configuration requirement is deleted can be extracted as an invention.

この発明の一実施の形態に係る熱交換器の外観構成を示した斜視図である。It is the perspective view which showed the external appearance structure of the heat exchanger which concerns on one embodiment of this invention. 図1のA−A断面を示す断面図である。It is sectional drawing which shows the AA cross section of FIG. 図1のB−B断面を示す断面図である。It is sectional drawing which shows the BB cross section of FIG. 図1の熱交換媒体に流体供給手段を組付けた状態を示した斜視図である。It is the perspective view which showed the state which assembled | attached the fluid supply means to the heat exchange medium of FIG. この発明の他の実施の形態に係る熱交換器を示した斜視図である。It is the perspective view which showed the heat exchanger which concerns on other embodiment of this invention. 図5のA−A断面を示した断面図である。It is sectional drawing which showed the AA cross section of FIG. 図5のB−B断面を示した断面図である。It is sectional drawing which showed the BB cross section of FIG. 図5の熱交換媒体に流体供給手段を組付けた状態を示した斜視図である。It is the perspective view which showed the state which assembled | attached the fluid supply means to the heat exchange medium of FIG.

符号の説明Explanation of symbols

10…熱交換媒体、11…壁部材、111…貫通孔、12,13…挟装板、14,15,16…スペーサ部材、17…流体流入路、18…流体流出路、19…熱源、20…エアフィルタ、21…冷却ファン、30…熱交換媒体、31,33,35…スペーサ部材、32流体流入路、34…流体流出路。   DESCRIPTION OF SYMBOLS 10 ... Heat exchange medium, 11 ... Wall member, 111 ... Through-hole, 12, 13 ... Clamping plate, 14, 15, 16 ... Spacer member, 17 ... Fluid inflow path, 18 ... Fluid outflow path, 19 ... Heat source, 20 DESCRIPTION OF SYMBOLS ... Air filter, 21 ... Cooling fan, 30 ... Heat exchange medium, 31, 33, 35 ... Spacer member, 32 fluid inflow path, 34 ... Fluid outflow path.

Claims (6)

2枚の挟装板の間にそれぞれ複数の貫通孔が形成された複数の壁部材がコ字状のスペーサ部材を介して面対向に配置して連設され、前記コ字状のスペーサ部材は1つ置きに第1のスペーサ部材と第2のスペーサ部材からなり、前記第1のスペーサ部材の開口面は複数の流体流入用開口として同一の向きをなすとともに前記第2のスペーサ部材の開口面は流体流出用開口として前記第1のスペーサ部材の開口面と異なる向きをなすことを特徴とする熱交換器。   A plurality of wall members each having a plurality of through holes formed between two sandwiching plates are arranged to face each other through a U-shaped spacer member, and one U-shaped spacer member is provided. The first spacer member and the second spacer member are arranged, and the opening surface of the first spacer member has the same orientation as a plurality of fluid inflow openings, and the opening surface of the second spacer member is a fluid. A heat exchanger characterized in that the outflow opening has a different direction from the opening surface of the first spacer member. 前記第2のスペーサ部材の開口面は前記第1のスペーサ部材の開口面と逆向きであることを特徴とする請求項1記載の熱交換器。 The heat exchanger according to claim 1, wherein an opening surface of the second spacer member is opposite to an opening surface of the first spacer member . 前記第2のスペーサ部材の開口面は前記第1のスペーサ部材の開口面と直交する向きであることを特徴とする請求項1記載の熱交換器。 The heat exchanger of claim 1 Symbol mounting, characterized in that a direction opening surface of the second spacer member is perpendicular to the opening surface of the first spacer member. 前記貫通孔は、径が略均一に形成され、且つ、孔方向が略同一に形成されることを特徴とする請求項1乃至3のいずれか記載の熱交換器。 The through hole diameter is substantially uniformly formed, and the heat exchanger according to any one of claims 1 to 3 hole direction are formed in substantially the same and said Rukoto. 前記流体流入用開口あるいは前記流体流出用開口の一方に前記流体を強制的に通過させる流体供給手段を備えることを特徴とする請求項1乃至4のいずれか記載の熱交換器。 The heat exchanger according to any of claims 1 to 4, characterized in Rukoto comprising a fluid supply means for forcibly passing the fluid in one of said fluid inlet opening or the fluid outlet opening. 前記壁部材は、両面及び前記複数の貫通孔の表面積の合計が前記複数の貫通孔を設けない場合に比して大きくなるように該貫通孔の孔径、深さ寸法及び開口率を設定することを特徴とする請求項1乃至5のいずれか記載の熱交換器。 Said wall member, to set the two-sided and the plurality of through-holes of total diameter of the through hole to be larger than the case of not providing the plurality of through-holes of the surface area, depth and aperture ratio The heat exchanger according to any one of claims 1 to 5, wherein
JP2006329522A 2006-12-06 2006-12-06 Heat exchanger Expired - Fee Related JP4909725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006329522A JP4909725B2 (en) 2006-12-06 2006-12-06 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006329522A JP4909725B2 (en) 2006-12-06 2006-12-06 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2008147240A JP2008147240A (en) 2008-06-26
JP4909725B2 true JP4909725B2 (en) 2012-04-04

Family

ID=39607119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006329522A Expired - Fee Related JP4909725B2 (en) 2006-12-06 2006-12-06 Heat exchanger

Country Status (1)

Country Link
JP (1) JP4909725B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058754A (en) * 2009-09-11 2011-03-24 Toshiba Corp Heat exchanging medium and heat exchanger
JP6162836B2 (en) * 2016-02-15 2017-07-12 株式会社東芝 Heat exchanger

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4578715B2 (en) * 2001-01-24 2010-11-10 三菱電機株式会社 Heat sink device
JP4013883B2 (en) * 2003-10-20 2007-11-28 三菱電機株式会社 Heat exchanger
US7234514B2 (en) * 2004-08-02 2007-06-26 Asml Holding N.V. Methods and systems for compact, micro-channel laminar heat exchanging

Also Published As

Publication number Publication date
JP2008147240A (en) 2008-06-26

Similar Documents

Publication Publication Date Title
JP4231081B2 (en) Cooling system
US6422307B1 (en) Ultra high fin density heat sink for electronics cooling
JP4460856B2 (en) Microstructure cooler and its use
US7044199B2 (en) Porous media cold plate
US7000684B2 (en) Method and apparatus for efficient vertical fluid delivery for cooling a heat producing device
US20090129011A1 (en) Liquid cooled module
US20050211418A1 (en) Method and apparatus for efficient vertical fluid delivery for cooling a heat producing device
WO2017203574A1 (en) Loop heat pipe, manufacturing method therefor, and electronic device
EP3316669B1 (en) Integrated card rail and cooling module for embedded computing systems
EP3625824B1 (en) Heat sink and method for producing same
WO2011041600A1 (en) Fabrication of high surface area, high aspect ratio mini-channels and their application in liquid cooling systems
JP2006522463A5 (en)
JP2006515054A5 (en)
WO2008097557A2 (en) Carbon-based waterblock with attached heat-exchanger for cooling of electronic devices
JP4909725B2 (en) Heat exchanger
EP4171859A1 (en) Integrated hybrid compact fluid heat exchanger
Hedau et al. On the importance of fluidic manifold design and orientation on flow boiling instability in microchannel heat sinks
JP2008111653A (en) Cooler
US20210247151A1 (en) Fluid-based cooling device for cooling at least two distinct first heat-generating elements of a heat source assembly
JP2008530482A (en) Heat exchanger manufacturing method, micro heat exchanger manufacturing method, and micro heat exchanger
JP7049849B2 (en) Cooling system
JP2010080455A (en) Cooling device and cooling method for electronic equipment
Hatem et al. Enhancement of perforated pin-fins heat sink under forced convection
JP2009123783A (en) Heat exchange medium and heat exchanger
Ramakrishna et al. Thermal analysis of fluid flow through microchannels with vertical bifurcations for non-uniform heat fluxes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111125

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120116

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees